1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline.  The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60#include <limits.h>
61#include "pipe/p_defines.h"
62#include "util/u_inlines.h"
63#include "util/u_memory.h"
64#include "util/u_pointer.h"
65#include "util/u_format.h"
66#include "util/u_dump.h"
67#include "util/u_string.h"
68#include "util/simple_list.h"
69#include "util/u_dual_blend.h"
70#include "util/os_time.h"
71#include "pipe/p_shader_tokens.h"
72#include "draw/draw_context.h"
73#include "tgsi/tgsi_dump.h"
74#include "tgsi/tgsi_scan.h"
75#include "tgsi/tgsi_parse.h"
76#include "gallivm/lp_bld_type.h"
77#include "gallivm/lp_bld_const.h"
78#include "gallivm/lp_bld_conv.h"
79#include "gallivm/lp_bld_init.h"
80#include "gallivm/lp_bld_intr.h"
81#include "gallivm/lp_bld_logic.h"
82#include "gallivm/lp_bld_tgsi.h"
83#include "gallivm/lp_bld_swizzle.h"
84#include "gallivm/lp_bld_flow.h"
85#include "gallivm/lp_bld_debug.h"
86#include "gallivm/lp_bld_arit.h"
87#include "gallivm/lp_bld_bitarit.h"
88#include "gallivm/lp_bld_pack.h"
89#include "gallivm/lp_bld_format.h"
90#include "gallivm/lp_bld_quad.h"
91
92#include "lp_bld_alpha.h"
93#include "lp_bld_blend.h"
94#include "lp_bld_depth.h"
95#include "lp_bld_interp.h"
96#include "lp_context.h"
97#include "lp_debug.h"
98#include "lp_perf.h"
99#include "lp_setup.h"
100#include "lp_state.h"
101#include "lp_tex_sample.h"
102#include "lp_flush.h"
103#include "lp_state_fs.h"
104#include "lp_rast.h"
105
106
107/** Fragment shader number (for debugging) */
108static unsigned fs_no = 0;
109
110
111/**
112 * Expand the relevant bits of mask_input to a n*4-dword mask for the
113 * n*four pixels in n 2x2 quads.  This will set the n*four elements of the
114 * quad mask vector to 0 or ~0.
115 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
116 * quad arguments with fs length 8.
117 *
118 * \param first_quad  which quad(s) of the quad group to test, in [0,3]
119 * \param mask_input  bitwise mask for the whole 4x4 stamp
120 */
121static LLVMValueRef
122generate_quad_mask(struct gallivm_state *gallivm,
123                   struct lp_type fs_type,
124                   unsigned first_quad,
125                   LLVMValueRef mask_input) /* int32 */
126{
127   LLVMBuilderRef builder = gallivm->builder;
128   struct lp_type mask_type;
129   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
130   LLVMValueRef bits[16];
131   LLVMValueRef mask, bits_vec;
132   int shift, i;
133
134   /*
135    * XXX: We'll need a different path for 16 x u8
136    */
137   assert(fs_type.width == 32);
138   assert(fs_type.length <= ARRAY_SIZE(bits));
139   mask_type = lp_int_type(fs_type);
140
141   /*
142    * mask_input >>= (quad * 4)
143    */
144   switch (first_quad) {
145   case 0:
146      shift = 0;
147      break;
148   case 1:
149      assert(fs_type.length == 4);
150      shift = 2;
151      break;
152   case 2:
153      shift = 8;
154      break;
155   case 3:
156      assert(fs_type.length == 4);
157      shift = 10;
158      break;
159   default:
160      assert(0);
161      shift = 0;
162   }
163
164   mask_input = LLVMBuildLShr(builder,
165                              mask_input,
166                              LLVMConstInt(i32t, shift, 0),
167                              "");
168
169   /*
170    * mask = { mask_input & (1 << i), for i in [0,3] }
171    */
172   mask = lp_build_broadcast(gallivm,
173                             lp_build_vec_type(gallivm, mask_type),
174                             mask_input);
175
176   for (i = 0; i < fs_type.length / 4; i++) {
177      unsigned j = 2 * (i % 2) + (i / 2) * 8;
178      bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
179      bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
180      bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
181      bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
182   }
183   bits_vec = LLVMConstVector(bits, fs_type.length);
184   mask = LLVMBuildAnd(builder, mask, bits_vec, "");
185
186   /*
187    * mask = mask == bits ? ~0 : 0
188    */
189   mask = lp_build_compare(gallivm,
190                           mask_type, PIPE_FUNC_EQUAL,
191                           mask, bits_vec);
192
193   return mask;
194}
195
196
197#define EARLY_DEPTH_TEST  0x1
198#define LATE_DEPTH_TEST   0x2
199#define EARLY_DEPTH_WRITE 0x4
200#define LATE_DEPTH_WRITE  0x8
201
202static int
203find_output_by_semantic( const struct tgsi_shader_info *info,
204			 unsigned semantic,
205			 unsigned index )
206{
207   int i;
208
209   for (i = 0; i < info->num_outputs; i++)
210      if (info->output_semantic_name[i] == semantic &&
211	  info->output_semantic_index[i] == index)
212	 return i;
213
214   return -1;
215}
216
217
218/**
219 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
220 */
221static LLVMValueRef
222lp_llvm_viewport(LLVMValueRef context_ptr,
223                 struct gallivm_state *gallivm,
224                 LLVMValueRef viewport_index)
225{
226   LLVMBuilderRef builder = gallivm->builder;
227   LLVMValueRef ptr;
228   LLVMValueRef res;
229   struct lp_type viewport_type =
230      lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
231
232   ptr = lp_jit_context_viewports(gallivm, context_ptr);
233   ptr = LLVMBuildPointerCast(builder, ptr,
234            LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
235
236   res = lp_build_pointer_get(builder, ptr, viewport_index);
237
238   return res;
239}
240
241
242static LLVMValueRef
243lp_build_depth_clamp(struct gallivm_state *gallivm,
244                     LLVMBuilderRef builder,
245                     struct lp_type type,
246                     LLVMValueRef context_ptr,
247                     LLVMValueRef thread_data_ptr,
248                     LLVMValueRef z)
249{
250   LLVMValueRef viewport, min_depth, max_depth;
251   LLVMValueRef viewport_index;
252   struct lp_build_context f32_bld;
253
254   assert(type.floating);
255   lp_build_context_init(&f32_bld, gallivm, type);
256
257   /*
258    * Assumes clamping of the viewport index will occur in setup/gs. Value
259    * is passed through the rasterization stage via lp_rast_shader_inputs.
260    *
261    * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
262    *      semantics.
263    */
264   viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
265                       thread_data_ptr);
266
267   /*
268    * Load the min and max depth from the lp_jit_context.viewports
269    * array of lp_jit_viewport structures.
270    */
271   viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
272
273   /* viewports[viewport_index].min_depth */
274   min_depth = LLVMBuildExtractElement(builder, viewport,
275                  lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
276   min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
277
278   /* viewports[viewport_index].max_depth */
279   max_depth = LLVMBuildExtractElement(builder, viewport,
280                  lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
281   max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
282
283   /*
284    * Clamp to the min and max depth values for the given viewport.
285    */
286   return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
287}
288
289
290/**
291 * Generate the fragment shader, depth/stencil test, and alpha tests.
292 */
293static void
294generate_fs_loop(struct gallivm_state *gallivm,
295                 struct lp_fragment_shader *shader,
296                 const struct lp_fragment_shader_variant_key *key,
297                 LLVMBuilderRef builder,
298                 struct lp_type type,
299                 LLVMValueRef context_ptr,
300                 LLVMValueRef num_loop,
301                 struct lp_build_interp_soa_context *interp,
302                 const struct lp_build_sampler_soa *sampler,
303                 LLVMValueRef mask_store,
304                 LLVMValueRef (*out_color)[4],
305                 LLVMValueRef depth_ptr,
306                 LLVMValueRef depth_stride,
307                 LLVMValueRef facing,
308                 LLVMValueRef thread_data_ptr)
309{
310   const struct util_format_description *zs_format_desc = NULL;
311   const struct tgsi_token *tokens = shader->base.tokens;
312   struct lp_type int_type = lp_int_type(type);
313   LLVMTypeRef vec_type, int_vec_type;
314   LLVMValueRef mask_ptr, mask_val;
315   LLVMValueRef consts_ptr, num_consts_ptr;
316   LLVMValueRef z;
317   LLVMValueRef z_value, s_value;
318   LLVMValueRef z_fb, s_fb;
319   LLVMValueRef stencil_refs[2];
320   LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
321   struct lp_build_for_loop_state loop_state;
322   struct lp_build_mask_context mask;
323   /*
324    * TODO: figure out if simple_shader optimization is really worthwile to
325    * keep. Disabled because it may hide some real bugs in the (depth/stencil)
326    * code since tests tend to take another codepath than real shaders.
327    */
328   boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
329                            shader->info.base.num_inputs < 3 &&
330                            shader->info.base.num_instructions < 8) && 0;
331   const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
332                                     util_blend_state_is_dual(&key->blend, 0);
333   unsigned attrib;
334   unsigned chan;
335   unsigned cbuf;
336   unsigned depth_mode;
337
338   struct lp_bld_tgsi_system_values system_values;
339
340   memset(&system_values, 0, sizeof(system_values));
341
342   if (key->depth.enabled ||
343       key->stencil[0].enabled) {
344
345      zs_format_desc = util_format_description(key->zsbuf_format);
346      assert(zs_format_desc);
347
348      if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
349         if (key->alpha.enabled ||
350             key->blend.alpha_to_coverage ||
351             shader->info.base.uses_kill ||
352             shader->info.base.writes_samplemask) {
353            /* With alpha test and kill, can do the depth test early
354             * and hopefully eliminate some quads.  But need to do a
355             * special deferred depth write once the final mask value
356             * is known. This only works though if there's either no
357             * stencil test or the stencil value isn't written.
358             */
359            if (key->stencil[0].enabled && (key->stencil[0].writemask ||
360                                            (key->stencil[1].enabled &&
361                                             key->stencil[1].writemask)))
362               depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
363            else
364               depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
365         }
366         else
367            depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
368      }
369      else {
370         depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
371      }
372
373      if (!(key->depth.enabled && key->depth.writemask) &&
374          !(key->stencil[0].enabled && (key->stencil[0].writemask ||
375                                        (key->stencil[1].enabled &&
376                                         key->stencil[1].writemask))))
377         depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
378   }
379   else {
380      depth_mode = 0;
381   }
382
383   vec_type = lp_build_vec_type(gallivm, type);
384   int_vec_type = lp_build_vec_type(gallivm, int_type);
385
386   stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
387   stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
388   /* convert scalar stencil refs into vectors */
389   stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
390   stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
391
392   consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
393   num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
394
395   lp_build_for_loop_begin(&loop_state, gallivm,
396                           lp_build_const_int32(gallivm, 0),
397                           LLVMIntULT,
398                           num_loop,
399                           lp_build_const_int32(gallivm, 1));
400
401   mask_ptr = LLVMBuildGEP(builder, mask_store,
402                           &loop_state.counter, 1, "mask_ptr");
403   mask_val = LLVMBuildLoad(builder, mask_ptr, "");
404
405   memset(outputs, 0, sizeof outputs);
406
407   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
408      for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
409         out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
410                                                       lp_build_vec_type(gallivm,
411                                                                         type),
412                                                       num_loop, "color");
413      }
414   }
415   if (dual_source_blend) {
416      assert(key->nr_cbufs <= 1);
417      for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
418         out_color[1][chan] = lp_build_array_alloca(gallivm,
419                                                    lp_build_vec_type(gallivm,
420                                                                      type),
421                                                    num_loop, "color1");
422      }
423   }
424
425
426   /* 'mask' will control execution based on quad's pixel alive/killed state */
427   lp_build_mask_begin(&mask, gallivm, type, mask_val);
428
429   if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
430      lp_build_mask_check(&mask);
431
432   lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
433   z = interp->pos[2];
434
435   if (depth_mode & EARLY_DEPTH_TEST) {
436      /*
437       * Clamp according to ARB_depth_clamp semantics.
438       */
439      if (key->depth_clamp) {
440         z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
441                                  thread_data_ptr, z);
442      }
443      lp_build_depth_stencil_load_swizzled(gallivm, type,
444                                           zs_format_desc, key->resource_1d,
445                                           depth_ptr, depth_stride,
446                                           &z_fb, &s_fb, loop_state.counter);
447      lp_build_depth_stencil_test(gallivm,
448                                  &key->depth,
449                                  key->stencil,
450                                  type,
451                                  zs_format_desc,
452                                  &mask,
453                                  stencil_refs,
454                                  z, z_fb, s_fb,
455                                  facing,
456                                  &z_value, &s_value,
457                                  !simple_shader);
458
459      if (depth_mode & EARLY_DEPTH_WRITE) {
460         lp_build_depth_stencil_write_swizzled(gallivm, type,
461                                               zs_format_desc, key->resource_1d,
462                                               NULL, NULL, NULL, loop_state.counter,
463                                               depth_ptr, depth_stride,
464                                               z_value, s_value);
465      }
466      /*
467       * Note mask check if stencil is enabled must be after ds write not after
468       * stencil test otherwise new stencil values may not get written if all
469       * fragments got killed by depth/stencil test.
470       */
471      if (!simple_shader && key->stencil[0].enabled)
472         lp_build_mask_check(&mask);
473   }
474
475   lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
476
477   /* Build the actual shader */
478   lp_build_tgsi_soa(gallivm, tokens, type, &mask,
479                     consts_ptr, num_consts_ptr, &system_values,
480                     interp->inputs,
481                     outputs, context_ptr, thread_data_ptr,
482                     sampler, &shader->info.base, NULL);
483
484   /* Alpha test */
485   if (key->alpha.enabled) {
486      int color0 = find_output_by_semantic(&shader->info.base,
487                                           TGSI_SEMANTIC_COLOR,
488                                           0);
489
490      if (color0 != -1 && outputs[color0][3]) {
491         const struct util_format_description *cbuf_format_desc;
492         LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
493         LLVMValueRef alpha_ref_value;
494
495         alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
496         alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
497
498         cbuf_format_desc = util_format_description(key->cbuf_format[0]);
499
500         lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
501                             &mask, alpha, alpha_ref_value,
502                             (depth_mode & LATE_DEPTH_TEST) != 0);
503      }
504   }
505
506   /* Emulate Alpha to Coverage with Alpha test */
507   if (key->blend.alpha_to_coverage) {
508      int color0 = find_output_by_semantic(&shader->info.base,
509                                           TGSI_SEMANTIC_COLOR,
510                                           0);
511
512      if (color0 != -1 && outputs[color0][3]) {
513         LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
514
515         lp_build_alpha_to_coverage(gallivm, type,
516                                    &mask, alpha,
517                                    (depth_mode & LATE_DEPTH_TEST) != 0);
518      }
519   }
520
521   if (shader->info.base.writes_samplemask) {
522      int smaski = find_output_by_semantic(&shader->info.base,
523                                           TGSI_SEMANTIC_SAMPLEMASK,
524                                           0);
525      LLVMValueRef smask;
526      struct lp_build_context smask_bld;
527      lp_build_context_init(&smask_bld, gallivm, int_type);
528
529      assert(smaski >= 0);
530      smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
531      /*
532       * Pixel is alive according to the first sample in the mask.
533       */
534      smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
535      smask = lp_build_and(&smask_bld, smask, smask_bld.one);
536      smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
537      lp_build_mask_update(&mask, smask);
538   }
539
540   /* Late Z test */
541   if (depth_mode & LATE_DEPTH_TEST) {
542      int pos0 = find_output_by_semantic(&shader->info.base,
543                                         TGSI_SEMANTIC_POSITION,
544                                         0);
545      int s_out = find_output_by_semantic(&shader->info.base,
546                                          TGSI_SEMANTIC_STENCIL,
547                                          0);
548      if (pos0 != -1 && outputs[pos0][2]) {
549         z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
550      }
551      /*
552       * Clamp according to ARB_depth_clamp semantics.
553       */
554      if (key->depth_clamp) {
555         z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
556                                  thread_data_ptr, z);
557      }
558
559      if (s_out != -1 && outputs[s_out][1]) {
560         /* there's only one value, and spec says to discard additional bits */
561         LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
562         stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
563         stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
564         stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
565         stencil_refs[1] = stencil_refs[0];
566      }
567
568      lp_build_depth_stencil_load_swizzled(gallivm, type,
569                                           zs_format_desc, key->resource_1d,
570                                           depth_ptr, depth_stride,
571                                           &z_fb, &s_fb, loop_state.counter);
572
573      lp_build_depth_stencil_test(gallivm,
574                                  &key->depth,
575                                  key->stencil,
576                                  type,
577                                  zs_format_desc,
578                                  &mask,
579                                  stencil_refs,
580                                  z, z_fb, s_fb,
581                                  facing,
582                                  &z_value, &s_value,
583                                  !simple_shader);
584      /* Late Z write */
585      if (depth_mode & LATE_DEPTH_WRITE) {
586         lp_build_depth_stencil_write_swizzled(gallivm, type,
587                                               zs_format_desc, key->resource_1d,
588                                               NULL, NULL, NULL, loop_state.counter,
589                                               depth_ptr, depth_stride,
590                                               z_value, s_value);
591      }
592   }
593   else if ((depth_mode & EARLY_DEPTH_TEST) &&
594            (depth_mode & LATE_DEPTH_WRITE))
595   {
596      /* Need to apply a reduced mask to the depth write.  Reload the
597       * depth value, update from zs_value with the new mask value and
598       * write that out.
599       */
600      lp_build_depth_stencil_write_swizzled(gallivm, type,
601                                            zs_format_desc, key->resource_1d,
602                                            &mask, z_fb, s_fb, loop_state.counter,
603                                            depth_ptr, depth_stride,
604                                            z_value, s_value);
605   }
606
607
608   /* Color write  */
609   for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
610   {
611      unsigned cbuf = shader->info.base.output_semantic_index[attrib];
612      if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
613           ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
614      {
615         for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
616            if(outputs[attrib][chan]) {
617               /* XXX: just initialize outputs to point at colors[] and
618                * skip this.
619                */
620               LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
621               LLVMValueRef color_ptr;
622               color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
623                                        &loop_state.counter, 1, "");
624               lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
625               LLVMBuildStore(builder, out, color_ptr);
626            }
627         }
628      }
629   }
630
631   if (key->occlusion_count) {
632      LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
633      lp_build_name(counter, "counter");
634      lp_build_occlusion_count(gallivm, type,
635                               lp_build_mask_value(&mask), counter);
636   }
637
638   mask_val = lp_build_mask_end(&mask);
639   LLVMBuildStore(builder, mask_val, mask_ptr);
640   lp_build_for_loop_end(&loop_state);
641}
642
643
644/**
645 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
646 *
647 * Fragment Shader outputs pixels in small 2x2 blocks
648 *  e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
649 *
650 * However in memory pixels are stored in rows
651 *  e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
652 *
653 * @param type            fragment shader type (4x or 8x float)
654 * @param num_fs          number of fs_src
655 * @param is_1d           whether we're outputting to a 1d resource
656 * @param dst_channels    number of output channels
657 * @param fs_src          output from fragment shader
658 * @param dst             pointer to store result
659 * @param pad_inline      is channel padding inline or at end of row
660 * @return                the number of dsts
661 */
662static int
663generate_fs_twiddle(struct gallivm_state *gallivm,
664                    struct lp_type type,
665                    unsigned num_fs,
666                    unsigned dst_channels,
667                    LLVMValueRef fs_src[][4],
668                    LLVMValueRef* dst,
669                    bool pad_inline)
670{
671   LLVMValueRef src[16];
672
673   bool swizzle_pad;
674   bool twiddle;
675   bool split;
676
677   unsigned pixels = type.length / 4;
678   unsigned reorder_group;
679   unsigned src_channels;
680   unsigned src_count;
681   unsigned i;
682
683   src_channels = dst_channels < 3 ? dst_channels : 4;
684   src_count = num_fs * src_channels;
685
686   assert(pixels == 2 || pixels == 1);
687   assert(num_fs * src_channels <= ARRAY_SIZE(src));
688
689   /*
690    * Transpose from SoA -> AoS
691    */
692   for (i = 0; i < num_fs; ++i) {
693      lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
694   }
695
696   /*
697    * Pick transformation options
698    */
699   swizzle_pad = false;
700   twiddle = false;
701   split = false;
702   reorder_group = 0;
703
704   if (dst_channels == 1) {
705      twiddle = true;
706
707      if (pixels == 2) {
708         split = true;
709      }
710   } else if (dst_channels == 2) {
711      if (pixels == 1) {
712         reorder_group = 1;
713      }
714   } else if (dst_channels > 2) {
715      if (pixels == 1) {
716         reorder_group = 2;
717      } else {
718         twiddle = true;
719      }
720
721      if (!pad_inline && dst_channels == 3 && pixels > 1) {
722         swizzle_pad = true;
723      }
724   }
725
726   /*
727    * Split the src in half
728    */
729   if (split) {
730      for (i = num_fs; i > 0; --i) {
731         src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
732         src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
733      }
734
735      src_count *= 2;
736      type.length = 4;
737   }
738
739   /*
740    * Ensure pixels are in memory order
741    */
742   if (reorder_group) {
743      /* Twiddle pixels by reordering the array, e.g.:
744       *
745       * src_count =  8 -> 0 2 1 3 4 6 5 7
746       * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
747       */
748      const unsigned reorder_sw[] = { 0, 2, 1, 3 };
749
750      for (i = 0; i < src_count; ++i) {
751         unsigned group = i / reorder_group;
752         unsigned block = (group / 4) * 4 * reorder_group;
753         unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
754         dst[i] = src[j];
755      }
756   } else if (twiddle) {
757      /* Twiddle pixels across elements of array */
758      /*
759       * XXX: we should avoid this in some cases, but would need to tell
760       * lp_build_conv to reorder (or deal with it ourselves).
761       */
762      lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
763   } else {
764      /* Do nothing */
765      memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
766   }
767
768   /*
769    * Moves any padding between pixels to the end
770    * e.g. RGBXRGBX -> RGBRGBXX
771    */
772   if (swizzle_pad) {
773      unsigned char swizzles[16];
774      unsigned elems = pixels * dst_channels;
775
776      for (i = 0; i < type.length; ++i) {
777         if (i < elems)
778            swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
779         else
780            swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
781      }
782
783      for (i = 0; i < src_count; ++i) {
784         dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
785      }
786   }
787
788   return src_count;
789}
790
791
792/*
793 * Untwiddle and transpose, much like the above.
794 * However, this is after conversion, so we get packed vectors.
795 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
796 * the vectors will look like:
797 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
798 * be swizzled here). Extending to 16bit should be trivial.
799 * Should also be extended to handle twice wide vectors with AVX2...
800 */
801static void
802fs_twiddle_transpose(struct gallivm_state *gallivm,
803                     struct lp_type type,
804                     LLVMValueRef *src,
805                     unsigned src_count,
806                     LLVMValueRef *dst)
807{
808   unsigned i, j;
809   struct lp_type type64, type16, type32;
810   LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
811   LLVMBuilderRef builder = gallivm->builder;
812   LLVMValueRef tmp[4], shuf[8];
813   for (j = 0; j < 2; j++) {
814      shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
815      shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
816      shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
817      shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
818   }
819
820   assert(src_count == 4 || src_count == 2 || src_count == 1);
821   assert(type.width == 8);
822   assert(type.length == 16);
823
824   type8_t = lp_build_vec_type(gallivm, type);
825
826   type64 = type;
827   type64.length /= 8;
828   type64.width *= 8;
829   type64_t = lp_build_vec_type(gallivm, type64);
830
831   type16 = type;
832   type16.length /= 2;
833   type16.width *= 2;
834   type16_t = lp_build_vec_type(gallivm, type16);
835
836   type32 = type;
837   type32.length /= 4;
838   type32.width *= 4;
839   type32_t = lp_build_vec_type(gallivm, type32);
840
841   lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
842
843   if (src_count == 1) {
844      /* transpose was no-op, just untwiddle */
845      LLVMValueRef shuf_vec;
846      shuf_vec = LLVMConstVector(shuf, 8);
847      tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
848      tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
849      dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
850   } else if (src_count == 2) {
851      LLVMValueRef shuf_vec;
852      shuf_vec = LLVMConstVector(shuf, 4);
853
854      for (i = 0; i < 2; i++) {
855         tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
856         tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
857         dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
858      }
859   } else {
860      for (j = 0; j < 2; j++) {
861         LLVMValueRef lo, hi, lo2, hi2;
862          /*
863          * Note that if we only really have 3 valid channels (rgb)
864          * and we don't need alpha we could substitute a undef here
865          * for the respective channel (causing llvm to drop conversion
866          * for alpha).
867          */
868         /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
869         lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
870         hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
871         lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
872         hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
873         dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
874         dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
875      }
876   }
877}
878
879
880/**
881 * Load an unswizzled block of pixels from memory
882 */
883static void
884load_unswizzled_block(struct gallivm_state *gallivm,
885                      LLVMValueRef base_ptr,
886                      LLVMValueRef stride,
887                      unsigned block_width,
888                      unsigned block_height,
889                      LLVMValueRef* dst,
890                      struct lp_type dst_type,
891                      unsigned dst_count,
892                      unsigned dst_alignment)
893{
894   LLVMBuilderRef builder = gallivm->builder;
895   unsigned row_size = dst_count / block_height;
896   unsigned i;
897
898   /* Ensure block exactly fits into dst */
899   assert((block_width * block_height) % dst_count == 0);
900
901   for (i = 0; i < dst_count; ++i) {
902      unsigned x = i % row_size;
903      unsigned y = i / row_size;
904
905      LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
906      LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
907
908      LLVMValueRef gep[2];
909      LLVMValueRef dst_ptr;
910
911      gep[0] = lp_build_const_int32(gallivm, 0);
912      gep[1] = LLVMBuildAdd(builder, bx, by, "");
913
914      dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
915      dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
916                                 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
917
918      dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
919
920      LLVMSetAlignment(dst[i], dst_alignment);
921   }
922}
923
924
925/**
926 * Store an unswizzled block of pixels to memory
927 */
928static void
929store_unswizzled_block(struct gallivm_state *gallivm,
930                       LLVMValueRef base_ptr,
931                       LLVMValueRef stride,
932                       unsigned block_width,
933                       unsigned block_height,
934                       LLVMValueRef* src,
935                       struct lp_type src_type,
936                       unsigned src_count,
937                       unsigned src_alignment)
938{
939   LLVMBuilderRef builder = gallivm->builder;
940   unsigned row_size = src_count / block_height;
941   unsigned i;
942
943   /* Ensure src exactly fits into block */
944   assert((block_width * block_height) % src_count == 0);
945
946   for (i = 0; i < src_count; ++i) {
947      unsigned x = i % row_size;
948      unsigned y = i / row_size;
949
950      LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
951      LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
952
953      LLVMValueRef gep[2];
954      LLVMValueRef src_ptr;
955
956      gep[0] = lp_build_const_int32(gallivm, 0);
957      gep[1] = LLVMBuildAdd(builder, bx, by, "");
958
959      src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
960      src_ptr = LLVMBuildBitCast(builder, src_ptr,
961                                 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
962
963      src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
964
965      LLVMSetAlignment(src_ptr, src_alignment);
966   }
967}
968
969
970/**
971 * Checks if a format description is an arithmetic format
972 *
973 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
974 */
975static inline boolean
976is_arithmetic_format(const struct util_format_description *format_desc)
977{
978   boolean arith = false;
979   unsigned i;
980
981   for (i = 0; i < format_desc->nr_channels; ++i) {
982      arith |= format_desc->channel[i].size != format_desc->channel[0].size;
983      arith |= (format_desc->channel[i].size % 8) != 0;
984   }
985
986   return arith;
987}
988
989
990/**
991 * Checks if this format requires special handling due to required expansion
992 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
993 * SoA conversion.
994 */
995static inline boolean
996format_expands_to_float_soa(const struct util_format_description *format_desc)
997{
998   if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
999       format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1000      return true;
1001   }
1002   return false;
1003}
1004
1005
1006/**
1007 * Retrieves the type representing the memory layout for a format
1008 *
1009 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1010 */
1011static inline void
1012lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1013                             struct lp_type* type)
1014{
1015   unsigned i;
1016   unsigned chan;
1017
1018   if (format_expands_to_float_soa(format_desc)) {
1019      /* just make this a uint with width of block */
1020      type->floating = false;
1021      type->fixed = false;
1022      type->sign = false;
1023      type->norm = false;
1024      type->width = format_desc->block.bits;
1025      type->length = 1;
1026      return;
1027   }
1028
1029   for (i = 0; i < 4; i++)
1030      if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1031         break;
1032   chan = i;
1033
1034   memset(type, 0, sizeof(struct lp_type));
1035   type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1036   type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1037   type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1038   type->norm     = format_desc->channel[chan].normalized;
1039
1040   if (is_arithmetic_format(format_desc)) {
1041      type->width = 0;
1042      type->length = 1;
1043
1044      for (i = 0; i < format_desc->nr_channels; ++i) {
1045         type->width += format_desc->channel[i].size;
1046      }
1047   } else {
1048      type->width = format_desc->channel[chan].size;
1049      type->length = format_desc->nr_channels;
1050   }
1051}
1052
1053
1054/**
1055 * Retrieves the type for a format which is usable in the blending code.
1056 *
1057 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1058 */
1059static inline void
1060lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1061                               struct lp_type* type)
1062{
1063   unsigned i;
1064   unsigned chan;
1065
1066   if (format_expands_to_float_soa(format_desc)) {
1067      /* always use ordinary floats for blending */
1068      type->floating = true;
1069      type->fixed = false;
1070      type->sign = true;
1071      type->norm = false;
1072      type->width = 32;
1073      type->length = 4;
1074      return;
1075   }
1076
1077   for (i = 0; i < 4; i++)
1078      if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1079         break;
1080   chan = i;
1081
1082   memset(type, 0, sizeof(struct lp_type));
1083   type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1084   type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1085   type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1086   type->norm     = format_desc->channel[chan].normalized;
1087   type->width    = format_desc->channel[chan].size;
1088   type->length   = format_desc->nr_channels;
1089
1090   for (i = 1; i < format_desc->nr_channels; ++i) {
1091      if (format_desc->channel[i].size > type->width)
1092         type->width = format_desc->channel[i].size;
1093   }
1094
1095   if (type->floating) {
1096      type->width = 32;
1097   } else {
1098      if (type->width <= 8) {
1099         type->width = 8;
1100      } else if (type->width <= 16) {
1101         type->width = 16;
1102      } else {
1103         type->width = 32;
1104      }
1105   }
1106
1107   if (is_arithmetic_format(format_desc) && type->length == 3) {
1108      type->length = 4;
1109   }
1110}
1111
1112
1113/**
1114 * Scale a normalized value from src_bits to dst_bits.
1115 *
1116 * The exact calculation is
1117 *
1118 *    dst = iround(src * dst_mask / src_mask)
1119 *
1120 *  or with integer rounding
1121 *
1122 *    dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1123 *
1124 *  where
1125 *
1126 *    src_mask = (1 << src_bits) - 1
1127 *    dst_mask = (1 << dst_bits) - 1
1128 *
1129 * but we try to avoid division and multiplication through shifts.
1130 */
1131static inline LLVMValueRef
1132scale_bits(struct gallivm_state *gallivm,
1133           int src_bits,
1134           int dst_bits,
1135           LLVMValueRef src,
1136           struct lp_type src_type)
1137{
1138   LLVMBuilderRef builder = gallivm->builder;
1139   LLVMValueRef result = src;
1140
1141   if (dst_bits < src_bits) {
1142      int delta_bits = src_bits - dst_bits;
1143
1144      if (delta_bits <= dst_bits) {
1145         /*
1146          * Approximate the rescaling with a single shift.
1147          *
1148          * This gives the wrong rounding.
1149          */
1150
1151         result = LLVMBuildLShr(builder,
1152                                src,
1153                                lp_build_const_int_vec(gallivm, src_type, delta_bits),
1154                                "");
1155
1156      } else {
1157         /*
1158          * Try more accurate rescaling.
1159          */
1160
1161         /*
1162          * Drop the least significant bits to make space for the multiplication.
1163          *
1164          * XXX: A better approach would be to use a wider integer type as intermediate.  But
1165          * this is enough to convert alpha from 16bits -> 2 when rendering to
1166          * PIPE_FORMAT_R10G10B10A2_UNORM.
1167          */
1168         result = LLVMBuildLShr(builder,
1169                                src,
1170                                lp_build_const_int_vec(gallivm, src_type, dst_bits),
1171                                "");
1172
1173
1174         result = LLVMBuildMul(builder,
1175                               result,
1176                               lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1177                               "");
1178
1179         /*
1180          * Add a rounding term before the division.
1181          *
1182          * TODO: Handle signed integers too.
1183          */
1184         if (!src_type.sign) {
1185            result = LLVMBuildAdd(builder,
1186                                  result,
1187                                  lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1188                                  "");
1189         }
1190
1191         /*
1192          * Approximate the division by src_mask with a src_bits shift.
1193          *
1194          * Given the src has already been shifted by dst_bits, all we need
1195          * to do is to shift by the difference.
1196          */
1197
1198         result = LLVMBuildLShr(builder,
1199                                result,
1200                                lp_build_const_int_vec(gallivm, src_type, delta_bits),
1201                                "");
1202      }
1203
1204   } else if (dst_bits > src_bits) {
1205      /* Scale up bits */
1206      int db = dst_bits - src_bits;
1207
1208      /* Shift left by difference in bits */
1209      result = LLVMBuildShl(builder,
1210                            src,
1211                            lp_build_const_int_vec(gallivm, src_type, db),
1212                            "");
1213
1214      if (db <= src_bits) {
1215         /* Enough bits in src to fill the remainder */
1216         LLVMValueRef lower = LLVMBuildLShr(builder,
1217                                            src,
1218                                            lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1219                                            "");
1220
1221         result = LLVMBuildOr(builder, result, lower, "");
1222      } else if (db > src_bits) {
1223         /* Need to repeatedly copy src bits to fill remainder in dst */
1224         unsigned n;
1225
1226         for (n = src_bits; n < dst_bits; n *= 2) {
1227            LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1228
1229            result = LLVMBuildOr(builder,
1230                                 result,
1231                                 LLVMBuildLShr(builder, result, shuv, ""),
1232                                 "");
1233         }
1234      }
1235   }
1236
1237   return result;
1238}
1239
1240/**
1241 * If RT is a smallfloat (needing denorms) format
1242 */
1243static inline int
1244have_smallfloat_format(struct lp_type dst_type,
1245                       enum pipe_format format)
1246{
1247   return ((dst_type.floating && dst_type.width != 32) ||
1248    /* due to format handling hacks this format doesn't have floating set
1249     * here (and actually has width set to 32 too) so special case this. */
1250    (format == PIPE_FORMAT_R11G11B10_FLOAT));
1251}
1252
1253
1254/**
1255 * Convert from memory format to blending format
1256 *
1257 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1258 */
1259static void
1260convert_to_blend_type(struct gallivm_state *gallivm,
1261                      unsigned block_size,
1262                      const struct util_format_description *src_fmt,
1263                      struct lp_type src_type,
1264                      struct lp_type dst_type,
1265                      LLVMValueRef* src, // and dst
1266                      unsigned num_srcs)
1267{
1268   LLVMValueRef *dst = src;
1269   LLVMBuilderRef builder = gallivm->builder;
1270   struct lp_type blend_type;
1271   struct lp_type mem_type;
1272   unsigned i, j;
1273   unsigned pixels = block_size / num_srcs;
1274   bool is_arith;
1275
1276   /*
1277    * full custom path for packed floats and srgb formats - none of the later
1278    * functions would do anything useful, and given the lp_type representation they
1279    * can't be fixed. Should really have some SoA blend path for these kind of
1280    * formats rather than hacking them in here.
1281    */
1282   if (format_expands_to_float_soa(src_fmt)) {
1283      LLVMValueRef tmpsrc[4];
1284      /*
1285       * This is pretty suboptimal for this case blending in SoA would be much
1286       * better, since conversion gets us SoA values so need to convert back.
1287       */
1288      assert(src_type.width == 32 || src_type.width == 16);
1289      assert(dst_type.floating);
1290      assert(dst_type.width == 32);
1291      assert(dst_type.length % 4 == 0);
1292      assert(num_srcs % 4 == 0);
1293
1294      if (src_type.width == 16) {
1295         /* expand 4x16bit values to 4x32bit */
1296         struct lp_type type32x4 = src_type;
1297         LLVMTypeRef ltype32x4;
1298         unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1299         type32x4.width = 32;
1300         ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1301         for (i = 0; i < num_fetch; i++) {
1302            src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1303         }
1304         src_type.width = 32;
1305      }
1306      for (i = 0; i < 4; i++) {
1307         tmpsrc[i] = src[i];
1308      }
1309      for (i = 0; i < num_srcs / 4; i++) {
1310         LLVMValueRef tmpsoa[4];
1311         LLVMValueRef tmps = tmpsrc[i];
1312         if (dst_type.length == 8) {
1313            LLVMValueRef shuffles[8];
1314            unsigned j;
1315            /* fetch was 4 values but need 8-wide output values */
1316            tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1317            /*
1318             * for 8-wide aos transpose would give us wrong order not matching
1319             * incoming converted fs values and mask. ARGH.
1320             */
1321            for (j = 0; j < 4; j++) {
1322               shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1323               shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1324            }
1325            tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1326                                          LLVMConstVector(shuffles, 8), "");
1327         }
1328         if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1329            lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1330         }
1331         else {
1332            lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1333         }
1334         lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1335      }
1336      return;
1337   }
1338
1339   lp_mem_type_from_format_desc(src_fmt, &mem_type);
1340   lp_blend_type_from_format_desc(src_fmt, &blend_type);
1341
1342   /* Is the format arithmetic */
1343   is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1344   is_arith &= !(mem_type.width == 16 && mem_type.floating);
1345
1346   /* Pad if necessary */
1347   if (!is_arith && src_type.length < dst_type.length) {
1348      for (i = 0; i < num_srcs; ++i) {
1349         dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1350      }
1351
1352      src_type.length = dst_type.length;
1353   }
1354
1355   /* Special case for half-floats */
1356   if (mem_type.width == 16 && mem_type.floating) {
1357      assert(blend_type.width == 32 && blend_type.floating);
1358      lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1359      is_arith = false;
1360   }
1361
1362   if (!is_arith) {
1363      return;
1364   }
1365
1366   src_type.width = blend_type.width * blend_type.length;
1367   blend_type.length *= pixels;
1368   src_type.length *= pixels / (src_type.length / mem_type.length);
1369
1370   for (i = 0; i < num_srcs; ++i) {
1371      LLVMValueRef chans[4];
1372      LLVMValueRef res = NULL;
1373
1374      dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1375
1376      for (j = 0; j < src_fmt->nr_channels; ++j) {
1377         unsigned mask = 0;
1378         unsigned sa = src_fmt->channel[j].shift;
1379#ifdef PIPE_ARCH_LITTLE_ENDIAN
1380         unsigned from_lsb = j;
1381#else
1382         unsigned from_lsb = src_fmt->nr_channels - j - 1;
1383#endif
1384
1385         mask = (1 << src_fmt->channel[j].size) - 1;
1386
1387         /* Extract bits from source */
1388         chans[j] = LLVMBuildLShr(builder,
1389                                  dst[i],
1390                                  lp_build_const_int_vec(gallivm, src_type, sa),
1391                                  "");
1392
1393         chans[j] = LLVMBuildAnd(builder,
1394                                 chans[j],
1395                                 lp_build_const_int_vec(gallivm, src_type, mask),
1396                                 "");
1397
1398         /* Scale bits */
1399         if (src_type.norm) {
1400            chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1401                                  blend_type.width, chans[j], src_type);
1402         }
1403
1404         /* Insert bits into correct position */
1405         chans[j] = LLVMBuildShl(builder,
1406                                 chans[j],
1407                                 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1408                                 "");
1409
1410         if (j == 0) {
1411            res = chans[j];
1412         } else {
1413            res = LLVMBuildOr(builder, res, chans[j], "");
1414         }
1415      }
1416
1417      dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1418   }
1419}
1420
1421
1422/**
1423 * Convert from blending format to memory format
1424 *
1425 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1426 */
1427static void
1428convert_from_blend_type(struct gallivm_state *gallivm,
1429                        unsigned block_size,
1430                        const struct util_format_description *src_fmt,
1431                        struct lp_type src_type,
1432                        struct lp_type dst_type,
1433                        LLVMValueRef* src, // and dst
1434                        unsigned num_srcs)
1435{
1436   LLVMValueRef* dst = src;
1437   unsigned i, j, k;
1438   struct lp_type mem_type;
1439   struct lp_type blend_type;
1440   LLVMBuilderRef builder = gallivm->builder;
1441   unsigned pixels = block_size / num_srcs;
1442   bool is_arith;
1443
1444   /*
1445    * full custom path for packed floats and srgb formats - none of the later
1446    * functions would do anything useful, and given the lp_type representation they
1447    * can't be fixed. Should really have some SoA blend path for these kind of
1448    * formats rather than hacking them in here.
1449    */
1450   if (format_expands_to_float_soa(src_fmt)) {
1451      /*
1452       * This is pretty suboptimal for this case blending in SoA would be much
1453       * better - we need to transpose the AoS values back to SoA values for
1454       * conversion/packing.
1455       */
1456      assert(src_type.floating);
1457      assert(src_type.width == 32);
1458      assert(src_type.length % 4 == 0);
1459      assert(dst_type.width == 32 || dst_type.width == 16);
1460
1461      for (i = 0; i < num_srcs / 4; i++) {
1462         LLVMValueRef tmpsoa[4], tmpdst;
1463         lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1464         /* really really need SoA here */
1465
1466         if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1467            tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1468         }
1469         else {
1470            tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1471                                                   src_type, tmpsoa);
1472         }
1473
1474         if (src_type.length == 8) {
1475            LLVMValueRef tmpaos, shuffles[8];
1476            unsigned j;
1477            /*
1478             * for 8-wide aos transpose has given us wrong order not matching
1479             * output order. HMPF. Also need to split the output values manually.
1480             */
1481            for (j = 0; j < 4; j++) {
1482               shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1483               shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1484            }
1485            tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1486                                            LLVMConstVector(shuffles, 8), "");
1487            src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1488            src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1489         }
1490         else {
1491            src[i] = tmpdst;
1492         }
1493      }
1494      if (dst_type.width == 16) {
1495         struct lp_type type16x8 = dst_type;
1496         struct lp_type type32x4 = dst_type;
1497         LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1498         unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1499         type16x8.length = 8;
1500         type32x4.width = 32;
1501         ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1502         ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1503         ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1504         /* We could do vector truncation but it doesn't generate very good code */
1505         for (i = 0; i < num_fetch; i++) {
1506            src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1507                                    src[i], lp_build_zero(gallivm, type32x4));
1508            src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1509            src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1510            src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1511         }
1512      }
1513      return;
1514   }
1515
1516   lp_mem_type_from_format_desc(src_fmt, &mem_type);
1517   lp_blend_type_from_format_desc(src_fmt, &blend_type);
1518
1519   is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1520
1521   /* Special case for half-floats */
1522   if (mem_type.width == 16 && mem_type.floating) {
1523      int length = dst_type.length;
1524      assert(blend_type.width == 32 && blend_type.floating);
1525
1526      dst_type.length = src_type.length;
1527
1528      lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1529
1530      dst_type.length = length;
1531      is_arith = false;
1532   }
1533
1534   /* Remove any padding */
1535   if (!is_arith && (src_type.length % mem_type.length)) {
1536      src_type.length -= (src_type.length % mem_type.length);
1537
1538      for (i = 0; i < num_srcs; ++i) {
1539         dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1540      }
1541   }
1542
1543   /* No bit arithmetic to do */
1544   if (!is_arith) {
1545      return;
1546   }
1547
1548   src_type.length = pixels;
1549   src_type.width = blend_type.length * blend_type.width;
1550   dst_type.length = pixels;
1551
1552   for (i = 0; i < num_srcs; ++i) {
1553      LLVMValueRef chans[4];
1554      LLVMValueRef res = NULL;
1555
1556      dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1557
1558      for (j = 0; j < src_fmt->nr_channels; ++j) {
1559         unsigned mask = 0;
1560         unsigned sa = src_fmt->channel[j].shift;
1561#ifdef PIPE_ARCH_LITTLE_ENDIAN
1562         unsigned from_lsb = j;
1563#else
1564         unsigned from_lsb = src_fmt->nr_channels - j - 1;
1565#endif
1566
1567         assert(blend_type.width > src_fmt->channel[j].size);
1568
1569         for (k = 0; k < blend_type.width; ++k) {
1570            mask |= 1 << k;
1571         }
1572
1573         /* Extract bits */
1574         chans[j] = LLVMBuildLShr(builder,
1575                                  dst[i],
1576                                  lp_build_const_int_vec(gallivm, src_type,
1577                                                         from_lsb * blend_type.width),
1578                                  "");
1579
1580         chans[j] = LLVMBuildAnd(builder,
1581                                 chans[j],
1582                                 lp_build_const_int_vec(gallivm, src_type, mask),
1583                                 "");
1584
1585         /* Scale down bits */
1586         if (src_type.norm) {
1587            chans[j] = scale_bits(gallivm, blend_type.width,
1588                                  src_fmt->channel[j].size, chans[j], src_type);
1589         }
1590
1591         /* Insert bits */
1592         chans[j] = LLVMBuildShl(builder,
1593                                 chans[j],
1594                                 lp_build_const_int_vec(gallivm, src_type, sa),
1595                                 "");
1596
1597         sa += src_fmt->channel[j].size;
1598
1599         if (j == 0) {
1600            res = chans[j];
1601         } else {
1602            res = LLVMBuildOr(builder, res, chans[j], "");
1603         }
1604      }
1605
1606      assert (dst_type.width != 24);
1607
1608      dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1609   }
1610}
1611
1612
1613/**
1614 * Convert alpha to same blend type as src
1615 */
1616static void
1617convert_alpha(struct gallivm_state *gallivm,
1618              struct lp_type row_type,
1619              struct lp_type alpha_type,
1620              const unsigned block_size,
1621              const unsigned block_height,
1622              const unsigned src_count,
1623              const unsigned dst_channels,
1624              const bool pad_inline,
1625              LLVMValueRef* src_alpha)
1626{
1627   LLVMBuilderRef builder = gallivm->builder;
1628   unsigned i, j;
1629   unsigned length = row_type.length;
1630   row_type.length = alpha_type.length;
1631
1632   /* Twiddle the alpha to match pixels */
1633   lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1634
1635   /*
1636    * TODO this should use single lp_build_conv call for
1637    * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1638    */
1639   for (i = 0; i < block_height; ++i) {
1640      lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1641   }
1642
1643   alpha_type = row_type;
1644   row_type.length = length;
1645
1646   /* If only one channel we can only need the single alpha value per pixel */
1647   if (src_count == 1 && dst_channels == 1) {
1648
1649      lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1650   } else {
1651      /* If there are more srcs than rows then we need to split alpha up */
1652      if (src_count > block_height) {
1653         for (i = src_count; i > 0; --i) {
1654            unsigned pixels = block_size / src_count;
1655            unsigned idx = i - 1;
1656
1657            src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1658                                                    (idx * pixels) % 4, pixels);
1659         }
1660      }
1661
1662      /* If there is a src for each pixel broadcast the alpha across whole row */
1663      if (src_count == block_size) {
1664         for (i = 0; i < src_count; ++i) {
1665            src_alpha[i] = lp_build_broadcast(gallivm,
1666                              lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1667         }
1668      } else {
1669         unsigned pixels = block_size / src_count;
1670         unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1671         unsigned alpha_span = 1;
1672         LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1673
1674         /* Check if we need 2 src_alphas for our shuffles */
1675         if (pixels > alpha_type.length) {
1676            alpha_span = 2;
1677         }
1678
1679         /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1680         for (j = 0; j < row_type.length; ++j) {
1681            if (j < pixels * channels) {
1682               shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1683            } else {
1684               shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1685            }
1686         }
1687
1688         for (i = 0; i < src_count; ++i) {
1689            unsigned idx1 = i, idx2 = i;
1690
1691            if (alpha_span > 1){
1692               idx1 *= alpha_span;
1693               idx2 = idx1 + 1;
1694            }
1695
1696            src_alpha[i] = LLVMBuildShuffleVector(builder,
1697                                                  src_alpha[idx1],
1698                                                  src_alpha[idx2],
1699                                                  LLVMConstVector(shuffles, row_type.length),
1700                                                  "");
1701         }
1702      }
1703   }
1704}
1705
1706
1707/**
1708 * Generates the blend function for unswizzled colour buffers
1709 * Also generates the read & write from colour buffer
1710 */
1711static void
1712generate_unswizzled_blend(struct gallivm_state *gallivm,
1713                          unsigned rt,
1714                          struct lp_fragment_shader_variant *variant,
1715                          enum pipe_format out_format,
1716                          unsigned int num_fs,
1717                          struct lp_type fs_type,
1718                          LLVMValueRef* fs_mask,
1719                          LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1720                          LLVMValueRef context_ptr,
1721                          LLVMValueRef color_ptr,
1722                          LLVMValueRef stride,
1723                          unsigned partial_mask,
1724                          boolean do_branch)
1725{
1726   const unsigned alpha_channel = 3;
1727   const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1728   const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1729   const unsigned block_size = block_width * block_height;
1730   const unsigned lp_integer_vector_width = 128;
1731
1732   LLVMBuilderRef builder = gallivm->builder;
1733   LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1734   LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1735   LLVMValueRef src_alpha[4 * 4];
1736   LLVMValueRef src1_alpha[4 * 4] = { NULL };
1737   LLVMValueRef src_mask[4 * 4];
1738   LLVMValueRef src[4 * 4];
1739   LLVMValueRef src1[4 * 4];
1740   LLVMValueRef dst[4 * 4];
1741   LLVMValueRef blend_color;
1742   LLVMValueRef blend_alpha;
1743   LLVMValueRef i32_zero;
1744   LLVMValueRef check_mask;
1745   LLVMValueRef undef_src_val;
1746
1747   struct lp_build_mask_context mask_ctx;
1748   struct lp_type mask_type;
1749   struct lp_type blend_type;
1750   struct lp_type row_type;
1751   struct lp_type dst_type;
1752   struct lp_type ls_type;
1753
1754   unsigned char swizzle[TGSI_NUM_CHANNELS];
1755   unsigned vector_width;
1756   unsigned src_channels = TGSI_NUM_CHANNELS;
1757   unsigned dst_channels;
1758   unsigned dst_count;
1759   unsigned src_count;
1760   unsigned i, j;
1761
1762   const struct util_format_description* out_format_desc = util_format_description(out_format);
1763
1764   unsigned dst_alignment;
1765
1766   bool pad_inline = is_arithmetic_format(out_format_desc);
1767   bool has_alpha = false;
1768   const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1769                                     util_blend_state_is_dual(&variant->key.blend, 0);
1770
1771   const boolean is_1d = variant->key.resource_1d;
1772   boolean twiddle_after_convert = FALSE;
1773   unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1774   LLVMValueRef fpstate = 0;
1775
1776   /* Get type from output format */
1777   lp_blend_type_from_format_desc(out_format_desc, &row_type);
1778   lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1779
1780   /*
1781    * Technically this code should go into lp_build_smallfloat_to_float
1782    * and lp_build_float_to_smallfloat but due to the
1783    * http://llvm.org/bugs/show_bug.cgi?id=6393
1784    * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1785    * So the ordering is important here and there shouldn't be any
1786    * llvm ir instrunctions in this function before
1787    * this, otherwise half-float format conversions won't work
1788    * (again due to llvm bug #6393).
1789    */
1790   if (have_smallfloat_format(dst_type, out_format)) {
1791      /* We need to make sure that denorms are ok for half float
1792         conversions */
1793      fpstate = lp_build_fpstate_get(gallivm);
1794      lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1795   }
1796
1797   mask_type = lp_int32_vec4_type();
1798   mask_type.length = fs_type.length;
1799
1800   for (i = num_fs; i < num_fullblock_fs; i++) {
1801      fs_mask[i] = lp_build_zero(gallivm, mask_type);
1802   }
1803
1804   /* Do not bother executing code when mask is empty.. */
1805   if (do_branch) {
1806      check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1807
1808      for (i = 0; i < num_fullblock_fs; ++i) {
1809         check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1810      }
1811
1812      lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1813      lp_build_mask_check(&mask_ctx);
1814   }
1815
1816   partial_mask |= !variant->opaque;
1817   i32_zero = lp_build_const_int32(gallivm, 0);
1818
1819   undef_src_val = lp_build_undef(gallivm, fs_type);
1820
1821   row_type.length = fs_type.length;
1822   vector_width    = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1823
1824   /* Compute correct swizzle and count channels */
1825   memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1826   dst_channels = 0;
1827
1828   for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1829      /* Ensure channel is used */
1830      if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1831         continue;
1832      }
1833
1834      /* Ensure not already written to (happens in case with GL_ALPHA) */
1835      if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1836         continue;
1837      }
1838
1839      /* Ensure we havn't already found all channels */
1840      if (dst_channels >= out_format_desc->nr_channels) {
1841         continue;
1842      }
1843
1844      swizzle[out_format_desc->swizzle[i]] = i;
1845      ++dst_channels;
1846
1847      if (i == alpha_channel) {
1848         has_alpha = true;
1849      }
1850   }
1851
1852   if (format_expands_to_float_soa(out_format_desc)) {
1853      /*
1854       * the code above can't work for layout_other
1855       * for srgb it would sort of work but we short-circuit swizzles, etc.
1856       * as that is done as part of unpack / pack.
1857       */
1858      dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1859      has_alpha = true;
1860      swizzle[0] = 0;
1861      swizzle[1] = 1;
1862      swizzle[2] = 2;
1863      swizzle[3] = 3;
1864      pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1865   }
1866
1867   /* If 3 channels then pad to include alpha for 4 element transpose */
1868   if (dst_channels == 3) {
1869      assert (!has_alpha);
1870      for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1871         if (swizzle[i] > TGSI_NUM_CHANNELS)
1872            swizzle[i] = 3;
1873      }
1874      if (out_format_desc->nr_channels == 4) {
1875         dst_channels = 4;
1876         /*
1877          * We use alpha from the color conversion, not separate one.
1878          * We had to include it for transpose, hence it will get converted
1879          * too (albeit when doing transpose after conversion, that would
1880          * no longer be the case necessarily).
1881          * (It works only with 4 channel dsts, e.g. rgbx formats, because
1882          * otherwise we really have padding, not alpha, included.)
1883          */
1884         has_alpha = true;
1885      }
1886   }
1887
1888   /*
1889    * Load shader output
1890    */
1891   for (i = 0; i < num_fullblock_fs; ++i) {
1892      /* Always load alpha for use in blending */
1893      LLVMValueRef alpha;
1894      if (i < num_fs) {
1895         alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1896      }
1897      else {
1898         alpha = undef_src_val;
1899      }
1900
1901      /* Load each channel */
1902      for (j = 0; j < dst_channels; ++j) {
1903         assert(swizzle[j] < 4);
1904         if (i < num_fs) {
1905            fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1906         }
1907         else {
1908            fs_src[i][j] = undef_src_val;
1909         }
1910      }
1911
1912      /* If 3 channels then pad to include alpha for 4 element transpose */
1913      /*
1914       * XXX If we include that here maybe could actually use it instead of
1915       * separate alpha for blending?
1916       * (Difficult though we actually convert pad channels, not alpha.)
1917       */
1918      if (dst_channels == 3 && !has_alpha) {
1919         fs_src[i][3] = alpha;
1920      }
1921
1922      /* We split the row_mask and row_alpha as we want 128bit interleave */
1923      if (fs_type.length == 8) {
1924         src_mask[i*2 + 0]  = lp_build_extract_range(gallivm, fs_mask[i],
1925                                                     0, src_channels);
1926         src_mask[i*2 + 1]  = lp_build_extract_range(gallivm, fs_mask[i],
1927                                                     src_channels, src_channels);
1928
1929         src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1930         src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1931                                                     src_channels, src_channels);
1932      } else {
1933         src_mask[i] = fs_mask[i];
1934         src_alpha[i] = alpha;
1935      }
1936   }
1937   if (dual_source_blend) {
1938      /* same as above except different src/dst, skip masks and comments... */
1939      for (i = 0; i < num_fullblock_fs; ++i) {
1940         LLVMValueRef alpha;
1941         if (i < num_fs) {
1942            alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1943         }
1944         else {
1945            alpha = undef_src_val;
1946         }
1947
1948         for (j = 0; j < dst_channels; ++j) {
1949            assert(swizzle[j] < 4);
1950            if (i < num_fs) {
1951               fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1952            }
1953            else {
1954               fs_src1[i][j] = undef_src_val;
1955            }
1956         }
1957         if (dst_channels == 3 && !has_alpha) {
1958            fs_src1[i][3] = alpha;
1959         }
1960         if (fs_type.length == 8) {
1961            src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1962            src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1963                                                         src_channels, src_channels);
1964         } else {
1965            src1_alpha[i] = alpha;
1966         }
1967      }
1968   }
1969
1970   if (util_format_is_pure_integer(out_format)) {
1971      /*
1972       * In this case fs_type was really ints or uints disguised as floats,
1973       * fix that up now.
1974       */
1975      fs_type.floating = 0;
1976      fs_type.sign = dst_type.sign;
1977      for (i = 0; i < num_fullblock_fs; ++i) {
1978         for (j = 0; j < dst_channels; ++j) {
1979            fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1980                                            lp_build_vec_type(gallivm, fs_type), "");
1981         }
1982         if (dst_channels == 3 && !has_alpha) {
1983            fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1984                                            lp_build_vec_type(gallivm, fs_type), "");
1985         }
1986      }
1987   }
1988
1989   /*
1990    * We actually should generally do conversion first (for non-1d cases)
1991    * when the blend format is 8 or 16 bits. The reason is obvious,
1992    * there's 2 or 4 times less vectors to deal with for the interleave...
1993    * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
1994    * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
1995    * unpack only with 128bit vectors).
1996    * Note: for 16bit sizes really need matching pack conversion code
1997    */
1998   if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
1999      twiddle_after_convert = TRUE;
2000   }
2001
2002   /*
2003    * Pixel twiddle from fragment shader order to memory order
2004    */
2005   if (!twiddle_after_convert) {
2006      src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2007                                      dst_channels, fs_src, src, pad_inline);
2008      if (dual_source_blend) {
2009         generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2010                             fs_src1, src1, pad_inline);
2011      }
2012   } else {
2013      src_count = num_fullblock_fs * dst_channels;
2014      /*
2015       * We reorder things a bit here, so the cases for 4-wide and 8-wide
2016       * (AVX) turn out the same later when untwiddling/transpose (albeit
2017       * for true AVX2 path untwiddle needs to be different).
2018       * For now just order by colors first (so we can use unpack later).
2019       */
2020      for (j = 0; j < num_fullblock_fs; j++) {
2021         for (i = 0; i < dst_channels; i++) {
2022            src[i*num_fullblock_fs + j] = fs_src[j][i];
2023            if (dual_source_blend) {
2024               src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2025            }
2026         }
2027      }
2028   }
2029
2030   src_channels = dst_channels < 3 ? dst_channels : 4;
2031   if (src_count != num_fullblock_fs * src_channels) {
2032      unsigned ds = src_count / (num_fullblock_fs * src_channels);
2033      row_type.length /= ds;
2034      fs_type.length = row_type.length;
2035   }
2036
2037   blend_type = row_type;
2038   mask_type.length = 4;
2039
2040   /* Convert src to row_type */
2041   if (dual_source_blend) {
2042      struct lp_type old_row_type = row_type;
2043      lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2044      src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2045   }
2046   else {
2047      src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2048   }
2049
2050   /* If the rows are not an SSE vector, combine them to become SSE size! */
2051   if ((row_type.width * row_type.length) % 128) {
2052      unsigned bits = row_type.width * row_type.length;
2053      unsigned combined;
2054
2055      assert(src_count >= (vector_width / bits));
2056
2057      dst_count = src_count / (vector_width / bits);
2058
2059      combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2060      if (dual_source_blend) {
2061         lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2062      }
2063
2064      row_type.length *= combined;
2065      src_count /= combined;
2066
2067      bits = row_type.width * row_type.length;
2068      assert(bits == 128 || bits == 256);
2069   }
2070
2071   if (twiddle_after_convert) {
2072      fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2073      if (dual_source_blend) {
2074         fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2075      }
2076   }
2077
2078   /*
2079    * Blend Colour conversion
2080    */
2081   blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2082   blend_color = LLVMBuildPointerCast(builder, blend_color,
2083                    LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2084   blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2085                               &i32_zero, 1, ""), "");
2086
2087   /* Convert */
2088   lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2089
2090   if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2091      /*
2092       * since blending is done with floats, there was no conversion.
2093       * However, the rules according to fixed point renderbuffers still
2094       * apply, that is we must clamp inputs to 0.0/1.0.
2095       * (This would apply to separate alpha conversion too but we currently
2096       * force has_alpha to be true.)
2097       * TODO: should skip this with "fake" blend, since post-blend conversion
2098       * will clamp anyway.
2099       * TODO: could also skip this if fragment color clamping is enabled. We
2100       * don't support it natively so it gets baked into the shader however, so
2101       * can't really tell here.
2102       */
2103      struct lp_build_context f32_bld;
2104      assert(row_type.floating);
2105      lp_build_context_init(&f32_bld, gallivm, row_type);
2106      for (i = 0; i < src_count; i++) {
2107         src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2108      }
2109      if (dual_source_blend) {
2110         for (i = 0; i < src_count; i++) {
2111            src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2112         }
2113      }
2114      /* probably can't be different than row_type but better safe than sorry... */
2115      lp_build_context_init(&f32_bld, gallivm, blend_type);
2116      blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2117   }
2118
2119   /* Extract alpha */
2120   blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2121
2122   /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2123   pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2124   if (pad_inline) {
2125      /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2126      blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2127   } else {
2128      /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2129      blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2130   }
2131
2132   /*
2133    * Mask conversion
2134    */
2135   lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2136
2137   if (src_count < block_height) {
2138      lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2139   } else if (src_count > block_height) {
2140      for (i = src_count; i > 0; --i) {
2141         unsigned pixels = block_size / src_count;
2142         unsigned idx = i - 1;
2143
2144         src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2145                                                (idx * pixels) % 4, pixels);
2146      }
2147   }
2148
2149   assert(mask_type.width == 32);
2150
2151   for (i = 0; i < src_count; ++i) {
2152      unsigned pixels = block_size / src_count;
2153      unsigned pixel_width = row_type.width * dst_channels;
2154
2155      if (pixel_width == 24) {
2156         mask_type.width = 8;
2157         mask_type.length = vector_width / mask_type.width;
2158      } else {
2159         mask_type.length = pixels;
2160         mask_type.width = row_type.width * dst_channels;
2161
2162         /*
2163          * If mask_type width is smaller than 32bit, this doesn't quite
2164          * generate the most efficient code (could use some pack).
2165          */
2166         src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2167                                        lp_build_int_vec_type(gallivm, mask_type), "");
2168
2169         mask_type.length *= dst_channels;
2170         mask_type.width /= dst_channels;
2171      }
2172
2173      src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2174                                     lp_build_int_vec_type(gallivm, mask_type), "");
2175      src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2176   }
2177
2178   /*
2179    * Alpha conversion
2180    */
2181   if (!has_alpha) {
2182      struct lp_type alpha_type = fs_type;
2183      alpha_type.length = 4;
2184      convert_alpha(gallivm, row_type, alpha_type,
2185                    block_size, block_height,
2186                    src_count, dst_channels,
2187                    pad_inline, src_alpha);
2188      if (dual_source_blend) {
2189         convert_alpha(gallivm, row_type, alpha_type,
2190                       block_size, block_height,
2191                       src_count, dst_channels,
2192                       pad_inline, src1_alpha);
2193      }
2194   }
2195
2196
2197   /*
2198    * Load dst from memory
2199    */
2200   if (src_count < block_height) {
2201      dst_count = block_height;
2202   } else {
2203      dst_count = src_count;
2204   }
2205
2206   dst_type.length *= block_size / dst_count;
2207
2208   if (format_expands_to_float_soa(out_format_desc)) {
2209      /*
2210       * we need multiple values at once for the conversion, so can as well
2211       * load them vectorized here too instead of concatenating later.
2212       * (Still need concatenation later for 8-wide vectors).
2213       */
2214      dst_count = block_height;
2215      dst_type.length = block_width;
2216   }
2217
2218   /*
2219    * Compute the alignment of the destination pointer in bytes
2220    * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2221    * are always aligned by MIN2(16, fetch_width) except for buffers (not
2222    * 1d tex but can't distinguish here) so need to stick with per-pixel
2223    * alignment in this case.
2224    */
2225   if (is_1d) {
2226      dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2227   }
2228   else {
2229      dst_alignment = dst_type.length * dst_type.width / 8;
2230   }
2231   /* Force power-of-two alignment by extracting only the least-significant-bit */
2232   dst_alignment = 1 << (ffs(dst_alignment) - 1);
2233   /*
2234    * Resource base and stride pointers are aligned to 16 bytes, so that's
2235    * the maximum alignment we can guarantee
2236    */
2237   dst_alignment = MIN2(16, dst_alignment);
2238
2239   ls_type = dst_type;
2240
2241   if (dst_count > src_count) {
2242      if ((dst_type.width == 8 || dst_type.width == 16) &&
2243          util_is_power_of_two_or_zero(dst_type.length) &&
2244          dst_type.length * dst_type.width < 128) {
2245         /*
2246          * Never try to load values as 4xi8 which we will then
2247          * concatenate to larger vectors. This gives llvm a real
2248          * headache (the problem is the type legalizer (?) will
2249          * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2250          * then the shuffles to concatenate are more or less impossible
2251          * - llvm is easily capable of generating a sequence of 32
2252          * pextrb/pinsrb instructions for that. Albeit it appears to
2253          * be fixed in llvm 4.0. So, load and concatenate with 32bit
2254          * width to avoid the trouble (16bit seems not as bad, llvm
2255          * probably recognizes the load+shuffle as only one shuffle
2256          * is necessary, but we can do just the same anyway).
2257          */
2258         ls_type.length = dst_type.length * dst_type.width / 32;
2259         ls_type.width = 32;
2260      }
2261   }
2262
2263   if (is_1d) {
2264      load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2265                            dst, ls_type, dst_count / 4, dst_alignment);
2266      for (i = dst_count / 4; i < dst_count; i++) {
2267         dst[i] = lp_build_undef(gallivm, ls_type);
2268      }
2269
2270   }
2271   else {
2272      load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2273                            dst, ls_type, dst_count, dst_alignment);
2274   }
2275
2276
2277   /*
2278    * Convert from dst/output format to src/blending format.
2279    *
2280    * This is necessary as we can only read 1 row from memory at a time,
2281    * so the minimum dst_count will ever be at this point is 4.
2282    *
2283    * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2284    * this will take the 4 dsts and combine them into 1 src so we can perform blending
2285    * on all 16 pixels in that single vector at once.
2286    */
2287   if (dst_count > src_count) {
2288      if (ls_type.length != dst_type.length && ls_type.length == 1) {
2289         LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2290         LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2291         for (i = 0; i < dst_count; i++) {
2292            dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2293         }
2294      }
2295
2296      lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2297
2298      if (ls_type.length != dst_type.length) {
2299         struct lp_type tmp_type = dst_type;
2300         tmp_type.length = dst_type.length * 4 / src_count;
2301         for (i = 0; i < src_count; i++) {
2302            dst[i] = LLVMBuildBitCast(builder, dst[i],
2303                                      lp_build_vec_type(gallivm, tmp_type), "");
2304         }
2305      }
2306   }
2307
2308   /*
2309    * Blending
2310    */
2311   /* XXX this is broken for RGB8 formats -
2312    * they get expanded from 12 to 16 elements (to include alpha)
2313    * by convert_to_blend_type then reduced to 15 instead of 12
2314    * by convert_from_blend_type (a simple fix though breaks A8...).
2315    * R16G16B16 also crashes differently however something going wrong
2316    * inside llvm handling npot vector sizes seemingly.
2317    * It seems some cleanup could be done here (like skipping conversion/blend
2318    * when not needed).
2319    */
2320   convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2321                         row_type, dst, src_count);
2322
2323   /*
2324    * FIXME: Really should get logic ops / masks out of generic blend / row
2325    * format. Logic ops will definitely not work on the blend float format
2326    * used for SRGB here and I think OpenGL expects this to work as expected
2327    * (that is incoming values converted to srgb then logic op applied).
2328    */
2329   for (i = 0; i < src_count; ++i) {
2330      dst[i] = lp_build_blend_aos(gallivm,
2331                                  &variant->key.blend,
2332                                  out_format,
2333                                  row_type,
2334                                  rt,
2335                                  src[i],
2336                                  has_alpha ? NULL : src_alpha[i],
2337                                  src1[i],
2338                                  has_alpha ? NULL : src1_alpha[i],
2339                                  dst[i],
2340                                  partial_mask ? src_mask[i] : NULL,
2341                                  blend_color,
2342                                  has_alpha ? NULL : blend_alpha,
2343                                  swizzle,
2344                                  pad_inline ? 4 : dst_channels);
2345   }
2346
2347   convert_from_blend_type(gallivm, block_size, out_format_desc,
2348                           row_type, dst_type, dst, src_count);
2349
2350   /* Split the blend rows back to memory rows */
2351   if (dst_count > src_count) {
2352      row_type.length = dst_type.length * (dst_count / src_count);
2353
2354      if (src_count == 1) {
2355         dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2356         dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2357
2358         row_type.length /= 2;
2359         src_count *= 2;
2360      }
2361
2362      dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2363      dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2364      dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2365      dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2366
2367      row_type.length /= 2;
2368      src_count *= 2;
2369   }
2370
2371   /*
2372    * Store blend result to memory
2373    */
2374   if (is_1d) {
2375      store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2376                             dst, dst_type, dst_count / 4, dst_alignment);
2377   }
2378   else {
2379      store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2380                             dst, dst_type, dst_count, dst_alignment);
2381   }
2382
2383   if (have_smallfloat_format(dst_type, out_format)) {
2384      lp_build_fpstate_set(gallivm, fpstate);
2385   }
2386
2387   if (do_branch) {
2388      lp_build_mask_end(&mask_ctx);
2389   }
2390}
2391
2392
2393/**
2394 * Generate the runtime callable function for the whole fragment pipeline.
2395 * Note that the function which we generate operates on a block of 16
2396 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
2397 * 2x2 pixels.
2398 */
2399static void
2400generate_fragment(struct llvmpipe_context *lp,
2401                  struct lp_fragment_shader *shader,
2402                  struct lp_fragment_shader_variant *variant,
2403                  unsigned partial_mask)
2404{
2405   struct gallivm_state *gallivm = variant->gallivm;
2406   const struct lp_fragment_shader_variant_key *key = &variant->key;
2407   struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2408   char func_name[64];
2409   struct lp_type fs_type;
2410   struct lp_type blend_type;
2411   LLVMTypeRef fs_elem_type;
2412   LLVMTypeRef blend_vec_type;
2413   LLVMTypeRef arg_types[13];
2414   LLVMTypeRef func_type;
2415   LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2416   LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2417   LLVMValueRef context_ptr;
2418   LLVMValueRef x;
2419   LLVMValueRef y;
2420   LLVMValueRef a0_ptr;
2421   LLVMValueRef dadx_ptr;
2422   LLVMValueRef dady_ptr;
2423   LLVMValueRef color_ptr_ptr;
2424   LLVMValueRef stride_ptr;
2425   LLVMValueRef depth_ptr;
2426   LLVMValueRef depth_stride;
2427   LLVMValueRef mask_input;
2428   LLVMValueRef thread_data_ptr;
2429   LLVMBasicBlockRef block;
2430   LLVMBuilderRef builder;
2431   struct lp_build_sampler_soa *sampler;
2432   struct lp_build_interp_soa_context interp;
2433   LLVMValueRef fs_mask[16 / 4];
2434   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2435   LLVMValueRef function;
2436   LLVMValueRef facing;
2437   unsigned num_fs;
2438   unsigned i;
2439   unsigned chan;
2440   unsigned cbuf;
2441   boolean cbuf0_write_all;
2442   const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2443                                     util_blend_state_is_dual(&key->blend, 0);
2444
2445   assert(lp_native_vector_width / 32 >= 4);
2446
2447   /* Adjust color input interpolation according to flatshade state:
2448    */
2449   memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2450   for (i = 0; i < shader->info.base.num_inputs; i++) {
2451      if (inputs[i].interp == LP_INTERP_COLOR) {
2452	 if (key->flatshade)
2453	    inputs[i].interp = LP_INTERP_CONSTANT;
2454	 else
2455	    inputs[i].interp = LP_INTERP_PERSPECTIVE;
2456      }
2457   }
2458
2459   /* check if writes to cbuf[0] are to be copied to all cbufs */
2460   cbuf0_write_all =
2461     shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2462
2463   /* TODO: actually pick these based on the fs and color buffer
2464    * characteristics. */
2465
2466   memset(&fs_type, 0, sizeof fs_type);
2467   fs_type.floating = TRUE;      /* floating point values */
2468   fs_type.sign = TRUE;          /* values are signed */
2469   fs_type.norm = FALSE;         /* values are not limited to [0,1] or [-1,1] */
2470   fs_type.width = 32;           /* 32-bit float */
2471   fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2472
2473   memset(&blend_type, 0, sizeof blend_type);
2474   blend_type.floating = FALSE; /* values are integers */
2475   blend_type.sign = FALSE;     /* values are unsigned */
2476   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
2477   blend_type.width = 8;        /* 8-bit ubyte values */
2478   blend_type.length = 16;      /* 16 elements per vector */
2479
2480   /*
2481    * Generate the function prototype. Any change here must be reflected in
2482    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2483    */
2484
2485   fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2486
2487   blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2488
2489   util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2490                 shader->no, variant->no, partial_mask ? "partial" : "whole");
2491
2492   arg_types[0] = variant->jit_context_ptr_type;       /* context */
2493   arg_types[1] = int32_type;                          /* x */
2494   arg_types[2] = int32_type;                          /* y */
2495   arg_types[3] = int32_type;                          /* facing */
2496   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
2497   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
2498   arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
2499   arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
2500   arg_types[8] = LLVMPointerType(int8_type, 0);       /* depth */
2501   arg_types[9] = int32_type;                          /* mask_input */
2502   arg_types[10] = variant->jit_thread_data_ptr_type;  /* per thread data */
2503   arg_types[11] = LLVMPointerType(int32_type, 0);     /* stride */
2504   arg_types[12] = int32_type;                         /* depth_stride */
2505
2506   func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2507                                arg_types, ARRAY_SIZE(arg_types), 0);
2508
2509   function = LLVMAddFunction(gallivm->module, func_name, func_type);
2510   LLVMSetFunctionCallConv(function, LLVMCCallConv);
2511
2512   variant->function[partial_mask] = function;
2513
2514   /* XXX: need to propagate noalias down into color param now we are
2515    * passing a pointer-to-pointer?
2516    */
2517   for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2518      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2519         lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2520
2521   context_ptr  = LLVMGetParam(function, 0);
2522   x            = LLVMGetParam(function, 1);
2523   y            = LLVMGetParam(function, 2);
2524   facing       = LLVMGetParam(function, 3);
2525   a0_ptr       = LLVMGetParam(function, 4);
2526   dadx_ptr     = LLVMGetParam(function, 5);
2527   dady_ptr     = LLVMGetParam(function, 6);
2528   color_ptr_ptr = LLVMGetParam(function, 7);
2529   depth_ptr    = LLVMGetParam(function, 8);
2530   mask_input   = LLVMGetParam(function, 9);
2531   thread_data_ptr  = LLVMGetParam(function, 10);
2532   stride_ptr   = LLVMGetParam(function, 11);
2533   depth_stride = LLVMGetParam(function, 12);
2534
2535   lp_build_name(context_ptr, "context");
2536   lp_build_name(x, "x");
2537   lp_build_name(y, "y");
2538   lp_build_name(a0_ptr, "a0");
2539   lp_build_name(dadx_ptr, "dadx");
2540   lp_build_name(dady_ptr, "dady");
2541   lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2542   lp_build_name(depth_ptr, "depth");
2543   lp_build_name(mask_input, "mask_input");
2544   lp_build_name(thread_data_ptr, "thread_data");
2545   lp_build_name(stride_ptr, "stride_ptr");
2546   lp_build_name(depth_stride, "depth_stride");
2547
2548   /*
2549    * Function body
2550    */
2551
2552   block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2553   builder = gallivm->builder;
2554   assert(builder);
2555   LLVMPositionBuilderAtEnd(builder, block);
2556
2557   /*
2558    * Must not count ps invocations if there's a null shader.
2559    * (It would be ok to count with null shader if there's d/s tests,
2560    * but only if there's d/s buffers too, which is different
2561    * to implicit rasterization disable which must not depend
2562    * on the d/s buffers.)
2563    * Could use popcount on mask, but pixel accuracy is not required.
2564    * Could disable if there's no stats query, but maybe not worth it.
2565    */
2566   if (shader->info.base.num_instructions > 1) {
2567      LLVMValueRef invocs, val;
2568      invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2569      val = LLVMBuildLoad(builder, invocs, "");
2570      val = LLVMBuildAdd(builder, val,
2571                         LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2572                         "invoc_count");
2573      LLVMBuildStore(builder, val, invocs);
2574   }
2575
2576   /* code generated texture sampling */
2577   sampler = lp_llvm_sampler_soa_create(key->state);
2578
2579   num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2580   /* for 1d resources only run "upper half" of stamp */
2581   if (key->resource_1d)
2582      num_fs /= 2;
2583
2584   {
2585      LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2586      LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2587      LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2588                                                      num_loop, "mask_store");
2589      LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2590      boolean pixel_center_integer =
2591         shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2592
2593      /*
2594       * The shader input interpolation info is not explicitely baked in the
2595       * shader key, but everything it derives from (TGSI, and flatshade) is
2596       * already included in the shader key.
2597       */
2598      lp_build_interp_soa_init(&interp,
2599                               gallivm,
2600                               shader->info.base.num_inputs,
2601                               inputs,
2602                               pixel_center_integer,
2603                               key->depth_clamp,
2604                               builder, fs_type,
2605                               a0_ptr, dadx_ptr, dady_ptr,
2606                               x, y);
2607
2608      for (i = 0; i < num_fs; i++) {
2609         LLVMValueRef mask;
2610         LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2611         LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2612                                              &indexi, 1, "mask_ptr");
2613
2614         if (partial_mask) {
2615            mask = generate_quad_mask(gallivm, fs_type,
2616                                      i*fs_type.length/4, mask_input);
2617         }
2618         else {
2619            mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2620         }
2621         LLVMBuildStore(builder, mask, mask_ptr);
2622      }
2623
2624      generate_fs_loop(gallivm,
2625                       shader, key,
2626                       builder,
2627                       fs_type,
2628                       context_ptr,
2629                       num_loop,
2630                       &interp,
2631                       sampler,
2632                       mask_store, /* output */
2633                       color_store,
2634                       depth_ptr,
2635                       depth_stride,
2636                       facing,
2637                       thread_data_ptr);
2638
2639      for (i = 0; i < num_fs; i++) {
2640         LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2641         LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2642                                         &indexi, 1, "");
2643         fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2644         /* This is fucked up need to reorganize things */
2645         for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2646            for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2647               ptr = LLVMBuildGEP(builder,
2648                                  color_store[cbuf * !cbuf0_write_all][chan],
2649                                  &indexi, 1, "");
2650               fs_out_color[cbuf][chan][i] = ptr;
2651            }
2652         }
2653         if (dual_source_blend) {
2654            /* only support one dual source blend target hence always use output 1 */
2655            for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2656               ptr = LLVMBuildGEP(builder,
2657                                  color_store[1][chan],
2658                                  &indexi, 1, "");
2659               fs_out_color[1][chan][i] = ptr;
2660            }
2661         }
2662      }
2663   }
2664
2665   sampler->destroy(sampler);
2666
2667   /* Loop over color outputs / color buffers to do blending.
2668    */
2669   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2670      if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2671         LLVMValueRef color_ptr;
2672         LLVMValueRef stride;
2673         LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2674
2675         boolean do_branch = ((key->depth.enabled
2676                               || key->stencil[0].enabled
2677                               || key->alpha.enabled)
2678                              && !shader->info.base.uses_kill);
2679
2680         color_ptr = LLVMBuildLoad(builder,
2681                                   LLVMBuildGEP(builder, color_ptr_ptr,
2682                                                &index, 1, ""),
2683                                   "");
2684
2685         lp_build_name(color_ptr, "color_ptr%d", cbuf);
2686
2687         stride = LLVMBuildLoad(builder,
2688                                LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2689                                "");
2690
2691         generate_unswizzled_blend(gallivm, cbuf, variant,
2692                                   key->cbuf_format[cbuf],
2693                                   num_fs, fs_type, fs_mask, fs_out_color,
2694                                   context_ptr, color_ptr, stride,
2695                                   partial_mask, do_branch);
2696      }
2697   }
2698
2699   LLVMBuildRetVoid(builder);
2700
2701   gallivm_verify_function(gallivm, function);
2702}
2703
2704
2705static void
2706dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2707{
2708   unsigned i;
2709
2710   debug_printf("fs variant %p:\n", (void *) key);
2711
2712   if (key->flatshade) {
2713      debug_printf("flatshade = 1\n");
2714   }
2715   for (i = 0; i < key->nr_cbufs; ++i) {
2716      debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2717   }
2718   if (key->depth.enabled || key->stencil[0].enabled) {
2719      debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2720   }
2721   if (key->depth.enabled) {
2722      debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2723      debug_printf("depth.writemask = %u\n", key->depth.writemask);
2724   }
2725
2726   for (i = 0; i < 2; ++i) {
2727      if (key->stencil[i].enabled) {
2728         debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2729         debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2730         debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2731         debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2732         debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2733         debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2734      }
2735   }
2736
2737   if (key->alpha.enabled) {
2738      debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2739   }
2740
2741   if (key->occlusion_count) {
2742      debug_printf("occlusion_count = 1\n");
2743   }
2744
2745   if (key->blend.logicop_enable) {
2746      debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2747   }
2748   else if (key->blend.rt[0].blend_enable) {
2749      debug_printf("blend.rgb_func = %s\n",   util_str_blend_func  (key->blend.rt[0].rgb_func, TRUE));
2750      debug_printf("blend.rgb_src_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2751      debug_printf("blend.rgb_dst_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2752      debug_printf("blend.alpha_func = %s\n",       util_str_blend_func  (key->blend.rt[0].alpha_func, TRUE));
2753      debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2754      debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2755   }
2756   debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2757   if (key->blend.alpha_to_coverage) {
2758      debug_printf("blend.alpha_to_coverage is enabled\n");
2759   }
2760   for (i = 0; i < key->nr_samplers; ++i) {
2761      const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2762      debug_printf("sampler[%u] = \n", i);
2763      debug_printf("  .wrap = %s %s %s\n",
2764                   util_str_tex_wrap(sampler->wrap_s, TRUE),
2765                   util_str_tex_wrap(sampler->wrap_t, TRUE),
2766                   util_str_tex_wrap(sampler->wrap_r, TRUE));
2767      debug_printf("  .min_img_filter = %s\n",
2768                   util_str_tex_filter(sampler->min_img_filter, TRUE));
2769      debug_printf("  .min_mip_filter = %s\n",
2770                   util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2771      debug_printf("  .mag_img_filter = %s\n",
2772                   util_str_tex_filter(sampler->mag_img_filter, TRUE));
2773      if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2774         debug_printf("  .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2775      debug_printf("  .normalized_coords = %u\n", sampler->normalized_coords);
2776      debug_printf("  .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2777      debug_printf("  .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2778      debug_printf("  .apply_min_lod = %u\n", sampler->apply_min_lod);
2779      debug_printf("  .apply_max_lod = %u\n", sampler->apply_max_lod);
2780   }
2781   for (i = 0; i < key->nr_sampler_views; ++i) {
2782      const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2783      debug_printf("texture[%u] = \n", i);
2784      debug_printf("  .format = %s\n",
2785                   util_format_name(texture->format));
2786      debug_printf("  .target = %s\n",
2787                   util_str_tex_target(texture->target, TRUE));
2788      debug_printf("  .level_zero_only = %u\n",
2789                   texture->level_zero_only);
2790      debug_printf("  .pot = %u %u %u\n",
2791                   texture->pot_width,
2792                   texture->pot_height,
2793                   texture->pot_depth);
2794   }
2795}
2796
2797
2798void
2799lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2800{
2801   debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2802                variant->shader->no, variant->no);
2803   tgsi_dump(variant->shader->base.tokens, 0);
2804   dump_fs_variant_key(&variant->key);
2805   debug_printf("variant->opaque = %u\n", variant->opaque);
2806   debug_printf("\n");
2807}
2808
2809
2810/**
2811 * Generate a new fragment shader variant from the shader code and
2812 * other state indicated by the key.
2813 */
2814static struct lp_fragment_shader_variant *
2815generate_variant(struct llvmpipe_context *lp,
2816                 struct lp_fragment_shader *shader,
2817                 const struct lp_fragment_shader_variant_key *key)
2818{
2819   struct lp_fragment_shader_variant *variant;
2820   const struct util_format_description *cbuf0_format_desc = NULL;
2821   boolean fullcolormask;
2822   char module_name[64];
2823
2824   variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2825   if (!variant)
2826      return NULL;
2827
2828   util_snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2829                 shader->no, shader->variants_created);
2830
2831   variant->gallivm = gallivm_create(module_name, lp->context);
2832   if (!variant->gallivm) {
2833      FREE(variant);
2834      return NULL;
2835   }
2836
2837   variant->shader = shader;
2838   variant->list_item_global.base = variant;
2839   variant->list_item_local.base = variant;
2840   variant->no = shader->variants_created++;
2841
2842   memcpy(&variant->key, key, shader->variant_key_size);
2843
2844   /*
2845    * Determine whether we are touching all channels in the color buffer.
2846    */
2847   fullcolormask = FALSE;
2848   if (key->nr_cbufs == 1) {
2849      cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2850      fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2851   }
2852
2853   variant->opaque =
2854         !key->blend.logicop_enable &&
2855         !key->blend.rt[0].blend_enable &&
2856         fullcolormask &&
2857         !key->stencil[0].enabled &&
2858         !key->alpha.enabled &&
2859         !key->blend.alpha_to_coverage &&
2860         !key->depth.enabled &&
2861         !shader->info.base.uses_kill &&
2862         !shader->info.base.writes_samplemask
2863      ? TRUE : FALSE;
2864
2865   if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2866      lp_debug_fs_variant(variant);
2867   }
2868
2869   lp_jit_init_types(variant);
2870
2871   if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2872      generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2873
2874   if (variant->jit_function[RAST_WHOLE] == NULL) {
2875      if (variant->opaque) {
2876         /* Specialized shader, which doesn't need to read the color buffer. */
2877         generate_fragment(lp, shader, variant, RAST_WHOLE);
2878      }
2879   }
2880
2881   /*
2882    * Compile everything
2883    */
2884
2885   gallivm_compile_module(variant->gallivm);
2886
2887   variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2888
2889   if (variant->function[RAST_EDGE_TEST]) {
2890      variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2891            gallivm_jit_function(variant->gallivm,
2892                                 variant->function[RAST_EDGE_TEST]);
2893   }
2894
2895   if (variant->function[RAST_WHOLE]) {
2896         variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2897               gallivm_jit_function(variant->gallivm,
2898                                    variant->function[RAST_WHOLE]);
2899   } else if (!variant->jit_function[RAST_WHOLE]) {
2900      variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2901   }
2902
2903   gallivm_free_ir(variant->gallivm);
2904
2905   return variant;
2906}
2907
2908
2909static void *
2910llvmpipe_create_fs_state(struct pipe_context *pipe,
2911                         const struct pipe_shader_state *templ)
2912{
2913   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2914   struct lp_fragment_shader *shader;
2915   int nr_samplers;
2916   int nr_sampler_views;
2917   int i;
2918
2919   shader = CALLOC_STRUCT(lp_fragment_shader);
2920   if (!shader)
2921      return NULL;
2922
2923   shader->no = fs_no++;
2924   make_empty_list(&shader->variants);
2925
2926   /* get/save the summary info for this shader */
2927   lp_build_tgsi_info(templ->tokens, &shader->info);
2928
2929   /* we need to keep a local copy of the tokens */
2930   shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2931
2932   shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2933   if (shader->draw_data == NULL) {
2934      FREE((void *) shader->base.tokens);
2935      FREE(shader);
2936      return NULL;
2937   }
2938
2939   nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2940   nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2941
2942   shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2943                                     state[MAX2(nr_samplers, nr_sampler_views)]);
2944
2945   for (i = 0; i < shader->info.base.num_inputs; i++) {
2946      shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2947      shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2948
2949      switch (shader->info.base.input_interpolate[i]) {
2950      case TGSI_INTERPOLATE_CONSTANT:
2951         shader->inputs[i].interp = LP_INTERP_CONSTANT;
2952         break;
2953      case TGSI_INTERPOLATE_LINEAR:
2954         shader->inputs[i].interp = LP_INTERP_LINEAR;
2955         break;
2956      case TGSI_INTERPOLATE_PERSPECTIVE:
2957         shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2958         break;
2959      case TGSI_INTERPOLATE_COLOR:
2960         shader->inputs[i].interp = LP_INTERP_COLOR;
2961         break;
2962      default:
2963         assert(0);
2964         break;
2965      }
2966
2967      switch (shader->info.base.input_semantic_name[i]) {
2968      case TGSI_SEMANTIC_FACE:
2969         shader->inputs[i].interp = LP_INTERP_FACING;
2970         break;
2971      case TGSI_SEMANTIC_POSITION:
2972         /* Position was already emitted above
2973          */
2974         shader->inputs[i].interp = LP_INTERP_POSITION;
2975         shader->inputs[i].src_index = 0;
2976         continue;
2977      }
2978
2979      /* XXX this is a completely pointless index map... */
2980      shader->inputs[i].src_index = i+1;
2981   }
2982
2983   if (LP_DEBUG & DEBUG_TGSI) {
2984      unsigned attrib;
2985      debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2986                   shader->no, (void *) shader);
2987      tgsi_dump(templ->tokens, 0);
2988      debug_printf("usage masks:\n");
2989      for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2990         unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2991         debug_printf("  IN[%u].%s%s%s%s\n",
2992                      attrib,
2993                      usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2994                      usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2995                      usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2996                      usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2997      }
2998      debug_printf("\n");
2999   }
3000
3001   return shader;
3002}
3003
3004
3005static void
3006llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3007{
3008   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3009
3010   if (llvmpipe->fs == fs)
3011      return;
3012
3013   llvmpipe->fs = (struct lp_fragment_shader *) fs;
3014
3015   draw_bind_fragment_shader(llvmpipe->draw,
3016                             (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
3017
3018   llvmpipe->dirty |= LP_NEW_FS;
3019}
3020
3021
3022/**
3023 * Remove shader variant from two lists: the shader's variant list
3024 * and the context's variant list.
3025 */
3026void
3027llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3028                               struct lp_fragment_shader_variant *variant)
3029{
3030   if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3031      debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3032                   "v total cached %u inst %u total inst %u\n",
3033                   variant->shader->no, variant->no,
3034                   variant->shader->variants_created,
3035                   variant->shader->variants_cached,
3036                   lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3037   }
3038
3039   gallivm_destroy(variant->gallivm);
3040
3041   /* remove from shader's list */
3042   remove_from_list(&variant->list_item_local);
3043   variant->shader->variants_cached--;
3044
3045   /* remove from context's list */
3046   remove_from_list(&variant->list_item_global);
3047   lp->nr_fs_variants--;
3048   lp->nr_fs_instrs -= variant->nr_instrs;
3049
3050   FREE(variant);
3051}
3052
3053
3054static void
3055llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3056{
3057   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3058   struct lp_fragment_shader *shader = fs;
3059   struct lp_fs_variant_list_item *li;
3060
3061   assert(fs != llvmpipe->fs);
3062
3063   /*
3064    * XXX: we need to flush the context until we have some sort of reference
3065    * counting in fragment shaders as they may still be binned
3066    * Flushing alone might not sufficient we need to wait on it too.
3067    */
3068   llvmpipe_finish(pipe, __FUNCTION__);
3069
3070   /* Delete all the variants */
3071   li = first_elem(&shader->variants);
3072   while(!at_end(&shader->variants, li)) {
3073      struct lp_fs_variant_list_item *next = next_elem(li);
3074      llvmpipe_remove_shader_variant(llvmpipe, li->base);
3075      li = next;
3076   }
3077
3078   /* Delete draw module's data */
3079   draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3080
3081   assert(shader->variants_cached == 0);
3082   FREE((void *) shader->base.tokens);
3083   FREE(shader);
3084}
3085
3086
3087
3088static void
3089llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3090                             enum pipe_shader_type shader, uint index,
3091                             const struct pipe_constant_buffer *cb)
3092{
3093   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3094   struct pipe_resource *constants = cb ? cb->buffer : NULL;
3095
3096   assert(shader < PIPE_SHADER_TYPES);
3097   assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3098
3099   /* note: reference counting */
3100   util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3101
3102   if (constants) {
3103       if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3104         debug_printf("Illegal set constant without bind flag\n");
3105         constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3106      }
3107   }
3108
3109   if (shader == PIPE_SHADER_VERTEX ||
3110       shader == PIPE_SHADER_GEOMETRY) {
3111      /* Pass the constants to the 'draw' module */
3112      const unsigned size = cb ? cb->buffer_size : 0;
3113      const ubyte *data;
3114
3115      if (constants) {
3116         data = (ubyte *) llvmpipe_resource_data(constants);
3117      }
3118      else if (cb && cb->user_buffer) {
3119         data = (ubyte *) cb->user_buffer;
3120      }
3121      else {
3122         data = NULL;
3123      }
3124
3125      if (data)
3126         data += cb->buffer_offset;
3127
3128      draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3129                                      index, data, size);
3130   }
3131   else {
3132      llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3133   }
3134
3135   if (cb && cb->user_buffer) {
3136      pipe_resource_reference(&constants, NULL);
3137   }
3138}
3139
3140
3141/**
3142 * Return the blend factor equivalent to a destination alpha of one.
3143 */
3144static inline unsigned
3145force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3146{
3147   switch(factor) {
3148   case PIPE_BLENDFACTOR_DST_ALPHA:
3149      return PIPE_BLENDFACTOR_ONE;
3150   case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3151      return PIPE_BLENDFACTOR_ZERO;
3152   case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3153      if (clamped_zero)
3154         return PIPE_BLENDFACTOR_ZERO;
3155      else
3156         return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3157   }
3158
3159   return factor;
3160}
3161
3162
3163/**
3164 * We need to generate several variants of the fragment pipeline to match
3165 * all the combinations of the contributing state atoms.
3166 *
3167 * TODO: there is actually no reason to tie this to context state -- the
3168 * generated code could be cached globally in the screen.
3169 */
3170static void
3171make_variant_key(struct llvmpipe_context *lp,
3172                 struct lp_fragment_shader *shader,
3173                 struct lp_fragment_shader_variant_key *key)
3174{
3175   unsigned i;
3176
3177   memset(key, 0, shader->variant_key_size);
3178
3179   if (lp->framebuffer.zsbuf) {
3180      enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3181      const struct util_format_description *zsbuf_desc =
3182         util_format_description(zsbuf_format);
3183
3184      if (lp->depth_stencil->depth.enabled &&
3185          util_format_has_depth(zsbuf_desc)) {
3186         key->zsbuf_format = zsbuf_format;
3187         memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3188      }
3189      if (lp->depth_stencil->stencil[0].enabled &&
3190          util_format_has_stencil(zsbuf_desc)) {
3191         key->zsbuf_format = zsbuf_format;
3192         memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3193      }
3194      if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3195         key->resource_1d = TRUE;
3196      }
3197   }
3198
3199   /*
3200    * Propagate the depth clamp setting from the rasterizer state.
3201    * depth_clip == 0 implies depth clamping is enabled.
3202    *
3203    * When clip_halfz is enabled, then always clamp the depth values.
3204    *
3205    * XXX: This is incorrect for GL, but correct for d3d10 (depth
3206    * clamp is always active in d3d10, regardless if depth clip is
3207    * enabled or not).
3208    * (GL has an always-on [0,1] clamp on fs depth output instead
3209    * to ensure the depth values stay in range. Doesn't look like
3210    * we do that, though...)
3211    */
3212   if (lp->rasterizer->clip_halfz) {
3213      key->depth_clamp = 1;
3214   } else {
3215      key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3216   }
3217
3218   /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3219   if (!lp->framebuffer.nr_cbufs ||
3220       !lp->framebuffer.cbufs[0] ||
3221       !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3222      key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3223   }
3224   if(key->alpha.enabled)
3225      key->alpha.func = lp->depth_stencil->alpha.func;
3226   /* alpha.ref_value is passed in jit_context */
3227
3228   key->flatshade = lp->rasterizer->flatshade;
3229   if (lp->active_occlusion_queries) {
3230      key->occlusion_count = TRUE;
3231   }
3232
3233   if (lp->framebuffer.nr_cbufs) {
3234      memcpy(&key->blend, lp->blend, sizeof key->blend);
3235   }
3236
3237   key->nr_cbufs = lp->framebuffer.nr_cbufs;
3238
3239   if (!key->blend.independent_blend_enable) {
3240      /* we always need independent blend otherwise the fixups below won't work */
3241      for (i = 1; i < key->nr_cbufs; i++) {
3242         memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3243      }
3244      key->blend.independent_blend_enable = 1;
3245   }
3246
3247   for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3248      struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3249
3250      if (lp->framebuffer.cbufs[i]) {
3251         enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3252         const struct util_format_description *format_desc;
3253
3254         key->cbuf_format[i] = format;
3255
3256         /*
3257          * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3258          * mixing of 2d textures with height 1 and 1d textures, so make sure
3259          * we pick 1d if any cbuf or zsbuf is 1d.
3260          */
3261         if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3262            key->resource_1d = TRUE;
3263         }
3264
3265         format_desc = util_format_description(format);
3266         assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3267                format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3268
3269         /*
3270          * Mask out color channels not present in the color buffer.
3271          */
3272         blend_rt->colormask &= util_format_colormask(format_desc);
3273
3274         /*
3275          * Disable blend for integer formats.
3276          */
3277         if (util_format_is_pure_integer(format)) {
3278            blend_rt->blend_enable = 0;
3279         }
3280
3281         /*
3282          * Our swizzled render tiles always have an alpha channel, but the
3283          * linear render target format often does not, so force here the dst
3284          * alpha to be one.
3285          *
3286          * This is not a mere optimization. Wrong results will be produced if
3287          * the dst alpha is used, the dst format does not have alpha, and the
3288          * previous rendering was not flushed from the swizzled to linear
3289          * buffer. For example, NonPowTwo DCT.
3290          *
3291          * TODO: This should be generalized to all channels for better
3292          * performance, but only alpha causes correctness issues.
3293          *
3294          * Also, force rgb/alpha func/factors match, to make AoS blending
3295          * easier.
3296          */
3297         if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3298             format_desc->swizzle[3] == format_desc->swizzle[0]) {
3299            /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3300            boolean clamped_zero = !util_format_is_float(format) &&
3301                                   !util_format_is_snorm(format);
3302            blend_rt->rgb_src_factor =
3303               force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3304            blend_rt->rgb_dst_factor =
3305               force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3306            blend_rt->alpha_func       = blend_rt->rgb_func;
3307            blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3308            blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3309         }
3310      }
3311      else {
3312         /* no color buffer for this fragment output */
3313         key->cbuf_format[i] = PIPE_FORMAT_NONE;
3314         blend_rt->colormask = 0x0;
3315         blend_rt->blend_enable = 0;
3316      }
3317   }
3318
3319   /* This value will be the same for all the variants of a given shader:
3320    */
3321   key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3322
3323   for(i = 0; i < key->nr_samplers; ++i) {
3324      if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3325         lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3326                                         lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3327      }
3328   }
3329
3330   /*
3331    * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3332    * are dx10-style? Can't really have mixed opcodes, at least not
3333    * if we want to skip the holes here (without rescanning tgsi).
3334    */
3335   if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3336      key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3337      for(i = 0; i < key->nr_sampler_views; ++i) {
3338         /*
3339          * Note sview may exceed what's representable by file_mask.
3340          * This will still work, the only downside is that not actually
3341          * used views may be included in the shader key.
3342          */
3343         if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3344            lp_sampler_static_texture_state(&key->state[i].texture_state,
3345                                            lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3346         }
3347      }
3348   }
3349   else {
3350      key->nr_sampler_views = key->nr_samplers;
3351      for(i = 0; i < key->nr_sampler_views; ++i) {
3352         if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3353            lp_sampler_static_texture_state(&key->state[i].texture_state,
3354                                            lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3355         }
3356      }
3357   }
3358}
3359
3360
3361
3362/**
3363 * Update fragment shader state.  This is called just prior to drawing
3364 * something when some fragment-related state has changed.
3365 */
3366void
3367llvmpipe_update_fs(struct llvmpipe_context *lp)
3368{
3369   struct lp_fragment_shader *shader = lp->fs;
3370   struct lp_fragment_shader_variant_key key;
3371   struct lp_fragment_shader_variant *variant = NULL;
3372   struct lp_fs_variant_list_item *li;
3373
3374   make_variant_key(lp, shader, &key);
3375
3376   /* Search the variants for one which matches the key */
3377   li = first_elem(&shader->variants);
3378   while(!at_end(&shader->variants, li)) {
3379      if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3380         variant = li->base;
3381         break;
3382      }
3383      li = next_elem(li);
3384   }
3385
3386   if (variant) {
3387      /* Move this variant to the head of the list to implement LRU
3388       * deletion of shader's when we have too many.
3389       */
3390      move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3391   }
3392   else {
3393      /* variant not found, create it now */
3394      int64_t t0, t1, dt;
3395      unsigned i;
3396      unsigned variants_to_cull;
3397
3398      if (LP_DEBUG & DEBUG_FS) {
3399         debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3400                      lp->nr_fs_variants,
3401                      lp->nr_fs_instrs,
3402                      lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3403      }
3404
3405      /* First, check if we've exceeded the max number of shader variants.
3406       * If so, free 6.25% of them (the least recently used ones).
3407       */
3408      variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3409
3410      if (variants_to_cull ||
3411          lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3412         struct pipe_context *pipe = &lp->pipe;
3413
3414         if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3415            debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3416                         "\t%u instrs,\t%u instrs/variant\n",
3417                         shader->variants_cached,
3418                         lp->nr_fs_variants, lp->nr_fs_instrs,
3419                         lp->nr_fs_instrs / lp->nr_fs_variants);
3420         }
3421
3422         /*
3423          * XXX: we need to flush the context until we have some sort of
3424          * reference counting in fragment shaders as they may still be binned
3425          * Flushing alone might not be sufficient we need to wait on it too.
3426          */
3427         llvmpipe_finish(pipe, __FUNCTION__);
3428
3429         /*
3430          * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3431          * number of shader variants (potentially all of them) could be
3432          * pending for destruction on flush.
3433          */
3434
3435         for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3436            struct lp_fs_variant_list_item *item;
3437            if (is_empty_list(&lp->fs_variants_list)) {
3438               break;
3439            }
3440            item = last_elem(&lp->fs_variants_list);
3441            assert(item);
3442            assert(item->base);
3443            llvmpipe_remove_shader_variant(lp, item->base);
3444         }
3445      }
3446
3447      /*
3448       * Generate the new variant.
3449       */
3450      t0 = os_time_get();
3451      variant = generate_variant(lp, shader, &key);
3452      t1 = os_time_get();
3453      dt = t1 - t0;
3454      LP_COUNT_ADD(llvm_compile_time, dt);
3455      LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
3456
3457      /* Put the new variant into the list */
3458      if (variant) {
3459         insert_at_head(&shader->variants, &variant->list_item_local);
3460         insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3461         lp->nr_fs_variants++;
3462         lp->nr_fs_instrs += variant->nr_instrs;
3463         shader->variants_cached++;
3464      }
3465   }
3466
3467   /* Bind this variant */
3468   lp_setup_set_fs_variant(lp->setup, variant);
3469}
3470
3471
3472
3473
3474
3475void
3476llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3477{
3478   llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3479   llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
3480   llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3481
3482   llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3483}
3484
3485
3486