1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25#include "brw_fs.h"
26#include "brw_cfg.h"
27#include "brw_nir.h"
28#include "brw_vec4_builder.h"
29#include "brw_vec4_live_variables.h"
30#include "brw_vec4_vs.h"
31#include "brw_dead_control_flow.h"
32#include "dev/gen_debug.h"
33#include "program/prog_parameter.h"
34#include "util/u_math.h"
35
36#define MAX_INSTRUCTION (1 << 30)
37
38using namespace brw;
39
40namespace brw {
41
42void
43src_reg::init()
44{
45   memset((void*)this, 0, sizeof(*this));
46   this->file = BAD_FILE;
47   this->type = BRW_REGISTER_TYPE_UD;
48}
49
50src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
51{
52   init();
53
54   this->file = file;
55   this->nr = nr;
56   if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
57      this->swizzle = brw_swizzle_for_size(type->vector_elements);
58   else
59      this->swizzle = BRW_SWIZZLE_XYZW;
60   if (type)
61      this->type = brw_type_for_base_type(type);
62}
63
64/** Generic unset register constructor. */
65src_reg::src_reg()
66{
67   init();
68}
69
70src_reg::src_reg(struct ::brw_reg reg) :
71   backend_reg(reg)
72{
73   this->offset = 0;
74   this->reladdr = NULL;
75}
76
77src_reg::src_reg(const dst_reg &reg) :
78   backend_reg(reg)
79{
80   this->reladdr = reg.reladdr;
81   this->swizzle = brw_swizzle_for_mask(reg.writemask);
82}
83
84void
85dst_reg::init()
86{
87   memset((void*)this, 0, sizeof(*this));
88   this->file = BAD_FILE;
89   this->type = BRW_REGISTER_TYPE_UD;
90   this->writemask = WRITEMASK_XYZW;
91}
92
93dst_reg::dst_reg()
94{
95   init();
96}
97
98dst_reg::dst_reg(enum brw_reg_file file, int nr)
99{
100   init();
101
102   this->file = file;
103   this->nr = nr;
104}
105
106dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
107                 unsigned writemask)
108{
109   init();
110
111   this->file = file;
112   this->nr = nr;
113   this->type = brw_type_for_base_type(type);
114   this->writemask = writemask;
115}
116
117dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
118                 unsigned writemask)
119{
120   init();
121
122   this->file = file;
123   this->nr = nr;
124   this->type = type;
125   this->writemask = writemask;
126}
127
128dst_reg::dst_reg(struct ::brw_reg reg) :
129   backend_reg(reg)
130{
131   this->offset = 0;
132   this->reladdr = NULL;
133}
134
135dst_reg::dst_reg(const src_reg &reg) :
136   backend_reg(reg)
137{
138   this->writemask = brw_mask_for_swizzle(reg.swizzle);
139   this->reladdr = reg.reladdr;
140}
141
142bool
143dst_reg::equals(const dst_reg &r) const
144{
145   return (this->backend_reg::equals(r) &&
146           (reladdr == r.reladdr ||
147            (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
148}
149
150bool
151vec4_instruction::is_send_from_grf()
152{
153   switch (opcode) {
154   case SHADER_OPCODE_SHADER_TIME_ADD:
155   case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
156   case VEC4_OPCODE_UNTYPED_ATOMIC:
157   case VEC4_OPCODE_UNTYPED_SURFACE_READ:
158   case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
159   case VEC4_OPCODE_URB_READ:
160   case TCS_OPCODE_URB_WRITE:
161   case TCS_OPCODE_RELEASE_INPUT:
162   case SHADER_OPCODE_BARRIER:
163      return true;
164   default:
165      return false;
166   }
167}
168
169/**
170 * Returns true if this instruction's sources and destinations cannot
171 * safely be the same register.
172 *
173 * In most cases, a register can be written over safely by the same
174 * instruction that is its last use.  For a single instruction, the
175 * sources are dereferenced before writing of the destination starts
176 * (naturally).
177 *
178 * However, there are a few cases where this can be problematic:
179 *
180 * - Virtual opcodes that translate to multiple instructions in the
181 *   code generator: if src == dst and one instruction writes the
182 *   destination before a later instruction reads the source, then
183 *   src will have been clobbered.
184 *
185 * The register allocator uses this information to set up conflicts between
186 * GRF sources and the destination.
187 */
188bool
189vec4_instruction::has_source_and_destination_hazard() const
190{
191   switch (opcode) {
192   case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
193   case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
194   case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
195      return true;
196   default:
197      /* 8-wide compressed DF operations are executed as two 4-wide operations,
198       * so we have a src/dst hazard if the first half of the instruction
199       * overwrites the source of the second half. Prevent this by marking
200       * compressed instructions as having src/dst hazards, so the register
201       * allocator assigns safe register regions for dst and srcs.
202       */
203      return size_written > REG_SIZE;
204   }
205}
206
207unsigned
208vec4_instruction::size_read(unsigned arg) const
209{
210   switch (opcode) {
211   case SHADER_OPCODE_SHADER_TIME_ADD:
212   case VEC4_OPCODE_UNTYPED_ATOMIC:
213   case VEC4_OPCODE_UNTYPED_SURFACE_READ:
214   case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
215   case TCS_OPCODE_URB_WRITE:
216      if (arg == 0)
217         return mlen * REG_SIZE;
218      break;
219   case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
220      if (arg == 1)
221         return mlen * REG_SIZE;
222      break;
223   default:
224      break;
225   }
226
227   switch (src[arg].file) {
228   case BAD_FILE:
229      return 0;
230   case IMM:
231   case UNIFORM:
232      return 4 * type_sz(src[arg].type);
233   default:
234      /* XXX - Represent actual vertical stride. */
235      return exec_size * type_sz(src[arg].type);
236   }
237}
238
239bool
240vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo)
241{
242   if (devinfo->gen == 6 && is_math())
243      return false;
244
245   if (is_send_from_grf())
246      return false;
247
248   if (!backend_instruction::can_do_source_mods())
249      return false;
250
251   return true;
252}
253
254bool
255vec4_instruction::can_do_cmod()
256{
257   if (!backend_instruction::can_do_cmod())
258      return false;
259
260   /* The accumulator result appears to get used for the conditional modifier
261    * generation.  When negating a UD value, there is a 33rd bit generated for
262    * the sign in the accumulator value, so now you can't check, for example,
263    * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
264    */
265   for (unsigned i = 0; i < 3; i++) {
266      if (src[i].file != BAD_FILE &&
267          type_is_unsigned_int(src[i].type) && src[i].negate)
268         return false;
269   }
270
271   return true;
272}
273
274bool
275vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo)
276{
277   switch (opcode) {
278   case SHADER_OPCODE_GEN4_SCRATCH_READ:
279   case VEC4_OPCODE_DOUBLE_TO_F32:
280   case VEC4_OPCODE_DOUBLE_TO_D32:
281   case VEC4_OPCODE_DOUBLE_TO_U32:
282   case VEC4_OPCODE_TO_DOUBLE:
283   case VEC4_OPCODE_PICK_LOW_32BIT:
284   case VEC4_OPCODE_PICK_HIGH_32BIT:
285   case VEC4_OPCODE_SET_LOW_32BIT:
286   case VEC4_OPCODE_SET_HIGH_32BIT:
287   case VS_OPCODE_PULL_CONSTANT_LOAD:
288   case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
289   case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
290   case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
291   case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
292   case TES_OPCODE_CREATE_INPUT_READ_HEADER:
293   case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
294   case VEC4_OPCODE_URB_READ:
295   case SHADER_OPCODE_MOV_INDIRECT:
296      return false;
297   default:
298      /* The MATH instruction on Gen6 only executes in align1 mode, which does
299       * not support writemasking.
300       */
301      if (devinfo->gen == 6 && is_math())
302         return false;
303
304      if (is_tex())
305         return false;
306
307      return true;
308   }
309}
310
311bool
312vec4_instruction::can_change_types() const
313{
314   return dst.type == src[0].type &&
315          !src[0].abs && !src[0].negate && !saturate &&
316          (opcode == BRW_OPCODE_MOV ||
317           (opcode == BRW_OPCODE_SEL &&
318            dst.type == src[1].type &&
319            predicate != BRW_PREDICATE_NONE &&
320            !src[1].abs && !src[1].negate));
321}
322
323/**
324 * Returns how many MRFs an opcode will write over.
325 *
326 * Note that this is not the 0 or 1 implied writes in an actual gen
327 * instruction -- the generate_* functions generate additional MOVs
328 * for setup.
329 */
330int
331vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
332{
333   if (inst->mlen == 0 || inst->is_send_from_grf())
334      return 0;
335
336   switch (inst->opcode) {
337   case SHADER_OPCODE_RCP:
338   case SHADER_OPCODE_RSQ:
339   case SHADER_OPCODE_SQRT:
340   case SHADER_OPCODE_EXP2:
341   case SHADER_OPCODE_LOG2:
342   case SHADER_OPCODE_SIN:
343   case SHADER_OPCODE_COS:
344      return 1;
345   case SHADER_OPCODE_INT_QUOTIENT:
346   case SHADER_OPCODE_INT_REMAINDER:
347   case SHADER_OPCODE_POW:
348   case TCS_OPCODE_THREAD_END:
349      return 2;
350   case VS_OPCODE_URB_WRITE:
351      return 1;
352   case VS_OPCODE_PULL_CONSTANT_LOAD:
353      return 2;
354   case SHADER_OPCODE_GEN4_SCRATCH_READ:
355      return 2;
356   case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
357      return 3;
358   case GS_OPCODE_URB_WRITE:
359   case GS_OPCODE_URB_WRITE_ALLOCATE:
360   case GS_OPCODE_THREAD_END:
361      return 0;
362   case GS_OPCODE_FF_SYNC:
363      return 1;
364   case TCS_OPCODE_URB_WRITE:
365      return 0;
366   case SHADER_OPCODE_SHADER_TIME_ADD:
367      return 0;
368   case SHADER_OPCODE_TEX:
369   case SHADER_OPCODE_TXL:
370   case SHADER_OPCODE_TXD:
371   case SHADER_OPCODE_TXF:
372   case SHADER_OPCODE_TXF_CMS:
373   case SHADER_OPCODE_TXF_CMS_W:
374   case SHADER_OPCODE_TXF_MCS:
375   case SHADER_OPCODE_TXS:
376   case SHADER_OPCODE_TG4:
377   case SHADER_OPCODE_TG4_OFFSET:
378   case SHADER_OPCODE_SAMPLEINFO:
379   case SHADER_OPCODE_GET_BUFFER_SIZE:
380      return inst->header_size;
381   default:
382      unreachable("not reached");
383   }
384}
385
386bool
387src_reg::equals(const src_reg &r) const
388{
389   return (this->backend_reg::equals(r) &&
390	   !reladdr && !r.reladdr);
391}
392
393bool
394src_reg::negative_equals(const src_reg &r) const
395{
396   return this->backend_reg::negative_equals(r) &&
397          !reladdr && !r.reladdr;
398}
399
400bool
401vec4_visitor::opt_vector_float()
402{
403   bool progress = false;
404
405   foreach_block(block, cfg) {
406      unsigned last_reg = ~0u, last_offset = ~0u;
407      enum brw_reg_file last_reg_file = BAD_FILE;
408
409      uint8_t imm[4] = { 0 };
410      int inst_count = 0;
411      vec4_instruction *imm_inst[4];
412      unsigned writemask = 0;
413      enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
414
415      foreach_inst_in_block_safe(vec4_instruction, inst, block) {
416         int vf = -1;
417         enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST;
418
419         /* Look for unconditional MOVs from an immediate with a partial
420          * writemask.  Skip type-conversion MOVs other than integer 0,
421          * where the type doesn't matter.  See if the immediate can be
422          * represented as a VF.
423          */
424         if (inst->opcode == BRW_OPCODE_MOV &&
425             inst->src[0].file == IMM &&
426             inst->predicate == BRW_PREDICATE_NONE &&
427             inst->dst.writemask != WRITEMASK_XYZW &&
428             type_sz(inst->src[0].type) < 8 &&
429             (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
430
431            vf = brw_float_to_vf(inst->src[0].d);
432            need_type = BRW_REGISTER_TYPE_D;
433
434            if (vf == -1) {
435               vf = brw_float_to_vf(inst->src[0].f);
436               need_type = BRW_REGISTER_TYPE_F;
437            }
438         } else {
439            last_reg = ~0u;
440         }
441
442         /* If this wasn't a MOV, or the destination register doesn't match,
443          * or we have to switch destination types, then this breaks our
444          * sequence.  Combine anything we've accumulated so far.
445          */
446         if (last_reg != inst->dst.nr ||
447             last_offset != inst->dst.offset ||
448             last_reg_file != inst->dst.file ||
449             (vf > 0 && dest_type != need_type)) {
450
451            if (inst_count > 1) {
452               unsigned vf;
453               memcpy(&vf, imm, sizeof(vf));
454               vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
455               mov->dst.type = dest_type;
456               mov->dst.writemask = writemask;
457               inst->insert_before(block, mov);
458
459               for (int i = 0; i < inst_count; i++) {
460                  imm_inst[i]->remove(block);
461               }
462
463               progress = true;
464            }
465
466            inst_count = 0;
467            last_reg = ~0u;;
468            writemask = 0;
469            dest_type = BRW_REGISTER_TYPE_F;
470
471            for (int i = 0; i < 4; i++) {
472               imm[i] = 0;
473            }
474         }
475
476         /* Record this instruction's value (if it was representable). */
477         if (vf != -1) {
478            if ((inst->dst.writemask & WRITEMASK_X) != 0)
479               imm[0] = vf;
480            if ((inst->dst.writemask & WRITEMASK_Y) != 0)
481               imm[1] = vf;
482            if ((inst->dst.writemask & WRITEMASK_Z) != 0)
483               imm[2] = vf;
484            if ((inst->dst.writemask & WRITEMASK_W) != 0)
485               imm[3] = vf;
486
487            writemask |= inst->dst.writemask;
488            imm_inst[inst_count++] = inst;
489
490            last_reg = inst->dst.nr;
491            last_offset = inst->dst.offset;
492            last_reg_file = inst->dst.file;
493            if (vf > 0)
494               dest_type = need_type;
495         }
496      }
497   }
498
499   if (progress)
500      invalidate_live_intervals();
501
502   return progress;
503}
504
505/* Replaces unused channels of a swizzle with channels that are used.
506 *
507 * For instance, this pass transforms
508 *
509 *    mov vgrf4.yz, vgrf5.wxzy
510 *
511 * into
512 *
513 *    mov vgrf4.yz, vgrf5.xxzx
514 *
515 * This eliminates false uses of some channels, letting dead code elimination
516 * remove the instructions that wrote them.
517 */
518bool
519vec4_visitor::opt_reduce_swizzle()
520{
521   bool progress = false;
522
523   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
524      if (inst->dst.file == BAD_FILE ||
525          inst->dst.file == ARF ||
526          inst->dst.file == FIXED_GRF ||
527          inst->is_send_from_grf())
528         continue;
529
530      unsigned swizzle;
531
532      /* Determine which channels of the sources are read. */
533      switch (inst->opcode) {
534      case VEC4_OPCODE_PACK_BYTES:
535      case BRW_OPCODE_DP4:
536      case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
537                            *           but all four of src1.
538                            */
539         swizzle = brw_swizzle_for_size(4);
540         break;
541      case BRW_OPCODE_DP3:
542         swizzle = brw_swizzle_for_size(3);
543         break;
544      case BRW_OPCODE_DP2:
545         swizzle = brw_swizzle_for_size(2);
546         break;
547
548      case VEC4_OPCODE_TO_DOUBLE:
549      case VEC4_OPCODE_DOUBLE_TO_F32:
550      case VEC4_OPCODE_DOUBLE_TO_D32:
551      case VEC4_OPCODE_DOUBLE_TO_U32:
552      case VEC4_OPCODE_PICK_LOW_32BIT:
553      case VEC4_OPCODE_PICK_HIGH_32BIT:
554      case VEC4_OPCODE_SET_LOW_32BIT:
555      case VEC4_OPCODE_SET_HIGH_32BIT:
556         swizzle = brw_swizzle_for_size(4);
557         break;
558
559      default:
560         swizzle = brw_swizzle_for_mask(inst->dst.writemask);
561         break;
562      }
563
564      /* Update sources' swizzles. */
565      for (int i = 0; i < 3; i++) {
566         if (inst->src[i].file != VGRF &&
567             inst->src[i].file != ATTR &&
568             inst->src[i].file != UNIFORM)
569            continue;
570
571         const unsigned new_swizzle =
572            brw_compose_swizzle(swizzle, inst->src[i].swizzle);
573         if (inst->src[i].swizzle != new_swizzle) {
574            inst->src[i].swizzle = new_swizzle;
575            progress = true;
576         }
577      }
578   }
579
580   if (progress)
581      invalidate_live_intervals();
582
583   return progress;
584}
585
586void
587vec4_visitor::split_uniform_registers()
588{
589   /* Prior to this, uniforms have been in an array sized according to
590    * the number of vector uniforms present, sparsely filled (so an
591    * aggregate results in reg indices being skipped over).  Now we're
592    * going to cut those aggregates up so each .nr index is one
593    * vector.  The goal is to make elimination of unused uniform
594    * components easier later.
595    */
596   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
597      for (int i = 0 ; i < 3; i++) {
598	 if (inst->src[i].file != UNIFORM)
599	    continue;
600
601	 assert(!inst->src[i].reladdr);
602
603         inst->src[i].nr += inst->src[i].offset / 16;
604	 inst->src[i].offset %= 16;
605      }
606   }
607}
608
609/* This function returns the register number where we placed the uniform */
610static int
611set_push_constant_loc(const int nr_uniforms, int *new_uniform_count,
612                      const int src, const int size, const int channel_size,
613                      int *new_loc, int *new_chan,
614                      int *new_chans_used)
615{
616   int dst;
617   /* Find the lowest place we can slot this uniform in. */
618   for (dst = 0; dst < nr_uniforms; dst++) {
619      if (ALIGN(new_chans_used[dst], channel_size) + size <= 4)
620         break;
621   }
622
623   assert(dst < nr_uniforms);
624
625   new_loc[src] = dst;
626   new_chan[src] = ALIGN(new_chans_used[dst], channel_size);
627   new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size;
628
629   *new_uniform_count = MAX2(*new_uniform_count, dst + 1);
630   return dst;
631}
632
633void
634vec4_visitor::pack_uniform_registers()
635{
636   uint8_t chans_used[this->uniforms];
637   int new_loc[this->uniforms];
638   int new_chan[this->uniforms];
639   bool is_aligned_to_dvec4[this->uniforms];
640   int new_chans_used[this->uniforms];
641   int channel_sizes[this->uniforms];
642
643   memset(chans_used, 0, sizeof(chans_used));
644   memset(new_loc, 0, sizeof(new_loc));
645   memset(new_chan, 0, sizeof(new_chan));
646   memset(new_chans_used, 0, sizeof(new_chans_used));
647   memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4));
648   memset(channel_sizes, 0, sizeof(channel_sizes));
649
650   /* Find which uniform vectors are actually used by the program.  We
651    * expect unused vector elements when we've moved array access out
652    * to pull constants, and from some GLSL code generators like wine.
653    */
654   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
655      unsigned readmask;
656      switch (inst->opcode) {
657      case VEC4_OPCODE_PACK_BYTES:
658      case BRW_OPCODE_DP4:
659      case BRW_OPCODE_DPH:
660         readmask = 0xf;
661         break;
662      case BRW_OPCODE_DP3:
663         readmask = 0x7;
664         break;
665      case BRW_OPCODE_DP2:
666         readmask = 0x3;
667         break;
668      default:
669         readmask = inst->dst.writemask;
670         break;
671      }
672
673      for (int i = 0 ; i < 3; i++) {
674         if (inst->src[i].file != UNIFORM)
675            continue;
676
677         assert(type_sz(inst->src[i].type) % 4 == 0);
678         int channel_size = type_sz(inst->src[i].type) / 4;
679
680         int reg = inst->src[i].nr;
681         for (int c = 0; c < 4; c++) {
682            if (!(readmask & (1 << c)))
683               continue;
684
685            unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
686            unsigned used = MAX2(chans_used[reg], channel * channel_size);
687            if (used <= 4) {
688               chans_used[reg] = used;
689               channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size);
690            } else {
691               is_aligned_to_dvec4[reg] = true;
692               is_aligned_to_dvec4[reg + 1] = true;
693               chans_used[reg + 1] = used - 4;
694               channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size);
695            }
696         }
697      }
698
699      if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
700          inst->src[0].file == UNIFORM) {
701         assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
702         assert(inst->src[0].subnr == 0);
703
704         unsigned bytes_read = inst->src[2].ud;
705         assert(bytes_read % 4 == 0);
706         unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
707
708         /* We just mark every register touched by a MOV_INDIRECT as being
709          * fully used.  This ensures that it doesn't broken up piecewise by
710          * the next part of our packing algorithm.
711          */
712         int reg = inst->src[0].nr;
713         int channel_size = type_sz(inst->src[0].type) / 4;
714         for (unsigned i = 0; i < vec4s_read; i++) {
715            chans_used[reg + i] = 4;
716            channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size);
717         }
718      }
719   }
720
721   int new_uniform_count = 0;
722
723   /* As the uniforms are going to be reordered, take the data from a temporary
724    * copy of the original param[].
725    */
726   uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
727   memcpy(param, stage_prog_data->param,
728          sizeof(uint32_t) * stage_prog_data->nr_params);
729
730   /* Now, figure out a packing of the live uniform vectors into our
731    * push constants. Start with dvec{3,4} because they are aligned to
732    * dvec4 size (2 vec4).
733    */
734   for (int src = 0; src < uniforms; src++) {
735      int size = chans_used[src];
736
737      if (size == 0 || !is_aligned_to_dvec4[src])
738         continue;
739
740      /* dvec3 are aligned to dvec4 size, apply the alignment of the size
741       * to 4 to avoid moving last component of a dvec3 to the available
742       * location at the end of a previous dvec3. These available locations
743       * could be filled by smaller variables in next loop.
744       */
745      size = ALIGN(size, 4);
746      int dst = set_push_constant_loc(uniforms, &new_uniform_count,
747                                      src, size, channel_sizes[src],
748                                      new_loc, new_chan,
749                                      new_chans_used);
750      /* Move the references to the data */
751      for (int j = 0; j < size; j++) {
752         stage_prog_data->param[dst * 4 + new_chan[src] + j] =
753            param[src * 4 + j];
754      }
755   }
756
757   /* Continue with the rest of data, which is aligned to vec4. */
758   for (int src = 0; src < uniforms; src++) {
759      int size = chans_used[src];
760
761      if (size == 0 || is_aligned_to_dvec4[src])
762         continue;
763
764      int dst = set_push_constant_loc(uniforms, &new_uniform_count,
765                                      src, size, channel_sizes[src],
766                                      new_loc, new_chan,
767                                      new_chans_used);
768      /* Move the references to the data */
769      for (int j = 0; j < size; j++) {
770         stage_prog_data->param[dst * 4 + new_chan[src] + j] =
771            param[src * 4 + j];
772      }
773   }
774
775   ralloc_free(param);
776   this->uniforms = new_uniform_count;
777
778   /* Now, update the instructions for our repacked uniforms. */
779   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
780      for (int i = 0 ; i < 3; i++) {
781         int src = inst->src[i].nr;
782
783         if (inst->src[i].file != UNIFORM)
784            continue;
785
786         int chan = new_chan[src] / channel_sizes[src];
787         inst->src[i].nr = new_loc[src];
788         inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan);
789      }
790   }
791}
792
793/**
794 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
795 *
796 * While GLSL IR also performs this optimization, we end up with it in
797 * our instruction stream for a couple of reasons.  One is that we
798 * sometimes generate silly instructions, for example in array access
799 * where we'll generate "ADD offset, index, base" even if base is 0.
800 * The other is that GLSL IR's constant propagation doesn't track the
801 * components of aggregates, so some VS patterns (initialize matrix to
802 * 0, accumulate in vertex blending factors) end up breaking down to
803 * instructions involving 0.
804 */
805bool
806vec4_visitor::opt_algebraic()
807{
808   bool progress = false;
809
810   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
811      switch (inst->opcode) {
812      case BRW_OPCODE_MOV:
813         if (inst->src[0].file != IMM)
814            break;
815
816         if (inst->saturate) {
817            /* Full mixed-type saturates don't happen.  However, we can end up
818             * with things like:
819             *
820             *    mov.sat(8) g21<1>DF       -1F
821             *
822             * Other mixed-size-but-same-base-type cases may also be possible.
823             */
824            if (inst->dst.type != inst->src[0].type &&
825                inst->dst.type != BRW_REGISTER_TYPE_DF &&
826                inst->src[0].type != BRW_REGISTER_TYPE_F)
827               assert(!"unimplemented: saturate mixed types");
828
829            if (brw_saturate_immediate(inst->src[0].type,
830                                       &inst->src[0].as_brw_reg())) {
831               inst->saturate = false;
832               progress = true;
833            }
834         }
835         break;
836
837      case BRW_OPCODE_OR:
838         if (inst->src[1].is_zero()) {
839            inst->opcode = BRW_OPCODE_MOV;
840            inst->src[1] = src_reg();
841            progress = true;
842         }
843         break;
844
845      case VEC4_OPCODE_UNPACK_UNIFORM:
846         if (inst->src[0].file != UNIFORM) {
847            inst->opcode = BRW_OPCODE_MOV;
848            progress = true;
849         }
850         break;
851
852      case BRW_OPCODE_ADD:
853	 if (inst->src[1].is_zero()) {
854	    inst->opcode = BRW_OPCODE_MOV;
855	    inst->src[1] = src_reg();
856	    progress = true;
857	 }
858	 break;
859
860      case BRW_OPCODE_MUL:
861	 if (inst->src[1].is_zero()) {
862	    inst->opcode = BRW_OPCODE_MOV;
863	    switch (inst->src[0].type) {
864	    case BRW_REGISTER_TYPE_F:
865	       inst->src[0] = brw_imm_f(0.0f);
866	       break;
867	    case BRW_REGISTER_TYPE_D:
868	       inst->src[0] = brw_imm_d(0);
869	       break;
870	    case BRW_REGISTER_TYPE_UD:
871	       inst->src[0] = brw_imm_ud(0u);
872	       break;
873	    default:
874	       unreachable("not reached");
875	    }
876	    inst->src[1] = src_reg();
877	    progress = true;
878	 } else if (inst->src[1].is_one()) {
879	    inst->opcode = BRW_OPCODE_MOV;
880	    inst->src[1] = src_reg();
881	    progress = true;
882         } else if (inst->src[1].is_negative_one()) {
883            inst->opcode = BRW_OPCODE_MOV;
884            inst->src[0].negate = !inst->src[0].negate;
885            inst->src[1] = src_reg();
886            progress = true;
887	 }
888	 break;
889      case SHADER_OPCODE_BROADCAST:
890         if (is_uniform(inst->src[0]) ||
891             inst->src[1].is_zero()) {
892            inst->opcode = BRW_OPCODE_MOV;
893            inst->src[1] = src_reg();
894            inst->force_writemask_all = true;
895            progress = true;
896         }
897         break;
898
899      default:
900	 break;
901      }
902   }
903
904   if (progress)
905      invalidate_live_intervals();
906
907   return progress;
908}
909
910/**
911 * Only a limited number of hardware registers may be used for push
912 * constants, so this turns access to the overflowed constants into
913 * pull constants.
914 */
915void
916vec4_visitor::move_push_constants_to_pull_constants()
917{
918   int pull_constant_loc[this->uniforms];
919
920   /* Only allow 32 registers (256 uniform components) as push constants,
921    * which is the limit on gen6.
922    *
923    * If changing this value, note the limitation about total_regs in
924    * brw_curbe.c.
925    */
926   int max_uniform_components = 32 * 8;
927   if (this->uniforms * 4 <= max_uniform_components)
928      return;
929
930   /* Make some sort of choice as to which uniforms get sent to pull
931    * constants.  We could potentially do something clever here like
932    * look for the most infrequently used uniform vec4s, but leave
933    * that for later.
934    */
935   for (int i = 0; i < this->uniforms * 4; i += 4) {
936      pull_constant_loc[i / 4] = -1;
937
938      if (i >= max_uniform_components) {
939         uint32_t *values = &stage_prog_data->param[i];
940
941         /* Try to find an existing copy of this uniform in the pull
942          * constants if it was part of an array access already.
943          */
944         for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
945            int matches;
946
947            for (matches = 0; matches < 4; matches++) {
948               if (stage_prog_data->pull_param[j + matches] != values[matches])
949                  break;
950            }
951
952            if (matches == 4) {
953               pull_constant_loc[i / 4] = j / 4;
954               break;
955            }
956         }
957
958         if (pull_constant_loc[i / 4] == -1) {
959            assert(stage_prog_data->nr_pull_params % 4 == 0);
960            pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
961
962            for (int j = 0; j < 4; j++) {
963               stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
964                  values[j];
965            }
966         }
967      }
968   }
969
970   /* Now actually rewrite usage of the things we've moved to pull
971    * constants.
972    */
973   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
974      for (int i = 0 ; i < 3; i++) {
975         if (inst->src[i].file != UNIFORM ||
976             pull_constant_loc[inst->src[i].nr] == -1)
977            continue;
978
979         int uniform = inst->src[i].nr;
980
981         const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
982            glsl_type::dvec4_type : glsl_type::vec4_type;
983         dst_reg temp = dst_reg(this, temp_type);
984
985         emit_pull_constant_load(block, inst, temp, inst->src[i],
986                                 pull_constant_loc[uniform], src_reg());
987
988         inst->src[i].file = temp.file;
989         inst->src[i].nr = temp.nr;
990         inst->src[i].offset %= 16;
991         inst->src[i].reladdr = NULL;
992      }
993   }
994
995   /* Repack push constants to remove the now-unused ones. */
996   pack_uniform_registers();
997}
998
999/* Conditions for which we want to avoid setting the dependency control bits */
1000bool
1001vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
1002{
1003#define IS_DWORD(reg) \
1004   (reg.type == BRW_REGISTER_TYPE_UD || \
1005    reg.type == BRW_REGISTER_TYPE_D)
1006
1007#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
1008
1009   /* From the Cherryview and Broadwell PRMs:
1010    *
1011    * "When source or destination datatype is 64b or operation is integer DWord
1012    * multiply, DepCtrl must not be used."
1013    *
1014    * SKL PRMs don't include this restriction, however, gen7 seems to be
1015    * affected, at least by the 64b restriction, since DepCtrl with double
1016    * precision instructions seems to produce GPU hangs in some cases.
1017    */
1018   if (devinfo->gen == 8 || gen_device_info_is_9lp(devinfo)) {
1019      if (inst->opcode == BRW_OPCODE_MUL &&
1020         IS_DWORD(inst->src[0]) &&
1021         IS_DWORD(inst->src[1]))
1022         return true;
1023   }
1024
1025   if (devinfo->gen >= 7 && devinfo->gen <= 8) {
1026      if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
1027          IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
1028      return true;
1029   }
1030
1031#undef IS_64BIT
1032#undef IS_DWORD
1033
1034   if (devinfo->gen >= 8) {
1035      if (inst->opcode == BRW_OPCODE_F32TO16)
1036         return true;
1037   }
1038
1039   /*
1040    * mlen:
1041    * In the presence of send messages, totally interrupt dependency
1042    * control. They're long enough that the chance of dependency
1043    * control around them just doesn't matter.
1044    *
1045    * predicate:
1046    * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
1047    * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
1048    * completes the scoreboard clear must have a non-zero execution mask. This
1049    * means, if any kind of predication can change the execution mask or channel
1050    * enable of the last instruction, the optimization must be avoided. This is
1051    * to avoid instructions being shot down the pipeline when no writes are
1052    * required.
1053    *
1054    * math:
1055    * Dependency control does not work well over math instructions.
1056    * NB: Discovered empirically
1057    */
1058   return (inst->mlen || inst->predicate || inst->is_math());
1059}
1060
1061/**
1062 * Sets the dependency control fields on instructions after register
1063 * allocation and before the generator is run.
1064 *
1065 * When you have a sequence of instructions like:
1066 *
1067 * DP4 temp.x vertex uniform[0]
1068 * DP4 temp.y vertex uniform[0]
1069 * DP4 temp.z vertex uniform[0]
1070 * DP4 temp.w vertex uniform[0]
1071 *
1072 * The hardware doesn't know that it can actually run the later instructions
1073 * while the previous ones are in flight, producing stalls.  However, we have
1074 * manual fields we can set in the instructions that let it do so.
1075 */
1076void
1077vec4_visitor::opt_set_dependency_control()
1078{
1079   vec4_instruction *last_grf_write[BRW_MAX_GRF];
1080   uint8_t grf_channels_written[BRW_MAX_GRF];
1081   vec4_instruction *last_mrf_write[BRW_MAX_GRF];
1082   uint8_t mrf_channels_written[BRW_MAX_GRF];
1083
1084   assert(prog_data->total_grf ||
1085          !"Must be called after register allocation");
1086
1087   foreach_block (block, cfg) {
1088      memset(last_grf_write, 0, sizeof(last_grf_write));
1089      memset(last_mrf_write, 0, sizeof(last_mrf_write));
1090
1091      foreach_inst_in_block (vec4_instruction, inst, block) {
1092         /* If we read from a register that we were doing dependency control
1093          * on, don't do dependency control across the read.
1094          */
1095         for (int i = 0; i < 3; i++) {
1096            int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
1097            if (inst->src[i].file == VGRF) {
1098               last_grf_write[reg] = NULL;
1099            } else if (inst->src[i].file == FIXED_GRF) {
1100               memset(last_grf_write, 0, sizeof(last_grf_write));
1101               break;
1102            }
1103            assert(inst->src[i].file != MRF);
1104         }
1105
1106         if (is_dep_ctrl_unsafe(inst)) {
1107            memset(last_grf_write, 0, sizeof(last_grf_write));
1108            memset(last_mrf_write, 0, sizeof(last_mrf_write));
1109            continue;
1110         }
1111
1112         /* Now, see if we can do dependency control for this instruction
1113          * against a previous one writing to its destination.
1114          */
1115         int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
1116         if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1117            if (last_grf_write[reg] &&
1118                last_grf_write[reg]->dst.offset == inst->dst.offset &&
1119                !(inst->dst.writemask & grf_channels_written[reg])) {
1120               last_grf_write[reg]->no_dd_clear = true;
1121               inst->no_dd_check = true;
1122            } else {
1123               grf_channels_written[reg] = 0;
1124            }
1125
1126            last_grf_write[reg] = inst;
1127            grf_channels_written[reg] |= inst->dst.writemask;
1128         } else if (inst->dst.file == MRF) {
1129            if (last_mrf_write[reg] &&
1130                last_mrf_write[reg]->dst.offset == inst->dst.offset &&
1131                !(inst->dst.writemask & mrf_channels_written[reg])) {
1132               last_mrf_write[reg]->no_dd_clear = true;
1133               inst->no_dd_check = true;
1134            } else {
1135               mrf_channels_written[reg] = 0;
1136            }
1137
1138            last_mrf_write[reg] = inst;
1139            mrf_channels_written[reg] |= inst->dst.writemask;
1140         }
1141      }
1142   }
1143}
1144
1145bool
1146vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo,
1147                                int dst_writemask,
1148                                int swizzle,
1149                                int swizzle_mask)
1150{
1151   /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
1152    * are not allowed.
1153    */
1154   if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1155      return false;
1156
1157   /* If we write to the flag register changing the swizzle would change
1158    * what channels are written to the flag register.
1159    */
1160   if (writes_flag())
1161      return false;
1162
1163   /* We can't swizzle implicit accumulator access.  We'd have to
1164    * reswizzle the producer of the accumulator value in addition
1165    * to the consumer (i.e. both MUL and MACH).  Just skip this.
1166    */
1167   if (reads_accumulator_implicitly())
1168      return false;
1169
1170   if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1171      return false;
1172
1173   /* If this instruction sets anything not referenced by swizzle, then we'd
1174    * totally break it when we reswizzle.
1175    */
1176   if (dst.writemask & ~swizzle_mask)
1177      return false;
1178
1179   if (mlen > 0)
1180      return false;
1181
1182   for (int i = 0; i < 3; i++) {
1183      if (src[i].is_accumulator())
1184         return false;
1185   }
1186
1187   return true;
1188}
1189
1190/**
1191 * For any channels in the swizzle's source that were populated by this
1192 * instruction, rewrite the instruction to put the appropriate result directly
1193 * in those channels.
1194 *
1195 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1196 */
1197void
1198vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1199{
1200   /* Destination write mask doesn't correspond to source swizzle for the dot
1201    * product and pack_bytes instructions.
1202    */
1203   if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1204       opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1205       opcode != VEC4_OPCODE_PACK_BYTES) {
1206      for (int i = 0; i < 3; i++) {
1207         if (src[i].file == BAD_FILE)
1208            continue;
1209
1210         if (src[i].file == IMM) {
1211            assert(src[i].type != BRW_REGISTER_TYPE_V &&
1212                   src[i].type != BRW_REGISTER_TYPE_UV);
1213
1214            /* Vector immediate types need to be reswizzled. */
1215            if (src[i].type == BRW_REGISTER_TYPE_VF) {
1216               const unsigned imm[] = {
1217                  (src[i].ud >>  0) & 0x0ff,
1218                  (src[i].ud >>  8) & 0x0ff,
1219                  (src[i].ud >> 16) & 0x0ff,
1220                  (src[i].ud >> 24) & 0x0ff,
1221               };
1222
1223               src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)],
1224                                    imm[BRW_GET_SWZ(swizzle, 1)],
1225                                    imm[BRW_GET_SWZ(swizzle, 2)],
1226                                    imm[BRW_GET_SWZ(swizzle, 3)]);
1227            }
1228
1229            continue;
1230         }
1231
1232         src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1233      }
1234   }
1235
1236   /* Apply the specified swizzle and writemask to the original mask of
1237    * written components.
1238    */
1239   dst.writemask = dst_writemask &
1240                   brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1241}
1242
1243/*
1244 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1245 * just written and then MOVed into another reg and making the original write
1246 * of the GRF write directly to the final destination instead.
1247 */
1248bool
1249vec4_visitor::opt_register_coalesce()
1250{
1251   bool progress = false;
1252   int next_ip = 0;
1253
1254   calculate_live_intervals();
1255
1256   foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1257      int ip = next_ip;
1258      next_ip++;
1259
1260      if (inst->opcode != BRW_OPCODE_MOV ||
1261          (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1262	  inst->predicate ||
1263	  inst->src[0].file != VGRF ||
1264	  inst->dst.type != inst->src[0].type ||
1265	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1266	 continue;
1267
1268      /* Remove no-op MOVs */
1269      if (inst->dst.file == inst->src[0].file &&
1270          inst->dst.nr == inst->src[0].nr &&
1271          inst->dst.offset == inst->src[0].offset) {
1272         bool is_nop_mov = true;
1273
1274         for (unsigned c = 0; c < 4; c++) {
1275            if ((inst->dst.writemask & (1 << c)) == 0)
1276               continue;
1277
1278            if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1279               is_nop_mov = false;
1280               break;
1281            }
1282         }
1283
1284         if (is_nop_mov) {
1285            inst->remove(block);
1286            progress = true;
1287            continue;
1288         }
1289      }
1290
1291      bool to_mrf = (inst->dst.file == MRF);
1292
1293      /* Can't coalesce this GRF if someone else was going to
1294       * read it later.
1295       */
1296      if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
1297	 continue;
1298
1299      /* We need to check interference with the final destination between this
1300       * instruction and the earliest instruction involved in writing the GRF
1301       * we're eliminating.  To do that, keep track of which of our source
1302       * channels we've seen initialized.
1303       */
1304      const unsigned chans_needed =
1305         brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1306                                       inst->dst.writemask);
1307      unsigned chans_remaining = chans_needed;
1308
1309      /* Now walk up the instruction stream trying to see if we can rewrite
1310       * everything writing to the temporary to write into the destination
1311       * instead.
1312       */
1313      vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1314      foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1315                                                  inst) {
1316         _scan_inst = scan_inst;
1317
1318         if (regions_overlap(inst->src[0], inst->size_read(0),
1319                             scan_inst->dst, scan_inst->size_written)) {
1320            /* Found something writing to the reg we want to coalesce away. */
1321            if (to_mrf) {
1322               /* SEND instructions can't have MRF as a destination. */
1323               if (scan_inst->mlen)
1324                  break;
1325
1326               if (devinfo->gen == 6) {
1327                  /* gen6 math instructions must have the destination be
1328                   * VGRF, so no compute-to-MRF for them.
1329                   */
1330                  if (scan_inst->is_math()) {
1331                     break;
1332                  }
1333               }
1334            }
1335
1336            /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
1337             * instructions, and this optimization pass is not capable of
1338             * handling that.  Bail on these instructions and hope that some
1339             * later optimization pass can do the right thing after they are
1340             * expanded.
1341             */
1342            if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
1343               break;
1344
1345            /* This doesn't handle saturation on the instruction we
1346             * want to coalesce away if the register types do not match.
1347             * But if scan_inst is a non type-converting 'mov', we can fix
1348             * the types later.
1349             */
1350            if (inst->saturate &&
1351                inst->dst.type != scan_inst->dst.type &&
1352                !(scan_inst->opcode == BRW_OPCODE_MOV &&
1353                  scan_inst->dst.type == scan_inst->src[0].type))
1354               break;
1355
1356            /* Only allow coalescing between registers of the same type size.
1357             * Otherwise we would need to make the pass aware of the fact that
1358             * channel sizes are different for single and double precision.
1359             */
1360            if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1361               break;
1362
1363            /* Check that scan_inst writes the same amount of data as the
1364             * instruction, otherwise coalescing would lead to writing a
1365             * different (larger or smaller) region of the destination
1366             */
1367            if (scan_inst->size_written != inst->size_written)
1368               break;
1369
1370            /* If we can't handle the swizzle, bail. */
1371            if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1372                                          inst->src[0].swizzle,
1373                                          chans_needed)) {
1374               break;
1375            }
1376
1377            /* This only handles coalescing writes of 8 channels (1 register
1378             * for single-precision and 2 registers for double-precision)
1379             * starting at the source offset of the copy instruction.
1380             */
1381            if (DIV_ROUND_UP(scan_inst->size_written,
1382                             type_sz(scan_inst->dst.type)) > 8 ||
1383                scan_inst->dst.offset != inst->src[0].offset)
1384               break;
1385
1386	    /* Mark which channels we found unconditional writes for. */
1387	    if (!scan_inst->predicate)
1388               chans_remaining &= ~scan_inst->dst.writemask;
1389
1390	    if (chans_remaining == 0)
1391	       break;
1392	 }
1393
1394         /* You can't read from an MRF, so if someone else reads our MRF's
1395          * source GRF that we wanted to rewrite, that stops us.  If it's a
1396          * GRF we're trying to coalesce to, we don't actually handle
1397          * rewriting sources so bail in that case as well.
1398          */
1399	 bool interfered = false;
1400	 for (int i = 0; i < 3; i++) {
1401            if (regions_overlap(inst->src[0], inst->size_read(0),
1402                                scan_inst->src[i], scan_inst->size_read(i)))
1403	       interfered = true;
1404	 }
1405	 if (interfered)
1406	    break;
1407
1408         /* If somebody else writes the same channels of our destination here,
1409          * we can't coalesce before that.
1410          */
1411         if (regions_overlap(inst->dst, inst->size_written,
1412                             scan_inst->dst, scan_inst->size_written) &&
1413             (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1414            break;
1415         }
1416
1417         /* Check for reads of the register we're trying to coalesce into.  We
1418          * can't go rewriting instructions above that to put some other value
1419          * in the register instead.
1420          */
1421         if (to_mrf && scan_inst->mlen > 0) {
1422            unsigned start = scan_inst->base_mrf;
1423            unsigned end = scan_inst->base_mrf + scan_inst->mlen;
1424
1425            if (inst->dst.nr >= start && inst->dst.nr < end) {
1426               break;
1427            }
1428         } else {
1429            for (int i = 0; i < 3; i++) {
1430               if (regions_overlap(inst->dst, inst->size_written,
1431                                   scan_inst->src[i], scan_inst->size_read(i)))
1432                  interfered = true;
1433            }
1434            if (interfered)
1435               break;
1436         }
1437      }
1438
1439      if (chans_remaining == 0) {
1440	 /* If we've made it here, we have an MOV we want to coalesce out, and
1441	  * a scan_inst pointing to the earliest instruction involved in
1442	  * computing the value.  Now go rewrite the instruction stream
1443	  * between the two.
1444	  */
1445         vec4_instruction *scan_inst = _scan_inst;
1446	 while (scan_inst != inst) {
1447	    if (scan_inst->dst.file == VGRF &&
1448                scan_inst->dst.nr == inst->src[0].nr &&
1449		scan_inst->dst.offset == inst->src[0].offset) {
1450               scan_inst->reswizzle(inst->dst.writemask,
1451                                    inst->src[0].swizzle);
1452	       scan_inst->dst.file = inst->dst.file;
1453               scan_inst->dst.nr = inst->dst.nr;
1454	       scan_inst->dst.offset = inst->dst.offset;
1455               if (inst->saturate &&
1456                   inst->dst.type != scan_inst->dst.type) {
1457                  /* If we have reached this point, scan_inst is a non
1458                   * type-converting 'mov' and we can modify its register types
1459                   * to match the ones in inst. Otherwise, we could have an
1460                   * incorrect saturation result.
1461                   */
1462                  scan_inst->dst.type = inst->dst.type;
1463                  scan_inst->src[0].type = inst->src[0].type;
1464               }
1465	       scan_inst->saturate |= inst->saturate;
1466	    }
1467	    scan_inst = (vec4_instruction *)scan_inst->next;
1468	 }
1469	 inst->remove(block);
1470	 progress = true;
1471      }
1472   }
1473
1474   if (progress)
1475      invalidate_live_intervals();
1476
1477   return progress;
1478}
1479
1480/**
1481 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1482 * flow.  We could probably do better here with some form of divergence
1483 * analysis.
1484 */
1485bool
1486vec4_visitor::eliminate_find_live_channel()
1487{
1488   bool progress = false;
1489   unsigned depth = 0;
1490
1491   if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1492      /* The optimization below assumes that channel zero is live on thread
1493       * dispatch, which may not be the case if the fixed function dispatches
1494       * threads sparsely.
1495       */
1496      return false;
1497   }
1498
1499   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1500      switch (inst->opcode) {
1501      case BRW_OPCODE_IF:
1502      case BRW_OPCODE_DO:
1503         depth++;
1504         break;
1505
1506      case BRW_OPCODE_ENDIF:
1507      case BRW_OPCODE_WHILE:
1508         depth--;
1509         break;
1510
1511      case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1512         if (depth == 0) {
1513            inst->opcode = BRW_OPCODE_MOV;
1514            inst->src[0] = brw_imm_d(0);
1515            inst->force_writemask_all = true;
1516            progress = true;
1517         }
1518         break;
1519
1520      default:
1521         break;
1522      }
1523   }
1524
1525   return progress;
1526}
1527
1528/**
1529 * Splits virtual GRFs requesting more than one contiguous physical register.
1530 *
1531 * We initially create large virtual GRFs for temporary structures, arrays,
1532 * and matrices, so that the visitor functions can add offsets to work their
1533 * way down to the actual member being accessed.  But when it comes to
1534 * optimization, we'd like to treat each register as individual storage if
1535 * possible.
1536 *
1537 * So far, the only thing that might prevent splitting is a send message from
1538 * a GRF on IVB.
1539 */
1540void
1541vec4_visitor::split_virtual_grfs()
1542{
1543   int num_vars = this->alloc.count;
1544   int new_virtual_grf[num_vars];
1545   bool split_grf[num_vars];
1546
1547   memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1548
1549   /* Try to split anything > 0 sized. */
1550   for (int i = 0; i < num_vars; i++) {
1551      split_grf[i] = this->alloc.sizes[i] != 1;
1552   }
1553
1554   /* Check that the instructions are compatible with the registers we're trying
1555    * to split.
1556    */
1557   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1558      if (inst->dst.file == VGRF && regs_written(inst) > 1)
1559         split_grf[inst->dst.nr] = false;
1560
1561      for (int i = 0; i < 3; i++) {
1562         if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1563            split_grf[inst->src[i].nr] = false;
1564      }
1565   }
1566
1567   /* Allocate new space for split regs.  Note that the virtual
1568    * numbers will be contiguous.
1569    */
1570   for (int i = 0; i < num_vars; i++) {
1571      if (!split_grf[i])
1572         continue;
1573
1574      new_virtual_grf[i] = alloc.allocate(1);
1575      for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1576         unsigned reg = alloc.allocate(1);
1577         assert(reg == new_virtual_grf[i] + j - 1);
1578         (void) reg;
1579      }
1580      this->alloc.sizes[i] = 1;
1581   }
1582
1583   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1584      if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1585          inst->dst.offset / REG_SIZE != 0) {
1586         inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1587                         inst->dst.offset / REG_SIZE - 1);
1588         inst->dst.offset %= REG_SIZE;
1589      }
1590      for (int i = 0; i < 3; i++) {
1591         if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1592             inst->src[i].offset / REG_SIZE != 0) {
1593            inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1594                                inst->src[i].offset / REG_SIZE - 1);
1595            inst->src[i].offset %= REG_SIZE;
1596         }
1597      }
1598   }
1599   invalidate_live_intervals();
1600}
1601
1602void
1603vec4_visitor::dump_instruction(backend_instruction *be_inst)
1604{
1605   dump_instruction(be_inst, stderr);
1606}
1607
1608void
1609vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1610{
1611   vec4_instruction *inst = (vec4_instruction *)be_inst;
1612
1613   if (inst->predicate) {
1614      fprintf(file, "(%cf%d.%d%s) ",
1615              inst->predicate_inverse ? '-' : '+',
1616              inst->flag_subreg / 2,
1617              inst->flag_subreg % 2,
1618              pred_ctrl_align16[inst->predicate]);
1619   }
1620
1621   fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
1622           inst->exec_size);
1623   if (inst->saturate)
1624      fprintf(file, ".sat");
1625   if (inst->conditional_mod) {
1626      fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1627      if (!inst->predicate &&
1628          (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1629                                inst->opcode != BRW_OPCODE_CSEL &&
1630                                inst->opcode != BRW_OPCODE_IF &&
1631                                inst->opcode != BRW_OPCODE_WHILE))) {
1632         fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
1633      }
1634   }
1635   fprintf(file, " ");
1636
1637   switch (inst->dst.file) {
1638   case VGRF:
1639      fprintf(file, "vgrf%d", inst->dst.nr);
1640      break;
1641   case FIXED_GRF:
1642      fprintf(file, "g%d", inst->dst.nr);
1643      break;
1644   case MRF:
1645      fprintf(file, "m%d", inst->dst.nr);
1646      break;
1647   case ARF:
1648      switch (inst->dst.nr) {
1649      case BRW_ARF_NULL:
1650         fprintf(file, "null");
1651         break;
1652      case BRW_ARF_ADDRESS:
1653         fprintf(file, "a0.%d", inst->dst.subnr);
1654         break;
1655      case BRW_ARF_ACCUMULATOR:
1656         fprintf(file, "acc%d", inst->dst.subnr);
1657         break;
1658      case BRW_ARF_FLAG:
1659         fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1660         break;
1661      default:
1662         fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1663         break;
1664      }
1665      break;
1666   case BAD_FILE:
1667      fprintf(file, "(null)");
1668      break;
1669   case IMM:
1670   case ATTR:
1671   case UNIFORM:
1672      unreachable("not reached");
1673   }
1674   if (inst->dst.offset ||
1675       (inst->dst.file == VGRF &&
1676        alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1677      const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1678      fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1679              inst->dst.offset % reg_size);
1680   }
1681   if (inst->dst.writemask != WRITEMASK_XYZW) {
1682      fprintf(file, ".");
1683      if (inst->dst.writemask & 1)
1684         fprintf(file, "x");
1685      if (inst->dst.writemask & 2)
1686         fprintf(file, "y");
1687      if (inst->dst.writemask & 4)
1688         fprintf(file, "z");
1689      if (inst->dst.writemask & 8)
1690         fprintf(file, "w");
1691   }
1692   fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
1693
1694   if (inst->src[0].file != BAD_FILE)
1695      fprintf(file, ", ");
1696
1697   for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1698      if (inst->src[i].negate)
1699         fprintf(file, "-");
1700      if (inst->src[i].abs)
1701         fprintf(file, "|");
1702      switch (inst->src[i].file) {
1703      case VGRF:
1704         fprintf(file, "vgrf%d", inst->src[i].nr);
1705         break;
1706      case FIXED_GRF:
1707         fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1708         break;
1709      case ATTR:
1710         fprintf(file, "attr%d", inst->src[i].nr);
1711         break;
1712      case UNIFORM:
1713         fprintf(file, "u%d", inst->src[i].nr);
1714         break;
1715      case IMM:
1716         switch (inst->src[i].type) {
1717         case BRW_REGISTER_TYPE_F:
1718            fprintf(file, "%fF", inst->src[i].f);
1719            break;
1720         case BRW_REGISTER_TYPE_DF:
1721            fprintf(file, "%fDF", inst->src[i].df);
1722            break;
1723         case BRW_REGISTER_TYPE_D:
1724            fprintf(file, "%dD", inst->src[i].d);
1725            break;
1726         case BRW_REGISTER_TYPE_UD:
1727            fprintf(file, "%uU", inst->src[i].ud);
1728            break;
1729         case BRW_REGISTER_TYPE_VF:
1730            fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1731                    brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
1732                    brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
1733                    brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1734                    brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1735            break;
1736         default:
1737            fprintf(file, "???");
1738            break;
1739         }
1740         break;
1741      case ARF:
1742         switch (inst->src[i].nr) {
1743         case BRW_ARF_NULL:
1744            fprintf(file, "null");
1745            break;
1746         case BRW_ARF_ADDRESS:
1747            fprintf(file, "a0.%d", inst->src[i].subnr);
1748            break;
1749         case BRW_ARF_ACCUMULATOR:
1750            fprintf(file, "acc%d", inst->src[i].subnr);
1751            break;
1752         case BRW_ARF_FLAG:
1753            fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1754            break;
1755         default:
1756            fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1757            break;
1758         }
1759         break;
1760      case BAD_FILE:
1761         fprintf(file, "(null)");
1762         break;
1763      case MRF:
1764         unreachable("not reached");
1765      }
1766
1767      if (inst->src[i].offset ||
1768          (inst->src[i].file == VGRF &&
1769           alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1770         const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1771         fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1772                 inst->src[i].offset % reg_size);
1773      }
1774
1775      if (inst->src[i].file != IMM) {
1776         static const char *chans[4] = {"x", "y", "z", "w"};
1777         fprintf(file, ".");
1778         for (int c = 0; c < 4; c++) {
1779            fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1780         }
1781      }
1782
1783      if (inst->src[i].abs)
1784         fprintf(file, "|");
1785
1786      if (inst->src[i].file != IMM) {
1787         fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
1788      }
1789
1790      if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1791         fprintf(file, ", ");
1792   }
1793
1794   if (inst->force_writemask_all)
1795      fprintf(file, " NoMask");
1796
1797   if (inst->exec_size != 8)
1798      fprintf(file, " group%d", inst->group);
1799
1800   fprintf(file, "\n");
1801}
1802
1803
1804int
1805vec4_vs_visitor::setup_attributes(int payload_reg)
1806{
1807   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1808      for (int i = 0; i < 3; i++) {
1809         if (inst->src[i].file == ATTR) {
1810            assert(inst->src[i].offset % REG_SIZE == 0);
1811            int grf = payload_reg + inst->src[i].nr +
1812                      inst->src[i].offset / REG_SIZE;
1813
1814            struct brw_reg reg = brw_vec8_grf(grf, 0);
1815            reg.swizzle = inst->src[i].swizzle;
1816            reg.type = inst->src[i].type;
1817            reg.abs = inst->src[i].abs;
1818            reg.negate = inst->src[i].negate;
1819            inst->src[i] = reg;
1820         }
1821      }
1822   }
1823
1824   return payload_reg + vs_prog_data->nr_attribute_slots;
1825}
1826
1827int
1828vec4_visitor::setup_uniforms(int reg)
1829{
1830   prog_data->base.dispatch_grf_start_reg = reg;
1831
1832   /* The pre-gen6 VS requires that some push constants get loaded no
1833    * matter what, or the GPU would hang.
1834    */
1835   if (devinfo->gen < 6 && this->uniforms == 0) {
1836      brw_stage_prog_data_add_params(stage_prog_data, 4);
1837      for (unsigned int i = 0; i < 4; i++) {
1838	 unsigned int slot = this->uniforms * 4 + i;
1839	 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
1840      }
1841
1842      this->uniforms++;
1843      reg++;
1844   } else {
1845      reg += ALIGN(uniforms, 2) / 2;
1846   }
1847
1848   for (int i = 0; i < 4; i++)
1849      reg += stage_prog_data->ubo_ranges[i].length;
1850
1851   stage_prog_data->nr_params = this->uniforms * 4;
1852
1853   prog_data->base.curb_read_length =
1854      reg - prog_data->base.dispatch_grf_start_reg;
1855
1856   return reg;
1857}
1858
1859void
1860vec4_vs_visitor::setup_payload(void)
1861{
1862   int reg = 0;
1863
1864   /* The payload always contains important data in g0, which contains
1865    * the URB handles that are passed on to the URB write at the end
1866    * of the thread.  So, we always start push constants at g1.
1867    */
1868   reg++;
1869
1870   reg = setup_uniforms(reg);
1871
1872   reg = setup_attributes(reg);
1873
1874   this->first_non_payload_grf = reg;
1875}
1876
1877bool
1878vec4_visitor::lower_minmax()
1879{
1880   assert(devinfo->gen < 6);
1881
1882   bool progress = false;
1883
1884   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1885      const vec4_builder ibld(this, block, inst);
1886
1887      if (inst->opcode == BRW_OPCODE_SEL &&
1888          inst->predicate == BRW_PREDICATE_NONE) {
1889         /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
1890          *        the original SEL.L/GE instruction
1891          */
1892         ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1893                  inst->conditional_mod);
1894         inst->predicate = BRW_PREDICATE_NORMAL;
1895         inst->conditional_mod = BRW_CONDITIONAL_NONE;
1896
1897         progress = true;
1898      }
1899   }
1900
1901   if (progress)
1902      invalidate_live_intervals();
1903
1904   return progress;
1905}
1906
1907src_reg
1908vec4_visitor::get_timestamp()
1909{
1910   assert(devinfo->gen >= 7);
1911
1912   src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1913                                BRW_ARF_TIMESTAMP,
1914                                0,
1915                                0,
1916                                0,
1917                                BRW_REGISTER_TYPE_UD,
1918                                BRW_VERTICAL_STRIDE_0,
1919                                BRW_WIDTH_4,
1920                                BRW_HORIZONTAL_STRIDE_4,
1921                                BRW_SWIZZLE_XYZW,
1922                                WRITEMASK_XYZW));
1923
1924   dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1925
1926   vec4_instruction *mov = emit(MOV(dst, ts));
1927   /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1928    * even if it's not enabled in the dispatch.
1929    */
1930   mov->force_writemask_all = true;
1931
1932   return src_reg(dst);
1933}
1934
1935void
1936vec4_visitor::emit_shader_time_begin()
1937{
1938   current_annotation = "shader time start";
1939   shader_start_time = get_timestamp();
1940}
1941
1942void
1943vec4_visitor::emit_shader_time_end()
1944{
1945   current_annotation = "shader time end";
1946   src_reg shader_end_time = get_timestamp();
1947
1948
1949   /* Check that there weren't any timestamp reset events (assuming these
1950    * were the only two timestamp reads that happened).
1951    */
1952   src_reg reset_end = shader_end_time;
1953   reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1954   vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1955   test->conditional_mod = BRW_CONDITIONAL_Z;
1956
1957   emit(IF(BRW_PREDICATE_NORMAL));
1958
1959   /* Take the current timestamp and get the delta. */
1960   shader_start_time.negate = true;
1961   dst_reg diff = dst_reg(this, glsl_type::uint_type);
1962   emit(ADD(diff, shader_start_time, shader_end_time));
1963
1964   /* If there were no instructions between the two timestamp gets, the diff
1965    * is 2 cycles.  Remove that overhead, so I can forget about that when
1966    * trying to determine the time taken for single instructions.
1967    */
1968   emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1969
1970   emit_shader_time_write(0, src_reg(diff));
1971   emit_shader_time_write(1, brw_imm_ud(1u));
1972   emit(BRW_OPCODE_ELSE);
1973   emit_shader_time_write(2, brw_imm_ud(1u));
1974   emit(BRW_OPCODE_ENDIF);
1975}
1976
1977void
1978vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1979{
1980   dst_reg dst =
1981      dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1982
1983   dst_reg offset = dst;
1984   dst_reg time = dst;
1985   time.offset += REG_SIZE;
1986
1987   offset.type = BRW_REGISTER_TYPE_UD;
1988   int index = shader_time_index * 3 + shader_time_subindex;
1989   emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
1990
1991   time.type = BRW_REGISTER_TYPE_UD;
1992   emit(MOV(time, value));
1993
1994   vec4_instruction *inst =
1995      emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1996   inst->mlen = 2;
1997}
1998
1999static bool
2000is_align1_df(vec4_instruction *inst)
2001{
2002   switch (inst->opcode) {
2003   case VEC4_OPCODE_DOUBLE_TO_F32:
2004   case VEC4_OPCODE_DOUBLE_TO_D32:
2005   case VEC4_OPCODE_DOUBLE_TO_U32:
2006   case VEC4_OPCODE_TO_DOUBLE:
2007   case VEC4_OPCODE_PICK_LOW_32BIT:
2008   case VEC4_OPCODE_PICK_HIGH_32BIT:
2009   case VEC4_OPCODE_SET_LOW_32BIT:
2010   case VEC4_OPCODE_SET_HIGH_32BIT:
2011      return true;
2012   default:
2013      return false;
2014   }
2015}
2016
2017/**
2018 * Three source instruction must have a GRF/MRF destination register.
2019 * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
2020 */
2021void
2022vec4_visitor::fixup_3src_null_dest()
2023{
2024   bool progress = false;
2025
2026   foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
2027      if (inst->is_3src(devinfo) && inst->dst.is_null()) {
2028         const unsigned size_written = type_sz(inst->dst.type);
2029         const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2030
2031         inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2032                            inst->dst.type);
2033         progress = true;
2034      }
2035   }
2036
2037   if (progress)
2038      invalidate_live_intervals();
2039}
2040
2041void
2042vec4_visitor::convert_to_hw_regs()
2043{
2044   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
2045      for (int i = 0; i < 3; i++) {
2046         class src_reg &src = inst->src[i];
2047         struct brw_reg reg;
2048         switch (src.file) {
2049         case VGRF: {
2050            reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
2051            reg.type = src.type;
2052            reg.abs = src.abs;
2053            reg.negate = src.negate;
2054            break;
2055         }
2056
2057         case UNIFORM: {
2058            reg = stride(byte_offset(brw_vec4_grf(
2059                                        prog_data->base.dispatch_grf_start_reg +
2060                                        src.nr / 2, src.nr % 2 * 4),
2061                                     src.offset),
2062                         0, 4, 1);
2063            reg.type = src.type;
2064            reg.abs = src.abs;
2065            reg.negate = src.negate;
2066
2067            /* This should have been moved to pull constants. */
2068            assert(!src.reladdr);
2069            break;
2070         }
2071
2072         case FIXED_GRF:
2073            if (type_sz(src.type) == 8) {
2074               reg = src.as_brw_reg();
2075               break;
2076            }
2077            /* fallthrough */
2078         case ARF:
2079         case IMM:
2080            continue;
2081
2082         case BAD_FILE:
2083            /* Probably unused. */
2084            reg = brw_null_reg();
2085            reg = retype(reg, src.type);
2086            break;
2087
2088         case MRF:
2089         case ATTR:
2090            unreachable("not reached");
2091         }
2092
2093         apply_logical_swizzle(&reg, inst, i);
2094         src = reg;
2095
2096         /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
2097          * Parameters":
2098          *
2099          *   "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
2100          *    to Width * HorzStride."
2101          *
2102          * We can break this rule with DF sources on DF align1
2103          * instructions, because the exec_size would be 4 and width is 4.
2104          * As we know we are not accessing to next GRF, it is safe to
2105          * set vstride to the formula given by the rule itself.
2106          */
2107         if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
2108            src.vstride = src.width + src.hstride;
2109      }
2110
2111      if (inst->is_3src(devinfo)) {
2112         /* 3-src instructions with scalar sources support arbitrary subnr,
2113          * but don't actually use swizzles.  Convert swizzle into subnr.
2114          * Skip this for double-precision instructions: RepCtrl=1 is not
2115          * allowed for them and needs special handling.
2116          */
2117         for (int i = 0; i < 3; i++) {
2118            if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
2119                type_sz(inst->src[i].type) < 8) {
2120               assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
2121               inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
2122            }
2123         }
2124      }
2125
2126      dst_reg &dst = inst->dst;
2127      struct brw_reg reg;
2128
2129      switch (inst->dst.file) {
2130      case VGRF:
2131         reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
2132         reg.type = dst.type;
2133         reg.writemask = dst.writemask;
2134         break;
2135
2136      case MRF:
2137         reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
2138         assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
2139         reg.type = dst.type;
2140         reg.writemask = dst.writemask;
2141         break;
2142
2143      case ARF:
2144      case FIXED_GRF:
2145         reg = dst.as_brw_reg();
2146         break;
2147
2148      case BAD_FILE:
2149         reg = brw_null_reg();
2150         reg = retype(reg, dst.type);
2151         break;
2152
2153      case IMM:
2154      case ATTR:
2155      case UNIFORM:
2156         unreachable("not reached");
2157      }
2158
2159      dst = reg;
2160   }
2161}
2162
2163static bool
2164stage_uses_interleaved_attributes(unsigned stage,
2165                                  enum shader_dispatch_mode dispatch_mode)
2166{
2167   switch (stage) {
2168   case MESA_SHADER_TESS_EVAL:
2169      return true;
2170   case MESA_SHADER_GEOMETRY:
2171      return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
2172   default:
2173      return false;
2174   }
2175}
2176
2177/**
2178 * Get the closest native SIMD width supported by the hardware for instruction
2179 * \p inst.  The instruction will be left untouched by
2180 * vec4_visitor::lower_simd_width() if the returned value matches the
2181 * instruction's original execution size.
2182 */
2183static unsigned
2184get_lowered_simd_width(const struct gen_device_info *devinfo,
2185                       enum shader_dispatch_mode dispatch_mode,
2186                       unsigned stage, const vec4_instruction *inst)
2187{
2188   /* Do not split some instructions that require special handling */
2189   switch (inst->opcode) {
2190   case SHADER_OPCODE_GEN4_SCRATCH_READ:
2191   case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2192      return inst->exec_size;
2193   default:
2194      break;
2195   }
2196
2197   unsigned lowered_width = MIN2(16, inst->exec_size);
2198
2199   /* We need to split some cases of double-precision instructions that write
2200    * 2 registers. We only need to care about this in gen7 because that is the
2201    * only hardware that implements fp64 in Align16.
2202    */
2203   if (devinfo->gen == 7 && inst->size_written > REG_SIZE) {
2204      /* Align16 8-wide double-precision SEL does not work well. Verified
2205       * empirically.
2206       */
2207      if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
2208         lowered_width = MIN2(lowered_width, 4);
2209
2210      /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
2211       * Register Addressing:
2212       *
2213       *    "When destination spans two registers, the source MUST span two
2214       *     registers."
2215       */
2216      for (unsigned i = 0; i < 3; i++) {
2217         if (inst->src[i].file == BAD_FILE)
2218            continue;
2219         if (inst->size_read(i) <= REG_SIZE)
2220            lowered_width = MIN2(lowered_width, 4);
2221
2222         /* Interleaved attribute setups use a vertical stride of 0, which
2223          * makes them hit the associated instruction decompression bug in gen7.
2224          * Split them to prevent this.
2225          */
2226         if (inst->src[i].file == ATTR &&
2227             stage_uses_interleaved_attributes(stage, dispatch_mode))
2228            lowered_width = MIN2(lowered_width, 4);
2229      }
2230   }
2231
2232   /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
2233    * it doesn't support compression in Align16 mode, no matter if it has
2234    * force_writemask_all enabled or disabled (the latter is affected by the
2235    * compressed instruction bug in gen7, which is another reason to enforce
2236    * this limit).
2237    */
2238   if (devinfo->gen == 7 && !devinfo->is_haswell &&
2239       (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
2240      lowered_width = MIN2(lowered_width, 4);
2241
2242   return lowered_width;
2243}
2244
2245static bool
2246dst_src_regions_overlap(vec4_instruction *inst)
2247{
2248   if (inst->size_written == 0)
2249      return false;
2250
2251   unsigned dst_start = inst->dst.offset;
2252   unsigned dst_end = dst_start + inst->size_written - 1;
2253   for (int i = 0; i < 3; i++) {
2254      if (inst->src[i].file == BAD_FILE)
2255         continue;
2256
2257      if (inst->dst.file != inst->src[i].file ||
2258          inst->dst.nr != inst->src[i].nr)
2259         continue;
2260
2261      unsigned src_start = inst->src[i].offset;
2262      unsigned src_end = src_start + inst->size_read(i) - 1;
2263
2264      if ((dst_start >= src_start && dst_start <= src_end) ||
2265          (dst_end >= src_start && dst_end <= src_end) ||
2266          (dst_start <= src_start && dst_end >= src_end)) {
2267         return true;
2268      }
2269   }
2270
2271   return false;
2272}
2273
2274bool
2275vec4_visitor::lower_simd_width()
2276{
2277   bool progress = false;
2278
2279   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2280      const unsigned lowered_width =
2281         get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
2282      assert(lowered_width <= inst->exec_size);
2283      if (lowered_width == inst->exec_size)
2284         continue;
2285
2286      /* We need to deal with source / destination overlaps when splitting.
2287       * The hardware supports reading from and writing to the same register
2288       * in the same instruction, but we need to be careful that each split
2289       * instruction we produce does not corrupt the source of the next.
2290       *
2291       * The easiest way to handle this is to make the split instructions write
2292       * to temporaries if there is an src/dst overlap and then move from the
2293       * temporaries to the original destination. We also need to consider
2294       * instructions that do partial writes via align1 opcodes, in which case
2295       * we need to make sure that the we initialize the temporary with the
2296       * value of the instruction's dst.
2297       */
2298      bool needs_temp = dst_src_regions_overlap(inst);
2299      for (unsigned n = 0; n < inst->exec_size / lowered_width; n++)  {
2300         unsigned channel_offset = lowered_width * n;
2301
2302         unsigned size_written = lowered_width * type_sz(inst->dst.type);
2303
2304         /* Create the split instruction from the original so that we copy all
2305          * relevant instruction fields, then set the width and calculate the
2306          * new dst/src regions.
2307          */
2308         vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
2309         linst->exec_size = lowered_width;
2310         linst->group = channel_offset;
2311         linst->size_written = size_written;
2312
2313         /* Compute split dst region */
2314         dst_reg dst;
2315         if (needs_temp) {
2316            unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2317            dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2318                         inst->dst.type);
2319            if (inst->is_align1_partial_write()) {
2320               vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2321               copy->exec_size = lowered_width;
2322               copy->group = channel_offset;
2323               copy->size_written = size_written;
2324               inst->insert_before(block, copy);
2325            }
2326         } else {
2327            dst = horiz_offset(inst->dst, channel_offset);
2328         }
2329         linst->dst = dst;
2330
2331         /* Compute split source regions */
2332         for (int i = 0; i < 3; i++) {
2333            if (linst->src[i].file == BAD_FILE)
2334               continue;
2335
2336            bool is_interleaved_attr =
2337               linst->src[i].file == ATTR &&
2338               stage_uses_interleaved_attributes(stage,
2339                                                 prog_data->dispatch_mode);
2340
2341            if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
2342               linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2343         }
2344
2345         inst->insert_before(block, linst);
2346
2347         /* If we used a temporary to store the result of the split
2348          * instruction, copy the result to the original destination
2349          */
2350         if (needs_temp) {
2351            vec4_instruction *mov =
2352               MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2353            mov->exec_size = lowered_width;
2354            mov->group = channel_offset;
2355            mov->size_written = size_written;
2356            mov->predicate = inst->predicate;
2357            inst->insert_before(block, mov);
2358         }
2359      }
2360
2361      inst->remove(block);
2362      progress = true;
2363   }
2364
2365   if (progress)
2366      invalidate_live_intervals();
2367
2368   return progress;
2369}
2370
2371static brw_predicate
2372scalarize_predicate(brw_predicate predicate, unsigned writemask)
2373{
2374   if (predicate != BRW_PREDICATE_NORMAL)
2375      return predicate;
2376
2377   switch (writemask) {
2378   case WRITEMASK_X:
2379      return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2380   case WRITEMASK_Y:
2381      return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2382   case WRITEMASK_Z:
2383      return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2384   case WRITEMASK_W:
2385      return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2386   default:
2387      unreachable("invalid writemask");
2388   }
2389}
2390
2391/* Gen7 has a hardware decompression bug that we can exploit to represent
2392 * handful of additional swizzles natively.
2393 */
2394static bool
2395is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2396{
2397   switch (inst->src[arg].swizzle) {
2398   case BRW_SWIZZLE_XXXX:
2399   case BRW_SWIZZLE_YYYY:
2400   case BRW_SWIZZLE_ZZZZ:
2401   case BRW_SWIZZLE_WWWW:
2402   case BRW_SWIZZLE_XYXY:
2403   case BRW_SWIZZLE_YXYX:
2404   case BRW_SWIZZLE_ZWZW:
2405   case BRW_SWIZZLE_WZWZ:
2406      return true;
2407   default:
2408      return false;
2409   }
2410}
2411
2412/* 64-bit sources use regions with a width of 2. These 2 elements in each row
2413 * can be addressed using 32-bit swizzles (which is what the hardware supports)
2414 * but it also means that the swizzle we apply on the first two components of a
2415 * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2416 * only some specific swizzle combinations can be natively supported.
2417 *
2418 * FIXME: we can go an step further and implement even more swizzle
2419 *        variations using only partial scalarization.
2420 *
2421 * For more details see:
2422 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2423 */
2424bool
2425vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2426{
2427   const src_reg &src = inst->src[arg];
2428   assert(type_sz(src.type) == 8);
2429
2430   /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2431    * 64-bit regions it means that we cannot access components Z/W, so
2432    * return false for any such case. Interleaved attributes will also be
2433    * mapped to GRF registers with a vstride of 0, so apply the same
2434    * treatment.
2435    */
2436   if ((is_uniform(src) ||
2437        (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2438         src.file == ATTR)) &&
2439       (brw_mask_for_swizzle(src.swizzle) & 12))
2440      return false;
2441
2442   switch (src.swizzle) {
2443   case BRW_SWIZZLE_XYZW:
2444   case BRW_SWIZZLE_XXZZ:
2445   case BRW_SWIZZLE_YYWW:
2446   case BRW_SWIZZLE_YXWZ:
2447      return true;
2448   default:
2449      return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg);
2450   }
2451}
2452
2453bool
2454vec4_visitor::scalarize_df()
2455{
2456   bool progress = false;
2457
2458   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2459      /* Skip DF instructions that operate in Align1 mode */
2460      if (is_align1_df(inst))
2461         continue;
2462
2463      /* Check if this is a double-precision instruction */
2464      bool is_double = type_sz(inst->dst.type) == 8;
2465      for (int arg = 0; !is_double && arg < 3; arg++) {
2466         is_double = inst->src[arg].file != BAD_FILE &&
2467                     type_sz(inst->src[arg].type) == 8;
2468      }
2469
2470      if (!is_double)
2471         continue;
2472
2473      /* Skip the lowering for specific regioning scenarios that we can
2474       * support natively.
2475       */
2476      bool skip_lowering = true;
2477
2478      /* XY and ZW writemasks operate in 32-bit, which means that they don't
2479       * have a native 64-bit representation and they should always be split.
2480       */
2481      if (inst->dst.writemask == WRITEMASK_XY ||
2482          inst->dst.writemask == WRITEMASK_ZW) {
2483         skip_lowering = false;
2484      } else {
2485         for (unsigned i = 0; i < 3; i++) {
2486            if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2487               continue;
2488            skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2489         }
2490      }
2491
2492      if (skip_lowering)
2493         continue;
2494
2495      /* Generate scalar instructions for each enabled channel */
2496      for (unsigned chan = 0; chan < 4; chan++) {
2497         unsigned chan_mask = 1 << chan;
2498         if (!(inst->dst.writemask & chan_mask))
2499            continue;
2500
2501         vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2502
2503         for (unsigned i = 0; i < 3; i++) {
2504            unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2505            scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2506         }
2507
2508         scalar_inst->dst.writemask = chan_mask;
2509
2510         if (inst->predicate != BRW_PREDICATE_NONE) {
2511            scalar_inst->predicate =
2512               scalarize_predicate(inst->predicate, chan_mask);
2513         }
2514
2515         inst->insert_before(block, scalar_inst);
2516      }
2517
2518      inst->remove(block);
2519      progress = true;
2520   }
2521
2522   if (progress)
2523      invalidate_live_intervals();
2524
2525   return progress;
2526}
2527
2528bool
2529vec4_visitor::lower_64bit_mad_to_mul_add()
2530{
2531   bool progress = false;
2532
2533   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2534      if (inst->opcode != BRW_OPCODE_MAD)
2535         continue;
2536
2537      if (type_sz(inst->dst.type) != 8)
2538         continue;
2539
2540      dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2541
2542      /* Use the copy constructor so we copy all relevant instruction fields
2543       * from the original mad into the add and mul instructions
2544       */
2545      vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2546      mul->opcode = BRW_OPCODE_MUL;
2547      mul->dst = mul_dst;
2548      mul->src[0] = inst->src[1];
2549      mul->src[1] = inst->src[2];
2550      mul->src[2].file = BAD_FILE;
2551
2552      vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2553      add->opcode = BRW_OPCODE_ADD;
2554      add->src[0] = src_reg(mul_dst);
2555      add->src[1] = inst->src[0];
2556      add->src[2].file = BAD_FILE;
2557
2558      inst->insert_before(block, mul);
2559      inst->insert_before(block, add);
2560      inst->remove(block);
2561
2562      progress = true;
2563   }
2564
2565   if (progress)
2566      invalidate_live_intervals();
2567
2568   return progress;
2569}
2570
2571/* The align16 hardware can only do 32-bit swizzle channels, so we need to
2572 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2573 * to 32-bit swizzle channels in hardware registers.
2574 *
2575 * @inst and @arg identify the original vec4 IR source operand we need to
2576 * translate the swizzle for and @hw_reg is the hardware register where we
2577 * will write the hardware swizzle to use.
2578 *
2579 * This pass assumes that Align16/DF instructions have been fully scalarized
2580 * previously so there is just one 64-bit swizzle channel to deal with for any
2581 * given Vec4 IR source.
2582 */
2583void
2584vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2585                                    vec4_instruction *inst, int arg)
2586{
2587   src_reg reg = inst->src[arg];
2588
2589   if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2590      return;
2591
2592   /* If this is not a 64-bit operand or this is a scalar instruction we don't
2593    * need to do anything about the swizzles.
2594    */
2595   if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2596      hw_reg->swizzle = reg.swizzle;
2597      return;
2598   }
2599
2600   /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2601   assert(brw_is_single_value_swizzle(reg.swizzle) ||
2602          is_supported_64bit_region(inst, arg));
2603
2604   /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2605    * HW can only do 32-bit swizzle channels.
2606    */
2607   hw_reg->width = BRW_WIDTH_2;
2608
2609   if (is_supported_64bit_region(inst, arg) &&
2610       !is_gen7_supported_64bit_swizzle(inst, arg)) {
2611      /* Supported 64-bit swizzles are those such that their first two
2612       * components, when expanded to 32-bit swizzles, match the semantics
2613       * of the original 64-bit swizzle with 2-wide row regioning.
2614       */
2615      unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2616      unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2617      hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2618                                     swizzle1 * 2, swizzle1 * 2 + 1);
2619   } else {
2620      /* If we got here then we have one of the following:
2621       *
2622       * 1. An unsupported swizzle, which should be single-value thanks to the
2623       *    scalarization pass.
2624       *
2625       * 2. A gen7 supported swizzle. These can be single-value or double-value
2626       *    swizzles. If the latter, they are never cross-dvec2 channels. For
2627       *    these we always need to activate the gen7 vstride=0 exploit.
2628       */
2629      unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2630      unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2631      assert((swizzle0 < 2) == (swizzle1 < 2));
2632
2633      /* To gain access to Z/W components we need to select the second half
2634       * of the register and then use a X/Y swizzle to select Z/W respectively.
2635       */
2636      if (swizzle0 >= 2) {
2637         *hw_reg = suboffset(*hw_reg, 2);
2638         swizzle0 -= 2;
2639         swizzle1 -= 2;
2640      }
2641
2642      /* All gen7-specific supported swizzles require the vstride=0 exploit */
2643      if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg))
2644         hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2645
2646      /* Any 64-bit source with an offset at 16B is intended to address the
2647       * second half of a register and needs a vertical stride of 0 so we:
2648       *
2649       * 1. Don't violate register region restrictions.
2650       * 2. Activate the gen7 instruction decompresion bug exploit when
2651       *    execsize > 4
2652       */
2653      if (hw_reg->subnr % REG_SIZE == 16) {
2654         assert(devinfo->gen == 7);
2655         hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2656      }
2657
2658      hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2659                                     swizzle1 * 2, swizzle1 * 2 + 1);
2660   }
2661}
2662
2663bool
2664vec4_visitor::run()
2665{
2666   if (shader_time_index >= 0)
2667      emit_shader_time_begin();
2668
2669   emit_prolog();
2670
2671   emit_nir_code();
2672   if (failed)
2673      return false;
2674   base_ir = NULL;
2675
2676   emit_thread_end();
2677
2678   calculate_cfg();
2679
2680   /* Before any optimization, push array accesses out to scratch
2681    * space where we need them to be.  This pass may allocate new
2682    * virtual GRFs, so we want to do it early.  It also makes sure
2683    * that we have reladdr computations available for CSE, since we'll
2684    * often do repeated subexpressions for those.
2685    */
2686   move_grf_array_access_to_scratch();
2687   move_uniform_array_access_to_pull_constants();
2688
2689   pack_uniform_registers();
2690   move_push_constants_to_pull_constants();
2691   split_virtual_grfs();
2692
2693#define OPT(pass, args...) ({                                          \
2694      pass_num++;                                                      \
2695      bool this_progress = pass(args);                                 \
2696                                                                       \
2697      if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) {  \
2698         char filename[64];                                            \
2699         snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass,              \
2700                  stage_abbrev, nir->info.name, iteration, pass_num); \
2701                                                                       \
2702         backend_shader::dump_instructions(filename);                  \
2703      }                                                                \
2704                                                                       \
2705      progress = progress || this_progress;                            \
2706      this_progress;                                                   \
2707   })
2708
2709
2710   if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
2711      char filename[64];
2712      snprintf(filename, 64, "%s-%s-00-00-start",
2713               stage_abbrev, nir->info.name);
2714
2715      backend_shader::dump_instructions(filename);
2716   }
2717
2718   bool progress;
2719   int iteration = 0;
2720   int pass_num = 0;
2721   do {
2722      progress = false;
2723      pass_num = 0;
2724      iteration++;
2725
2726      OPT(opt_predicated_break, this);
2727      OPT(opt_reduce_swizzle);
2728      OPT(dead_code_eliminate);
2729      OPT(dead_control_flow_eliminate, this);
2730      OPT(opt_copy_propagation);
2731      OPT(opt_cmod_propagation);
2732      OPT(opt_cse);
2733      OPT(opt_algebraic);
2734      OPT(opt_register_coalesce);
2735      OPT(eliminate_find_live_channel);
2736   } while (progress);
2737
2738   pass_num = 0;
2739
2740   if (OPT(opt_vector_float)) {
2741      OPT(opt_cse);
2742      OPT(opt_copy_propagation, false);
2743      OPT(opt_copy_propagation, true);
2744      OPT(dead_code_eliminate);
2745   }
2746
2747   if (devinfo->gen <= 5 && OPT(lower_minmax)) {
2748      OPT(opt_cmod_propagation);
2749      OPT(opt_cse);
2750      OPT(opt_copy_propagation);
2751      OPT(dead_code_eliminate);
2752   }
2753
2754   if (OPT(lower_simd_width)) {
2755      OPT(opt_copy_propagation);
2756      OPT(dead_code_eliminate);
2757   }
2758
2759   if (failed)
2760      return false;
2761
2762   OPT(lower_64bit_mad_to_mul_add);
2763
2764   /* Run this before payload setup because tesselation shaders
2765    * rely on it to prevent cross dvec2 regioning on DF attributes
2766    * that are setup so that XY are on the second half of register and
2767    * ZW are in the first half of the next.
2768    */
2769   OPT(scalarize_df);
2770
2771   setup_payload();
2772
2773   if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
2774      /* Debug of register spilling: Go spill everything. */
2775      const int grf_count = alloc.count;
2776      float spill_costs[alloc.count];
2777      bool no_spill[alloc.count];
2778      evaluate_spill_costs(spill_costs, no_spill);
2779      for (int i = 0; i < grf_count; i++) {
2780         if (no_spill[i])
2781            continue;
2782         spill_reg(i);
2783      }
2784
2785      /* We want to run this after spilling because 64-bit (un)spills need to
2786       * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2787       * messages that can produce unsupported 64-bit swizzle regions.
2788       */
2789      OPT(scalarize_df);
2790   }
2791
2792   fixup_3src_null_dest();
2793
2794   bool allocated_without_spills = reg_allocate();
2795
2796   if (!allocated_without_spills) {
2797      compiler->shader_perf_log(log_data,
2798                                "%s shader triggered register spilling.  "
2799                                "Try reducing the number of live vec4 values "
2800                                "to improve performance.\n",
2801                                stage_name);
2802
2803      while (!reg_allocate()) {
2804         if (failed)
2805            return false;
2806      }
2807
2808      /* We want to run this after spilling because 64-bit (un)spills need to
2809       * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2810       * messages that can produce unsupported 64-bit swizzle regions.
2811       */
2812      OPT(scalarize_df);
2813   }
2814
2815   opt_schedule_instructions();
2816
2817   opt_set_dependency_control();
2818
2819   convert_to_hw_regs();
2820
2821   if (last_scratch > 0) {
2822      prog_data->base.total_scratch =
2823         brw_get_scratch_size(last_scratch * REG_SIZE);
2824   }
2825
2826   return !failed;
2827}
2828
2829} /* namespace brw */
2830
2831extern "C" {
2832
2833/**
2834 * Compile a vertex shader.
2835 *
2836 * Returns the final assembly and the program's size.
2837 */
2838const unsigned *
2839brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
2840               void *mem_ctx,
2841               const struct brw_vs_prog_key *key,
2842               struct brw_vs_prog_data *prog_data,
2843               nir_shader *shader,
2844               int shader_time_index,
2845               char **error_str)
2846{
2847   const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2848   shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
2849
2850   const unsigned *assembly = NULL;
2851
2852   if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) {
2853      /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy
2854       * the edge flag from VERT_ATTRIB_EDGEFLAG.  This will be done
2855       * automatically by brw_vec4_visitor::emit_urb_slot but we need to
2856       * ensure that prog_data->inputs_read is accurate.
2857       *
2858       * In order to make late NIR passes aware of the change, we actually
2859       * whack shader->info.inputs_read instead.  This is safe because we just
2860       * made a copy of the shader.
2861       */
2862      assert(!is_scalar);
2863      assert(key->copy_edgeflag);
2864      shader->info.inputs_read |= VERT_BIT_EDGEFLAG;
2865   }
2866
2867   prog_data->inputs_read = shader->info.inputs_read;
2868   prog_data->double_inputs_read = shader->info.vs.double_inputs;
2869
2870   brw_nir_lower_vs_inputs(shader, key->gl_attrib_wa_flags);
2871   brw_nir_lower_vue_outputs(shader);
2872   shader = brw_postprocess_nir(shader, compiler, is_scalar);
2873
2874   prog_data->base.clip_distance_mask =
2875      ((1 << shader->info.clip_distance_array_size) - 1);
2876   prog_data->base.cull_distance_mask =
2877      ((1 << shader->info.cull_distance_array_size) - 1) <<
2878      shader->info.clip_distance_array_size;
2879
2880   unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read);
2881
2882   /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2883    * incoming vertex attribute.  So, add an extra slot.
2884    */
2885   if (shader->info.system_values_read &
2886       (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) |
2887        BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
2888        BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
2889        BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
2890      nr_attribute_slots++;
2891   }
2892
2893   /* gl_DrawID and IsIndexedDraw share its very own vec4 */
2894   if (shader->info.system_values_read &
2895       (BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID) |
2896        BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))) {
2897      nr_attribute_slots++;
2898   }
2899
2900   if (shader->info.system_values_read &
2901       BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))
2902      prog_data->uses_is_indexed_draw = true;
2903
2904   if (shader->info.system_values_read &
2905       BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX))
2906      prog_data->uses_firstvertex = true;
2907
2908   if (shader->info.system_values_read &
2909       BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE))
2910      prog_data->uses_baseinstance = true;
2911
2912   if (shader->info.system_values_read &
2913       BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2914      prog_data->uses_vertexid = true;
2915
2916   if (shader->info.system_values_read &
2917       BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))
2918      prog_data->uses_instanceid = true;
2919
2920   if (shader->info.system_values_read &
2921       BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID))
2922          prog_data->uses_drawid = true;
2923
2924   /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2925    * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode.  Empirically, in
2926    * vec4 mode, the hardware appears to wedge unless we read something.
2927    */
2928   if (is_scalar)
2929      prog_data->base.urb_read_length =
2930         DIV_ROUND_UP(nr_attribute_slots, 2);
2931   else
2932      prog_data->base.urb_read_length =
2933         DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2934
2935   prog_data->nr_attribute_slots = nr_attribute_slots;
2936
2937   /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2938    * (overwriting the original contents), we need to make sure the size is
2939    * the larger of the two.
2940    */
2941   const unsigned vue_entries =
2942      MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2943
2944   if (compiler->devinfo->gen == 6) {
2945      prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2946   } else {
2947      prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2948      /* On Cannonlake software shall not program an allocation size that
2949       * specifies a size that is a multiple of 3 64B (512-bit) cachelines.
2950       */
2951      if (compiler->devinfo->gen == 10 &&
2952          prog_data->base.urb_entry_size % 3 == 0)
2953         prog_data->base.urb_entry_size++;
2954   }
2955
2956   if (INTEL_DEBUG & DEBUG_VS) {
2957      fprintf(stderr, "VS Output ");
2958      brw_print_vue_map(stderr, &prog_data->base.vue_map);
2959   }
2960
2961   if (is_scalar) {
2962      prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2963
2964      fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base,
2965                   NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */
2966                   shader, 8, shader_time_index);
2967      if (!v.run_vs()) {
2968         if (error_str)
2969            *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2970
2971         return NULL;
2972      }
2973
2974      prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2975
2976      fs_generator g(compiler, log_data, mem_ctx,
2977                     &prog_data->base.base, v.promoted_constants,
2978                     v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
2979      if (INTEL_DEBUG & DEBUG_VS) {
2980         const char *debug_name =
2981            ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2982                            shader->info.label ? shader->info.label :
2983                               "unnamed",
2984                            shader->info.name);
2985
2986         g.enable_debug(debug_name);
2987      }
2988      g.generate_code(v.cfg, 8);
2989      assembly = g.get_assembly();
2990   }
2991
2992   if (!assembly) {
2993      prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2994
2995      vec4_vs_visitor v(compiler, log_data, key, prog_data,
2996                        shader, mem_ctx, shader_time_index);
2997      if (!v.run()) {
2998         if (error_str)
2999            *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
3000
3001         return NULL;
3002      }
3003
3004      assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
3005                                            shader, &prog_data->base, v.cfg);
3006   }
3007
3008   return assembly;
3009}
3010
3011} /* extern "C" */
3012