1/* 2 * Copyright © 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "brw_vec4.h" 25#include "brw_fs.h" 26#include "brw_cfg.h" 27#include "brw_nir.h" 28#include "brw_vec4_builder.h" 29#include "brw_vec4_live_variables.h" 30#include "brw_vec4_vs.h" 31#include "brw_dead_control_flow.h" 32#include "dev/gen_debug.h" 33#include "program/prog_parameter.h" 34#include "util/u_math.h" 35 36#define MAX_INSTRUCTION (1 << 30) 37 38using namespace brw; 39 40namespace brw { 41 42void 43src_reg::init() 44{ 45 memset((void*)this, 0, sizeof(*this)); 46 this->file = BAD_FILE; 47 this->type = BRW_REGISTER_TYPE_UD; 48} 49 50src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type) 51{ 52 init(); 53 54 this->file = file; 55 this->nr = nr; 56 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) 57 this->swizzle = brw_swizzle_for_size(type->vector_elements); 58 else 59 this->swizzle = BRW_SWIZZLE_XYZW; 60 if (type) 61 this->type = brw_type_for_base_type(type); 62} 63 64/** Generic unset register constructor. */ 65src_reg::src_reg() 66{ 67 init(); 68} 69 70src_reg::src_reg(struct ::brw_reg reg) : 71 backend_reg(reg) 72{ 73 this->offset = 0; 74 this->reladdr = NULL; 75} 76 77src_reg::src_reg(const dst_reg ®) : 78 backend_reg(reg) 79{ 80 this->reladdr = reg.reladdr; 81 this->swizzle = brw_swizzle_for_mask(reg.writemask); 82} 83 84void 85dst_reg::init() 86{ 87 memset((void*)this, 0, sizeof(*this)); 88 this->file = BAD_FILE; 89 this->type = BRW_REGISTER_TYPE_UD; 90 this->writemask = WRITEMASK_XYZW; 91} 92 93dst_reg::dst_reg() 94{ 95 init(); 96} 97 98dst_reg::dst_reg(enum brw_reg_file file, int nr) 99{ 100 init(); 101 102 this->file = file; 103 this->nr = nr; 104} 105 106dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type, 107 unsigned writemask) 108{ 109 init(); 110 111 this->file = file; 112 this->nr = nr; 113 this->type = brw_type_for_base_type(type); 114 this->writemask = writemask; 115} 116 117dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type, 118 unsigned writemask) 119{ 120 init(); 121 122 this->file = file; 123 this->nr = nr; 124 this->type = type; 125 this->writemask = writemask; 126} 127 128dst_reg::dst_reg(struct ::brw_reg reg) : 129 backend_reg(reg) 130{ 131 this->offset = 0; 132 this->reladdr = NULL; 133} 134 135dst_reg::dst_reg(const src_reg ®) : 136 backend_reg(reg) 137{ 138 this->writemask = brw_mask_for_swizzle(reg.swizzle); 139 this->reladdr = reg.reladdr; 140} 141 142bool 143dst_reg::equals(const dst_reg &r) const 144{ 145 return (this->backend_reg::equals(r) && 146 (reladdr == r.reladdr || 147 (reladdr && r.reladdr && reladdr->equals(*r.reladdr)))); 148} 149 150bool 151vec4_instruction::is_send_from_grf() 152{ 153 switch (opcode) { 154 case SHADER_OPCODE_SHADER_TIME_ADD: 155 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 156 case VEC4_OPCODE_UNTYPED_ATOMIC: 157 case VEC4_OPCODE_UNTYPED_SURFACE_READ: 158 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE: 159 case VEC4_OPCODE_URB_READ: 160 case TCS_OPCODE_URB_WRITE: 161 case TCS_OPCODE_RELEASE_INPUT: 162 case SHADER_OPCODE_BARRIER: 163 return true; 164 default: 165 return false; 166 } 167} 168 169/** 170 * Returns true if this instruction's sources and destinations cannot 171 * safely be the same register. 172 * 173 * In most cases, a register can be written over safely by the same 174 * instruction that is its last use. For a single instruction, the 175 * sources are dereferenced before writing of the destination starts 176 * (naturally). 177 * 178 * However, there are a few cases where this can be problematic: 179 * 180 * - Virtual opcodes that translate to multiple instructions in the 181 * code generator: if src == dst and one instruction writes the 182 * destination before a later instruction reads the source, then 183 * src will have been clobbered. 184 * 185 * The register allocator uses this information to set up conflicts between 186 * GRF sources and the destination. 187 */ 188bool 189vec4_instruction::has_source_and_destination_hazard() const 190{ 191 switch (opcode) { 192 case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 193 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 194 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 195 return true; 196 default: 197 /* 8-wide compressed DF operations are executed as two 4-wide operations, 198 * so we have a src/dst hazard if the first half of the instruction 199 * overwrites the source of the second half. Prevent this by marking 200 * compressed instructions as having src/dst hazards, so the register 201 * allocator assigns safe register regions for dst and srcs. 202 */ 203 return size_written > REG_SIZE; 204 } 205} 206 207unsigned 208vec4_instruction::size_read(unsigned arg) const 209{ 210 switch (opcode) { 211 case SHADER_OPCODE_SHADER_TIME_ADD: 212 case VEC4_OPCODE_UNTYPED_ATOMIC: 213 case VEC4_OPCODE_UNTYPED_SURFACE_READ: 214 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE: 215 case TCS_OPCODE_URB_WRITE: 216 if (arg == 0) 217 return mlen * REG_SIZE; 218 break; 219 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 220 if (arg == 1) 221 return mlen * REG_SIZE; 222 break; 223 default: 224 break; 225 } 226 227 switch (src[arg].file) { 228 case BAD_FILE: 229 return 0; 230 case IMM: 231 case UNIFORM: 232 return 4 * type_sz(src[arg].type); 233 default: 234 /* XXX - Represent actual vertical stride. */ 235 return exec_size * type_sz(src[arg].type); 236 } 237} 238 239bool 240vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo) 241{ 242 if (devinfo->gen == 6 && is_math()) 243 return false; 244 245 if (is_send_from_grf()) 246 return false; 247 248 if (!backend_instruction::can_do_source_mods()) 249 return false; 250 251 return true; 252} 253 254bool 255vec4_instruction::can_do_cmod() 256{ 257 if (!backend_instruction::can_do_cmod()) 258 return false; 259 260 /* The accumulator result appears to get used for the conditional modifier 261 * generation. When negating a UD value, there is a 33rd bit generated for 262 * the sign in the accumulator value, so now you can't check, for example, 263 * equality with a 32-bit value. See piglit fs-op-neg-uvec4. 264 */ 265 for (unsigned i = 0; i < 3; i++) { 266 if (src[i].file != BAD_FILE && 267 type_is_unsigned_int(src[i].type) && src[i].negate) 268 return false; 269 } 270 271 return true; 272} 273 274bool 275vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo) 276{ 277 switch (opcode) { 278 case SHADER_OPCODE_GEN4_SCRATCH_READ: 279 case VEC4_OPCODE_DOUBLE_TO_F32: 280 case VEC4_OPCODE_DOUBLE_TO_D32: 281 case VEC4_OPCODE_DOUBLE_TO_U32: 282 case VEC4_OPCODE_TO_DOUBLE: 283 case VEC4_OPCODE_PICK_LOW_32BIT: 284 case VEC4_OPCODE_PICK_HIGH_32BIT: 285 case VEC4_OPCODE_SET_LOW_32BIT: 286 case VEC4_OPCODE_SET_HIGH_32BIT: 287 case VS_OPCODE_PULL_CONSTANT_LOAD: 288 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 289 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9: 290 case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 291 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 292 case TES_OPCODE_CREATE_INPUT_READ_HEADER: 293 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 294 case VEC4_OPCODE_URB_READ: 295 case SHADER_OPCODE_MOV_INDIRECT: 296 return false; 297 default: 298 /* The MATH instruction on Gen6 only executes in align1 mode, which does 299 * not support writemasking. 300 */ 301 if (devinfo->gen == 6 && is_math()) 302 return false; 303 304 if (is_tex()) 305 return false; 306 307 return true; 308 } 309} 310 311bool 312vec4_instruction::can_change_types() const 313{ 314 return dst.type == src[0].type && 315 !src[0].abs && !src[0].negate && !saturate && 316 (opcode == BRW_OPCODE_MOV || 317 (opcode == BRW_OPCODE_SEL && 318 dst.type == src[1].type && 319 predicate != BRW_PREDICATE_NONE && 320 !src[1].abs && !src[1].negate)); 321} 322 323/** 324 * Returns how many MRFs an opcode will write over. 325 * 326 * Note that this is not the 0 or 1 implied writes in an actual gen 327 * instruction -- the generate_* functions generate additional MOVs 328 * for setup. 329 */ 330int 331vec4_visitor::implied_mrf_writes(vec4_instruction *inst) 332{ 333 if (inst->mlen == 0 || inst->is_send_from_grf()) 334 return 0; 335 336 switch (inst->opcode) { 337 case SHADER_OPCODE_RCP: 338 case SHADER_OPCODE_RSQ: 339 case SHADER_OPCODE_SQRT: 340 case SHADER_OPCODE_EXP2: 341 case SHADER_OPCODE_LOG2: 342 case SHADER_OPCODE_SIN: 343 case SHADER_OPCODE_COS: 344 return 1; 345 case SHADER_OPCODE_INT_QUOTIENT: 346 case SHADER_OPCODE_INT_REMAINDER: 347 case SHADER_OPCODE_POW: 348 case TCS_OPCODE_THREAD_END: 349 return 2; 350 case VS_OPCODE_URB_WRITE: 351 return 1; 352 case VS_OPCODE_PULL_CONSTANT_LOAD: 353 return 2; 354 case SHADER_OPCODE_GEN4_SCRATCH_READ: 355 return 2; 356 case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 357 return 3; 358 case GS_OPCODE_URB_WRITE: 359 case GS_OPCODE_URB_WRITE_ALLOCATE: 360 case GS_OPCODE_THREAD_END: 361 return 0; 362 case GS_OPCODE_FF_SYNC: 363 return 1; 364 case TCS_OPCODE_URB_WRITE: 365 return 0; 366 case SHADER_OPCODE_SHADER_TIME_ADD: 367 return 0; 368 case SHADER_OPCODE_TEX: 369 case SHADER_OPCODE_TXL: 370 case SHADER_OPCODE_TXD: 371 case SHADER_OPCODE_TXF: 372 case SHADER_OPCODE_TXF_CMS: 373 case SHADER_OPCODE_TXF_CMS_W: 374 case SHADER_OPCODE_TXF_MCS: 375 case SHADER_OPCODE_TXS: 376 case SHADER_OPCODE_TG4: 377 case SHADER_OPCODE_TG4_OFFSET: 378 case SHADER_OPCODE_SAMPLEINFO: 379 case SHADER_OPCODE_GET_BUFFER_SIZE: 380 return inst->header_size; 381 default: 382 unreachable("not reached"); 383 } 384} 385 386bool 387src_reg::equals(const src_reg &r) const 388{ 389 return (this->backend_reg::equals(r) && 390 !reladdr && !r.reladdr); 391} 392 393bool 394src_reg::negative_equals(const src_reg &r) const 395{ 396 return this->backend_reg::negative_equals(r) && 397 !reladdr && !r.reladdr; 398} 399 400bool 401vec4_visitor::opt_vector_float() 402{ 403 bool progress = false; 404 405 foreach_block(block, cfg) { 406 unsigned last_reg = ~0u, last_offset = ~0u; 407 enum brw_reg_file last_reg_file = BAD_FILE; 408 409 uint8_t imm[4] = { 0 }; 410 int inst_count = 0; 411 vec4_instruction *imm_inst[4]; 412 unsigned writemask = 0; 413 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F; 414 415 foreach_inst_in_block_safe(vec4_instruction, inst, block) { 416 int vf = -1; 417 enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST; 418 419 /* Look for unconditional MOVs from an immediate with a partial 420 * writemask. Skip type-conversion MOVs other than integer 0, 421 * where the type doesn't matter. See if the immediate can be 422 * represented as a VF. 423 */ 424 if (inst->opcode == BRW_OPCODE_MOV && 425 inst->src[0].file == IMM && 426 inst->predicate == BRW_PREDICATE_NONE && 427 inst->dst.writemask != WRITEMASK_XYZW && 428 type_sz(inst->src[0].type) < 8 && 429 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) { 430 431 vf = brw_float_to_vf(inst->src[0].d); 432 need_type = BRW_REGISTER_TYPE_D; 433 434 if (vf == -1) { 435 vf = brw_float_to_vf(inst->src[0].f); 436 need_type = BRW_REGISTER_TYPE_F; 437 } 438 } else { 439 last_reg = ~0u; 440 } 441 442 /* If this wasn't a MOV, or the destination register doesn't match, 443 * or we have to switch destination types, then this breaks our 444 * sequence. Combine anything we've accumulated so far. 445 */ 446 if (last_reg != inst->dst.nr || 447 last_offset != inst->dst.offset || 448 last_reg_file != inst->dst.file || 449 (vf > 0 && dest_type != need_type)) { 450 451 if (inst_count > 1) { 452 unsigned vf; 453 memcpy(&vf, imm, sizeof(vf)); 454 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf)); 455 mov->dst.type = dest_type; 456 mov->dst.writemask = writemask; 457 inst->insert_before(block, mov); 458 459 for (int i = 0; i < inst_count; i++) { 460 imm_inst[i]->remove(block); 461 } 462 463 progress = true; 464 } 465 466 inst_count = 0; 467 last_reg = ~0u;; 468 writemask = 0; 469 dest_type = BRW_REGISTER_TYPE_F; 470 471 for (int i = 0; i < 4; i++) { 472 imm[i] = 0; 473 } 474 } 475 476 /* Record this instruction's value (if it was representable). */ 477 if (vf != -1) { 478 if ((inst->dst.writemask & WRITEMASK_X) != 0) 479 imm[0] = vf; 480 if ((inst->dst.writemask & WRITEMASK_Y) != 0) 481 imm[1] = vf; 482 if ((inst->dst.writemask & WRITEMASK_Z) != 0) 483 imm[2] = vf; 484 if ((inst->dst.writemask & WRITEMASK_W) != 0) 485 imm[3] = vf; 486 487 writemask |= inst->dst.writemask; 488 imm_inst[inst_count++] = inst; 489 490 last_reg = inst->dst.nr; 491 last_offset = inst->dst.offset; 492 last_reg_file = inst->dst.file; 493 if (vf > 0) 494 dest_type = need_type; 495 } 496 } 497 } 498 499 if (progress) 500 invalidate_live_intervals(); 501 502 return progress; 503} 504 505/* Replaces unused channels of a swizzle with channels that are used. 506 * 507 * For instance, this pass transforms 508 * 509 * mov vgrf4.yz, vgrf5.wxzy 510 * 511 * into 512 * 513 * mov vgrf4.yz, vgrf5.xxzx 514 * 515 * This eliminates false uses of some channels, letting dead code elimination 516 * remove the instructions that wrote them. 517 */ 518bool 519vec4_visitor::opt_reduce_swizzle() 520{ 521 bool progress = false; 522 523 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 524 if (inst->dst.file == BAD_FILE || 525 inst->dst.file == ARF || 526 inst->dst.file == FIXED_GRF || 527 inst->is_send_from_grf()) 528 continue; 529 530 unsigned swizzle; 531 532 /* Determine which channels of the sources are read. */ 533 switch (inst->opcode) { 534 case VEC4_OPCODE_PACK_BYTES: 535 case BRW_OPCODE_DP4: 536 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0, 537 * but all four of src1. 538 */ 539 swizzle = brw_swizzle_for_size(4); 540 break; 541 case BRW_OPCODE_DP3: 542 swizzle = brw_swizzle_for_size(3); 543 break; 544 case BRW_OPCODE_DP2: 545 swizzle = brw_swizzle_for_size(2); 546 break; 547 548 case VEC4_OPCODE_TO_DOUBLE: 549 case VEC4_OPCODE_DOUBLE_TO_F32: 550 case VEC4_OPCODE_DOUBLE_TO_D32: 551 case VEC4_OPCODE_DOUBLE_TO_U32: 552 case VEC4_OPCODE_PICK_LOW_32BIT: 553 case VEC4_OPCODE_PICK_HIGH_32BIT: 554 case VEC4_OPCODE_SET_LOW_32BIT: 555 case VEC4_OPCODE_SET_HIGH_32BIT: 556 swizzle = brw_swizzle_for_size(4); 557 break; 558 559 default: 560 swizzle = brw_swizzle_for_mask(inst->dst.writemask); 561 break; 562 } 563 564 /* Update sources' swizzles. */ 565 for (int i = 0; i < 3; i++) { 566 if (inst->src[i].file != VGRF && 567 inst->src[i].file != ATTR && 568 inst->src[i].file != UNIFORM) 569 continue; 570 571 const unsigned new_swizzle = 572 brw_compose_swizzle(swizzle, inst->src[i].swizzle); 573 if (inst->src[i].swizzle != new_swizzle) { 574 inst->src[i].swizzle = new_swizzle; 575 progress = true; 576 } 577 } 578 } 579 580 if (progress) 581 invalidate_live_intervals(); 582 583 return progress; 584} 585 586void 587vec4_visitor::split_uniform_registers() 588{ 589 /* Prior to this, uniforms have been in an array sized according to 590 * the number of vector uniforms present, sparsely filled (so an 591 * aggregate results in reg indices being skipped over). Now we're 592 * going to cut those aggregates up so each .nr index is one 593 * vector. The goal is to make elimination of unused uniform 594 * components easier later. 595 */ 596 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 597 for (int i = 0 ; i < 3; i++) { 598 if (inst->src[i].file != UNIFORM) 599 continue; 600 601 assert(!inst->src[i].reladdr); 602 603 inst->src[i].nr += inst->src[i].offset / 16; 604 inst->src[i].offset %= 16; 605 } 606 } 607} 608 609/* This function returns the register number where we placed the uniform */ 610static int 611set_push_constant_loc(const int nr_uniforms, int *new_uniform_count, 612 const int src, const int size, const int channel_size, 613 int *new_loc, int *new_chan, 614 int *new_chans_used) 615{ 616 int dst; 617 /* Find the lowest place we can slot this uniform in. */ 618 for (dst = 0; dst < nr_uniforms; dst++) { 619 if (ALIGN(new_chans_used[dst], channel_size) + size <= 4) 620 break; 621 } 622 623 assert(dst < nr_uniforms); 624 625 new_loc[src] = dst; 626 new_chan[src] = ALIGN(new_chans_used[dst], channel_size); 627 new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size; 628 629 *new_uniform_count = MAX2(*new_uniform_count, dst + 1); 630 return dst; 631} 632 633void 634vec4_visitor::pack_uniform_registers() 635{ 636 uint8_t chans_used[this->uniforms]; 637 int new_loc[this->uniforms]; 638 int new_chan[this->uniforms]; 639 bool is_aligned_to_dvec4[this->uniforms]; 640 int new_chans_used[this->uniforms]; 641 int channel_sizes[this->uniforms]; 642 643 memset(chans_used, 0, sizeof(chans_used)); 644 memset(new_loc, 0, sizeof(new_loc)); 645 memset(new_chan, 0, sizeof(new_chan)); 646 memset(new_chans_used, 0, sizeof(new_chans_used)); 647 memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4)); 648 memset(channel_sizes, 0, sizeof(channel_sizes)); 649 650 /* Find which uniform vectors are actually used by the program. We 651 * expect unused vector elements when we've moved array access out 652 * to pull constants, and from some GLSL code generators like wine. 653 */ 654 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 655 unsigned readmask; 656 switch (inst->opcode) { 657 case VEC4_OPCODE_PACK_BYTES: 658 case BRW_OPCODE_DP4: 659 case BRW_OPCODE_DPH: 660 readmask = 0xf; 661 break; 662 case BRW_OPCODE_DP3: 663 readmask = 0x7; 664 break; 665 case BRW_OPCODE_DP2: 666 readmask = 0x3; 667 break; 668 default: 669 readmask = inst->dst.writemask; 670 break; 671 } 672 673 for (int i = 0 ; i < 3; i++) { 674 if (inst->src[i].file != UNIFORM) 675 continue; 676 677 assert(type_sz(inst->src[i].type) % 4 == 0); 678 int channel_size = type_sz(inst->src[i].type) / 4; 679 680 int reg = inst->src[i].nr; 681 for (int c = 0; c < 4; c++) { 682 if (!(readmask & (1 << c))) 683 continue; 684 685 unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1; 686 unsigned used = MAX2(chans_used[reg], channel * channel_size); 687 if (used <= 4) { 688 chans_used[reg] = used; 689 channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size); 690 } else { 691 is_aligned_to_dvec4[reg] = true; 692 is_aligned_to_dvec4[reg + 1] = true; 693 chans_used[reg + 1] = used - 4; 694 channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size); 695 } 696 } 697 } 698 699 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && 700 inst->src[0].file == UNIFORM) { 701 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE); 702 assert(inst->src[0].subnr == 0); 703 704 unsigned bytes_read = inst->src[2].ud; 705 assert(bytes_read % 4 == 0); 706 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16); 707 708 /* We just mark every register touched by a MOV_INDIRECT as being 709 * fully used. This ensures that it doesn't broken up piecewise by 710 * the next part of our packing algorithm. 711 */ 712 int reg = inst->src[0].nr; 713 int channel_size = type_sz(inst->src[0].type) / 4; 714 for (unsigned i = 0; i < vec4s_read; i++) { 715 chans_used[reg + i] = 4; 716 channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size); 717 } 718 } 719 } 720 721 int new_uniform_count = 0; 722 723 /* As the uniforms are going to be reordered, take the data from a temporary 724 * copy of the original param[]. 725 */ 726 uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params); 727 memcpy(param, stage_prog_data->param, 728 sizeof(uint32_t) * stage_prog_data->nr_params); 729 730 /* Now, figure out a packing of the live uniform vectors into our 731 * push constants. Start with dvec{3,4} because they are aligned to 732 * dvec4 size (2 vec4). 733 */ 734 for (int src = 0; src < uniforms; src++) { 735 int size = chans_used[src]; 736 737 if (size == 0 || !is_aligned_to_dvec4[src]) 738 continue; 739 740 /* dvec3 are aligned to dvec4 size, apply the alignment of the size 741 * to 4 to avoid moving last component of a dvec3 to the available 742 * location at the end of a previous dvec3. These available locations 743 * could be filled by smaller variables in next loop. 744 */ 745 size = ALIGN(size, 4); 746 int dst = set_push_constant_loc(uniforms, &new_uniform_count, 747 src, size, channel_sizes[src], 748 new_loc, new_chan, 749 new_chans_used); 750 /* Move the references to the data */ 751 for (int j = 0; j < size; j++) { 752 stage_prog_data->param[dst * 4 + new_chan[src] + j] = 753 param[src * 4 + j]; 754 } 755 } 756 757 /* Continue with the rest of data, which is aligned to vec4. */ 758 for (int src = 0; src < uniforms; src++) { 759 int size = chans_used[src]; 760 761 if (size == 0 || is_aligned_to_dvec4[src]) 762 continue; 763 764 int dst = set_push_constant_loc(uniforms, &new_uniform_count, 765 src, size, channel_sizes[src], 766 new_loc, new_chan, 767 new_chans_used); 768 /* Move the references to the data */ 769 for (int j = 0; j < size; j++) { 770 stage_prog_data->param[dst * 4 + new_chan[src] + j] = 771 param[src * 4 + j]; 772 } 773 } 774 775 ralloc_free(param); 776 this->uniforms = new_uniform_count; 777 778 /* Now, update the instructions for our repacked uniforms. */ 779 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 780 for (int i = 0 ; i < 3; i++) { 781 int src = inst->src[i].nr; 782 783 if (inst->src[i].file != UNIFORM) 784 continue; 785 786 int chan = new_chan[src] / channel_sizes[src]; 787 inst->src[i].nr = new_loc[src]; 788 inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan); 789 } 790 } 791} 792 793/** 794 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a). 795 * 796 * While GLSL IR also performs this optimization, we end up with it in 797 * our instruction stream for a couple of reasons. One is that we 798 * sometimes generate silly instructions, for example in array access 799 * where we'll generate "ADD offset, index, base" even if base is 0. 800 * The other is that GLSL IR's constant propagation doesn't track the 801 * components of aggregates, so some VS patterns (initialize matrix to 802 * 0, accumulate in vertex blending factors) end up breaking down to 803 * instructions involving 0. 804 */ 805bool 806vec4_visitor::opt_algebraic() 807{ 808 bool progress = false; 809 810 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 811 switch (inst->opcode) { 812 case BRW_OPCODE_MOV: 813 if (inst->src[0].file != IMM) 814 break; 815 816 if (inst->saturate) { 817 /* Full mixed-type saturates don't happen. However, we can end up 818 * with things like: 819 * 820 * mov.sat(8) g21<1>DF -1F 821 * 822 * Other mixed-size-but-same-base-type cases may also be possible. 823 */ 824 if (inst->dst.type != inst->src[0].type && 825 inst->dst.type != BRW_REGISTER_TYPE_DF && 826 inst->src[0].type != BRW_REGISTER_TYPE_F) 827 assert(!"unimplemented: saturate mixed types"); 828 829 if (brw_saturate_immediate(inst->src[0].type, 830 &inst->src[0].as_brw_reg())) { 831 inst->saturate = false; 832 progress = true; 833 } 834 } 835 break; 836 837 case BRW_OPCODE_OR: 838 if (inst->src[1].is_zero()) { 839 inst->opcode = BRW_OPCODE_MOV; 840 inst->src[1] = src_reg(); 841 progress = true; 842 } 843 break; 844 845 case VEC4_OPCODE_UNPACK_UNIFORM: 846 if (inst->src[0].file != UNIFORM) { 847 inst->opcode = BRW_OPCODE_MOV; 848 progress = true; 849 } 850 break; 851 852 case BRW_OPCODE_ADD: 853 if (inst->src[1].is_zero()) { 854 inst->opcode = BRW_OPCODE_MOV; 855 inst->src[1] = src_reg(); 856 progress = true; 857 } 858 break; 859 860 case BRW_OPCODE_MUL: 861 if (inst->src[1].is_zero()) { 862 inst->opcode = BRW_OPCODE_MOV; 863 switch (inst->src[0].type) { 864 case BRW_REGISTER_TYPE_F: 865 inst->src[0] = brw_imm_f(0.0f); 866 break; 867 case BRW_REGISTER_TYPE_D: 868 inst->src[0] = brw_imm_d(0); 869 break; 870 case BRW_REGISTER_TYPE_UD: 871 inst->src[0] = brw_imm_ud(0u); 872 break; 873 default: 874 unreachable("not reached"); 875 } 876 inst->src[1] = src_reg(); 877 progress = true; 878 } else if (inst->src[1].is_one()) { 879 inst->opcode = BRW_OPCODE_MOV; 880 inst->src[1] = src_reg(); 881 progress = true; 882 } else if (inst->src[1].is_negative_one()) { 883 inst->opcode = BRW_OPCODE_MOV; 884 inst->src[0].negate = !inst->src[0].negate; 885 inst->src[1] = src_reg(); 886 progress = true; 887 } 888 break; 889 case SHADER_OPCODE_BROADCAST: 890 if (is_uniform(inst->src[0]) || 891 inst->src[1].is_zero()) { 892 inst->opcode = BRW_OPCODE_MOV; 893 inst->src[1] = src_reg(); 894 inst->force_writemask_all = true; 895 progress = true; 896 } 897 break; 898 899 default: 900 break; 901 } 902 } 903 904 if (progress) 905 invalidate_live_intervals(); 906 907 return progress; 908} 909 910/** 911 * Only a limited number of hardware registers may be used for push 912 * constants, so this turns access to the overflowed constants into 913 * pull constants. 914 */ 915void 916vec4_visitor::move_push_constants_to_pull_constants() 917{ 918 int pull_constant_loc[this->uniforms]; 919 920 /* Only allow 32 registers (256 uniform components) as push constants, 921 * which is the limit on gen6. 922 * 923 * If changing this value, note the limitation about total_regs in 924 * brw_curbe.c. 925 */ 926 int max_uniform_components = 32 * 8; 927 if (this->uniforms * 4 <= max_uniform_components) 928 return; 929 930 /* Make some sort of choice as to which uniforms get sent to pull 931 * constants. We could potentially do something clever here like 932 * look for the most infrequently used uniform vec4s, but leave 933 * that for later. 934 */ 935 for (int i = 0; i < this->uniforms * 4; i += 4) { 936 pull_constant_loc[i / 4] = -1; 937 938 if (i >= max_uniform_components) { 939 uint32_t *values = &stage_prog_data->param[i]; 940 941 /* Try to find an existing copy of this uniform in the pull 942 * constants if it was part of an array access already. 943 */ 944 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) { 945 int matches; 946 947 for (matches = 0; matches < 4; matches++) { 948 if (stage_prog_data->pull_param[j + matches] != values[matches]) 949 break; 950 } 951 952 if (matches == 4) { 953 pull_constant_loc[i / 4] = j / 4; 954 break; 955 } 956 } 957 958 if (pull_constant_loc[i / 4] == -1) { 959 assert(stage_prog_data->nr_pull_params % 4 == 0); 960 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4; 961 962 for (int j = 0; j < 4; j++) { 963 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] = 964 values[j]; 965 } 966 } 967 } 968 } 969 970 /* Now actually rewrite usage of the things we've moved to pull 971 * constants. 972 */ 973 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 974 for (int i = 0 ; i < 3; i++) { 975 if (inst->src[i].file != UNIFORM || 976 pull_constant_loc[inst->src[i].nr] == -1) 977 continue; 978 979 int uniform = inst->src[i].nr; 980 981 const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ? 982 glsl_type::dvec4_type : glsl_type::vec4_type; 983 dst_reg temp = dst_reg(this, temp_type); 984 985 emit_pull_constant_load(block, inst, temp, inst->src[i], 986 pull_constant_loc[uniform], src_reg()); 987 988 inst->src[i].file = temp.file; 989 inst->src[i].nr = temp.nr; 990 inst->src[i].offset %= 16; 991 inst->src[i].reladdr = NULL; 992 } 993 } 994 995 /* Repack push constants to remove the now-unused ones. */ 996 pack_uniform_registers(); 997} 998 999/* Conditions for which we want to avoid setting the dependency control bits */ 1000bool 1001vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst) 1002{ 1003#define IS_DWORD(reg) \ 1004 (reg.type == BRW_REGISTER_TYPE_UD || \ 1005 reg.type == BRW_REGISTER_TYPE_D) 1006 1007#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8) 1008 1009 /* From the Cherryview and Broadwell PRMs: 1010 * 1011 * "When source or destination datatype is 64b or operation is integer DWord 1012 * multiply, DepCtrl must not be used." 1013 * 1014 * SKL PRMs don't include this restriction, however, gen7 seems to be 1015 * affected, at least by the 64b restriction, since DepCtrl with double 1016 * precision instructions seems to produce GPU hangs in some cases. 1017 */ 1018 if (devinfo->gen == 8 || gen_device_info_is_9lp(devinfo)) { 1019 if (inst->opcode == BRW_OPCODE_MUL && 1020 IS_DWORD(inst->src[0]) && 1021 IS_DWORD(inst->src[1])) 1022 return true; 1023 } 1024 1025 if (devinfo->gen >= 7 && devinfo->gen <= 8) { 1026 if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) || 1027 IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2])) 1028 return true; 1029 } 1030 1031#undef IS_64BIT 1032#undef IS_DWORD 1033 1034 if (devinfo->gen >= 8) { 1035 if (inst->opcode == BRW_OPCODE_F32TO16) 1036 return true; 1037 } 1038 1039 /* 1040 * mlen: 1041 * In the presence of send messages, totally interrupt dependency 1042 * control. They're long enough that the chance of dependency 1043 * control around them just doesn't matter. 1044 * 1045 * predicate: 1046 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80: 1047 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that 1048 * completes the scoreboard clear must have a non-zero execution mask. This 1049 * means, if any kind of predication can change the execution mask or channel 1050 * enable of the last instruction, the optimization must be avoided. This is 1051 * to avoid instructions being shot down the pipeline when no writes are 1052 * required. 1053 * 1054 * math: 1055 * Dependency control does not work well over math instructions. 1056 * NB: Discovered empirically 1057 */ 1058 return (inst->mlen || inst->predicate || inst->is_math()); 1059} 1060 1061/** 1062 * Sets the dependency control fields on instructions after register 1063 * allocation and before the generator is run. 1064 * 1065 * When you have a sequence of instructions like: 1066 * 1067 * DP4 temp.x vertex uniform[0] 1068 * DP4 temp.y vertex uniform[0] 1069 * DP4 temp.z vertex uniform[0] 1070 * DP4 temp.w vertex uniform[0] 1071 * 1072 * The hardware doesn't know that it can actually run the later instructions 1073 * while the previous ones are in flight, producing stalls. However, we have 1074 * manual fields we can set in the instructions that let it do so. 1075 */ 1076void 1077vec4_visitor::opt_set_dependency_control() 1078{ 1079 vec4_instruction *last_grf_write[BRW_MAX_GRF]; 1080 uint8_t grf_channels_written[BRW_MAX_GRF]; 1081 vec4_instruction *last_mrf_write[BRW_MAX_GRF]; 1082 uint8_t mrf_channels_written[BRW_MAX_GRF]; 1083 1084 assert(prog_data->total_grf || 1085 !"Must be called after register allocation"); 1086 1087 foreach_block (block, cfg) { 1088 memset(last_grf_write, 0, sizeof(last_grf_write)); 1089 memset(last_mrf_write, 0, sizeof(last_mrf_write)); 1090 1091 foreach_inst_in_block (vec4_instruction, inst, block) { 1092 /* If we read from a register that we were doing dependency control 1093 * on, don't do dependency control across the read. 1094 */ 1095 for (int i = 0; i < 3; i++) { 1096 int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE; 1097 if (inst->src[i].file == VGRF) { 1098 last_grf_write[reg] = NULL; 1099 } else if (inst->src[i].file == FIXED_GRF) { 1100 memset(last_grf_write, 0, sizeof(last_grf_write)); 1101 break; 1102 } 1103 assert(inst->src[i].file != MRF); 1104 } 1105 1106 if (is_dep_ctrl_unsafe(inst)) { 1107 memset(last_grf_write, 0, sizeof(last_grf_write)); 1108 memset(last_mrf_write, 0, sizeof(last_mrf_write)); 1109 continue; 1110 } 1111 1112 /* Now, see if we can do dependency control for this instruction 1113 * against a previous one writing to its destination. 1114 */ 1115 int reg = inst->dst.nr + inst->dst.offset / REG_SIZE; 1116 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) { 1117 if (last_grf_write[reg] && 1118 last_grf_write[reg]->dst.offset == inst->dst.offset && 1119 !(inst->dst.writemask & grf_channels_written[reg])) { 1120 last_grf_write[reg]->no_dd_clear = true; 1121 inst->no_dd_check = true; 1122 } else { 1123 grf_channels_written[reg] = 0; 1124 } 1125 1126 last_grf_write[reg] = inst; 1127 grf_channels_written[reg] |= inst->dst.writemask; 1128 } else if (inst->dst.file == MRF) { 1129 if (last_mrf_write[reg] && 1130 last_mrf_write[reg]->dst.offset == inst->dst.offset && 1131 !(inst->dst.writemask & mrf_channels_written[reg])) { 1132 last_mrf_write[reg]->no_dd_clear = true; 1133 inst->no_dd_check = true; 1134 } else { 1135 mrf_channels_written[reg] = 0; 1136 } 1137 1138 last_mrf_write[reg] = inst; 1139 mrf_channels_written[reg] |= inst->dst.writemask; 1140 } 1141 } 1142 } 1143} 1144 1145bool 1146vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo, 1147 int dst_writemask, 1148 int swizzle, 1149 int swizzle_mask) 1150{ 1151 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles 1152 * are not allowed. 1153 */ 1154 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW) 1155 return false; 1156 1157 /* If we write to the flag register changing the swizzle would change 1158 * what channels are written to the flag register. 1159 */ 1160 if (writes_flag()) 1161 return false; 1162 1163 /* We can't swizzle implicit accumulator access. We'd have to 1164 * reswizzle the producer of the accumulator value in addition 1165 * to the consumer (i.e. both MUL and MACH). Just skip this. 1166 */ 1167 if (reads_accumulator_implicitly()) 1168 return false; 1169 1170 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW) 1171 return false; 1172 1173 /* If this instruction sets anything not referenced by swizzle, then we'd 1174 * totally break it when we reswizzle. 1175 */ 1176 if (dst.writemask & ~swizzle_mask) 1177 return false; 1178 1179 if (mlen > 0) 1180 return false; 1181 1182 for (int i = 0; i < 3; i++) { 1183 if (src[i].is_accumulator()) 1184 return false; 1185 } 1186 1187 return true; 1188} 1189 1190/** 1191 * For any channels in the swizzle's source that were populated by this 1192 * instruction, rewrite the instruction to put the appropriate result directly 1193 * in those channels. 1194 * 1195 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x 1196 */ 1197void 1198vec4_instruction::reswizzle(int dst_writemask, int swizzle) 1199{ 1200 /* Destination write mask doesn't correspond to source swizzle for the dot 1201 * product and pack_bytes instructions. 1202 */ 1203 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH && 1204 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 && 1205 opcode != VEC4_OPCODE_PACK_BYTES) { 1206 for (int i = 0; i < 3; i++) { 1207 if (src[i].file == BAD_FILE) 1208 continue; 1209 1210 if (src[i].file == IMM) { 1211 assert(src[i].type != BRW_REGISTER_TYPE_V && 1212 src[i].type != BRW_REGISTER_TYPE_UV); 1213 1214 /* Vector immediate types need to be reswizzled. */ 1215 if (src[i].type == BRW_REGISTER_TYPE_VF) { 1216 const unsigned imm[] = { 1217 (src[i].ud >> 0) & 0x0ff, 1218 (src[i].ud >> 8) & 0x0ff, 1219 (src[i].ud >> 16) & 0x0ff, 1220 (src[i].ud >> 24) & 0x0ff, 1221 }; 1222 1223 src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)], 1224 imm[BRW_GET_SWZ(swizzle, 1)], 1225 imm[BRW_GET_SWZ(swizzle, 2)], 1226 imm[BRW_GET_SWZ(swizzle, 3)]); 1227 } 1228 1229 continue; 1230 } 1231 1232 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle); 1233 } 1234 } 1235 1236 /* Apply the specified swizzle and writemask to the original mask of 1237 * written components. 1238 */ 1239 dst.writemask = dst_writemask & 1240 brw_apply_swizzle_to_mask(swizzle, dst.writemask); 1241} 1242 1243/* 1244 * Tries to reduce extra MOV instructions by taking temporary GRFs that get 1245 * just written and then MOVed into another reg and making the original write 1246 * of the GRF write directly to the final destination instead. 1247 */ 1248bool 1249vec4_visitor::opt_register_coalesce() 1250{ 1251 bool progress = false; 1252 int next_ip = 0; 1253 1254 calculate_live_intervals(); 1255 1256 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 1257 int ip = next_ip; 1258 next_ip++; 1259 1260 if (inst->opcode != BRW_OPCODE_MOV || 1261 (inst->dst.file != VGRF && inst->dst.file != MRF) || 1262 inst->predicate || 1263 inst->src[0].file != VGRF || 1264 inst->dst.type != inst->src[0].type || 1265 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr) 1266 continue; 1267 1268 /* Remove no-op MOVs */ 1269 if (inst->dst.file == inst->src[0].file && 1270 inst->dst.nr == inst->src[0].nr && 1271 inst->dst.offset == inst->src[0].offset) { 1272 bool is_nop_mov = true; 1273 1274 for (unsigned c = 0; c < 4; c++) { 1275 if ((inst->dst.writemask & (1 << c)) == 0) 1276 continue; 1277 1278 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) { 1279 is_nop_mov = false; 1280 break; 1281 } 1282 } 1283 1284 if (is_nop_mov) { 1285 inst->remove(block); 1286 progress = true; 1287 continue; 1288 } 1289 } 1290 1291 bool to_mrf = (inst->dst.file == MRF); 1292 1293 /* Can't coalesce this GRF if someone else was going to 1294 * read it later. 1295 */ 1296 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip) 1297 continue; 1298 1299 /* We need to check interference with the final destination between this 1300 * instruction and the earliest instruction involved in writing the GRF 1301 * we're eliminating. To do that, keep track of which of our source 1302 * channels we've seen initialized. 1303 */ 1304 const unsigned chans_needed = 1305 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle, 1306 inst->dst.writemask); 1307 unsigned chans_remaining = chans_needed; 1308 1309 /* Now walk up the instruction stream trying to see if we can rewrite 1310 * everything writing to the temporary to write into the destination 1311 * instead. 1312 */ 1313 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev; 1314 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst, 1315 inst) { 1316 _scan_inst = scan_inst; 1317 1318 if (regions_overlap(inst->src[0], inst->size_read(0), 1319 scan_inst->dst, scan_inst->size_written)) { 1320 /* Found something writing to the reg we want to coalesce away. */ 1321 if (to_mrf) { 1322 /* SEND instructions can't have MRF as a destination. */ 1323 if (scan_inst->mlen) 1324 break; 1325 1326 if (devinfo->gen == 6) { 1327 /* gen6 math instructions must have the destination be 1328 * VGRF, so no compute-to-MRF for them. 1329 */ 1330 if (scan_inst->is_math()) { 1331 break; 1332 } 1333 } 1334 } 1335 1336 /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1) 1337 * instructions, and this optimization pass is not capable of 1338 * handling that. Bail on these instructions and hope that some 1339 * later optimization pass can do the right thing after they are 1340 * expanded. 1341 */ 1342 if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2) 1343 break; 1344 1345 /* This doesn't handle saturation on the instruction we 1346 * want to coalesce away if the register types do not match. 1347 * But if scan_inst is a non type-converting 'mov', we can fix 1348 * the types later. 1349 */ 1350 if (inst->saturate && 1351 inst->dst.type != scan_inst->dst.type && 1352 !(scan_inst->opcode == BRW_OPCODE_MOV && 1353 scan_inst->dst.type == scan_inst->src[0].type)) 1354 break; 1355 1356 /* Only allow coalescing between registers of the same type size. 1357 * Otherwise we would need to make the pass aware of the fact that 1358 * channel sizes are different for single and double precision. 1359 */ 1360 if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type)) 1361 break; 1362 1363 /* Check that scan_inst writes the same amount of data as the 1364 * instruction, otherwise coalescing would lead to writing a 1365 * different (larger or smaller) region of the destination 1366 */ 1367 if (scan_inst->size_written != inst->size_written) 1368 break; 1369 1370 /* If we can't handle the swizzle, bail. */ 1371 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask, 1372 inst->src[0].swizzle, 1373 chans_needed)) { 1374 break; 1375 } 1376 1377 /* This only handles coalescing writes of 8 channels (1 register 1378 * for single-precision and 2 registers for double-precision) 1379 * starting at the source offset of the copy instruction. 1380 */ 1381 if (DIV_ROUND_UP(scan_inst->size_written, 1382 type_sz(scan_inst->dst.type)) > 8 || 1383 scan_inst->dst.offset != inst->src[0].offset) 1384 break; 1385 1386 /* Mark which channels we found unconditional writes for. */ 1387 if (!scan_inst->predicate) 1388 chans_remaining &= ~scan_inst->dst.writemask; 1389 1390 if (chans_remaining == 0) 1391 break; 1392 } 1393 1394 /* You can't read from an MRF, so if someone else reads our MRF's 1395 * source GRF that we wanted to rewrite, that stops us. If it's a 1396 * GRF we're trying to coalesce to, we don't actually handle 1397 * rewriting sources so bail in that case as well. 1398 */ 1399 bool interfered = false; 1400 for (int i = 0; i < 3; i++) { 1401 if (regions_overlap(inst->src[0], inst->size_read(0), 1402 scan_inst->src[i], scan_inst->size_read(i))) 1403 interfered = true; 1404 } 1405 if (interfered) 1406 break; 1407 1408 /* If somebody else writes the same channels of our destination here, 1409 * we can't coalesce before that. 1410 */ 1411 if (regions_overlap(inst->dst, inst->size_written, 1412 scan_inst->dst, scan_inst->size_written) && 1413 (inst->dst.writemask & scan_inst->dst.writemask) != 0) { 1414 break; 1415 } 1416 1417 /* Check for reads of the register we're trying to coalesce into. We 1418 * can't go rewriting instructions above that to put some other value 1419 * in the register instead. 1420 */ 1421 if (to_mrf && scan_inst->mlen > 0) { 1422 unsigned start = scan_inst->base_mrf; 1423 unsigned end = scan_inst->base_mrf + scan_inst->mlen; 1424 1425 if (inst->dst.nr >= start && inst->dst.nr < end) { 1426 break; 1427 } 1428 } else { 1429 for (int i = 0; i < 3; i++) { 1430 if (regions_overlap(inst->dst, inst->size_written, 1431 scan_inst->src[i], scan_inst->size_read(i))) 1432 interfered = true; 1433 } 1434 if (interfered) 1435 break; 1436 } 1437 } 1438 1439 if (chans_remaining == 0) { 1440 /* If we've made it here, we have an MOV we want to coalesce out, and 1441 * a scan_inst pointing to the earliest instruction involved in 1442 * computing the value. Now go rewrite the instruction stream 1443 * between the two. 1444 */ 1445 vec4_instruction *scan_inst = _scan_inst; 1446 while (scan_inst != inst) { 1447 if (scan_inst->dst.file == VGRF && 1448 scan_inst->dst.nr == inst->src[0].nr && 1449 scan_inst->dst.offset == inst->src[0].offset) { 1450 scan_inst->reswizzle(inst->dst.writemask, 1451 inst->src[0].swizzle); 1452 scan_inst->dst.file = inst->dst.file; 1453 scan_inst->dst.nr = inst->dst.nr; 1454 scan_inst->dst.offset = inst->dst.offset; 1455 if (inst->saturate && 1456 inst->dst.type != scan_inst->dst.type) { 1457 /* If we have reached this point, scan_inst is a non 1458 * type-converting 'mov' and we can modify its register types 1459 * to match the ones in inst. Otherwise, we could have an 1460 * incorrect saturation result. 1461 */ 1462 scan_inst->dst.type = inst->dst.type; 1463 scan_inst->src[0].type = inst->src[0].type; 1464 } 1465 scan_inst->saturate |= inst->saturate; 1466 } 1467 scan_inst = (vec4_instruction *)scan_inst->next; 1468 } 1469 inst->remove(block); 1470 progress = true; 1471 } 1472 } 1473 1474 if (progress) 1475 invalidate_live_intervals(); 1476 1477 return progress; 1478} 1479 1480/** 1481 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control 1482 * flow. We could probably do better here with some form of divergence 1483 * analysis. 1484 */ 1485bool 1486vec4_visitor::eliminate_find_live_channel() 1487{ 1488 bool progress = false; 1489 unsigned depth = 0; 1490 1491 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { 1492 /* The optimization below assumes that channel zero is live on thread 1493 * dispatch, which may not be the case if the fixed function dispatches 1494 * threads sparsely. 1495 */ 1496 return false; 1497 } 1498 1499 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 1500 switch (inst->opcode) { 1501 case BRW_OPCODE_IF: 1502 case BRW_OPCODE_DO: 1503 depth++; 1504 break; 1505 1506 case BRW_OPCODE_ENDIF: 1507 case BRW_OPCODE_WHILE: 1508 depth--; 1509 break; 1510 1511 case SHADER_OPCODE_FIND_LIVE_CHANNEL: 1512 if (depth == 0) { 1513 inst->opcode = BRW_OPCODE_MOV; 1514 inst->src[0] = brw_imm_d(0); 1515 inst->force_writemask_all = true; 1516 progress = true; 1517 } 1518 break; 1519 1520 default: 1521 break; 1522 } 1523 } 1524 1525 return progress; 1526} 1527 1528/** 1529 * Splits virtual GRFs requesting more than one contiguous physical register. 1530 * 1531 * We initially create large virtual GRFs for temporary structures, arrays, 1532 * and matrices, so that the visitor functions can add offsets to work their 1533 * way down to the actual member being accessed. But when it comes to 1534 * optimization, we'd like to treat each register as individual storage if 1535 * possible. 1536 * 1537 * So far, the only thing that might prevent splitting is a send message from 1538 * a GRF on IVB. 1539 */ 1540void 1541vec4_visitor::split_virtual_grfs() 1542{ 1543 int num_vars = this->alloc.count; 1544 int new_virtual_grf[num_vars]; 1545 bool split_grf[num_vars]; 1546 1547 memset(new_virtual_grf, 0, sizeof(new_virtual_grf)); 1548 1549 /* Try to split anything > 0 sized. */ 1550 for (int i = 0; i < num_vars; i++) { 1551 split_grf[i] = this->alloc.sizes[i] != 1; 1552 } 1553 1554 /* Check that the instructions are compatible with the registers we're trying 1555 * to split. 1556 */ 1557 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1558 if (inst->dst.file == VGRF && regs_written(inst) > 1) 1559 split_grf[inst->dst.nr] = false; 1560 1561 for (int i = 0; i < 3; i++) { 1562 if (inst->src[i].file == VGRF && regs_read(inst, i) > 1) 1563 split_grf[inst->src[i].nr] = false; 1564 } 1565 } 1566 1567 /* Allocate new space for split regs. Note that the virtual 1568 * numbers will be contiguous. 1569 */ 1570 for (int i = 0; i < num_vars; i++) { 1571 if (!split_grf[i]) 1572 continue; 1573 1574 new_virtual_grf[i] = alloc.allocate(1); 1575 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) { 1576 unsigned reg = alloc.allocate(1); 1577 assert(reg == new_virtual_grf[i] + j - 1); 1578 (void) reg; 1579 } 1580 this->alloc.sizes[i] = 1; 1581 } 1582 1583 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1584 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] && 1585 inst->dst.offset / REG_SIZE != 0) { 1586 inst->dst.nr = (new_virtual_grf[inst->dst.nr] + 1587 inst->dst.offset / REG_SIZE - 1); 1588 inst->dst.offset %= REG_SIZE; 1589 } 1590 for (int i = 0; i < 3; i++) { 1591 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] && 1592 inst->src[i].offset / REG_SIZE != 0) { 1593 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] + 1594 inst->src[i].offset / REG_SIZE - 1); 1595 inst->src[i].offset %= REG_SIZE; 1596 } 1597 } 1598 } 1599 invalidate_live_intervals(); 1600} 1601 1602void 1603vec4_visitor::dump_instruction(backend_instruction *be_inst) 1604{ 1605 dump_instruction(be_inst, stderr); 1606} 1607 1608void 1609vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file) 1610{ 1611 vec4_instruction *inst = (vec4_instruction *)be_inst; 1612 1613 if (inst->predicate) { 1614 fprintf(file, "(%cf%d.%d%s) ", 1615 inst->predicate_inverse ? '-' : '+', 1616 inst->flag_subreg / 2, 1617 inst->flag_subreg % 2, 1618 pred_ctrl_align16[inst->predicate]); 1619 } 1620 1621 fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode), 1622 inst->exec_size); 1623 if (inst->saturate) 1624 fprintf(file, ".sat"); 1625 if (inst->conditional_mod) { 1626 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]); 1627 if (!inst->predicate && 1628 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL && 1629 inst->opcode != BRW_OPCODE_CSEL && 1630 inst->opcode != BRW_OPCODE_IF && 1631 inst->opcode != BRW_OPCODE_WHILE))) { 1632 fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2); 1633 } 1634 } 1635 fprintf(file, " "); 1636 1637 switch (inst->dst.file) { 1638 case VGRF: 1639 fprintf(file, "vgrf%d", inst->dst.nr); 1640 break; 1641 case FIXED_GRF: 1642 fprintf(file, "g%d", inst->dst.nr); 1643 break; 1644 case MRF: 1645 fprintf(file, "m%d", inst->dst.nr); 1646 break; 1647 case ARF: 1648 switch (inst->dst.nr) { 1649 case BRW_ARF_NULL: 1650 fprintf(file, "null"); 1651 break; 1652 case BRW_ARF_ADDRESS: 1653 fprintf(file, "a0.%d", inst->dst.subnr); 1654 break; 1655 case BRW_ARF_ACCUMULATOR: 1656 fprintf(file, "acc%d", inst->dst.subnr); 1657 break; 1658 case BRW_ARF_FLAG: 1659 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 1660 break; 1661 default: 1662 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 1663 break; 1664 } 1665 break; 1666 case BAD_FILE: 1667 fprintf(file, "(null)"); 1668 break; 1669 case IMM: 1670 case ATTR: 1671 case UNIFORM: 1672 unreachable("not reached"); 1673 } 1674 if (inst->dst.offset || 1675 (inst->dst.file == VGRF && 1676 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { 1677 const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE); 1678 fprintf(file, "+%d.%d", inst->dst.offset / reg_size, 1679 inst->dst.offset % reg_size); 1680 } 1681 if (inst->dst.writemask != WRITEMASK_XYZW) { 1682 fprintf(file, "."); 1683 if (inst->dst.writemask & 1) 1684 fprintf(file, "x"); 1685 if (inst->dst.writemask & 2) 1686 fprintf(file, "y"); 1687 if (inst->dst.writemask & 4) 1688 fprintf(file, "z"); 1689 if (inst->dst.writemask & 8) 1690 fprintf(file, "w"); 1691 } 1692 fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type)); 1693 1694 if (inst->src[0].file != BAD_FILE) 1695 fprintf(file, ", "); 1696 1697 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) { 1698 if (inst->src[i].negate) 1699 fprintf(file, "-"); 1700 if (inst->src[i].abs) 1701 fprintf(file, "|"); 1702 switch (inst->src[i].file) { 1703 case VGRF: 1704 fprintf(file, "vgrf%d", inst->src[i].nr); 1705 break; 1706 case FIXED_GRF: 1707 fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr); 1708 break; 1709 case ATTR: 1710 fprintf(file, "attr%d", inst->src[i].nr); 1711 break; 1712 case UNIFORM: 1713 fprintf(file, "u%d", inst->src[i].nr); 1714 break; 1715 case IMM: 1716 switch (inst->src[i].type) { 1717 case BRW_REGISTER_TYPE_F: 1718 fprintf(file, "%fF", inst->src[i].f); 1719 break; 1720 case BRW_REGISTER_TYPE_DF: 1721 fprintf(file, "%fDF", inst->src[i].df); 1722 break; 1723 case BRW_REGISTER_TYPE_D: 1724 fprintf(file, "%dD", inst->src[i].d); 1725 break; 1726 case BRW_REGISTER_TYPE_UD: 1727 fprintf(file, "%uU", inst->src[i].ud); 1728 break; 1729 case BRW_REGISTER_TYPE_VF: 1730 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", 1731 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff), 1732 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff), 1733 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff), 1734 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff)); 1735 break; 1736 default: 1737 fprintf(file, "???"); 1738 break; 1739 } 1740 break; 1741 case ARF: 1742 switch (inst->src[i].nr) { 1743 case BRW_ARF_NULL: 1744 fprintf(file, "null"); 1745 break; 1746 case BRW_ARF_ADDRESS: 1747 fprintf(file, "a0.%d", inst->src[i].subnr); 1748 break; 1749 case BRW_ARF_ACCUMULATOR: 1750 fprintf(file, "acc%d", inst->src[i].subnr); 1751 break; 1752 case BRW_ARF_FLAG: 1753 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 1754 break; 1755 default: 1756 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 1757 break; 1758 } 1759 break; 1760 case BAD_FILE: 1761 fprintf(file, "(null)"); 1762 break; 1763 case MRF: 1764 unreachable("not reached"); 1765 } 1766 1767 if (inst->src[i].offset || 1768 (inst->src[i].file == VGRF && 1769 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { 1770 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE); 1771 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, 1772 inst->src[i].offset % reg_size); 1773 } 1774 1775 if (inst->src[i].file != IMM) { 1776 static const char *chans[4] = {"x", "y", "z", "w"}; 1777 fprintf(file, "."); 1778 for (int c = 0; c < 4; c++) { 1779 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]); 1780 } 1781 } 1782 1783 if (inst->src[i].abs) 1784 fprintf(file, "|"); 1785 1786 if (inst->src[i].file != IMM) { 1787 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type)); 1788 } 1789 1790 if (i < 2 && inst->src[i + 1].file != BAD_FILE) 1791 fprintf(file, ", "); 1792 } 1793 1794 if (inst->force_writemask_all) 1795 fprintf(file, " NoMask"); 1796 1797 if (inst->exec_size != 8) 1798 fprintf(file, " group%d", inst->group); 1799 1800 fprintf(file, "\n"); 1801} 1802 1803 1804int 1805vec4_vs_visitor::setup_attributes(int payload_reg) 1806{ 1807 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1808 for (int i = 0; i < 3; i++) { 1809 if (inst->src[i].file == ATTR) { 1810 assert(inst->src[i].offset % REG_SIZE == 0); 1811 int grf = payload_reg + inst->src[i].nr + 1812 inst->src[i].offset / REG_SIZE; 1813 1814 struct brw_reg reg = brw_vec8_grf(grf, 0); 1815 reg.swizzle = inst->src[i].swizzle; 1816 reg.type = inst->src[i].type; 1817 reg.abs = inst->src[i].abs; 1818 reg.negate = inst->src[i].negate; 1819 inst->src[i] = reg; 1820 } 1821 } 1822 } 1823 1824 return payload_reg + vs_prog_data->nr_attribute_slots; 1825} 1826 1827int 1828vec4_visitor::setup_uniforms(int reg) 1829{ 1830 prog_data->base.dispatch_grf_start_reg = reg; 1831 1832 /* The pre-gen6 VS requires that some push constants get loaded no 1833 * matter what, or the GPU would hang. 1834 */ 1835 if (devinfo->gen < 6 && this->uniforms == 0) { 1836 brw_stage_prog_data_add_params(stage_prog_data, 4); 1837 for (unsigned int i = 0; i < 4; i++) { 1838 unsigned int slot = this->uniforms * 4 + i; 1839 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO; 1840 } 1841 1842 this->uniforms++; 1843 reg++; 1844 } else { 1845 reg += ALIGN(uniforms, 2) / 2; 1846 } 1847 1848 for (int i = 0; i < 4; i++) 1849 reg += stage_prog_data->ubo_ranges[i].length; 1850 1851 stage_prog_data->nr_params = this->uniforms * 4; 1852 1853 prog_data->base.curb_read_length = 1854 reg - prog_data->base.dispatch_grf_start_reg; 1855 1856 return reg; 1857} 1858 1859void 1860vec4_vs_visitor::setup_payload(void) 1861{ 1862 int reg = 0; 1863 1864 /* The payload always contains important data in g0, which contains 1865 * the URB handles that are passed on to the URB write at the end 1866 * of the thread. So, we always start push constants at g1. 1867 */ 1868 reg++; 1869 1870 reg = setup_uniforms(reg); 1871 1872 reg = setup_attributes(reg); 1873 1874 this->first_non_payload_grf = reg; 1875} 1876 1877bool 1878vec4_visitor::lower_minmax() 1879{ 1880 assert(devinfo->gen < 6); 1881 1882 bool progress = false; 1883 1884 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 1885 const vec4_builder ibld(this, block, inst); 1886 1887 if (inst->opcode == BRW_OPCODE_SEL && 1888 inst->predicate == BRW_PREDICATE_NONE) { 1889 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of 1890 * the original SEL.L/GE instruction 1891 */ 1892 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], 1893 inst->conditional_mod); 1894 inst->predicate = BRW_PREDICATE_NORMAL; 1895 inst->conditional_mod = BRW_CONDITIONAL_NONE; 1896 1897 progress = true; 1898 } 1899 } 1900 1901 if (progress) 1902 invalidate_live_intervals(); 1903 1904 return progress; 1905} 1906 1907src_reg 1908vec4_visitor::get_timestamp() 1909{ 1910 assert(devinfo->gen >= 7); 1911 1912 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE, 1913 BRW_ARF_TIMESTAMP, 1914 0, 1915 0, 1916 0, 1917 BRW_REGISTER_TYPE_UD, 1918 BRW_VERTICAL_STRIDE_0, 1919 BRW_WIDTH_4, 1920 BRW_HORIZONTAL_STRIDE_4, 1921 BRW_SWIZZLE_XYZW, 1922 WRITEMASK_XYZW)); 1923 1924 dst_reg dst = dst_reg(this, glsl_type::uvec4_type); 1925 1926 vec4_instruction *mov = emit(MOV(dst, ts)); 1927 /* We want to read the 3 fields we care about (mostly field 0, but also 2) 1928 * even if it's not enabled in the dispatch. 1929 */ 1930 mov->force_writemask_all = true; 1931 1932 return src_reg(dst); 1933} 1934 1935void 1936vec4_visitor::emit_shader_time_begin() 1937{ 1938 current_annotation = "shader time start"; 1939 shader_start_time = get_timestamp(); 1940} 1941 1942void 1943vec4_visitor::emit_shader_time_end() 1944{ 1945 current_annotation = "shader time end"; 1946 src_reg shader_end_time = get_timestamp(); 1947 1948 1949 /* Check that there weren't any timestamp reset events (assuming these 1950 * were the only two timestamp reads that happened). 1951 */ 1952 src_reg reset_end = shader_end_time; 1953 reset_end.swizzle = BRW_SWIZZLE_ZZZZ; 1954 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u))); 1955 test->conditional_mod = BRW_CONDITIONAL_Z; 1956 1957 emit(IF(BRW_PREDICATE_NORMAL)); 1958 1959 /* Take the current timestamp and get the delta. */ 1960 shader_start_time.negate = true; 1961 dst_reg diff = dst_reg(this, glsl_type::uint_type); 1962 emit(ADD(diff, shader_start_time, shader_end_time)); 1963 1964 /* If there were no instructions between the two timestamp gets, the diff 1965 * is 2 cycles. Remove that overhead, so I can forget about that when 1966 * trying to determine the time taken for single instructions. 1967 */ 1968 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u))); 1969 1970 emit_shader_time_write(0, src_reg(diff)); 1971 emit_shader_time_write(1, brw_imm_ud(1u)); 1972 emit(BRW_OPCODE_ELSE); 1973 emit_shader_time_write(2, brw_imm_ud(1u)); 1974 emit(BRW_OPCODE_ENDIF); 1975} 1976 1977void 1978vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value) 1979{ 1980 dst_reg dst = 1981 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2)); 1982 1983 dst_reg offset = dst; 1984 dst_reg time = dst; 1985 time.offset += REG_SIZE; 1986 1987 offset.type = BRW_REGISTER_TYPE_UD; 1988 int index = shader_time_index * 3 + shader_time_subindex; 1989 emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE))); 1990 1991 time.type = BRW_REGISTER_TYPE_UD; 1992 emit(MOV(time, value)); 1993 1994 vec4_instruction *inst = 1995 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst)); 1996 inst->mlen = 2; 1997} 1998 1999static bool 2000is_align1_df(vec4_instruction *inst) 2001{ 2002 switch (inst->opcode) { 2003 case VEC4_OPCODE_DOUBLE_TO_F32: 2004 case VEC4_OPCODE_DOUBLE_TO_D32: 2005 case VEC4_OPCODE_DOUBLE_TO_U32: 2006 case VEC4_OPCODE_TO_DOUBLE: 2007 case VEC4_OPCODE_PICK_LOW_32BIT: 2008 case VEC4_OPCODE_PICK_HIGH_32BIT: 2009 case VEC4_OPCODE_SET_LOW_32BIT: 2010 case VEC4_OPCODE_SET_HIGH_32BIT: 2011 return true; 2012 default: 2013 return false; 2014 } 2015} 2016 2017/** 2018 * Three source instruction must have a GRF/MRF destination register. 2019 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF. 2020 */ 2021void 2022vec4_visitor::fixup_3src_null_dest() 2023{ 2024 bool progress = false; 2025 2026 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 2027 if (inst->is_3src(devinfo) && inst->dst.is_null()) { 2028 const unsigned size_written = type_sz(inst->dst.type); 2029 const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 2030 2031 inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 2032 inst->dst.type); 2033 progress = true; 2034 } 2035 } 2036 2037 if (progress) 2038 invalidate_live_intervals(); 2039} 2040 2041void 2042vec4_visitor::convert_to_hw_regs() 2043{ 2044 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 2045 for (int i = 0; i < 3; i++) { 2046 class src_reg &src = inst->src[i]; 2047 struct brw_reg reg; 2048 switch (src.file) { 2049 case VGRF: { 2050 reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset); 2051 reg.type = src.type; 2052 reg.abs = src.abs; 2053 reg.negate = src.negate; 2054 break; 2055 } 2056 2057 case UNIFORM: { 2058 reg = stride(byte_offset(brw_vec4_grf( 2059 prog_data->base.dispatch_grf_start_reg + 2060 src.nr / 2, src.nr % 2 * 4), 2061 src.offset), 2062 0, 4, 1); 2063 reg.type = src.type; 2064 reg.abs = src.abs; 2065 reg.negate = src.negate; 2066 2067 /* This should have been moved to pull constants. */ 2068 assert(!src.reladdr); 2069 break; 2070 } 2071 2072 case FIXED_GRF: 2073 if (type_sz(src.type) == 8) { 2074 reg = src.as_brw_reg(); 2075 break; 2076 } 2077 /* fallthrough */ 2078 case ARF: 2079 case IMM: 2080 continue; 2081 2082 case BAD_FILE: 2083 /* Probably unused. */ 2084 reg = brw_null_reg(); 2085 reg = retype(reg, src.type); 2086 break; 2087 2088 case MRF: 2089 case ATTR: 2090 unreachable("not reached"); 2091 } 2092 2093 apply_logical_swizzle(®, inst, i); 2094 src = reg; 2095 2096 /* From IVB PRM, vol4, part3, "General Restrictions on Regioning 2097 * Parameters": 2098 * 2099 * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set 2100 * to Width * HorzStride." 2101 * 2102 * We can break this rule with DF sources on DF align1 2103 * instructions, because the exec_size would be 4 and width is 4. 2104 * As we know we are not accessing to next GRF, it is safe to 2105 * set vstride to the formula given by the rule itself. 2106 */ 2107 if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width) 2108 src.vstride = src.width + src.hstride; 2109 } 2110 2111 if (inst->is_3src(devinfo)) { 2112 /* 3-src instructions with scalar sources support arbitrary subnr, 2113 * but don't actually use swizzles. Convert swizzle into subnr. 2114 * Skip this for double-precision instructions: RepCtrl=1 is not 2115 * allowed for them and needs special handling. 2116 */ 2117 for (int i = 0; i < 3; i++) { 2118 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 && 2119 type_sz(inst->src[i].type) < 8) { 2120 assert(brw_is_single_value_swizzle(inst->src[i].swizzle)); 2121 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0); 2122 } 2123 } 2124 } 2125 2126 dst_reg &dst = inst->dst; 2127 struct brw_reg reg; 2128 2129 switch (inst->dst.file) { 2130 case VGRF: 2131 reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset); 2132 reg.type = dst.type; 2133 reg.writemask = dst.writemask; 2134 break; 2135 2136 case MRF: 2137 reg = byte_offset(brw_message_reg(dst.nr), dst.offset); 2138 assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen)); 2139 reg.type = dst.type; 2140 reg.writemask = dst.writemask; 2141 break; 2142 2143 case ARF: 2144 case FIXED_GRF: 2145 reg = dst.as_brw_reg(); 2146 break; 2147 2148 case BAD_FILE: 2149 reg = brw_null_reg(); 2150 reg = retype(reg, dst.type); 2151 break; 2152 2153 case IMM: 2154 case ATTR: 2155 case UNIFORM: 2156 unreachable("not reached"); 2157 } 2158 2159 dst = reg; 2160 } 2161} 2162 2163static bool 2164stage_uses_interleaved_attributes(unsigned stage, 2165 enum shader_dispatch_mode dispatch_mode) 2166{ 2167 switch (stage) { 2168 case MESA_SHADER_TESS_EVAL: 2169 return true; 2170 case MESA_SHADER_GEOMETRY: 2171 return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT; 2172 default: 2173 return false; 2174 } 2175} 2176 2177/** 2178 * Get the closest native SIMD width supported by the hardware for instruction 2179 * \p inst. The instruction will be left untouched by 2180 * vec4_visitor::lower_simd_width() if the returned value matches the 2181 * instruction's original execution size. 2182 */ 2183static unsigned 2184get_lowered_simd_width(const struct gen_device_info *devinfo, 2185 enum shader_dispatch_mode dispatch_mode, 2186 unsigned stage, const vec4_instruction *inst) 2187{ 2188 /* Do not split some instructions that require special handling */ 2189 switch (inst->opcode) { 2190 case SHADER_OPCODE_GEN4_SCRATCH_READ: 2191 case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 2192 return inst->exec_size; 2193 default: 2194 break; 2195 } 2196 2197 unsigned lowered_width = MIN2(16, inst->exec_size); 2198 2199 /* We need to split some cases of double-precision instructions that write 2200 * 2 registers. We only need to care about this in gen7 because that is the 2201 * only hardware that implements fp64 in Align16. 2202 */ 2203 if (devinfo->gen == 7 && inst->size_written > REG_SIZE) { 2204 /* Align16 8-wide double-precision SEL does not work well. Verified 2205 * empirically. 2206 */ 2207 if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8) 2208 lowered_width = MIN2(lowered_width, 4); 2209 2210 /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct 2211 * Register Addressing: 2212 * 2213 * "When destination spans two registers, the source MUST span two 2214 * registers." 2215 */ 2216 for (unsigned i = 0; i < 3; i++) { 2217 if (inst->src[i].file == BAD_FILE) 2218 continue; 2219 if (inst->size_read(i) <= REG_SIZE) 2220 lowered_width = MIN2(lowered_width, 4); 2221 2222 /* Interleaved attribute setups use a vertical stride of 0, which 2223 * makes them hit the associated instruction decompression bug in gen7. 2224 * Split them to prevent this. 2225 */ 2226 if (inst->src[i].file == ATTR && 2227 stage_uses_interleaved_attributes(stage, dispatch_mode)) 2228 lowered_width = MIN2(lowered_width, 4); 2229 } 2230 } 2231 2232 /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since 2233 * it doesn't support compression in Align16 mode, no matter if it has 2234 * force_writemask_all enabled or disabled (the latter is affected by the 2235 * compressed instruction bug in gen7, which is another reason to enforce 2236 * this limit). 2237 */ 2238 if (devinfo->gen == 7 && !devinfo->is_haswell && 2239 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) 2240 lowered_width = MIN2(lowered_width, 4); 2241 2242 return lowered_width; 2243} 2244 2245static bool 2246dst_src_regions_overlap(vec4_instruction *inst) 2247{ 2248 if (inst->size_written == 0) 2249 return false; 2250 2251 unsigned dst_start = inst->dst.offset; 2252 unsigned dst_end = dst_start + inst->size_written - 1; 2253 for (int i = 0; i < 3; i++) { 2254 if (inst->src[i].file == BAD_FILE) 2255 continue; 2256 2257 if (inst->dst.file != inst->src[i].file || 2258 inst->dst.nr != inst->src[i].nr) 2259 continue; 2260 2261 unsigned src_start = inst->src[i].offset; 2262 unsigned src_end = src_start + inst->size_read(i) - 1; 2263 2264 if ((dst_start >= src_start && dst_start <= src_end) || 2265 (dst_end >= src_start && dst_end <= src_end) || 2266 (dst_start <= src_start && dst_end >= src_end)) { 2267 return true; 2268 } 2269 } 2270 2271 return false; 2272} 2273 2274bool 2275vec4_visitor::lower_simd_width() 2276{ 2277 bool progress = false; 2278 2279 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2280 const unsigned lowered_width = 2281 get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst); 2282 assert(lowered_width <= inst->exec_size); 2283 if (lowered_width == inst->exec_size) 2284 continue; 2285 2286 /* We need to deal with source / destination overlaps when splitting. 2287 * The hardware supports reading from and writing to the same register 2288 * in the same instruction, but we need to be careful that each split 2289 * instruction we produce does not corrupt the source of the next. 2290 * 2291 * The easiest way to handle this is to make the split instructions write 2292 * to temporaries if there is an src/dst overlap and then move from the 2293 * temporaries to the original destination. We also need to consider 2294 * instructions that do partial writes via align1 opcodes, in which case 2295 * we need to make sure that the we initialize the temporary with the 2296 * value of the instruction's dst. 2297 */ 2298 bool needs_temp = dst_src_regions_overlap(inst); 2299 for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) { 2300 unsigned channel_offset = lowered_width * n; 2301 2302 unsigned size_written = lowered_width * type_sz(inst->dst.type); 2303 2304 /* Create the split instruction from the original so that we copy all 2305 * relevant instruction fields, then set the width and calculate the 2306 * new dst/src regions. 2307 */ 2308 vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst); 2309 linst->exec_size = lowered_width; 2310 linst->group = channel_offset; 2311 linst->size_written = size_written; 2312 2313 /* Compute split dst region */ 2314 dst_reg dst; 2315 if (needs_temp) { 2316 unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 2317 dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 2318 inst->dst.type); 2319 if (inst->is_align1_partial_write()) { 2320 vec4_instruction *copy = MOV(dst, src_reg(inst->dst)); 2321 copy->exec_size = lowered_width; 2322 copy->group = channel_offset; 2323 copy->size_written = size_written; 2324 inst->insert_before(block, copy); 2325 } 2326 } else { 2327 dst = horiz_offset(inst->dst, channel_offset); 2328 } 2329 linst->dst = dst; 2330 2331 /* Compute split source regions */ 2332 for (int i = 0; i < 3; i++) { 2333 if (linst->src[i].file == BAD_FILE) 2334 continue; 2335 2336 bool is_interleaved_attr = 2337 linst->src[i].file == ATTR && 2338 stage_uses_interleaved_attributes(stage, 2339 prog_data->dispatch_mode); 2340 2341 if (!is_uniform(linst->src[i]) && !is_interleaved_attr) 2342 linst->src[i] = horiz_offset(linst->src[i], channel_offset); 2343 } 2344 2345 inst->insert_before(block, linst); 2346 2347 /* If we used a temporary to store the result of the split 2348 * instruction, copy the result to the original destination 2349 */ 2350 if (needs_temp) { 2351 vec4_instruction *mov = 2352 MOV(offset(inst->dst, lowered_width, n), src_reg(dst)); 2353 mov->exec_size = lowered_width; 2354 mov->group = channel_offset; 2355 mov->size_written = size_written; 2356 mov->predicate = inst->predicate; 2357 inst->insert_before(block, mov); 2358 } 2359 } 2360 2361 inst->remove(block); 2362 progress = true; 2363 } 2364 2365 if (progress) 2366 invalidate_live_intervals(); 2367 2368 return progress; 2369} 2370 2371static brw_predicate 2372scalarize_predicate(brw_predicate predicate, unsigned writemask) 2373{ 2374 if (predicate != BRW_PREDICATE_NORMAL) 2375 return predicate; 2376 2377 switch (writemask) { 2378 case WRITEMASK_X: 2379 return BRW_PREDICATE_ALIGN16_REPLICATE_X; 2380 case WRITEMASK_Y: 2381 return BRW_PREDICATE_ALIGN16_REPLICATE_Y; 2382 case WRITEMASK_Z: 2383 return BRW_PREDICATE_ALIGN16_REPLICATE_Z; 2384 case WRITEMASK_W: 2385 return BRW_PREDICATE_ALIGN16_REPLICATE_W; 2386 default: 2387 unreachable("invalid writemask"); 2388 } 2389} 2390 2391/* Gen7 has a hardware decompression bug that we can exploit to represent 2392 * handful of additional swizzles natively. 2393 */ 2394static bool 2395is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg) 2396{ 2397 switch (inst->src[arg].swizzle) { 2398 case BRW_SWIZZLE_XXXX: 2399 case BRW_SWIZZLE_YYYY: 2400 case BRW_SWIZZLE_ZZZZ: 2401 case BRW_SWIZZLE_WWWW: 2402 case BRW_SWIZZLE_XYXY: 2403 case BRW_SWIZZLE_YXYX: 2404 case BRW_SWIZZLE_ZWZW: 2405 case BRW_SWIZZLE_WZWZ: 2406 return true; 2407 default: 2408 return false; 2409 } 2410} 2411 2412/* 64-bit sources use regions with a width of 2. These 2 elements in each row 2413 * can be addressed using 32-bit swizzles (which is what the hardware supports) 2414 * but it also means that the swizzle we apply on the first two components of a 2415 * dvec4 is coupled with the swizzle we use for the last 2. In other words, 2416 * only some specific swizzle combinations can be natively supported. 2417 * 2418 * FIXME: we can go an step further and implement even more swizzle 2419 * variations using only partial scalarization. 2420 * 2421 * For more details see: 2422 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82 2423 */ 2424bool 2425vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg) 2426{ 2427 const src_reg &src = inst->src[arg]; 2428 assert(type_sz(src.type) == 8); 2429 2430 /* Uniform regions have a vstride=0. Because we use 2-wide rows with 2431 * 64-bit regions it means that we cannot access components Z/W, so 2432 * return false for any such case. Interleaved attributes will also be 2433 * mapped to GRF registers with a vstride of 0, so apply the same 2434 * treatment. 2435 */ 2436 if ((is_uniform(src) || 2437 (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) && 2438 src.file == ATTR)) && 2439 (brw_mask_for_swizzle(src.swizzle) & 12)) 2440 return false; 2441 2442 switch (src.swizzle) { 2443 case BRW_SWIZZLE_XYZW: 2444 case BRW_SWIZZLE_XXZZ: 2445 case BRW_SWIZZLE_YYWW: 2446 case BRW_SWIZZLE_YXWZ: 2447 return true; 2448 default: 2449 return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg); 2450 } 2451} 2452 2453bool 2454vec4_visitor::scalarize_df() 2455{ 2456 bool progress = false; 2457 2458 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2459 /* Skip DF instructions that operate in Align1 mode */ 2460 if (is_align1_df(inst)) 2461 continue; 2462 2463 /* Check if this is a double-precision instruction */ 2464 bool is_double = type_sz(inst->dst.type) == 8; 2465 for (int arg = 0; !is_double && arg < 3; arg++) { 2466 is_double = inst->src[arg].file != BAD_FILE && 2467 type_sz(inst->src[arg].type) == 8; 2468 } 2469 2470 if (!is_double) 2471 continue; 2472 2473 /* Skip the lowering for specific regioning scenarios that we can 2474 * support natively. 2475 */ 2476 bool skip_lowering = true; 2477 2478 /* XY and ZW writemasks operate in 32-bit, which means that they don't 2479 * have a native 64-bit representation and they should always be split. 2480 */ 2481 if (inst->dst.writemask == WRITEMASK_XY || 2482 inst->dst.writemask == WRITEMASK_ZW) { 2483 skip_lowering = false; 2484 } else { 2485 for (unsigned i = 0; i < 3; i++) { 2486 if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8) 2487 continue; 2488 skip_lowering = skip_lowering && is_supported_64bit_region(inst, i); 2489 } 2490 } 2491 2492 if (skip_lowering) 2493 continue; 2494 2495 /* Generate scalar instructions for each enabled channel */ 2496 for (unsigned chan = 0; chan < 4; chan++) { 2497 unsigned chan_mask = 1 << chan; 2498 if (!(inst->dst.writemask & chan_mask)) 2499 continue; 2500 2501 vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst); 2502 2503 for (unsigned i = 0; i < 3; i++) { 2504 unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan); 2505 scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz); 2506 } 2507 2508 scalar_inst->dst.writemask = chan_mask; 2509 2510 if (inst->predicate != BRW_PREDICATE_NONE) { 2511 scalar_inst->predicate = 2512 scalarize_predicate(inst->predicate, chan_mask); 2513 } 2514 2515 inst->insert_before(block, scalar_inst); 2516 } 2517 2518 inst->remove(block); 2519 progress = true; 2520 } 2521 2522 if (progress) 2523 invalidate_live_intervals(); 2524 2525 return progress; 2526} 2527 2528bool 2529vec4_visitor::lower_64bit_mad_to_mul_add() 2530{ 2531 bool progress = false; 2532 2533 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2534 if (inst->opcode != BRW_OPCODE_MAD) 2535 continue; 2536 2537 if (type_sz(inst->dst.type) != 8) 2538 continue; 2539 2540 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type); 2541 2542 /* Use the copy constructor so we copy all relevant instruction fields 2543 * from the original mad into the add and mul instructions 2544 */ 2545 vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst); 2546 mul->opcode = BRW_OPCODE_MUL; 2547 mul->dst = mul_dst; 2548 mul->src[0] = inst->src[1]; 2549 mul->src[1] = inst->src[2]; 2550 mul->src[2].file = BAD_FILE; 2551 2552 vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst); 2553 add->opcode = BRW_OPCODE_ADD; 2554 add->src[0] = src_reg(mul_dst); 2555 add->src[1] = inst->src[0]; 2556 add->src[2].file = BAD_FILE; 2557 2558 inst->insert_before(block, mul); 2559 inst->insert_before(block, add); 2560 inst->remove(block); 2561 2562 progress = true; 2563 } 2564 2565 if (progress) 2566 invalidate_live_intervals(); 2567 2568 return progress; 2569} 2570 2571/* The align16 hardware can only do 32-bit swizzle channels, so we need to 2572 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR 2573 * to 32-bit swizzle channels in hardware registers. 2574 * 2575 * @inst and @arg identify the original vec4 IR source operand we need to 2576 * translate the swizzle for and @hw_reg is the hardware register where we 2577 * will write the hardware swizzle to use. 2578 * 2579 * This pass assumes that Align16/DF instructions have been fully scalarized 2580 * previously so there is just one 64-bit swizzle channel to deal with for any 2581 * given Vec4 IR source. 2582 */ 2583void 2584vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg, 2585 vec4_instruction *inst, int arg) 2586{ 2587 src_reg reg = inst->src[arg]; 2588 2589 if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE) 2590 return; 2591 2592 /* If this is not a 64-bit operand or this is a scalar instruction we don't 2593 * need to do anything about the swizzles. 2594 */ 2595 if(type_sz(reg.type) < 8 || is_align1_df(inst)) { 2596 hw_reg->swizzle = reg.swizzle; 2597 return; 2598 } 2599 2600 /* Take the 64-bit logical swizzle channel and translate it to 32-bit */ 2601 assert(brw_is_single_value_swizzle(reg.swizzle) || 2602 is_supported_64bit_region(inst, arg)); 2603 2604 /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16 2605 * HW can only do 32-bit swizzle channels. 2606 */ 2607 hw_reg->width = BRW_WIDTH_2; 2608 2609 if (is_supported_64bit_region(inst, arg) && 2610 !is_gen7_supported_64bit_swizzle(inst, arg)) { 2611 /* Supported 64-bit swizzles are those such that their first two 2612 * components, when expanded to 32-bit swizzles, match the semantics 2613 * of the original 64-bit swizzle with 2-wide row regioning. 2614 */ 2615 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 2616 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 2617 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 2618 swizzle1 * 2, swizzle1 * 2 + 1); 2619 } else { 2620 /* If we got here then we have one of the following: 2621 * 2622 * 1. An unsupported swizzle, which should be single-value thanks to the 2623 * scalarization pass. 2624 * 2625 * 2. A gen7 supported swizzle. These can be single-value or double-value 2626 * swizzles. If the latter, they are never cross-dvec2 channels. For 2627 * these we always need to activate the gen7 vstride=0 exploit. 2628 */ 2629 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 2630 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 2631 assert((swizzle0 < 2) == (swizzle1 < 2)); 2632 2633 /* To gain access to Z/W components we need to select the second half 2634 * of the register and then use a X/Y swizzle to select Z/W respectively. 2635 */ 2636 if (swizzle0 >= 2) { 2637 *hw_reg = suboffset(*hw_reg, 2); 2638 swizzle0 -= 2; 2639 swizzle1 -= 2; 2640 } 2641 2642 /* All gen7-specific supported swizzles require the vstride=0 exploit */ 2643 if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg)) 2644 hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 2645 2646 /* Any 64-bit source with an offset at 16B is intended to address the 2647 * second half of a register and needs a vertical stride of 0 so we: 2648 * 2649 * 1. Don't violate register region restrictions. 2650 * 2. Activate the gen7 instruction decompresion bug exploit when 2651 * execsize > 4 2652 */ 2653 if (hw_reg->subnr % REG_SIZE == 16) { 2654 assert(devinfo->gen == 7); 2655 hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 2656 } 2657 2658 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 2659 swizzle1 * 2, swizzle1 * 2 + 1); 2660 } 2661} 2662 2663bool 2664vec4_visitor::run() 2665{ 2666 if (shader_time_index >= 0) 2667 emit_shader_time_begin(); 2668 2669 emit_prolog(); 2670 2671 emit_nir_code(); 2672 if (failed) 2673 return false; 2674 base_ir = NULL; 2675 2676 emit_thread_end(); 2677 2678 calculate_cfg(); 2679 2680 /* Before any optimization, push array accesses out to scratch 2681 * space where we need them to be. This pass may allocate new 2682 * virtual GRFs, so we want to do it early. It also makes sure 2683 * that we have reladdr computations available for CSE, since we'll 2684 * often do repeated subexpressions for those. 2685 */ 2686 move_grf_array_access_to_scratch(); 2687 move_uniform_array_access_to_pull_constants(); 2688 2689 pack_uniform_registers(); 2690 move_push_constants_to_pull_constants(); 2691 split_virtual_grfs(); 2692 2693#define OPT(pass, args...) ({ \ 2694 pass_num++; \ 2695 bool this_progress = pass(args); \ 2696 \ 2697 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \ 2698 char filename[64]; \ 2699 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \ 2700 stage_abbrev, nir->info.name, iteration, pass_num); \ 2701 \ 2702 backend_shader::dump_instructions(filename); \ 2703 } \ 2704 \ 2705 progress = progress || this_progress; \ 2706 this_progress; \ 2707 }) 2708 2709 2710 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) { 2711 char filename[64]; 2712 snprintf(filename, 64, "%s-%s-00-00-start", 2713 stage_abbrev, nir->info.name); 2714 2715 backend_shader::dump_instructions(filename); 2716 } 2717 2718 bool progress; 2719 int iteration = 0; 2720 int pass_num = 0; 2721 do { 2722 progress = false; 2723 pass_num = 0; 2724 iteration++; 2725 2726 OPT(opt_predicated_break, this); 2727 OPT(opt_reduce_swizzle); 2728 OPT(dead_code_eliminate); 2729 OPT(dead_control_flow_eliminate, this); 2730 OPT(opt_copy_propagation); 2731 OPT(opt_cmod_propagation); 2732 OPT(opt_cse); 2733 OPT(opt_algebraic); 2734 OPT(opt_register_coalesce); 2735 OPT(eliminate_find_live_channel); 2736 } while (progress); 2737 2738 pass_num = 0; 2739 2740 if (OPT(opt_vector_float)) { 2741 OPT(opt_cse); 2742 OPT(opt_copy_propagation, false); 2743 OPT(opt_copy_propagation, true); 2744 OPT(dead_code_eliminate); 2745 } 2746 2747 if (devinfo->gen <= 5 && OPT(lower_minmax)) { 2748 OPT(opt_cmod_propagation); 2749 OPT(opt_cse); 2750 OPT(opt_copy_propagation); 2751 OPT(dead_code_eliminate); 2752 } 2753 2754 if (OPT(lower_simd_width)) { 2755 OPT(opt_copy_propagation); 2756 OPT(dead_code_eliminate); 2757 } 2758 2759 if (failed) 2760 return false; 2761 2762 OPT(lower_64bit_mad_to_mul_add); 2763 2764 /* Run this before payload setup because tesselation shaders 2765 * rely on it to prevent cross dvec2 regioning on DF attributes 2766 * that are setup so that XY are on the second half of register and 2767 * ZW are in the first half of the next. 2768 */ 2769 OPT(scalarize_df); 2770 2771 setup_payload(); 2772 2773 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) { 2774 /* Debug of register spilling: Go spill everything. */ 2775 const int grf_count = alloc.count; 2776 float spill_costs[alloc.count]; 2777 bool no_spill[alloc.count]; 2778 evaluate_spill_costs(spill_costs, no_spill); 2779 for (int i = 0; i < grf_count; i++) { 2780 if (no_spill[i]) 2781 continue; 2782 spill_reg(i); 2783 } 2784 2785 /* We want to run this after spilling because 64-bit (un)spills need to 2786 * emit code to shuffle 64-bit data for the 32-bit scratch read/write 2787 * messages that can produce unsupported 64-bit swizzle regions. 2788 */ 2789 OPT(scalarize_df); 2790 } 2791 2792 fixup_3src_null_dest(); 2793 2794 bool allocated_without_spills = reg_allocate(); 2795 2796 if (!allocated_without_spills) { 2797 compiler->shader_perf_log(log_data, 2798 "%s shader triggered register spilling. " 2799 "Try reducing the number of live vec4 values " 2800 "to improve performance.\n", 2801 stage_name); 2802 2803 while (!reg_allocate()) { 2804 if (failed) 2805 return false; 2806 } 2807 2808 /* We want to run this after spilling because 64-bit (un)spills need to 2809 * emit code to shuffle 64-bit data for the 32-bit scratch read/write 2810 * messages that can produce unsupported 64-bit swizzle regions. 2811 */ 2812 OPT(scalarize_df); 2813 } 2814 2815 opt_schedule_instructions(); 2816 2817 opt_set_dependency_control(); 2818 2819 convert_to_hw_regs(); 2820 2821 if (last_scratch > 0) { 2822 prog_data->base.total_scratch = 2823 brw_get_scratch_size(last_scratch * REG_SIZE); 2824 } 2825 2826 return !failed; 2827} 2828 2829} /* namespace brw */ 2830 2831extern "C" { 2832 2833/** 2834 * Compile a vertex shader. 2835 * 2836 * Returns the final assembly and the program's size. 2837 */ 2838const unsigned * 2839brw_compile_vs(const struct brw_compiler *compiler, void *log_data, 2840 void *mem_ctx, 2841 const struct brw_vs_prog_key *key, 2842 struct brw_vs_prog_data *prog_data, 2843 nir_shader *shader, 2844 int shader_time_index, 2845 char **error_str) 2846{ 2847 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX]; 2848 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar); 2849 2850 const unsigned *assembly = NULL; 2851 2852 if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) { 2853 /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy 2854 * the edge flag from VERT_ATTRIB_EDGEFLAG. This will be done 2855 * automatically by brw_vec4_visitor::emit_urb_slot but we need to 2856 * ensure that prog_data->inputs_read is accurate. 2857 * 2858 * In order to make late NIR passes aware of the change, we actually 2859 * whack shader->info.inputs_read instead. This is safe because we just 2860 * made a copy of the shader. 2861 */ 2862 assert(!is_scalar); 2863 assert(key->copy_edgeflag); 2864 shader->info.inputs_read |= VERT_BIT_EDGEFLAG; 2865 } 2866 2867 prog_data->inputs_read = shader->info.inputs_read; 2868 prog_data->double_inputs_read = shader->info.vs.double_inputs; 2869 2870 brw_nir_lower_vs_inputs(shader, key->gl_attrib_wa_flags); 2871 brw_nir_lower_vue_outputs(shader); 2872 shader = brw_postprocess_nir(shader, compiler, is_scalar); 2873 2874 prog_data->base.clip_distance_mask = 2875 ((1 << shader->info.clip_distance_array_size) - 1); 2876 prog_data->base.cull_distance_mask = 2877 ((1 << shader->info.cull_distance_array_size) - 1) << 2878 shader->info.clip_distance_array_size; 2879 2880 unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read); 2881 2882 /* gl_VertexID and gl_InstanceID are system values, but arrive via an 2883 * incoming vertex attribute. So, add an extra slot. 2884 */ 2885 if (shader->info.system_values_read & 2886 (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) | 2887 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) | 2888 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) | 2889 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) { 2890 nr_attribute_slots++; 2891 } 2892 2893 /* gl_DrawID and IsIndexedDraw share its very own vec4 */ 2894 if (shader->info.system_values_read & 2895 (BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID) | 2896 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))) { 2897 nr_attribute_slots++; 2898 } 2899 2900 if (shader->info.system_values_read & 2901 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW)) 2902 prog_data->uses_is_indexed_draw = true; 2903 2904 if (shader->info.system_values_read & 2905 BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX)) 2906 prog_data->uses_firstvertex = true; 2907 2908 if (shader->info.system_values_read & 2909 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE)) 2910 prog_data->uses_baseinstance = true; 2911 2912 if (shader->info.system_values_read & 2913 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE)) 2914 prog_data->uses_vertexid = true; 2915 2916 if (shader->info.system_values_read & 2917 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)) 2918 prog_data->uses_instanceid = true; 2919 2920 if (shader->info.system_values_read & 2921 BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) 2922 prog_data->uses_drawid = true; 2923 2924 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry 2925 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in 2926 * vec4 mode, the hardware appears to wedge unless we read something. 2927 */ 2928 if (is_scalar) 2929 prog_data->base.urb_read_length = 2930 DIV_ROUND_UP(nr_attribute_slots, 2); 2931 else 2932 prog_data->base.urb_read_length = 2933 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2); 2934 2935 prog_data->nr_attribute_slots = nr_attribute_slots; 2936 2937 /* Since vertex shaders reuse the same VUE entry for inputs and outputs 2938 * (overwriting the original contents), we need to make sure the size is 2939 * the larger of the two. 2940 */ 2941 const unsigned vue_entries = 2942 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots); 2943 2944 if (compiler->devinfo->gen == 6) { 2945 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8); 2946 } else { 2947 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4); 2948 /* On Cannonlake software shall not program an allocation size that 2949 * specifies a size that is a multiple of 3 64B (512-bit) cachelines. 2950 */ 2951 if (compiler->devinfo->gen == 10 && 2952 prog_data->base.urb_entry_size % 3 == 0) 2953 prog_data->base.urb_entry_size++; 2954 } 2955 2956 if (INTEL_DEBUG & DEBUG_VS) { 2957 fprintf(stderr, "VS Output "); 2958 brw_print_vue_map(stderr, &prog_data->base.vue_map); 2959 } 2960 2961 if (is_scalar) { 2962 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; 2963 2964 fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base, 2965 NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */ 2966 shader, 8, shader_time_index); 2967 if (!v.run_vs()) { 2968 if (error_str) 2969 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 2970 2971 return NULL; 2972 } 2973 2974 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; 2975 2976 fs_generator g(compiler, log_data, mem_ctx, 2977 &prog_data->base.base, v.promoted_constants, 2978 v.runtime_check_aads_emit, MESA_SHADER_VERTEX); 2979 if (INTEL_DEBUG & DEBUG_VS) { 2980 const char *debug_name = 2981 ralloc_asprintf(mem_ctx, "%s vertex shader %s", 2982 shader->info.label ? shader->info.label : 2983 "unnamed", 2984 shader->info.name); 2985 2986 g.enable_debug(debug_name); 2987 } 2988 g.generate_code(v.cfg, 8); 2989 assembly = g.get_assembly(); 2990 } 2991 2992 if (!assembly) { 2993 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT; 2994 2995 vec4_vs_visitor v(compiler, log_data, key, prog_data, 2996 shader, mem_ctx, shader_time_index); 2997 if (!v.run()) { 2998 if (error_str) 2999 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 3000 3001 return NULL; 3002 } 3003 3004 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, 3005 shader, &prog_data->base, v.cfg); 3006 } 3007 3008 return assembly; 3009} 3010 3011} /* extern "C" */ 3012