1b8e80941Smrg/* 2b8e80941Smrg * Copyright © 2011 Intel Corporation 3b8e80941Smrg * 4b8e80941Smrg * Permission is hereby granted, free of charge, to any person obtaining a 5b8e80941Smrg * copy of this software and associated documentation files (the "Software"), 6b8e80941Smrg * to deal in the Software without restriction, including without limitation 7b8e80941Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8b8e80941Smrg * and/or sell copies of the Software, and to permit persons to whom the 9b8e80941Smrg * Software is furnished to do so, subject to the following conditions: 10b8e80941Smrg * 11b8e80941Smrg * The above copyright notice and this permission notice (including the next 12b8e80941Smrg * paragraph) shall be included in all copies or substantial portions of the 13b8e80941Smrg * Software. 14b8e80941Smrg * 15b8e80941Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16b8e80941Smrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17b8e80941Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18b8e80941Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19b8e80941Smrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20b8e80941Smrg * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21b8e80941Smrg * IN THE SOFTWARE. 22b8e80941Smrg */ 23b8e80941Smrg 24b8e80941Smrg#include "brw_vec4.h" 25b8e80941Smrg#include "brw_fs.h" 26b8e80941Smrg#include "brw_cfg.h" 27b8e80941Smrg#include "brw_nir.h" 28b8e80941Smrg#include "brw_vec4_builder.h" 29b8e80941Smrg#include "brw_vec4_live_variables.h" 30b8e80941Smrg#include "brw_vec4_vs.h" 31b8e80941Smrg#include "brw_dead_control_flow.h" 32b8e80941Smrg#include "dev/gen_debug.h" 33b8e80941Smrg#include "program/prog_parameter.h" 34b8e80941Smrg#include "util/u_math.h" 35b8e80941Smrg 36b8e80941Smrg#define MAX_INSTRUCTION (1 << 30) 37b8e80941Smrg 38b8e80941Smrgusing namespace brw; 39b8e80941Smrg 40b8e80941Smrgnamespace brw { 41b8e80941Smrg 42b8e80941Smrgvoid 43b8e80941Smrgsrc_reg::init() 44b8e80941Smrg{ 45b8e80941Smrg memset((void*)this, 0, sizeof(*this)); 46b8e80941Smrg this->file = BAD_FILE; 47b8e80941Smrg this->type = BRW_REGISTER_TYPE_UD; 48b8e80941Smrg} 49b8e80941Smrg 50b8e80941Smrgsrc_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type) 51b8e80941Smrg{ 52b8e80941Smrg init(); 53b8e80941Smrg 54b8e80941Smrg this->file = file; 55b8e80941Smrg this->nr = nr; 56b8e80941Smrg if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) 57b8e80941Smrg this->swizzle = brw_swizzle_for_size(type->vector_elements); 58b8e80941Smrg else 59b8e80941Smrg this->swizzle = BRW_SWIZZLE_XYZW; 60b8e80941Smrg if (type) 61b8e80941Smrg this->type = brw_type_for_base_type(type); 62b8e80941Smrg} 63b8e80941Smrg 64b8e80941Smrg/** Generic unset register constructor. */ 65b8e80941Smrgsrc_reg::src_reg() 66b8e80941Smrg{ 67b8e80941Smrg init(); 68b8e80941Smrg} 69b8e80941Smrg 70b8e80941Smrgsrc_reg::src_reg(struct ::brw_reg reg) : 71b8e80941Smrg backend_reg(reg) 72b8e80941Smrg{ 73b8e80941Smrg this->offset = 0; 74b8e80941Smrg this->reladdr = NULL; 75b8e80941Smrg} 76b8e80941Smrg 77b8e80941Smrgsrc_reg::src_reg(const dst_reg ®) : 78b8e80941Smrg backend_reg(reg) 79b8e80941Smrg{ 80b8e80941Smrg this->reladdr = reg.reladdr; 81b8e80941Smrg this->swizzle = brw_swizzle_for_mask(reg.writemask); 82b8e80941Smrg} 83b8e80941Smrg 84b8e80941Smrgvoid 85b8e80941Smrgdst_reg::init() 86b8e80941Smrg{ 87b8e80941Smrg memset((void*)this, 0, sizeof(*this)); 88b8e80941Smrg this->file = BAD_FILE; 89b8e80941Smrg this->type = BRW_REGISTER_TYPE_UD; 90b8e80941Smrg this->writemask = WRITEMASK_XYZW; 91b8e80941Smrg} 92b8e80941Smrg 93b8e80941Smrgdst_reg::dst_reg() 94b8e80941Smrg{ 95b8e80941Smrg init(); 96b8e80941Smrg} 97b8e80941Smrg 98b8e80941Smrgdst_reg::dst_reg(enum brw_reg_file file, int nr) 99b8e80941Smrg{ 100b8e80941Smrg init(); 101b8e80941Smrg 102b8e80941Smrg this->file = file; 103b8e80941Smrg this->nr = nr; 104b8e80941Smrg} 105b8e80941Smrg 106b8e80941Smrgdst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type, 107b8e80941Smrg unsigned writemask) 108b8e80941Smrg{ 109b8e80941Smrg init(); 110b8e80941Smrg 111b8e80941Smrg this->file = file; 112b8e80941Smrg this->nr = nr; 113b8e80941Smrg this->type = brw_type_for_base_type(type); 114b8e80941Smrg this->writemask = writemask; 115b8e80941Smrg} 116b8e80941Smrg 117b8e80941Smrgdst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type, 118b8e80941Smrg unsigned writemask) 119b8e80941Smrg{ 120b8e80941Smrg init(); 121b8e80941Smrg 122b8e80941Smrg this->file = file; 123b8e80941Smrg this->nr = nr; 124b8e80941Smrg this->type = type; 125b8e80941Smrg this->writemask = writemask; 126b8e80941Smrg} 127b8e80941Smrg 128b8e80941Smrgdst_reg::dst_reg(struct ::brw_reg reg) : 129b8e80941Smrg backend_reg(reg) 130b8e80941Smrg{ 131b8e80941Smrg this->offset = 0; 132b8e80941Smrg this->reladdr = NULL; 133b8e80941Smrg} 134b8e80941Smrg 135b8e80941Smrgdst_reg::dst_reg(const src_reg ®) : 136b8e80941Smrg backend_reg(reg) 137b8e80941Smrg{ 138b8e80941Smrg this->writemask = brw_mask_for_swizzle(reg.swizzle); 139b8e80941Smrg this->reladdr = reg.reladdr; 140b8e80941Smrg} 141b8e80941Smrg 142b8e80941Smrgbool 143b8e80941Smrgdst_reg::equals(const dst_reg &r) const 144b8e80941Smrg{ 145b8e80941Smrg return (this->backend_reg::equals(r) && 146b8e80941Smrg (reladdr == r.reladdr || 147b8e80941Smrg (reladdr && r.reladdr && reladdr->equals(*r.reladdr)))); 148b8e80941Smrg} 149b8e80941Smrg 150b8e80941Smrgbool 151b8e80941Smrgvec4_instruction::is_send_from_grf() 152b8e80941Smrg{ 153b8e80941Smrg switch (opcode) { 154b8e80941Smrg case SHADER_OPCODE_SHADER_TIME_ADD: 155b8e80941Smrg case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 156b8e80941Smrg case VEC4_OPCODE_UNTYPED_ATOMIC: 157b8e80941Smrg case VEC4_OPCODE_UNTYPED_SURFACE_READ: 158b8e80941Smrg case VEC4_OPCODE_UNTYPED_SURFACE_WRITE: 159b8e80941Smrg case VEC4_OPCODE_URB_READ: 160b8e80941Smrg case TCS_OPCODE_URB_WRITE: 161b8e80941Smrg case TCS_OPCODE_RELEASE_INPUT: 162b8e80941Smrg case SHADER_OPCODE_BARRIER: 163b8e80941Smrg return true; 164b8e80941Smrg default: 165b8e80941Smrg return false; 166b8e80941Smrg } 167b8e80941Smrg} 168b8e80941Smrg 169b8e80941Smrg/** 170b8e80941Smrg * Returns true if this instruction's sources and destinations cannot 171b8e80941Smrg * safely be the same register. 172b8e80941Smrg * 173b8e80941Smrg * In most cases, a register can be written over safely by the same 174b8e80941Smrg * instruction that is its last use. For a single instruction, the 175b8e80941Smrg * sources are dereferenced before writing of the destination starts 176b8e80941Smrg * (naturally). 177b8e80941Smrg * 178b8e80941Smrg * However, there are a few cases where this can be problematic: 179b8e80941Smrg * 180b8e80941Smrg * - Virtual opcodes that translate to multiple instructions in the 181b8e80941Smrg * code generator: if src == dst and one instruction writes the 182b8e80941Smrg * destination before a later instruction reads the source, then 183b8e80941Smrg * src will have been clobbered. 184b8e80941Smrg * 185b8e80941Smrg * The register allocator uses this information to set up conflicts between 186b8e80941Smrg * GRF sources and the destination. 187b8e80941Smrg */ 188b8e80941Smrgbool 189b8e80941Smrgvec4_instruction::has_source_and_destination_hazard() const 190b8e80941Smrg{ 191b8e80941Smrg switch (opcode) { 192b8e80941Smrg case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 193b8e80941Smrg case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 194b8e80941Smrg case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 195b8e80941Smrg return true; 196b8e80941Smrg default: 197b8e80941Smrg /* 8-wide compressed DF operations are executed as two 4-wide operations, 198b8e80941Smrg * so we have a src/dst hazard if the first half of the instruction 199b8e80941Smrg * overwrites the source of the second half. Prevent this by marking 200b8e80941Smrg * compressed instructions as having src/dst hazards, so the register 201b8e80941Smrg * allocator assigns safe register regions for dst and srcs. 202b8e80941Smrg */ 203b8e80941Smrg return size_written > REG_SIZE; 204b8e80941Smrg } 205b8e80941Smrg} 206b8e80941Smrg 207b8e80941Smrgunsigned 208b8e80941Smrgvec4_instruction::size_read(unsigned arg) const 209b8e80941Smrg{ 210b8e80941Smrg switch (opcode) { 211b8e80941Smrg case SHADER_OPCODE_SHADER_TIME_ADD: 212b8e80941Smrg case VEC4_OPCODE_UNTYPED_ATOMIC: 213b8e80941Smrg case VEC4_OPCODE_UNTYPED_SURFACE_READ: 214b8e80941Smrg case VEC4_OPCODE_UNTYPED_SURFACE_WRITE: 215b8e80941Smrg case TCS_OPCODE_URB_WRITE: 216b8e80941Smrg if (arg == 0) 217b8e80941Smrg return mlen * REG_SIZE; 218b8e80941Smrg break; 219b8e80941Smrg case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 220b8e80941Smrg if (arg == 1) 221b8e80941Smrg return mlen * REG_SIZE; 222b8e80941Smrg break; 223b8e80941Smrg default: 224b8e80941Smrg break; 225b8e80941Smrg } 226b8e80941Smrg 227b8e80941Smrg switch (src[arg].file) { 228b8e80941Smrg case BAD_FILE: 229b8e80941Smrg return 0; 230b8e80941Smrg case IMM: 231b8e80941Smrg case UNIFORM: 232b8e80941Smrg return 4 * type_sz(src[arg].type); 233b8e80941Smrg default: 234b8e80941Smrg /* XXX - Represent actual vertical stride. */ 235b8e80941Smrg return exec_size * type_sz(src[arg].type); 236b8e80941Smrg } 237b8e80941Smrg} 238b8e80941Smrg 239b8e80941Smrgbool 240b8e80941Smrgvec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo) 241b8e80941Smrg{ 242b8e80941Smrg if (devinfo->gen == 6 && is_math()) 243b8e80941Smrg return false; 244b8e80941Smrg 245b8e80941Smrg if (is_send_from_grf()) 246b8e80941Smrg return false; 247b8e80941Smrg 248b8e80941Smrg if (!backend_instruction::can_do_source_mods()) 249b8e80941Smrg return false; 250b8e80941Smrg 251b8e80941Smrg return true; 252b8e80941Smrg} 253b8e80941Smrg 254b8e80941Smrgbool 255b8e80941Smrgvec4_instruction::can_do_cmod() 256b8e80941Smrg{ 257b8e80941Smrg if (!backend_instruction::can_do_cmod()) 258b8e80941Smrg return false; 259b8e80941Smrg 260b8e80941Smrg /* The accumulator result appears to get used for the conditional modifier 261b8e80941Smrg * generation. When negating a UD value, there is a 33rd bit generated for 262b8e80941Smrg * the sign in the accumulator value, so now you can't check, for example, 263b8e80941Smrg * equality with a 32-bit value. See piglit fs-op-neg-uvec4. 264b8e80941Smrg */ 265b8e80941Smrg for (unsigned i = 0; i < 3; i++) { 266b8e80941Smrg if (src[i].file != BAD_FILE && 267b8e80941Smrg type_is_unsigned_int(src[i].type) && src[i].negate) 268b8e80941Smrg return false; 269b8e80941Smrg } 270b8e80941Smrg 271b8e80941Smrg return true; 272b8e80941Smrg} 273b8e80941Smrg 274b8e80941Smrgbool 275b8e80941Smrgvec4_instruction::can_do_writemask(const struct gen_device_info *devinfo) 276b8e80941Smrg{ 277b8e80941Smrg switch (opcode) { 278b8e80941Smrg case SHADER_OPCODE_GEN4_SCRATCH_READ: 279b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_F32: 280b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_D32: 281b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_U32: 282b8e80941Smrg case VEC4_OPCODE_TO_DOUBLE: 283b8e80941Smrg case VEC4_OPCODE_PICK_LOW_32BIT: 284b8e80941Smrg case VEC4_OPCODE_PICK_HIGH_32BIT: 285b8e80941Smrg case VEC4_OPCODE_SET_LOW_32BIT: 286b8e80941Smrg case VEC4_OPCODE_SET_HIGH_32BIT: 287b8e80941Smrg case VS_OPCODE_PULL_CONSTANT_LOAD: 288b8e80941Smrg case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 289b8e80941Smrg case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9: 290b8e80941Smrg case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 291b8e80941Smrg case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 292b8e80941Smrg case TES_OPCODE_CREATE_INPUT_READ_HEADER: 293b8e80941Smrg case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 294b8e80941Smrg case VEC4_OPCODE_URB_READ: 295b8e80941Smrg case SHADER_OPCODE_MOV_INDIRECT: 296b8e80941Smrg return false; 297b8e80941Smrg default: 298b8e80941Smrg /* The MATH instruction on Gen6 only executes in align1 mode, which does 299b8e80941Smrg * not support writemasking. 300b8e80941Smrg */ 301b8e80941Smrg if (devinfo->gen == 6 && is_math()) 302b8e80941Smrg return false; 303b8e80941Smrg 304b8e80941Smrg if (is_tex()) 305b8e80941Smrg return false; 306b8e80941Smrg 307b8e80941Smrg return true; 308b8e80941Smrg } 309b8e80941Smrg} 310b8e80941Smrg 311b8e80941Smrgbool 312b8e80941Smrgvec4_instruction::can_change_types() const 313b8e80941Smrg{ 314b8e80941Smrg return dst.type == src[0].type && 315b8e80941Smrg !src[0].abs && !src[0].negate && !saturate && 316b8e80941Smrg (opcode == BRW_OPCODE_MOV || 317b8e80941Smrg (opcode == BRW_OPCODE_SEL && 318b8e80941Smrg dst.type == src[1].type && 319b8e80941Smrg predicate != BRW_PREDICATE_NONE && 320b8e80941Smrg !src[1].abs && !src[1].negate)); 321b8e80941Smrg} 322b8e80941Smrg 323b8e80941Smrg/** 324b8e80941Smrg * Returns how many MRFs an opcode will write over. 325b8e80941Smrg * 326b8e80941Smrg * Note that this is not the 0 or 1 implied writes in an actual gen 327b8e80941Smrg * instruction -- the generate_* functions generate additional MOVs 328b8e80941Smrg * for setup. 329b8e80941Smrg */ 330b8e80941Smrgint 331b8e80941Smrgvec4_visitor::implied_mrf_writes(vec4_instruction *inst) 332b8e80941Smrg{ 333b8e80941Smrg if (inst->mlen == 0 || inst->is_send_from_grf()) 334b8e80941Smrg return 0; 335b8e80941Smrg 336b8e80941Smrg switch (inst->opcode) { 337b8e80941Smrg case SHADER_OPCODE_RCP: 338b8e80941Smrg case SHADER_OPCODE_RSQ: 339b8e80941Smrg case SHADER_OPCODE_SQRT: 340b8e80941Smrg case SHADER_OPCODE_EXP2: 341b8e80941Smrg case SHADER_OPCODE_LOG2: 342b8e80941Smrg case SHADER_OPCODE_SIN: 343b8e80941Smrg case SHADER_OPCODE_COS: 344b8e80941Smrg return 1; 345b8e80941Smrg case SHADER_OPCODE_INT_QUOTIENT: 346b8e80941Smrg case SHADER_OPCODE_INT_REMAINDER: 347b8e80941Smrg case SHADER_OPCODE_POW: 348b8e80941Smrg case TCS_OPCODE_THREAD_END: 349b8e80941Smrg return 2; 350b8e80941Smrg case VS_OPCODE_URB_WRITE: 351b8e80941Smrg return 1; 352b8e80941Smrg case VS_OPCODE_PULL_CONSTANT_LOAD: 353b8e80941Smrg return 2; 354b8e80941Smrg case SHADER_OPCODE_GEN4_SCRATCH_READ: 355b8e80941Smrg return 2; 356b8e80941Smrg case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 357b8e80941Smrg return 3; 358b8e80941Smrg case GS_OPCODE_URB_WRITE: 359b8e80941Smrg case GS_OPCODE_URB_WRITE_ALLOCATE: 360b8e80941Smrg case GS_OPCODE_THREAD_END: 361b8e80941Smrg return 0; 362b8e80941Smrg case GS_OPCODE_FF_SYNC: 363b8e80941Smrg return 1; 364b8e80941Smrg case TCS_OPCODE_URB_WRITE: 365b8e80941Smrg return 0; 366b8e80941Smrg case SHADER_OPCODE_SHADER_TIME_ADD: 367b8e80941Smrg return 0; 368b8e80941Smrg case SHADER_OPCODE_TEX: 369b8e80941Smrg case SHADER_OPCODE_TXL: 370b8e80941Smrg case SHADER_OPCODE_TXD: 371b8e80941Smrg case SHADER_OPCODE_TXF: 372b8e80941Smrg case SHADER_OPCODE_TXF_CMS: 373b8e80941Smrg case SHADER_OPCODE_TXF_CMS_W: 374b8e80941Smrg case SHADER_OPCODE_TXF_MCS: 375b8e80941Smrg case SHADER_OPCODE_TXS: 376b8e80941Smrg case SHADER_OPCODE_TG4: 377b8e80941Smrg case SHADER_OPCODE_TG4_OFFSET: 378b8e80941Smrg case SHADER_OPCODE_SAMPLEINFO: 379b8e80941Smrg case SHADER_OPCODE_GET_BUFFER_SIZE: 380b8e80941Smrg return inst->header_size; 381b8e80941Smrg default: 382b8e80941Smrg unreachable("not reached"); 383b8e80941Smrg } 384b8e80941Smrg} 385b8e80941Smrg 386b8e80941Smrgbool 387b8e80941Smrgsrc_reg::equals(const src_reg &r) const 388b8e80941Smrg{ 389b8e80941Smrg return (this->backend_reg::equals(r) && 390b8e80941Smrg !reladdr && !r.reladdr); 391b8e80941Smrg} 392b8e80941Smrg 393b8e80941Smrgbool 394b8e80941Smrgsrc_reg::negative_equals(const src_reg &r) const 395b8e80941Smrg{ 396b8e80941Smrg return this->backend_reg::negative_equals(r) && 397b8e80941Smrg !reladdr && !r.reladdr; 398b8e80941Smrg} 399b8e80941Smrg 400b8e80941Smrgbool 401b8e80941Smrgvec4_visitor::opt_vector_float() 402b8e80941Smrg{ 403b8e80941Smrg bool progress = false; 404b8e80941Smrg 405b8e80941Smrg foreach_block(block, cfg) { 406b8e80941Smrg unsigned last_reg = ~0u, last_offset = ~0u; 407b8e80941Smrg enum brw_reg_file last_reg_file = BAD_FILE; 408b8e80941Smrg 409b8e80941Smrg uint8_t imm[4] = { 0 }; 410b8e80941Smrg int inst_count = 0; 411b8e80941Smrg vec4_instruction *imm_inst[4]; 412b8e80941Smrg unsigned writemask = 0; 413b8e80941Smrg enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F; 414b8e80941Smrg 415b8e80941Smrg foreach_inst_in_block_safe(vec4_instruction, inst, block) { 416b8e80941Smrg int vf = -1; 417b8e80941Smrg enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST; 418b8e80941Smrg 419b8e80941Smrg /* Look for unconditional MOVs from an immediate with a partial 420b8e80941Smrg * writemask. Skip type-conversion MOVs other than integer 0, 421b8e80941Smrg * where the type doesn't matter. See if the immediate can be 422b8e80941Smrg * represented as a VF. 423b8e80941Smrg */ 424b8e80941Smrg if (inst->opcode == BRW_OPCODE_MOV && 425b8e80941Smrg inst->src[0].file == IMM && 426b8e80941Smrg inst->predicate == BRW_PREDICATE_NONE && 427b8e80941Smrg inst->dst.writemask != WRITEMASK_XYZW && 428b8e80941Smrg type_sz(inst->src[0].type) < 8 && 429b8e80941Smrg (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) { 430b8e80941Smrg 431b8e80941Smrg vf = brw_float_to_vf(inst->src[0].d); 432b8e80941Smrg need_type = BRW_REGISTER_TYPE_D; 433b8e80941Smrg 434b8e80941Smrg if (vf == -1) { 435b8e80941Smrg vf = brw_float_to_vf(inst->src[0].f); 436b8e80941Smrg need_type = BRW_REGISTER_TYPE_F; 437b8e80941Smrg } 438b8e80941Smrg } else { 439b8e80941Smrg last_reg = ~0u; 440b8e80941Smrg } 441b8e80941Smrg 442b8e80941Smrg /* If this wasn't a MOV, or the destination register doesn't match, 443b8e80941Smrg * or we have to switch destination types, then this breaks our 444b8e80941Smrg * sequence. Combine anything we've accumulated so far. 445b8e80941Smrg */ 446b8e80941Smrg if (last_reg != inst->dst.nr || 447b8e80941Smrg last_offset != inst->dst.offset || 448b8e80941Smrg last_reg_file != inst->dst.file || 449b8e80941Smrg (vf > 0 && dest_type != need_type)) { 450b8e80941Smrg 451b8e80941Smrg if (inst_count > 1) { 452b8e80941Smrg unsigned vf; 453b8e80941Smrg memcpy(&vf, imm, sizeof(vf)); 454b8e80941Smrg vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf)); 455b8e80941Smrg mov->dst.type = dest_type; 456b8e80941Smrg mov->dst.writemask = writemask; 457b8e80941Smrg inst->insert_before(block, mov); 458b8e80941Smrg 459b8e80941Smrg for (int i = 0; i < inst_count; i++) { 460b8e80941Smrg imm_inst[i]->remove(block); 461b8e80941Smrg } 462b8e80941Smrg 463b8e80941Smrg progress = true; 464b8e80941Smrg } 465b8e80941Smrg 466b8e80941Smrg inst_count = 0; 467b8e80941Smrg last_reg = ~0u;; 468b8e80941Smrg writemask = 0; 469b8e80941Smrg dest_type = BRW_REGISTER_TYPE_F; 470b8e80941Smrg 471b8e80941Smrg for (int i = 0; i < 4; i++) { 472b8e80941Smrg imm[i] = 0; 473b8e80941Smrg } 474b8e80941Smrg } 475b8e80941Smrg 476b8e80941Smrg /* Record this instruction's value (if it was representable). */ 477b8e80941Smrg if (vf != -1) { 478b8e80941Smrg if ((inst->dst.writemask & WRITEMASK_X) != 0) 479b8e80941Smrg imm[0] = vf; 480b8e80941Smrg if ((inst->dst.writemask & WRITEMASK_Y) != 0) 481b8e80941Smrg imm[1] = vf; 482b8e80941Smrg if ((inst->dst.writemask & WRITEMASK_Z) != 0) 483b8e80941Smrg imm[2] = vf; 484b8e80941Smrg if ((inst->dst.writemask & WRITEMASK_W) != 0) 485b8e80941Smrg imm[3] = vf; 486b8e80941Smrg 487b8e80941Smrg writemask |= inst->dst.writemask; 488b8e80941Smrg imm_inst[inst_count++] = inst; 489b8e80941Smrg 490b8e80941Smrg last_reg = inst->dst.nr; 491b8e80941Smrg last_offset = inst->dst.offset; 492b8e80941Smrg last_reg_file = inst->dst.file; 493b8e80941Smrg if (vf > 0) 494b8e80941Smrg dest_type = need_type; 495b8e80941Smrg } 496b8e80941Smrg } 497b8e80941Smrg } 498b8e80941Smrg 499b8e80941Smrg if (progress) 500b8e80941Smrg invalidate_live_intervals(); 501b8e80941Smrg 502b8e80941Smrg return progress; 503b8e80941Smrg} 504b8e80941Smrg 505b8e80941Smrg/* Replaces unused channels of a swizzle with channels that are used. 506b8e80941Smrg * 507b8e80941Smrg * For instance, this pass transforms 508b8e80941Smrg * 509b8e80941Smrg * mov vgrf4.yz, vgrf5.wxzy 510b8e80941Smrg * 511b8e80941Smrg * into 512b8e80941Smrg * 513b8e80941Smrg * mov vgrf4.yz, vgrf5.xxzx 514b8e80941Smrg * 515b8e80941Smrg * This eliminates false uses of some channels, letting dead code elimination 516b8e80941Smrg * remove the instructions that wrote them. 517b8e80941Smrg */ 518b8e80941Smrgbool 519b8e80941Smrgvec4_visitor::opt_reduce_swizzle() 520b8e80941Smrg{ 521b8e80941Smrg bool progress = false; 522b8e80941Smrg 523b8e80941Smrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 524b8e80941Smrg if (inst->dst.file == BAD_FILE || 525b8e80941Smrg inst->dst.file == ARF || 526b8e80941Smrg inst->dst.file == FIXED_GRF || 527b8e80941Smrg inst->is_send_from_grf()) 528b8e80941Smrg continue; 529b8e80941Smrg 530b8e80941Smrg unsigned swizzle; 531b8e80941Smrg 532b8e80941Smrg /* Determine which channels of the sources are read. */ 533b8e80941Smrg switch (inst->opcode) { 534b8e80941Smrg case VEC4_OPCODE_PACK_BYTES: 535b8e80941Smrg case BRW_OPCODE_DP4: 536b8e80941Smrg case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0, 537b8e80941Smrg * but all four of src1. 538b8e80941Smrg */ 539b8e80941Smrg swizzle = brw_swizzle_for_size(4); 540b8e80941Smrg break; 541b8e80941Smrg case BRW_OPCODE_DP3: 542b8e80941Smrg swizzle = brw_swizzle_for_size(3); 543b8e80941Smrg break; 544b8e80941Smrg case BRW_OPCODE_DP2: 545b8e80941Smrg swizzle = brw_swizzle_for_size(2); 546b8e80941Smrg break; 547b8e80941Smrg 548b8e80941Smrg case VEC4_OPCODE_TO_DOUBLE: 549b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_F32: 550b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_D32: 551b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_U32: 552b8e80941Smrg case VEC4_OPCODE_PICK_LOW_32BIT: 553b8e80941Smrg case VEC4_OPCODE_PICK_HIGH_32BIT: 554b8e80941Smrg case VEC4_OPCODE_SET_LOW_32BIT: 555b8e80941Smrg case VEC4_OPCODE_SET_HIGH_32BIT: 556b8e80941Smrg swizzle = brw_swizzle_for_size(4); 557b8e80941Smrg break; 558b8e80941Smrg 559b8e80941Smrg default: 560b8e80941Smrg swizzle = brw_swizzle_for_mask(inst->dst.writemask); 561b8e80941Smrg break; 562b8e80941Smrg } 563b8e80941Smrg 564b8e80941Smrg /* Update sources' swizzles. */ 565b8e80941Smrg for (int i = 0; i < 3; i++) { 566b8e80941Smrg if (inst->src[i].file != VGRF && 567b8e80941Smrg inst->src[i].file != ATTR && 568b8e80941Smrg inst->src[i].file != UNIFORM) 569b8e80941Smrg continue; 570b8e80941Smrg 571b8e80941Smrg const unsigned new_swizzle = 572b8e80941Smrg brw_compose_swizzle(swizzle, inst->src[i].swizzle); 573b8e80941Smrg if (inst->src[i].swizzle != new_swizzle) { 574b8e80941Smrg inst->src[i].swizzle = new_swizzle; 575b8e80941Smrg progress = true; 576b8e80941Smrg } 577b8e80941Smrg } 578b8e80941Smrg } 579b8e80941Smrg 580b8e80941Smrg if (progress) 581b8e80941Smrg invalidate_live_intervals(); 582b8e80941Smrg 583b8e80941Smrg return progress; 584b8e80941Smrg} 585b8e80941Smrg 586b8e80941Smrgvoid 587b8e80941Smrgvec4_visitor::split_uniform_registers() 588b8e80941Smrg{ 589b8e80941Smrg /* Prior to this, uniforms have been in an array sized according to 590b8e80941Smrg * the number of vector uniforms present, sparsely filled (so an 591b8e80941Smrg * aggregate results in reg indices being skipped over). Now we're 592b8e80941Smrg * going to cut those aggregates up so each .nr index is one 593b8e80941Smrg * vector. The goal is to make elimination of unused uniform 594b8e80941Smrg * components easier later. 595b8e80941Smrg */ 596b8e80941Smrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 597b8e80941Smrg for (int i = 0 ; i < 3; i++) { 598b8e80941Smrg if (inst->src[i].file != UNIFORM) 599b8e80941Smrg continue; 600b8e80941Smrg 601b8e80941Smrg assert(!inst->src[i].reladdr); 602b8e80941Smrg 603b8e80941Smrg inst->src[i].nr += inst->src[i].offset / 16; 604b8e80941Smrg inst->src[i].offset %= 16; 605b8e80941Smrg } 606b8e80941Smrg } 607b8e80941Smrg} 608b8e80941Smrg 609b8e80941Smrg/* This function returns the register number where we placed the uniform */ 610b8e80941Smrgstatic int 611b8e80941Smrgset_push_constant_loc(const int nr_uniforms, int *new_uniform_count, 612b8e80941Smrg const int src, const int size, const int channel_size, 613b8e80941Smrg int *new_loc, int *new_chan, 614b8e80941Smrg int *new_chans_used) 615b8e80941Smrg{ 616b8e80941Smrg int dst; 617b8e80941Smrg /* Find the lowest place we can slot this uniform in. */ 618b8e80941Smrg for (dst = 0; dst < nr_uniforms; dst++) { 619b8e80941Smrg if (ALIGN(new_chans_used[dst], channel_size) + size <= 4) 620b8e80941Smrg break; 621b8e80941Smrg } 622b8e80941Smrg 623b8e80941Smrg assert(dst < nr_uniforms); 624b8e80941Smrg 625b8e80941Smrg new_loc[src] = dst; 626b8e80941Smrg new_chan[src] = ALIGN(new_chans_used[dst], channel_size); 627b8e80941Smrg new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size; 628b8e80941Smrg 629b8e80941Smrg *new_uniform_count = MAX2(*new_uniform_count, dst + 1); 630b8e80941Smrg return dst; 631b8e80941Smrg} 632b8e80941Smrg 633b8e80941Smrgvoid 634b8e80941Smrgvec4_visitor::pack_uniform_registers() 635b8e80941Smrg{ 636b8e80941Smrg uint8_t chans_used[this->uniforms]; 637b8e80941Smrg int new_loc[this->uniforms]; 638b8e80941Smrg int new_chan[this->uniforms]; 639b8e80941Smrg bool is_aligned_to_dvec4[this->uniforms]; 640b8e80941Smrg int new_chans_used[this->uniforms]; 641b8e80941Smrg int channel_sizes[this->uniforms]; 642b8e80941Smrg 643b8e80941Smrg memset(chans_used, 0, sizeof(chans_used)); 644b8e80941Smrg memset(new_loc, 0, sizeof(new_loc)); 645b8e80941Smrg memset(new_chan, 0, sizeof(new_chan)); 646b8e80941Smrg memset(new_chans_used, 0, sizeof(new_chans_used)); 647b8e80941Smrg memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4)); 648b8e80941Smrg memset(channel_sizes, 0, sizeof(channel_sizes)); 649b8e80941Smrg 650b8e80941Smrg /* Find which uniform vectors are actually used by the program. We 651b8e80941Smrg * expect unused vector elements when we've moved array access out 652b8e80941Smrg * to pull constants, and from some GLSL code generators like wine. 653b8e80941Smrg */ 654b8e80941Smrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 655b8e80941Smrg unsigned readmask; 656b8e80941Smrg switch (inst->opcode) { 657b8e80941Smrg case VEC4_OPCODE_PACK_BYTES: 658b8e80941Smrg case BRW_OPCODE_DP4: 659b8e80941Smrg case BRW_OPCODE_DPH: 660b8e80941Smrg readmask = 0xf; 661b8e80941Smrg break; 662b8e80941Smrg case BRW_OPCODE_DP3: 663b8e80941Smrg readmask = 0x7; 664b8e80941Smrg break; 665b8e80941Smrg case BRW_OPCODE_DP2: 666b8e80941Smrg readmask = 0x3; 667b8e80941Smrg break; 668b8e80941Smrg default: 669b8e80941Smrg readmask = inst->dst.writemask; 670b8e80941Smrg break; 671b8e80941Smrg } 672b8e80941Smrg 673b8e80941Smrg for (int i = 0 ; i < 3; i++) { 674b8e80941Smrg if (inst->src[i].file != UNIFORM) 675b8e80941Smrg continue; 676b8e80941Smrg 677b8e80941Smrg assert(type_sz(inst->src[i].type) % 4 == 0); 678b8e80941Smrg int channel_size = type_sz(inst->src[i].type) / 4; 679b8e80941Smrg 680b8e80941Smrg int reg = inst->src[i].nr; 681b8e80941Smrg for (int c = 0; c < 4; c++) { 682b8e80941Smrg if (!(readmask & (1 << c))) 683b8e80941Smrg continue; 684b8e80941Smrg 685b8e80941Smrg unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1; 686b8e80941Smrg unsigned used = MAX2(chans_used[reg], channel * channel_size); 687b8e80941Smrg if (used <= 4) { 688b8e80941Smrg chans_used[reg] = used; 689b8e80941Smrg channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size); 690b8e80941Smrg } else { 691b8e80941Smrg is_aligned_to_dvec4[reg] = true; 692b8e80941Smrg is_aligned_to_dvec4[reg + 1] = true; 693b8e80941Smrg chans_used[reg + 1] = used - 4; 694b8e80941Smrg channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size); 695b8e80941Smrg } 696b8e80941Smrg } 697b8e80941Smrg } 698b8e80941Smrg 699b8e80941Smrg if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && 700b8e80941Smrg inst->src[0].file == UNIFORM) { 701b8e80941Smrg assert(inst->src[2].file == BRW_IMMEDIATE_VALUE); 702b8e80941Smrg assert(inst->src[0].subnr == 0); 703b8e80941Smrg 704b8e80941Smrg unsigned bytes_read = inst->src[2].ud; 705b8e80941Smrg assert(bytes_read % 4 == 0); 706b8e80941Smrg unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16); 707b8e80941Smrg 708b8e80941Smrg /* We just mark every register touched by a MOV_INDIRECT as being 709b8e80941Smrg * fully used. This ensures that it doesn't broken up piecewise by 710b8e80941Smrg * the next part of our packing algorithm. 711b8e80941Smrg */ 712b8e80941Smrg int reg = inst->src[0].nr; 713b8e80941Smrg int channel_size = type_sz(inst->src[0].type) / 4; 714b8e80941Smrg for (unsigned i = 0; i < vec4s_read; i++) { 715b8e80941Smrg chans_used[reg + i] = 4; 716b8e80941Smrg channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size); 717b8e80941Smrg } 718b8e80941Smrg } 719b8e80941Smrg } 720b8e80941Smrg 721b8e80941Smrg int new_uniform_count = 0; 722b8e80941Smrg 723b8e80941Smrg /* As the uniforms are going to be reordered, take the data from a temporary 724b8e80941Smrg * copy of the original param[]. 725b8e80941Smrg */ 726b8e80941Smrg uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params); 727b8e80941Smrg memcpy(param, stage_prog_data->param, 728b8e80941Smrg sizeof(uint32_t) * stage_prog_data->nr_params); 729b8e80941Smrg 730b8e80941Smrg /* Now, figure out a packing of the live uniform vectors into our 731b8e80941Smrg * push constants. Start with dvec{3,4} because they are aligned to 732b8e80941Smrg * dvec4 size (2 vec4). 733b8e80941Smrg */ 734b8e80941Smrg for (int src = 0; src < uniforms; src++) { 735b8e80941Smrg int size = chans_used[src]; 736b8e80941Smrg 737b8e80941Smrg if (size == 0 || !is_aligned_to_dvec4[src]) 738b8e80941Smrg continue; 739b8e80941Smrg 740b8e80941Smrg /* dvec3 are aligned to dvec4 size, apply the alignment of the size 741b8e80941Smrg * to 4 to avoid moving last component of a dvec3 to the available 742b8e80941Smrg * location at the end of a previous dvec3. These available locations 743b8e80941Smrg * could be filled by smaller variables in next loop. 744b8e80941Smrg */ 745b8e80941Smrg size = ALIGN(size, 4); 746b8e80941Smrg int dst = set_push_constant_loc(uniforms, &new_uniform_count, 747b8e80941Smrg src, size, channel_sizes[src], 748b8e80941Smrg new_loc, new_chan, 749b8e80941Smrg new_chans_used); 750b8e80941Smrg /* Move the references to the data */ 751b8e80941Smrg for (int j = 0; j < size; j++) { 752b8e80941Smrg stage_prog_data->param[dst * 4 + new_chan[src] + j] = 753b8e80941Smrg param[src * 4 + j]; 754b8e80941Smrg } 755b8e80941Smrg } 756b8e80941Smrg 757b8e80941Smrg /* Continue with the rest of data, which is aligned to vec4. */ 758b8e80941Smrg for (int src = 0; src < uniforms; src++) { 759b8e80941Smrg int size = chans_used[src]; 760b8e80941Smrg 761b8e80941Smrg if (size == 0 || is_aligned_to_dvec4[src]) 762b8e80941Smrg continue; 763b8e80941Smrg 764b8e80941Smrg int dst = set_push_constant_loc(uniforms, &new_uniform_count, 765b8e80941Smrg src, size, channel_sizes[src], 766b8e80941Smrg new_loc, new_chan, 767b8e80941Smrg new_chans_used); 768b8e80941Smrg /* Move the references to the data */ 769b8e80941Smrg for (int j = 0; j < size; j++) { 770b8e80941Smrg stage_prog_data->param[dst * 4 + new_chan[src] + j] = 771b8e80941Smrg param[src * 4 + j]; 772b8e80941Smrg } 773b8e80941Smrg } 774b8e80941Smrg 775b8e80941Smrg ralloc_free(param); 776b8e80941Smrg this->uniforms = new_uniform_count; 777b8e80941Smrg 778b8e80941Smrg /* Now, update the instructions for our repacked uniforms. */ 779b8e80941Smrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 780b8e80941Smrg for (int i = 0 ; i < 3; i++) { 781b8e80941Smrg int src = inst->src[i].nr; 782b8e80941Smrg 783b8e80941Smrg if (inst->src[i].file != UNIFORM) 784b8e80941Smrg continue; 785b8e80941Smrg 786b8e80941Smrg int chan = new_chan[src] / channel_sizes[src]; 787b8e80941Smrg inst->src[i].nr = new_loc[src]; 788b8e80941Smrg inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan); 789b8e80941Smrg } 790b8e80941Smrg } 791b8e80941Smrg} 792b8e80941Smrg 793b8e80941Smrg/** 794b8e80941Smrg * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a). 795b8e80941Smrg * 796b8e80941Smrg * While GLSL IR also performs this optimization, we end up with it in 797b8e80941Smrg * our instruction stream for a couple of reasons. One is that we 798b8e80941Smrg * sometimes generate silly instructions, for example in array access 799b8e80941Smrg * where we'll generate "ADD offset, index, base" even if base is 0. 800b8e80941Smrg * The other is that GLSL IR's constant propagation doesn't track the 801b8e80941Smrg * components of aggregates, so some VS patterns (initialize matrix to 802b8e80941Smrg * 0, accumulate in vertex blending factors) end up breaking down to 803b8e80941Smrg * instructions involving 0. 804b8e80941Smrg */ 805b8e80941Smrgbool 806b8e80941Smrgvec4_visitor::opt_algebraic() 807b8e80941Smrg{ 808b8e80941Smrg bool progress = false; 809b8e80941Smrg 810b8e80941Smrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 811b8e80941Smrg switch (inst->opcode) { 812b8e80941Smrg case BRW_OPCODE_MOV: 813b8e80941Smrg if (inst->src[0].file != IMM) 814b8e80941Smrg break; 815b8e80941Smrg 816b8e80941Smrg if (inst->saturate) { 817b8e80941Smrg /* Full mixed-type saturates don't happen. However, we can end up 818b8e80941Smrg * with things like: 819b8e80941Smrg * 820b8e80941Smrg * mov.sat(8) g21<1>DF -1F 821b8e80941Smrg * 822b8e80941Smrg * Other mixed-size-but-same-base-type cases may also be possible. 823b8e80941Smrg */ 824b8e80941Smrg if (inst->dst.type != inst->src[0].type && 825b8e80941Smrg inst->dst.type != BRW_REGISTER_TYPE_DF && 826b8e80941Smrg inst->src[0].type != BRW_REGISTER_TYPE_F) 827b8e80941Smrg assert(!"unimplemented: saturate mixed types"); 828b8e80941Smrg 829b8e80941Smrg if (brw_saturate_immediate(inst->src[0].type, 830b8e80941Smrg &inst->src[0].as_brw_reg())) { 831b8e80941Smrg inst->saturate = false; 832b8e80941Smrg progress = true; 833b8e80941Smrg } 834b8e80941Smrg } 835b8e80941Smrg break; 836b8e80941Smrg 837b8e80941Smrg case BRW_OPCODE_OR: 838b8e80941Smrg if (inst->src[1].is_zero()) { 839b8e80941Smrg inst->opcode = BRW_OPCODE_MOV; 840b8e80941Smrg inst->src[1] = src_reg(); 841b8e80941Smrg progress = true; 842b8e80941Smrg } 843b8e80941Smrg break; 844b8e80941Smrg 845b8e80941Smrg case VEC4_OPCODE_UNPACK_UNIFORM: 846b8e80941Smrg if (inst->src[0].file != UNIFORM) { 847b8e80941Smrg inst->opcode = BRW_OPCODE_MOV; 848b8e80941Smrg progress = true; 849b8e80941Smrg } 850b8e80941Smrg break; 851b8e80941Smrg 852b8e80941Smrg case BRW_OPCODE_ADD: 853b8e80941Smrg if (inst->src[1].is_zero()) { 854b8e80941Smrg inst->opcode = BRW_OPCODE_MOV; 855b8e80941Smrg inst->src[1] = src_reg(); 856b8e80941Smrg progress = true; 857b8e80941Smrg } 858b8e80941Smrg break; 859b8e80941Smrg 860b8e80941Smrg case BRW_OPCODE_MUL: 861b8e80941Smrg if (inst->src[1].is_zero()) { 862b8e80941Smrg inst->opcode = BRW_OPCODE_MOV; 863b8e80941Smrg switch (inst->src[0].type) { 864b8e80941Smrg case BRW_REGISTER_TYPE_F: 865b8e80941Smrg inst->src[0] = brw_imm_f(0.0f); 866b8e80941Smrg break; 867b8e80941Smrg case BRW_REGISTER_TYPE_D: 868b8e80941Smrg inst->src[0] = brw_imm_d(0); 869b8e80941Smrg break; 870b8e80941Smrg case BRW_REGISTER_TYPE_UD: 871b8e80941Smrg inst->src[0] = brw_imm_ud(0u); 872b8e80941Smrg break; 873b8e80941Smrg default: 874b8e80941Smrg unreachable("not reached"); 875b8e80941Smrg } 876b8e80941Smrg inst->src[1] = src_reg(); 877b8e80941Smrg progress = true; 878b8e80941Smrg } else if (inst->src[1].is_one()) { 879b8e80941Smrg inst->opcode = BRW_OPCODE_MOV; 880b8e80941Smrg inst->src[1] = src_reg(); 881b8e80941Smrg progress = true; 882b8e80941Smrg } else if (inst->src[1].is_negative_one()) { 883b8e80941Smrg inst->opcode = BRW_OPCODE_MOV; 884b8e80941Smrg inst->src[0].negate = !inst->src[0].negate; 885b8e80941Smrg inst->src[1] = src_reg(); 886b8e80941Smrg progress = true; 887b8e80941Smrg } 888b8e80941Smrg break; 889b8e80941Smrg case SHADER_OPCODE_BROADCAST: 890b8e80941Smrg if (is_uniform(inst->src[0]) || 891b8e80941Smrg inst->src[1].is_zero()) { 892b8e80941Smrg inst->opcode = BRW_OPCODE_MOV; 893b8e80941Smrg inst->src[1] = src_reg(); 894b8e80941Smrg inst->force_writemask_all = true; 895b8e80941Smrg progress = true; 896b8e80941Smrg } 897b8e80941Smrg break; 898b8e80941Smrg 899b8e80941Smrg default: 900b8e80941Smrg break; 901b8e80941Smrg } 902b8e80941Smrg } 903b8e80941Smrg 904b8e80941Smrg if (progress) 905b8e80941Smrg invalidate_live_intervals(); 906b8e80941Smrg 907b8e80941Smrg return progress; 908b8e80941Smrg} 909b8e80941Smrg 910b8e80941Smrg/** 911b8e80941Smrg * Only a limited number of hardware registers may be used for push 912b8e80941Smrg * constants, so this turns access to the overflowed constants into 913b8e80941Smrg * pull constants. 914b8e80941Smrg */ 915b8e80941Smrgvoid 916b8e80941Smrgvec4_visitor::move_push_constants_to_pull_constants() 917b8e80941Smrg{ 918b8e80941Smrg int pull_constant_loc[this->uniforms]; 919b8e80941Smrg 920b8e80941Smrg /* Only allow 32 registers (256 uniform components) as push constants, 921b8e80941Smrg * which is the limit on gen6. 922b8e80941Smrg * 923b8e80941Smrg * If changing this value, note the limitation about total_regs in 924b8e80941Smrg * brw_curbe.c. 925b8e80941Smrg */ 926b8e80941Smrg int max_uniform_components = 32 * 8; 927b8e80941Smrg if (this->uniforms * 4 <= max_uniform_components) 928b8e80941Smrg return; 929b8e80941Smrg 930b8e80941Smrg /* Make some sort of choice as to which uniforms get sent to pull 931b8e80941Smrg * constants. We could potentially do something clever here like 932b8e80941Smrg * look for the most infrequently used uniform vec4s, but leave 933b8e80941Smrg * that for later. 934b8e80941Smrg */ 935b8e80941Smrg for (int i = 0; i < this->uniforms * 4; i += 4) { 936b8e80941Smrg pull_constant_loc[i / 4] = -1; 937b8e80941Smrg 938b8e80941Smrg if (i >= max_uniform_components) { 939b8e80941Smrg uint32_t *values = &stage_prog_data->param[i]; 940b8e80941Smrg 941b8e80941Smrg /* Try to find an existing copy of this uniform in the pull 942b8e80941Smrg * constants if it was part of an array access already. 943b8e80941Smrg */ 944b8e80941Smrg for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) { 945b8e80941Smrg int matches; 946b8e80941Smrg 947b8e80941Smrg for (matches = 0; matches < 4; matches++) { 948b8e80941Smrg if (stage_prog_data->pull_param[j + matches] != values[matches]) 949b8e80941Smrg break; 950b8e80941Smrg } 951b8e80941Smrg 952b8e80941Smrg if (matches == 4) { 953b8e80941Smrg pull_constant_loc[i / 4] = j / 4; 954b8e80941Smrg break; 955b8e80941Smrg } 956b8e80941Smrg } 957b8e80941Smrg 958b8e80941Smrg if (pull_constant_loc[i / 4] == -1) { 959b8e80941Smrg assert(stage_prog_data->nr_pull_params % 4 == 0); 960b8e80941Smrg pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4; 961b8e80941Smrg 962b8e80941Smrg for (int j = 0; j < 4; j++) { 963b8e80941Smrg stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] = 964b8e80941Smrg values[j]; 965b8e80941Smrg } 966b8e80941Smrg } 967b8e80941Smrg } 968b8e80941Smrg } 969b8e80941Smrg 970b8e80941Smrg /* Now actually rewrite usage of the things we've moved to pull 971b8e80941Smrg * constants. 972b8e80941Smrg */ 973b8e80941Smrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 974b8e80941Smrg for (int i = 0 ; i < 3; i++) { 975b8e80941Smrg if (inst->src[i].file != UNIFORM || 976b8e80941Smrg pull_constant_loc[inst->src[i].nr] == -1) 977b8e80941Smrg continue; 978b8e80941Smrg 979b8e80941Smrg int uniform = inst->src[i].nr; 980b8e80941Smrg 981b8e80941Smrg const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ? 982b8e80941Smrg glsl_type::dvec4_type : glsl_type::vec4_type; 983b8e80941Smrg dst_reg temp = dst_reg(this, temp_type); 984b8e80941Smrg 985b8e80941Smrg emit_pull_constant_load(block, inst, temp, inst->src[i], 986b8e80941Smrg pull_constant_loc[uniform], src_reg()); 987b8e80941Smrg 988b8e80941Smrg inst->src[i].file = temp.file; 989b8e80941Smrg inst->src[i].nr = temp.nr; 990b8e80941Smrg inst->src[i].offset %= 16; 991b8e80941Smrg inst->src[i].reladdr = NULL; 992b8e80941Smrg } 993b8e80941Smrg } 994b8e80941Smrg 995b8e80941Smrg /* Repack push constants to remove the now-unused ones. */ 996b8e80941Smrg pack_uniform_registers(); 997b8e80941Smrg} 998b8e80941Smrg 999b8e80941Smrg/* Conditions for which we want to avoid setting the dependency control bits */ 1000b8e80941Smrgbool 1001b8e80941Smrgvec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst) 1002b8e80941Smrg{ 1003b8e80941Smrg#define IS_DWORD(reg) \ 1004b8e80941Smrg (reg.type == BRW_REGISTER_TYPE_UD || \ 1005b8e80941Smrg reg.type == BRW_REGISTER_TYPE_D) 1006b8e80941Smrg 1007b8e80941Smrg#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8) 1008b8e80941Smrg 1009b8e80941Smrg /* From the Cherryview and Broadwell PRMs: 1010b8e80941Smrg * 1011b8e80941Smrg * "When source or destination datatype is 64b or operation is integer DWord 1012b8e80941Smrg * multiply, DepCtrl must not be used." 1013b8e80941Smrg * 1014b8e80941Smrg * SKL PRMs don't include this restriction, however, gen7 seems to be 1015b8e80941Smrg * affected, at least by the 64b restriction, since DepCtrl with double 1016b8e80941Smrg * precision instructions seems to produce GPU hangs in some cases. 1017b8e80941Smrg */ 1018b8e80941Smrg if (devinfo->gen == 8 || gen_device_info_is_9lp(devinfo)) { 1019b8e80941Smrg if (inst->opcode == BRW_OPCODE_MUL && 1020b8e80941Smrg IS_DWORD(inst->src[0]) && 1021b8e80941Smrg IS_DWORD(inst->src[1])) 1022b8e80941Smrg return true; 1023b8e80941Smrg } 1024b8e80941Smrg 1025b8e80941Smrg if (devinfo->gen >= 7 && devinfo->gen <= 8) { 1026b8e80941Smrg if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) || 1027b8e80941Smrg IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2])) 1028b8e80941Smrg return true; 1029b8e80941Smrg } 1030b8e80941Smrg 1031b8e80941Smrg#undef IS_64BIT 1032b8e80941Smrg#undef IS_DWORD 1033b8e80941Smrg 1034b8e80941Smrg if (devinfo->gen >= 8) { 1035b8e80941Smrg if (inst->opcode == BRW_OPCODE_F32TO16) 1036b8e80941Smrg return true; 1037b8e80941Smrg } 1038b8e80941Smrg 1039b8e80941Smrg /* 1040b8e80941Smrg * mlen: 1041b8e80941Smrg * In the presence of send messages, totally interrupt dependency 1042b8e80941Smrg * control. They're long enough that the chance of dependency 1043b8e80941Smrg * control around them just doesn't matter. 1044b8e80941Smrg * 1045b8e80941Smrg * predicate: 1046b8e80941Smrg * From the Ivy Bridge PRM, volume 4 part 3.7, page 80: 1047b8e80941Smrg * When a sequence of NoDDChk and NoDDClr are used, the last instruction that 1048b8e80941Smrg * completes the scoreboard clear must have a non-zero execution mask. This 1049b8e80941Smrg * means, if any kind of predication can change the execution mask or channel 1050b8e80941Smrg * enable of the last instruction, the optimization must be avoided. This is 1051b8e80941Smrg * to avoid instructions being shot down the pipeline when no writes are 1052b8e80941Smrg * required. 1053b8e80941Smrg * 1054b8e80941Smrg * math: 1055b8e80941Smrg * Dependency control does not work well over math instructions. 1056b8e80941Smrg * NB: Discovered empirically 1057b8e80941Smrg */ 1058b8e80941Smrg return (inst->mlen || inst->predicate || inst->is_math()); 1059b8e80941Smrg} 1060b8e80941Smrg 1061b8e80941Smrg/** 1062b8e80941Smrg * Sets the dependency control fields on instructions after register 1063b8e80941Smrg * allocation and before the generator is run. 1064b8e80941Smrg * 1065b8e80941Smrg * When you have a sequence of instructions like: 1066b8e80941Smrg * 1067b8e80941Smrg * DP4 temp.x vertex uniform[0] 1068b8e80941Smrg * DP4 temp.y vertex uniform[0] 1069b8e80941Smrg * DP4 temp.z vertex uniform[0] 1070b8e80941Smrg * DP4 temp.w vertex uniform[0] 1071b8e80941Smrg * 1072b8e80941Smrg * The hardware doesn't know that it can actually run the later instructions 1073b8e80941Smrg * while the previous ones are in flight, producing stalls. However, we have 1074b8e80941Smrg * manual fields we can set in the instructions that let it do so. 1075b8e80941Smrg */ 1076b8e80941Smrgvoid 1077b8e80941Smrgvec4_visitor::opt_set_dependency_control() 1078b8e80941Smrg{ 1079b8e80941Smrg vec4_instruction *last_grf_write[BRW_MAX_GRF]; 1080b8e80941Smrg uint8_t grf_channels_written[BRW_MAX_GRF]; 1081b8e80941Smrg vec4_instruction *last_mrf_write[BRW_MAX_GRF]; 1082b8e80941Smrg uint8_t mrf_channels_written[BRW_MAX_GRF]; 1083b8e80941Smrg 1084b8e80941Smrg assert(prog_data->total_grf || 1085b8e80941Smrg !"Must be called after register allocation"); 1086b8e80941Smrg 1087b8e80941Smrg foreach_block (block, cfg) { 1088b8e80941Smrg memset(last_grf_write, 0, sizeof(last_grf_write)); 1089b8e80941Smrg memset(last_mrf_write, 0, sizeof(last_mrf_write)); 1090b8e80941Smrg 1091b8e80941Smrg foreach_inst_in_block (vec4_instruction, inst, block) { 1092b8e80941Smrg /* If we read from a register that we were doing dependency control 1093b8e80941Smrg * on, don't do dependency control across the read. 1094b8e80941Smrg */ 1095b8e80941Smrg for (int i = 0; i < 3; i++) { 1096b8e80941Smrg int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE; 1097b8e80941Smrg if (inst->src[i].file == VGRF) { 1098b8e80941Smrg last_grf_write[reg] = NULL; 1099b8e80941Smrg } else if (inst->src[i].file == FIXED_GRF) { 1100b8e80941Smrg memset(last_grf_write, 0, sizeof(last_grf_write)); 1101b8e80941Smrg break; 1102b8e80941Smrg } 1103b8e80941Smrg assert(inst->src[i].file != MRF); 1104b8e80941Smrg } 1105b8e80941Smrg 1106b8e80941Smrg if (is_dep_ctrl_unsafe(inst)) { 1107b8e80941Smrg memset(last_grf_write, 0, sizeof(last_grf_write)); 1108b8e80941Smrg memset(last_mrf_write, 0, sizeof(last_mrf_write)); 1109b8e80941Smrg continue; 1110b8e80941Smrg } 1111b8e80941Smrg 1112b8e80941Smrg /* Now, see if we can do dependency control for this instruction 1113b8e80941Smrg * against a previous one writing to its destination. 1114b8e80941Smrg */ 1115b8e80941Smrg int reg = inst->dst.nr + inst->dst.offset / REG_SIZE; 1116b8e80941Smrg if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) { 1117b8e80941Smrg if (last_grf_write[reg] && 1118b8e80941Smrg last_grf_write[reg]->dst.offset == inst->dst.offset && 1119b8e80941Smrg !(inst->dst.writemask & grf_channels_written[reg])) { 1120b8e80941Smrg last_grf_write[reg]->no_dd_clear = true; 1121b8e80941Smrg inst->no_dd_check = true; 1122b8e80941Smrg } else { 1123b8e80941Smrg grf_channels_written[reg] = 0; 1124b8e80941Smrg } 1125b8e80941Smrg 1126b8e80941Smrg last_grf_write[reg] = inst; 1127b8e80941Smrg grf_channels_written[reg] |= inst->dst.writemask; 1128b8e80941Smrg } else if (inst->dst.file == MRF) { 1129b8e80941Smrg if (last_mrf_write[reg] && 1130b8e80941Smrg last_mrf_write[reg]->dst.offset == inst->dst.offset && 1131b8e80941Smrg !(inst->dst.writemask & mrf_channels_written[reg])) { 1132b8e80941Smrg last_mrf_write[reg]->no_dd_clear = true; 1133b8e80941Smrg inst->no_dd_check = true; 1134b8e80941Smrg } else { 1135b8e80941Smrg mrf_channels_written[reg] = 0; 1136b8e80941Smrg } 1137b8e80941Smrg 1138b8e80941Smrg last_mrf_write[reg] = inst; 1139b8e80941Smrg mrf_channels_written[reg] |= inst->dst.writemask; 1140b8e80941Smrg } 1141b8e80941Smrg } 1142b8e80941Smrg } 1143b8e80941Smrg} 1144b8e80941Smrg 1145b8e80941Smrgbool 1146b8e80941Smrgvec4_instruction::can_reswizzle(const struct gen_device_info *devinfo, 1147b8e80941Smrg int dst_writemask, 1148b8e80941Smrg int swizzle, 1149b8e80941Smrg int swizzle_mask) 1150b8e80941Smrg{ 1151b8e80941Smrg /* Gen6 MATH instructions can not execute in align16 mode, so swizzles 1152b8e80941Smrg * are not allowed. 1153b8e80941Smrg */ 1154b8e80941Smrg if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW) 1155b8e80941Smrg return false; 1156b8e80941Smrg 1157b8e80941Smrg /* If we write to the flag register changing the swizzle would change 1158b8e80941Smrg * what channels are written to the flag register. 1159b8e80941Smrg */ 1160b8e80941Smrg if (writes_flag()) 1161b8e80941Smrg return false; 1162b8e80941Smrg 1163b8e80941Smrg /* We can't swizzle implicit accumulator access. We'd have to 1164b8e80941Smrg * reswizzle the producer of the accumulator value in addition 1165b8e80941Smrg * to the consumer (i.e. both MUL and MACH). Just skip this. 1166b8e80941Smrg */ 1167b8e80941Smrg if (reads_accumulator_implicitly()) 1168b8e80941Smrg return false; 1169b8e80941Smrg 1170b8e80941Smrg if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW) 1171b8e80941Smrg return false; 1172b8e80941Smrg 1173b8e80941Smrg /* If this instruction sets anything not referenced by swizzle, then we'd 1174b8e80941Smrg * totally break it when we reswizzle. 1175b8e80941Smrg */ 1176b8e80941Smrg if (dst.writemask & ~swizzle_mask) 1177b8e80941Smrg return false; 1178b8e80941Smrg 1179b8e80941Smrg if (mlen > 0) 1180b8e80941Smrg return false; 1181b8e80941Smrg 1182b8e80941Smrg for (int i = 0; i < 3; i++) { 1183b8e80941Smrg if (src[i].is_accumulator()) 1184b8e80941Smrg return false; 1185b8e80941Smrg } 1186b8e80941Smrg 1187b8e80941Smrg return true; 1188b8e80941Smrg} 1189b8e80941Smrg 1190b8e80941Smrg/** 1191b8e80941Smrg * For any channels in the swizzle's source that were populated by this 1192b8e80941Smrg * instruction, rewrite the instruction to put the appropriate result directly 1193b8e80941Smrg * in those channels. 1194b8e80941Smrg * 1195b8e80941Smrg * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x 1196b8e80941Smrg */ 1197b8e80941Smrgvoid 1198b8e80941Smrgvec4_instruction::reswizzle(int dst_writemask, int swizzle) 1199b8e80941Smrg{ 1200b8e80941Smrg /* Destination write mask doesn't correspond to source swizzle for the dot 1201b8e80941Smrg * product and pack_bytes instructions. 1202b8e80941Smrg */ 1203b8e80941Smrg if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH && 1204b8e80941Smrg opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 && 1205b8e80941Smrg opcode != VEC4_OPCODE_PACK_BYTES) { 1206b8e80941Smrg for (int i = 0; i < 3; i++) { 1207b8e80941Smrg if (src[i].file == BAD_FILE) 1208b8e80941Smrg continue; 1209b8e80941Smrg 1210b8e80941Smrg if (src[i].file == IMM) { 1211b8e80941Smrg assert(src[i].type != BRW_REGISTER_TYPE_V && 1212b8e80941Smrg src[i].type != BRW_REGISTER_TYPE_UV); 1213b8e80941Smrg 1214b8e80941Smrg /* Vector immediate types need to be reswizzled. */ 1215b8e80941Smrg if (src[i].type == BRW_REGISTER_TYPE_VF) { 1216b8e80941Smrg const unsigned imm[] = { 1217b8e80941Smrg (src[i].ud >> 0) & 0x0ff, 1218b8e80941Smrg (src[i].ud >> 8) & 0x0ff, 1219b8e80941Smrg (src[i].ud >> 16) & 0x0ff, 1220b8e80941Smrg (src[i].ud >> 24) & 0x0ff, 1221b8e80941Smrg }; 1222b8e80941Smrg 1223b8e80941Smrg src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)], 1224b8e80941Smrg imm[BRW_GET_SWZ(swizzle, 1)], 1225b8e80941Smrg imm[BRW_GET_SWZ(swizzle, 2)], 1226b8e80941Smrg imm[BRW_GET_SWZ(swizzle, 3)]); 1227b8e80941Smrg } 1228b8e80941Smrg 1229b8e80941Smrg continue; 1230b8e80941Smrg } 1231b8e80941Smrg 1232b8e80941Smrg src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle); 1233b8e80941Smrg } 1234b8e80941Smrg } 1235b8e80941Smrg 1236b8e80941Smrg /* Apply the specified swizzle and writemask to the original mask of 1237b8e80941Smrg * written components. 1238b8e80941Smrg */ 1239b8e80941Smrg dst.writemask = dst_writemask & 1240b8e80941Smrg brw_apply_swizzle_to_mask(swizzle, dst.writemask); 1241b8e80941Smrg} 1242b8e80941Smrg 1243b8e80941Smrg/* 1244b8e80941Smrg * Tries to reduce extra MOV instructions by taking temporary GRFs that get 1245b8e80941Smrg * just written and then MOVed into another reg and making the original write 1246b8e80941Smrg * of the GRF write directly to the final destination instead. 1247b8e80941Smrg */ 1248b8e80941Smrgbool 1249b8e80941Smrgvec4_visitor::opt_register_coalesce() 1250b8e80941Smrg{ 1251b8e80941Smrg bool progress = false; 1252b8e80941Smrg int next_ip = 0; 1253b8e80941Smrg 1254b8e80941Smrg calculate_live_intervals(); 1255b8e80941Smrg 1256b8e80941Smrg foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 1257b8e80941Smrg int ip = next_ip; 1258b8e80941Smrg next_ip++; 1259b8e80941Smrg 1260b8e80941Smrg if (inst->opcode != BRW_OPCODE_MOV || 1261b8e80941Smrg (inst->dst.file != VGRF && inst->dst.file != MRF) || 1262b8e80941Smrg inst->predicate || 1263b8e80941Smrg inst->src[0].file != VGRF || 1264b8e80941Smrg inst->dst.type != inst->src[0].type || 1265b8e80941Smrg inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr) 1266b8e80941Smrg continue; 1267b8e80941Smrg 1268b8e80941Smrg /* Remove no-op MOVs */ 1269b8e80941Smrg if (inst->dst.file == inst->src[0].file && 1270b8e80941Smrg inst->dst.nr == inst->src[0].nr && 1271b8e80941Smrg inst->dst.offset == inst->src[0].offset) { 1272b8e80941Smrg bool is_nop_mov = true; 1273b8e80941Smrg 1274b8e80941Smrg for (unsigned c = 0; c < 4; c++) { 1275b8e80941Smrg if ((inst->dst.writemask & (1 << c)) == 0) 1276b8e80941Smrg continue; 1277b8e80941Smrg 1278b8e80941Smrg if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) { 1279b8e80941Smrg is_nop_mov = false; 1280b8e80941Smrg break; 1281b8e80941Smrg } 1282b8e80941Smrg } 1283b8e80941Smrg 1284b8e80941Smrg if (is_nop_mov) { 1285b8e80941Smrg inst->remove(block); 1286b8e80941Smrg progress = true; 1287b8e80941Smrg continue; 1288b8e80941Smrg } 1289b8e80941Smrg } 1290b8e80941Smrg 1291b8e80941Smrg bool to_mrf = (inst->dst.file == MRF); 1292b8e80941Smrg 1293b8e80941Smrg /* Can't coalesce this GRF if someone else was going to 1294b8e80941Smrg * read it later. 1295b8e80941Smrg */ 1296b8e80941Smrg if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip) 1297b8e80941Smrg continue; 1298b8e80941Smrg 1299b8e80941Smrg /* We need to check interference with the final destination between this 1300b8e80941Smrg * instruction and the earliest instruction involved in writing the GRF 1301b8e80941Smrg * we're eliminating. To do that, keep track of which of our source 1302b8e80941Smrg * channels we've seen initialized. 1303b8e80941Smrg */ 1304b8e80941Smrg const unsigned chans_needed = 1305b8e80941Smrg brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle, 1306b8e80941Smrg inst->dst.writemask); 1307b8e80941Smrg unsigned chans_remaining = chans_needed; 1308b8e80941Smrg 1309b8e80941Smrg /* Now walk up the instruction stream trying to see if we can rewrite 1310b8e80941Smrg * everything writing to the temporary to write into the destination 1311b8e80941Smrg * instead. 1312b8e80941Smrg */ 1313b8e80941Smrg vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev; 1314b8e80941Smrg foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst, 1315b8e80941Smrg inst) { 1316b8e80941Smrg _scan_inst = scan_inst; 1317b8e80941Smrg 1318b8e80941Smrg if (regions_overlap(inst->src[0], inst->size_read(0), 1319b8e80941Smrg scan_inst->dst, scan_inst->size_written)) { 1320b8e80941Smrg /* Found something writing to the reg we want to coalesce away. */ 1321b8e80941Smrg if (to_mrf) { 1322b8e80941Smrg /* SEND instructions can't have MRF as a destination. */ 1323b8e80941Smrg if (scan_inst->mlen) 1324b8e80941Smrg break; 1325b8e80941Smrg 1326b8e80941Smrg if (devinfo->gen == 6) { 1327b8e80941Smrg /* gen6 math instructions must have the destination be 1328b8e80941Smrg * VGRF, so no compute-to-MRF for them. 1329b8e80941Smrg */ 1330b8e80941Smrg if (scan_inst->is_math()) { 1331b8e80941Smrg break; 1332b8e80941Smrg } 1333b8e80941Smrg } 1334b8e80941Smrg } 1335b8e80941Smrg 1336b8e80941Smrg /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1) 1337b8e80941Smrg * instructions, and this optimization pass is not capable of 1338b8e80941Smrg * handling that. Bail on these instructions and hope that some 1339b8e80941Smrg * later optimization pass can do the right thing after they are 1340b8e80941Smrg * expanded. 1341b8e80941Smrg */ 1342b8e80941Smrg if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2) 1343b8e80941Smrg break; 1344b8e80941Smrg 1345b8e80941Smrg /* This doesn't handle saturation on the instruction we 1346b8e80941Smrg * want to coalesce away if the register types do not match. 1347b8e80941Smrg * But if scan_inst is a non type-converting 'mov', we can fix 1348b8e80941Smrg * the types later. 1349b8e80941Smrg */ 1350b8e80941Smrg if (inst->saturate && 1351b8e80941Smrg inst->dst.type != scan_inst->dst.type && 1352b8e80941Smrg !(scan_inst->opcode == BRW_OPCODE_MOV && 1353b8e80941Smrg scan_inst->dst.type == scan_inst->src[0].type)) 1354b8e80941Smrg break; 1355b8e80941Smrg 1356b8e80941Smrg /* Only allow coalescing between registers of the same type size. 1357b8e80941Smrg * Otherwise we would need to make the pass aware of the fact that 1358b8e80941Smrg * channel sizes are different for single and double precision. 1359b8e80941Smrg */ 1360b8e80941Smrg if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type)) 1361b8e80941Smrg break; 1362b8e80941Smrg 1363b8e80941Smrg /* Check that scan_inst writes the same amount of data as the 1364b8e80941Smrg * instruction, otherwise coalescing would lead to writing a 1365b8e80941Smrg * different (larger or smaller) region of the destination 1366b8e80941Smrg */ 1367b8e80941Smrg if (scan_inst->size_written != inst->size_written) 1368b8e80941Smrg break; 1369b8e80941Smrg 1370b8e80941Smrg /* If we can't handle the swizzle, bail. */ 1371b8e80941Smrg if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask, 1372b8e80941Smrg inst->src[0].swizzle, 1373b8e80941Smrg chans_needed)) { 1374b8e80941Smrg break; 1375b8e80941Smrg } 1376b8e80941Smrg 1377b8e80941Smrg /* This only handles coalescing writes of 8 channels (1 register 1378b8e80941Smrg * for single-precision and 2 registers for double-precision) 1379b8e80941Smrg * starting at the source offset of the copy instruction. 1380b8e80941Smrg */ 1381b8e80941Smrg if (DIV_ROUND_UP(scan_inst->size_written, 1382b8e80941Smrg type_sz(scan_inst->dst.type)) > 8 || 1383b8e80941Smrg scan_inst->dst.offset != inst->src[0].offset) 1384b8e80941Smrg break; 1385b8e80941Smrg 1386b8e80941Smrg /* Mark which channels we found unconditional writes for. */ 1387b8e80941Smrg if (!scan_inst->predicate) 1388b8e80941Smrg chans_remaining &= ~scan_inst->dst.writemask; 1389b8e80941Smrg 1390b8e80941Smrg if (chans_remaining == 0) 1391b8e80941Smrg break; 1392b8e80941Smrg } 1393b8e80941Smrg 1394b8e80941Smrg /* You can't read from an MRF, so if someone else reads our MRF's 1395b8e80941Smrg * source GRF that we wanted to rewrite, that stops us. If it's a 1396b8e80941Smrg * GRF we're trying to coalesce to, we don't actually handle 1397b8e80941Smrg * rewriting sources so bail in that case as well. 1398b8e80941Smrg */ 1399b8e80941Smrg bool interfered = false; 1400b8e80941Smrg for (int i = 0; i < 3; i++) { 1401b8e80941Smrg if (regions_overlap(inst->src[0], inst->size_read(0), 1402b8e80941Smrg scan_inst->src[i], scan_inst->size_read(i))) 1403b8e80941Smrg interfered = true; 1404b8e80941Smrg } 1405b8e80941Smrg if (interfered) 1406b8e80941Smrg break; 1407b8e80941Smrg 1408b8e80941Smrg /* If somebody else writes the same channels of our destination here, 1409b8e80941Smrg * we can't coalesce before that. 1410b8e80941Smrg */ 1411b8e80941Smrg if (regions_overlap(inst->dst, inst->size_written, 1412b8e80941Smrg scan_inst->dst, scan_inst->size_written) && 1413b8e80941Smrg (inst->dst.writemask & scan_inst->dst.writemask) != 0) { 1414b8e80941Smrg break; 1415b8e80941Smrg } 1416b8e80941Smrg 1417b8e80941Smrg /* Check for reads of the register we're trying to coalesce into. We 1418b8e80941Smrg * can't go rewriting instructions above that to put some other value 1419b8e80941Smrg * in the register instead. 1420b8e80941Smrg */ 1421b8e80941Smrg if (to_mrf && scan_inst->mlen > 0) { 1422b8e80941Smrg unsigned start = scan_inst->base_mrf; 1423b8e80941Smrg unsigned end = scan_inst->base_mrf + scan_inst->mlen; 1424b8e80941Smrg 1425b8e80941Smrg if (inst->dst.nr >= start && inst->dst.nr < end) { 1426b8e80941Smrg break; 1427b8e80941Smrg } 1428b8e80941Smrg } else { 1429b8e80941Smrg for (int i = 0; i < 3; i++) { 1430b8e80941Smrg if (regions_overlap(inst->dst, inst->size_written, 1431b8e80941Smrg scan_inst->src[i], scan_inst->size_read(i))) 1432b8e80941Smrg interfered = true; 1433b8e80941Smrg } 1434b8e80941Smrg if (interfered) 1435b8e80941Smrg break; 1436b8e80941Smrg } 1437b8e80941Smrg } 1438b8e80941Smrg 1439b8e80941Smrg if (chans_remaining == 0) { 1440b8e80941Smrg /* If we've made it here, we have an MOV we want to coalesce out, and 1441b8e80941Smrg * a scan_inst pointing to the earliest instruction involved in 1442b8e80941Smrg * computing the value. Now go rewrite the instruction stream 1443b8e80941Smrg * between the two. 1444b8e80941Smrg */ 1445b8e80941Smrg vec4_instruction *scan_inst = _scan_inst; 1446b8e80941Smrg while (scan_inst != inst) { 1447b8e80941Smrg if (scan_inst->dst.file == VGRF && 1448b8e80941Smrg scan_inst->dst.nr == inst->src[0].nr && 1449b8e80941Smrg scan_inst->dst.offset == inst->src[0].offset) { 1450b8e80941Smrg scan_inst->reswizzle(inst->dst.writemask, 1451b8e80941Smrg inst->src[0].swizzle); 1452b8e80941Smrg scan_inst->dst.file = inst->dst.file; 1453b8e80941Smrg scan_inst->dst.nr = inst->dst.nr; 1454b8e80941Smrg scan_inst->dst.offset = inst->dst.offset; 1455b8e80941Smrg if (inst->saturate && 1456b8e80941Smrg inst->dst.type != scan_inst->dst.type) { 1457b8e80941Smrg /* If we have reached this point, scan_inst is a non 1458b8e80941Smrg * type-converting 'mov' and we can modify its register types 1459b8e80941Smrg * to match the ones in inst. Otherwise, we could have an 1460b8e80941Smrg * incorrect saturation result. 1461b8e80941Smrg */ 1462b8e80941Smrg scan_inst->dst.type = inst->dst.type; 1463b8e80941Smrg scan_inst->src[0].type = inst->src[0].type; 1464b8e80941Smrg } 1465b8e80941Smrg scan_inst->saturate |= inst->saturate; 1466b8e80941Smrg } 1467b8e80941Smrg scan_inst = (vec4_instruction *)scan_inst->next; 1468b8e80941Smrg } 1469b8e80941Smrg inst->remove(block); 1470b8e80941Smrg progress = true; 1471b8e80941Smrg } 1472b8e80941Smrg } 1473b8e80941Smrg 1474b8e80941Smrg if (progress) 1475b8e80941Smrg invalidate_live_intervals(); 1476b8e80941Smrg 1477b8e80941Smrg return progress; 1478b8e80941Smrg} 1479b8e80941Smrg 1480b8e80941Smrg/** 1481b8e80941Smrg * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control 1482b8e80941Smrg * flow. We could probably do better here with some form of divergence 1483b8e80941Smrg * analysis. 1484b8e80941Smrg */ 1485b8e80941Smrgbool 1486b8e80941Smrgvec4_visitor::eliminate_find_live_channel() 1487b8e80941Smrg{ 1488b8e80941Smrg bool progress = false; 1489b8e80941Smrg unsigned depth = 0; 1490b8e80941Smrg 1491b8e80941Smrg if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { 1492b8e80941Smrg /* The optimization below assumes that channel zero is live on thread 1493b8e80941Smrg * dispatch, which may not be the case if the fixed function dispatches 1494b8e80941Smrg * threads sparsely. 1495b8e80941Smrg */ 1496b8e80941Smrg return false; 1497b8e80941Smrg } 1498b8e80941Smrg 1499b8e80941Smrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 1500b8e80941Smrg switch (inst->opcode) { 1501b8e80941Smrg case BRW_OPCODE_IF: 1502b8e80941Smrg case BRW_OPCODE_DO: 1503b8e80941Smrg depth++; 1504b8e80941Smrg break; 1505b8e80941Smrg 1506b8e80941Smrg case BRW_OPCODE_ENDIF: 1507b8e80941Smrg case BRW_OPCODE_WHILE: 1508b8e80941Smrg depth--; 1509b8e80941Smrg break; 1510b8e80941Smrg 1511b8e80941Smrg case SHADER_OPCODE_FIND_LIVE_CHANNEL: 1512b8e80941Smrg if (depth == 0) { 1513b8e80941Smrg inst->opcode = BRW_OPCODE_MOV; 1514b8e80941Smrg inst->src[0] = brw_imm_d(0); 1515b8e80941Smrg inst->force_writemask_all = true; 1516b8e80941Smrg progress = true; 1517b8e80941Smrg } 1518b8e80941Smrg break; 1519b8e80941Smrg 1520b8e80941Smrg default: 1521b8e80941Smrg break; 1522b8e80941Smrg } 1523b8e80941Smrg } 1524b8e80941Smrg 1525b8e80941Smrg return progress; 1526b8e80941Smrg} 1527b8e80941Smrg 1528b8e80941Smrg/** 1529b8e80941Smrg * Splits virtual GRFs requesting more than one contiguous physical register. 1530b8e80941Smrg * 1531b8e80941Smrg * We initially create large virtual GRFs for temporary structures, arrays, 1532b8e80941Smrg * and matrices, so that the visitor functions can add offsets to work their 1533b8e80941Smrg * way down to the actual member being accessed. But when it comes to 1534b8e80941Smrg * optimization, we'd like to treat each register as individual storage if 1535b8e80941Smrg * possible. 1536b8e80941Smrg * 1537b8e80941Smrg * So far, the only thing that might prevent splitting is a send message from 1538b8e80941Smrg * a GRF on IVB. 1539b8e80941Smrg */ 1540b8e80941Smrgvoid 1541b8e80941Smrgvec4_visitor::split_virtual_grfs() 1542b8e80941Smrg{ 1543b8e80941Smrg int num_vars = this->alloc.count; 1544b8e80941Smrg int new_virtual_grf[num_vars]; 1545b8e80941Smrg bool split_grf[num_vars]; 1546b8e80941Smrg 1547b8e80941Smrg memset(new_virtual_grf, 0, sizeof(new_virtual_grf)); 1548b8e80941Smrg 1549b8e80941Smrg /* Try to split anything > 0 sized. */ 1550b8e80941Smrg for (int i = 0; i < num_vars; i++) { 1551b8e80941Smrg split_grf[i] = this->alloc.sizes[i] != 1; 1552b8e80941Smrg } 1553b8e80941Smrg 1554b8e80941Smrg /* Check that the instructions are compatible with the registers we're trying 1555b8e80941Smrg * to split. 1556b8e80941Smrg */ 1557b8e80941Smrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1558b8e80941Smrg if (inst->dst.file == VGRF && regs_written(inst) > 1) 1559b8e80941Smrg split_grf[inst->dst.nr] = false; 1560b8e80941Smrg 1561b8e80941Smrg for (int i = 0; i < 3; i++) { 1562b8e80941Smrg if (inst->src[i].file == VGRF && regs_read(inst, i) > 1) 1563b8e80941Smrg split_grf[inst->src[i].nr] = false; 1564b8e80941Smrg } 1565b8e80941Smrg } 1566b8e80941Smrg 1567b8e80941Smrg /* Allocate new space for split regs. Note that the virtual 1568b8e80941Smrg * numbers will be contiguous. 1569b8e80941Smrg */ 1570b8e80941Smrg for (int i = 0; i < num_vars; i++) { 1571b8e80941Smrg if (!split_grf[i]) 1572b8e80941Smrg continue; 1573b8e80941Smrg 1574b8e80941Smrg new_virtual_grf[i] = alloc.allocate(1); 1575b8e80941Smrg for (unsigned j = 2; j < this->alloc.sizes[i]; j++) { 1576b8e80941Smrg unsigned reg = alloc.allocate(1); 1577b8e80941Smrg assert(reg == new_virtual_grf[i] + j - 1); 1578b8e80941Smrg (void) reg; 1579b8e80941Smrg } 1580b8e80941Smrg this->alloc.sizes[i] = 1; 1581b8e80941Smrg } 1582b8e80941Smrg 1583b8e80941Smrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1584b8e80941Smrg if (inst->dst.file == VGRF && split_grf[inst->dst.nr] && 1585b8e80941Smrg inst->dst.offset / REG_SIZE != 0) { 1586b8e80941Smrg inst->dst.nr = (new_virtual_grf[inst->dst.nr] + 1587b8e80941Smrg inst->dst.offset / REG_SIZE - 1); 1588b8e80941Smrg inst->dst.offset %= REG_SIZE; 1589b8e80941Smrg } 1590b8e80941Smrg for (int i = 0; i < 3; i++) { 1591b8e80941Smrg if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] && 1592b8e80941Smrg inst->src[i].offset / REG_SIZE != 0) { 1593b8e80941Smrg inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] + 1594b8e80941Smrg inst->src[i].offset / REG_SIZE - 1); 1595b8e80941Smrg inst->src[i].offset %= REG_SIZE; 1596b8e80941Smrg } 1597b8e80941Smrg } 1598b8e80941Smrg } 1599b8e80941Smrg invalidate_live_intervals(); 1600b8e80941Smrg} 1601b8e80941Smrg 1602b8e80941Smrgvoid 1603b8e80941Smrgvec4_visitor::dump_instruction(backend_instruction *be_inst) 1604b8e80941Smrg{ 1605b8e80941Smrg dump_instruction(be_inst, stderr); 1606b8e80941Smrg} 1607b8e80941Smrg 1608b8e80941Smrgvoid 1609b8e80941Smrgvec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file) 1610b8e80941Smrg{ 1611b8e80941Smrg vec4_instruction *inst = (vec4_instruction *)be_inst; 1612b8e80941Smrg 1613b8e80941Smrg if (inst->predicate) { 1614b8e80941Smrg fprintf(file, "(%cf%d.%d%s) ", 1615b8e80941Smrg inst->predicate_inverse ? '-' : '+', 1616b8e80941Smrg inst->flag_subreg / 2, 1617b8e80941Smrg inst->flag_subreg % 2, 1618b8e80941Smrg pred_ctrl_align16[inst->predicate]); 1619b8e80941Smrg } 1620b8e80941Smrg 1621b8e80941Smrg fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode), 1622b8e80941Smrg inst->exec_size); 1623b8e80941Smrg if (inst->saturate) 1624b8e80941Smrg fprintf(file, ".sat"); 1625b8e80941Smrg if (inst->conditional_mod) { 1626b8e80941Smrg fprintf(file, "%s", conditional_modifier[inst->conditional_mod]); 1627b8e80941Smrg if (!inst->predicate && 1628b8e80941Smrg (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL && 1629b8e80941Smrg inst->opcode != BRW_OPCODE_CSEL && 1630b8e80941Smrg inst->opcode != BRW_OPCODE_IF && 1631b8e80941Smrg inst->opcode != BRW_OPCODE_WHILE))) { 1632b8e80941Smrg fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2); 1633b8e80941Smrg } 1634b8e80941Smrg } 1635b8e80941Smrg fprintf(file, " "); 1636b8e80941Smrg 1637b8e80941Smrg switch (inst->dst.file) { 1638b8e80941Smrg case VGRF: 1639b8e80941Smrg fprintf(file, "vgrf%d", inst->dst.nr); 1640b8e80941Smrg break; 1641b8e80941Smrg case FIXED_GRF: 1642b8e80941Smrg fprintf(file, "g%d", inst->dst.nr); 1643b8e80941Smrg break; 1644b8e80941Smrg case MRF: 1645b8e80941Smrg fprintf(file, "m%d", inst->dst.nr); 1646b8e80941Smrg break; 1647b8e80941Smrg case ARF: 1648b8e80941Smrg switch (inst->dst.nr) { 1649b8e80941Smrg case BRW_ARF_NULL: 1650b8e80941Smrg fprintf(file, "null"); 1651b8e80941Smrg break; 1652b8e80941Smrg case BRW_ARF_ADDRESS: 1653b8e80941Smrg fprintf(file, "a0.%d", inst->dst.subnr); 1654b8e80941Smrg break; 1655b8e80941Smrg case BRW_ARF_ACCUMULATOR: 1656b8e80941Smrg fprintf(file, "acc%d", inst->dst.subnr); 1657b8e80941Smrg break; 1658b8e80941Smrg case BRW_ARF_FLAG: 1659b8e80941Smrg fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 1660b8e80941Smrg break; 1661b8e80941Smrg default: 1662b8e80941Smrg fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 1663b8e80941Smrg break; 1664b8e80941Smrg } 1665b8e80941Smrg break; 1666b8e80941Smrg case BAD_FILE: 1667b8e80941Smrg fprintf(file, "(null)"); 1668b8e80941Smrg break; 1669b8e80941Smrg case IMM: 1670b8e80941Smrg case ATTR: 1671b8e80941Smrg case UNIFORM: 1672b8e80941Smrg unreachable("not reached"); 1673b8e80941Smrg } 1674b8e80941Smrg if (inst->dst.offset || 1675b8e80941Smrg (inst->dst.file == VGRF && 1676b8e80941Smrg alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { 1677b8e80941Smrg const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE); 1678b8e80941Smrg fprintf(file, "+%d.%d", inst->dst.offset / reg_size, 1679b8e80941Smrg inst->dst.offset % reg_size); 1680b8e80941Smrg } 1681b8e80941Smrg if (inst->dst.writemask != WRITEMASK_XYZW) { 1682b8e80941Smrg fprintf(file, "."); 1683b8e80941Smrg if (inst->dst.writemask & 1) 1684b8e80941Smrg fprintf(file, "x"); 1685b8e80941Smrg if (inst->dst.writemask & 2) 1686b8e80941Smrg fprintf(file, "y"); 1687b8e80941Smrg if (inst->dst.writemask & 4) 1688b8e80941Smrg fprintf(file, "z"); 1689b8e80941Smrg if (inst->dst.writemask & 8) 1690b8e80941Smrg fprintf(file, "w"); 1691b8e80941Smrg } 1692b8e80941Smrg fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type)); 1693b8e80941Smrg 1694b8e80941Smrg if (inst->src[0].file != BAD_FILE) 1695b8e80941Smrg fprintf(file, ", "); 1696b8e80941Smrg 1697b8e80941Smrg for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) { 1698b8e80941Smrg if (inst->src[i].negate) 1699b8e80941Smrg fprintf(file, "-"); 1700b8e80941Smrg if (inst->src[i].abs) 1701b8e80941Smrg fprintf(file, "|"); 1702b8e80941Smrg switch (inst->src[i].file) { 1703b8e80941Smrg case VGRF: 1704b8e80941Smrg fprintf(file, "vgrf%d", inst->src[i].nr); 1705b8e80941Smrg break; 1706b8e80941Smrg case FIXED_GRF: 1707b8e80941Smrg fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr); 1708b8e80941Smrg break; 1709b8e80941Smrg case ATTR: 1710b8e80941Smrg fprintf(file, "attr%d", inst->src[i].nr); 1711b8e80941Smrg break; 1712b8e80941Smrg case UNIFORM: 1713b8e80941Smrg fprintf(file, "u%d", inst->src[i].nr); 1714b8e80941Smrg break; 1715b8e80941Smrg case IMM: 1716b8e80941Smrg switch (inst->src[i].type) { 1717b8e80941Smrg case BRW_REGISTER_TYPE_F: 1718b8e80941Smrg fprintf(file, "%fF", inst->src[i].f); 1719b8e80941Smrg break; 1720b8e80941Smrg case BRW_REGISTER_TYPE_DF: 1721b8e80941Smrg fprintf(file, "%fDF", inst->src[i].df); 1722b8e80941Smrg break; 1723b8e80941Smrg case BRW_REGISTER_TYPE_D: 1724b8e80941Smrg fprintf(file, "%dD", inst->src[i].d); 1725b8e80941Smrg break; 1726b8e80941Smrg case BRW_REGISTER_TYPE_UD: 1727b8e80941Smrg fprintf(file, "%uU", inst->src[i].ud); 1728b8e80941Smrg break; 1729b8e80941Smrg case BRW_REGISTER_TYPE_VF: 1730b8e80941Smrg fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", 1731b8e80941Smrg brw_vf_to_float((inst->src[i].ud >> 0) & 0xff), 1732b8e80941Smrg brw_vf_to_float((inst->src[i].ud >> 8) & 0xff), 1733b8e80941Smrg brw_vf_to_float((inst->src[i].ud >> 16) & 0xff), 1734b8e80941Smrg brw_vf_to_float((inst->src[i].ud >> 24) & 0xff)); 1735b8e80941Smrg break; 1736b8e80941Smrg default: 1737b8e80941Smrg fprintf(file, "???"); 1738b8e80941Smrg break; 1739b8e80941Smrg } 1740b8e80941Smrg break; 1741b8e80941Smrg case ARF: 1742b8e80941Smrg switch (inst->src[i].nr) { 1743b8e80941Smrg case BRW_ARF_NULL: 1744b8e80941Smrg fprintf(file, "null"); 1745b8e80941Smrg break; 1746b8e80941Smrg case BRW_ARF_ADDRESS: 1747b8e80941Smrg fprintf(file, "a0.%d", inst->src[i].subnr); 1748b8e80941Smrg break; 1749b8e80941Smrg case BRW_ARF_ACCUMULATOR: 1750b8e80941Smrg fprintf(file, "acc%d", inst->src[i].subnr); 1751b8e80941Smrg break; 1752b8e80941Smrg case BRW_ARF_FLAG: 1753b8e80941Smrg fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 1754b8e80941Smrg break; 1755b8e80941Smrg default: 1756b8e80941Smrg fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 1757b8e80941Smrg break; 1758b8e80941Smrg } 1759b8e80941Smrg break; 1760b8e80941Smrg case BAD_FILE: 1761b8e80941Smrg fprintf(file, "(null)"); 1762b8e80941Smrg break; 1763b8e80941Smrg case MRF: 1764b8e80941Smrg unreachable("not reached"); 1765b8e80941Smrg } 1766b8e80941Smrg 1767b8e80941Smrg if (inst->src[i].offset || 1768b8e80941Smrg (inst->src[i].file == VGRF && 1769b8e80941Smrg alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { 1770b8e80941Smrg const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE); 1771b8e80941Smrg fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, 1772b8e80941Smrg inst->src[i].offset % reg_size); 1773b8e80941Smrg } 1774b8e80941Smrg 1775b8e80941Smrg if (inst->src[i].file != IMM) { 1776b8e80941Smrg static const char *chans[4] = {"x", "y", "z", "w"}; 1777b8e80941Smrg fprintf(file, "."); 1778b8e80941Smrg for (int c = 0; c < 4; c++) { 1779b8e80941Smrg fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]); 1780b8e80941Smrg } 1781b8e80941Smrg } 1782b8e80941Smrg 1783b8e80941Smrg if (inst->src[i].abs) 1784b8e80941Smrg fprintf(file, "|"); 1785b8e80941Smrg 1786b8e80941Smrg if (inst->src[i].file != IMM) { 1787b8e80941Smrg fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type)); 1788b8e80941Smrg } 1789b8e80941Smrg 1790b8e80941Smrg if (i < 2 && inst->src[i + 1].file != BAD_FILE) 1791b8e80941Smrg fprintf(file, ", "); 1792b8e80941Smrg } 1793b8e80941Smrg 1794b8e80941Smrg if (inst->force_writemask_all) 1795b8e80941Smrg fprintf(file, " NoMask"); 1796b8e80941Smrg 1797b8e80941Smrg if (inst->exec_size != 8) 1798b8e80941Smrg fprintf(file, " group%d", inst->group); 1799b8e80941Smrg 1800b8e80941Smrg fprintf(file, "\n"); 1801b8e80941Smrg} 1802b8e80941Smrg 1803b8e80941Smrg 1804b8e80941Smrgint 1805b8e80941Smrgvec4_vs_visitor::setup_attributes(int payload_reg) 1806b8e80941Smrg{ 1807b8e80941Smrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1808b8e80941Smrg for (int i = 0; i < 3; i++) { 1809b8e80941Smrg if (inst->src[i].file == ATTR) { 1810b8e80941Smrg assert(inst->src[i].offset % REG_SIZE == 0); 1811b8e80941Smrg int grf = payload_reg + inst->src[i].nr + 1812b8e80941Smrg inst->src[i].offset / REG_SIZE; 1813b8e80941Smrg 1814b8e80941Smrg struct brw_reg reg = brw_vec8_grf(grf, 0); 1815b8e80941Smrg reg.swizzle = inst->src[i].swizzle; 1816b8e80941Smrg reg.type = inst->src[i].type; 1817b8e80941Smrg reg.abs = inst->src[i].abs; 1818b8e80941Smrg reg.negate = inst->src[i].negate; 1819b8e80941Smrg inst->src[i] = reg; 1820b8e80941Smrg } 1821b8e80941Smrg } 1822b8e80941Smrg } 1823b8e80941Smrg 1824b8e80941Smrg return payload_reg + vs_prog_data->nr_attribute_slots; 1825b8e80941Smrg} 1826b8e80941Smrg 1827b8e80941Smrgint 1828b8e80941Smrgvec4_visitor::setup_uniforms(int reg) 1829b8e80941Smrg{ 1830b8e80941Smrg prog_data->base.dispatch_grf_start_reg = reg; 1831b8e80941Smrg 1832b8e80941Smrg /* The pre-gen6 VS requires that some push constants get loaded no 1833b8e80941Smrg * matter what, or the GPU would hang. 1834b8e80941Smrg */ 1835b8e80941Smrg if (devinfo->gen < 6 && this->uniforms == 0) { 1836b8e80941Smrg brw_stage_prog_data_add_params(stage_prog_data, 4); 1837b8e80941Smrg for (unsigned int i = 0; i < 4; i++) { 1838b8e80941Smrg unsigned int slot = this->uniforms * 4 + i; 1839b8e80941Smrg stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO; 1840b8e80941Smrg } 1841b8e80941Smrg 1842b8e80941Smrg this->uniforms++; 1843b8e80941Smrg reg++; 1844b8e80941Smrg } else { 1845b8e80941Smrg reg += ALIGN(uniforms, 2) / 2; 1846b8e80941Smrg } 1847b8e80941Smrg 1848b8e80941Smrg for (int i = 0; i < 4; i++) 1849b8e80941Smrg reg += stage_prog_data->ubo_ranges[i].length; 1850b8e80941Smrg 1851b8e80941Smrg stage_prog_data->nr_params = this->uniforms * 4; 1852b8e80941Smrg 1853b8e80941Smrg prog_data->base.curb_read_length = 1854b8e80941Smrg reg - prog_data->base.dispatch_grf_start_reg; 1855b8e80941Smrg 1856b8e80941Smrg return reg; 1857b8e80941Smrg} 1858b8e80941Smrg 1859b8e80941Smrgvoid 1860b8e80941Smrgvec4_vs_visitor::setup_payload(void) 1861b8e80941Smrg{ 1862b8e80941Smrg int reg = 0; 1863b8e80941Smrg 1864b8e80941Smrg /* The payload always contains important data in g0, which contains 1865b8e80941Smrg * the URB handles that are passed on to the URB write at the end 1866b8e80941Smrg * of the thread. So, we always start push constants at g1. 1867b8e80941Smrg */ 1868b8e80941Smrg reg++; 1869b8e80941Smrg 1870b8e80941Smrg reg = setup_uniforms(reg); 1871b8e80941Smrg 1872b8e80941Smrg reg = setup_attributes(reg); 1873b8e80941Smrg 1874b8e80941Smrg this->first_non_payload_grf = reg; 1875b8e80941Smrg} 1876b8e80941Smrg 1877b8e80941Smrgbool 1878b8e80941Smrgvec4_visitor::lower_minmax() 1879b8e80941Smrg{ 1880b8e80941Smrg assert(devinfo->gen < 6); 1881b8e80941Smrg 1882b8e80941Smrg bool progress = false; 1883b8e80941Smrg 1884b8e80941Smrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 1885b8e80941Smrg const vec4_builder ibld(this, block, inst); 1886b8e80941Smrg 1887b8e80941Smrg if (inst->opcode == BRW_OPCODE_SEL && 1888b8e80941Smrg inst->predicate == BRW_PREDICATE_NONE) { 1889b8e80941Smrg /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of 1890b8e80941Smrg * the original SEL.L/GE instruction 1891b8e80941Smrg */ 1892b8e80941Smrg ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], 1893b8e80941Smrg inst->conditional_mod); 1894b8e80941Smrg inst->predicate = BRW_PREDICATE_NORMAL; 1895b8e80941Smrg inst->conditional_mod = BRW_CONDITIONAL_NONE; 1896b8e80941Smrg 1897b8e80941Smrg progress = true; 1898b8e80941Smrg } 1899b8e80941Smrg } 1900b8e80941Smrg 1901b8e80941Smrg if (progress) 1902b8e80941Smrg invalidate_live_intervals(); 1903b8e80941Smrg 1904b8e80941Smrg return progress; 1905b8e80941Smrg} 1906b8e80941Smrg 1907b8e80941Smrgsrc_reg 1908b8e80941Smrgvec4_visitor::get_timestamp() 1909b8e80941Smrg{ 1910b8e80941Smrg assert(devinfo->gen >= 7); 1911b8e80941Smrg 1912b8e80941Smrg src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE, 1913b8e80941Smrg BRW_ARF_TIMESTAMP, 1914b8e80941Smrg 0, 1915b8e80941Smrg 0, 1916b8e80941Smrg 0, 1917b8e80941Smrg BRW_REGISTER_TYPE_UD, 1918b8e80941Smrg BRW_VERTICAL_STRIDE_0, 1919b8e80941Smrg BRW_WIDTH_4, 1920b8e80941Smrg BRW_HORIZONTAL_STRIDE_4, 1921b8e80941Smrg BRW_SWIZZLE_XYZW, 1922b8e80941Smrg WRITEMASK_XYZW)); 1923b8e80941Smrg 1924b8e80941Smrg dst_reg dst = dst_reg(this, glsl_type::uvec4_type); 1925b8e80941Smrg 1926b8e80941Smrg vec4_instruction *mov = emit(MOV(dst, ts)); 1927b8e80941Smrg /* We want to read the 3 fields we care about (mostly field 0, but also 2) 1928b8e80941Smrg * even if it's not enabled in the dispatch. 1929b8e80941Smrg */ 1930b8e80941Smrg mov->force_writemask_all = true; 1931b8e80941Smrg 1932b8e80941Smrg return src_reg(dst); 1933b8e80941Smrg} 1934b8e80941Smrg 1935b8e80941Smrgvoid 1936b8e80941Smrgvec4_visitor::emit_shader_time_begin() 1937b8e80941Smrg{ 1938b8e80941Smrg current_annotation = "shader time start"; 1939b8e80941Smrg shader_start_time = get_timestamp(); 1940b8e80941Smrg} 1941b8e80941Smrg 1942b8e80941Smrgvoid 1943b8e80941Smrgvec4_visitor::emit_shader_time_end() 1944b8e80941Smrg{ 1945b8e80941Smrg current_annotation = "shader time end"; 1946b8e80941Smrg src_reg shader_end_time = get_timestamp(); 1947b8e80941Smrg 1948b8e80941Smrg 1949b8e80941Smrg /* Check that there weren't any timestamp reset events (assuming these 1950b8e80941Smrg * were the only two timestamp reads that happened). 1951b8e80941Smrg */ 1952b8e80941Smrg src_reg reset_end = shader_end_time; 1953b8e80941Smrg reset_end.swizzle = BRW_SWIZZLE_ZZZZ; 1954b8e80941Smrg vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u))); 1955b8e80941Smrg test->conditional_mod = BRW_CONDITIONAL_Z; 1956b8e80941Smrg 1957b8e80941Smrg emit(IF(BRW_PREDICATE_NORMAL)); 1958b8e80941Smrg 1959b8e80941Smrg /* Take the current timestamp and get the delta. */ 1960b8e80941Smrg shader_start_time.negate = true; 1961b8e80941Smrg dst_reg diff = dst_reg(this, glsl_type::uint_type); 1962b8e80941Smrg emit(ADD(diff, shader_start_time, shader_end_time)); 1963b8e80941Smrg 1964b8e80941Smrg /* If there were no instructions between the two timestamp gets, the diff 1965b8e80941Smrg * is 2 cycles. Remove that overhead, so I can forget about that when 1966b8e80941Smrg * trying to determine the time taken for single instructions. 1967b8e80941Smrg */ 1968b8e80941Smrg emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u))); 1969b8e80941Smrg 1970b8e80941Smrg emit_shader_time_write(0, src_reg(diff)); 1971b8e80941Smrg emit_shader_time_write(1, brw_imm_ud(1u)); 1972b8e80941Smrg emit(BRW_OPCODE_ELSE); 1973b8e80941Smrg emit_shader_time_write(2, brw_imm_ud(1u)); 1974b8e80941Smrg emit(BRW_OPCODE_ENDIF); 1975b8e80941Smrg} 1976b8e80941Smrg 1977b8e80941Smrgvoid 1978b8e80941Smrgvec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value) 1979b8e80941Smrg{ 1980b8e80941Smrg dst_reg dst = 1981b8e80941Smrg dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2)); 1982b8e80941Smrg 1983b8e80941Smrg dst_reg offset = dst; 1984b8e80941Smrg dst_reg time = dst; 1985b8e80941Smrg time.offset += REG_SIZE; 1986b8e80941Smrg 1987b8e80941Smrg offset.type = BRW_REGISTER_TYPE_UD; 1988b8e80941Smrg int index = shader_time_index * 3 + shader_time_subindex; 1989b8e80941Smrg emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE))); 1990b8e80941Smrg 1991b8e80941Smrg time.type = BRW_REGISTER_TYPE_UD; 1992b8e80941Smrg emit(MOV(time, value)); 1993b8e80941Smrg 1994b8e80941Smrg vec4_instruction *inst = 1995b8e80941Smrg emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst)); 1996b8e80941Smrg inst->mlen = 2; 1997b8e80941Smrg} 1998b8e80941Smrg 1999b8e80941Smrgstatic bool 2000b8e80941Smrgis_align1_df(vec4_instruction *inst) 2001b8e80941Smrg{ 2002b8e80941Smrg switch (inst->opcode) { 2003b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_F32: 2004b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_D32: 2005b8e80941Smrg case VEC4_OPCODE_DOUBLE_TO_U32: 2006b8e80941Smrg case VEC4_OPCODE_TO_DOUBLE: 2007b8e80941Smrg case VEC4_OPCODE_PICK_LOW_32BIT: 2008b8e80941Smrg case VEC4_OPCODE_PICK_HIGH_32BIT: 2009b8e80941Smrg case VEC4_OPCODE_SET_LOW_32BIT: 2010b8e80941Smrg case VEC4_OPCODE_SET_HIGH_32BIT: 2011b8e80941Smrg return true; 2012b8e80941Smrg default: 2013b8e80941Smrg return false; 2014b8e80941Smrg } 2015b8e80941Smrg} 2016b8e80941Smrg 2017b8e80941Smrg/** 2018b8e80941Smrg * Three source instruction must have a GRF/MRF destination register. 2019b8e80941Smrg * ARF NULL is not allowed. Fix that up by allocating a temporary GRF. 2020b8e80941Smrg */ 2021b8e80941Smrgvoid 2022b8e80941Smrgvec4_visitor::fixup_3src_null_dest() 2023b8e80941Smrg{ 2024b8e80941Smrg bool progress = false; 2025b8e80941Smrg 2026b8e80941Smrg foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 2027b8e80941Smrg if (inst->is_3src(devinfo) && inst->dst.is_null()) { 2028b8e80941Smrg const unsigned size_written = type_sz(inst->dst.type); 2029b8e80941Smrg const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 2030b8e80941Smrg 2031b8e80941Smrg inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 2032b8e80941Smrg inst->dst.type); 2033b8e80941Smrg progress = true; 2034b8e80941Smrg } 2035b8e80941Smrg } 2036b8e80941Smrg 2037b8e80941Smrg if (progress) 2038b8e80941Smrg invalidate_live_intervals(); 2039b8e80941Smrg} 2040b8e80941Smrg 2041b8e80941Smrgvoid 2042b8e80941Smrgvec4_visitor::convert_to_hw_regs() 2043b8e80941Smrg{ 2044b8e80941Smrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 2045b8e80941Smrg for (int i = 0; i < 3; i++) { 2046b8e80941Smrg class src_reg &src = inst->src[i]; 2047b8e80941Smrg struct brw_reg reg; 2048b8e80941Smrg switch (src.file) { 2049b8e80941Smrg case VGRF: { 2050b8e80941Smrg reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset); 2051b8e80941Smrg reg.type = src.type; 2052b8e80941Smrg reg.abs = src.abs; 2053b8e80941Smrg reg.negate = src.negate; 2054b8e80941Smrg break; 2055b8e80941Smrg } 2056b8e80941Smrg 2057b8e80941Smrg case UNIFORM: { 2058b8e80941Smrg reg = stride(byte_offset(brw_vec4_grf( 2059b8e80941Smrg prog_data->base.dispatch_grf_start_reg + 2060b8e80941Smrg src.nr / 2, src.nr % 2 * 4), 2061b8e80941Smrg src.offset), 2062b8e80941Smrg 0, 4, 1); 2063b8e80941Smrg reg.type = src.type; 2064b8e80941Smrg reg.abs = src.abs; 2065b8e80941Smrg reg.negate = src.negate; 2066b8e80941Smrg 2067b8e80941Smrg /* This should have been moved to pull constants. */ 2068b8e80941Smrg assert(!src.reladdr); 2069b8e80941Smrg break; 2070b8e80941Smrg } 2071b8e80941Smrg 2072b8e80941Smrg case FIXED_GRF: 2073b8e80941Smrg if (type_sz(src.type) == 8) { 2074b8e80941Smrg reg = src.as_brw_reg(); 2075b8e80941Smrg break; 2076b8e80941Smrg } 2077b8e80941Smrg /* fallthrough */ 2078b8e80941Smrg case ARF: 2079b8e80941Smrg case IMM: 2080b8e80941Smrg continue; 2081b8e80941Smrg 2082b8e80941Smrg case BAD_FILE: 2083b8e80941Smrg /* Probably unused. */ 2084b8e80941Smrg reg = brw_null_reg(); 2085b8e80941Smrg reg = retype(reg, src.type); 2086b8e80941Smrg break; 2087b8e80941Smrg 2088b8e80941Smrg case MRF: 2089b8e80941Smrg case ATTR: 2090b8e80941Smrg unreachable("not reached"); 2091b8e80941Smrg } 2092b8e80941Smrg 2093b8e80941Smrg apply_logical_swizzle(®, inst, i); 2094b8e80941Smrg src = reg; 2095b8e80941Smrg 2096b8e80941Smrg /* From IVB PRM, vol4, part3, "General Restrictions on Regioning 2097b8e80941Smrg * Parameters": 2098b8e80941Smrg * 2099b8e80941Smrg * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set 2100b8e80941Smrg * to Width * HorzStride." 2101b8e80941Smrg * 2102b8e80941Smrg * We can break this rule with DF sources on DF align1 2103b8e80941Smrg * instructions, because the exec_size would be 4 and width is 4. 2104b8e80941Smrg * As we know we are not accessing to next GRF, it is safe to 2105b8e80941Smrg * set vstride to the formula given by the rule itself. 2106b8e80941Smrg */ 2107b8e80941Smrg if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width) 2108b8e80941Smrg src.vstride = src.width + src.hstride; 2109b8e80941Smrg } 2110b8e80941Smrg 2111b8e80941Smrg if (inst->is_3src(devinfo)) { 2112b8e80941Smrg /* 3-src instructions with scalar sources support arbitrary subnr, 2113b8e80941Smrg * but don't actually use swizzles. Convert swizzle into subnr. 2114b8e80941Smrg * Skip this for double-precision instructions: RepCtrl=1 is not 2115b8e80941Smrg * allowed for them and needs special handling. 2116b8e80941Smrg */ 2117b8e80941Smrg for (int i = 0; i < 3; i++) { 2118b8e80941Smrg if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 && 2119b8e80941Smrg type_sz(inst->src[i].type) < 8) { 2120b8e80941Smrg assert(brw_is_single_value_swizzle(inst->src[i].swizzle)); 2121b8e80941Smrg inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0); 2122b8e80941Smrg } 2123b8e80941Smrg } 2124b8e80941Smrg } 2125b8e80941Smrg 2126b8e80941Smrg dst_reg &dst = inst->dst; 2127b8e80941Smrg struct brw_reg reg; 2128b8e80941Smrg 2129b8e80941Smrg switch (inst->dst.file) { 2130b8e80941Smrg case VGRF: 2131b8e80941Smrg reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset); 2132b8e80941Smrg reg.type = dst.type; 2133b8e80941Smrg reg.writemask = dst.writemask; 2134b8e80941Smrg break; 2135b8e80941Smrg 2136b8e80941Smrg case MRF: 2137b8e80941Smrg reg = byte_offset(brw_message_reg(dst.nr), dst.offset); 2138b8e80941Smrg assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen)); 2139b8e80941Smrg reg.type = dst.type; 2140b8e80941Smrg reg.writemask = dst.writemask; 2141b8e80941Smrg break; 2142b8e80941Smrg 2143b8e80941Smrg case ARF: 2144b8e80941Smrg case FIXED_GRF: 2145b8e80941Smrg reg = dst.as_brw_reg(); 2146b8e80941Smrg break; 2147b8e80941Smrg 2148b8e80941Smrg case BAD_FILE: 2149b8e80941Smrg reg = brw_null_reg(); 2150b8e80941Smrg reg = retype(reg, dst.type); 2151b8e80941Smrg break; 2152b8e80941Smrg 2153b8e80941Smrg case IMM: 2154b8e80941Smrg case ATTR: 2155b8e80941Smrg case UNIFORM: 2156b8e80941Smrg unreachable("not reached"); 2157b8e80941Smrg } 2158b8e80941Smrg 2159b8e80941Smrg dst = reg; 2160b8e80941Smrg } 2161b8e80941Smrg} 2162b8e80941Smrg 2163b8e80941Smrgstatic bool 2164b8e80941Smrgstage_uses_interleaved_attributes(unsigned stage, 2165b8e80941Smrg enum shader_dispatch_mode dispatch_mode) 2166b8e80941Smrg{ 2167b8e80941Smrg switch (stage) { 2168b8e80941Smrg case MESA_SHADER_TESS_EVAL: 2169b8e80941Smrg return true; 2170b8e80941Smrg case MESA_SHADER_GEOMETRY: 2171b8e80941Smrg return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT; 2172b8e80941Smrg default: 2173b8e80941Smrg return false; 2174b8e80941Smrg } 2175b8e80941Smrg} 2176b8e80941Smrg 2177b8e80941Smrg/** 2178b8e80941Smrg * Get the closest native SIMD width supported by the hardware for instruction 2179b8e80941Smrg * \p inst. The instruction will be left untouched by 2180b8e80941Smrg * vec4_visitor::lower_simd_width() if the returned value matches the 2181b8e80941Smrg * instruction's original execution size. 2182b8e80941Smrg */ 2183b8e80941Smrgstatic unsigned 2184b8e80941Smrgget_lowered_simd_width(const struct gen_device_info *devinfo, 2185b8e80941Smrg enum shader_dispatch_mode dispatch_mode, 2186b8e80941Smrg unsigned stage, const vec4_instruction *inst) 2187b8e80941Smrg{ 2188b8e80941Smrg /* Do not split some instructions that require special handling */ 2189b8e80941Smrg switch (inst->opcode) { 2190b8e80941Smrg case SHADER_OPCODE_GEN4_SCRATCH_READ: 2191b8e80941Smrg case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 2192b8e80941Smrg return inst->exec_size; 2193b8e80941Smrg default: 2194b8e80941Smrg break; 2195b8e80941Smrg } 2196b8e80941Smrg 2197b8e80941Smrg unsigned lowered_width = MIN2(16, inst->exec_size); 2198b8e80941Smrg 2199b8e80941Smrg /* We need to split some cases of double-precision instructions that write 2200b8e80941Smrg * 2 registers. We only need to care about this in gen7 because that is the 2201b8e80941Smrg * only hardware that implements fp64 in Align16. 2202b8e80941Smrg */ 2203b8e80941Smrg if (devinfo->gen == 7 && inst->size_written > REG_SIZE) { 2204b8e80941Smrg /* Align16 8-wide double-precision SEL does not work well. Verified 2205b8e80941Smrg * empirically. 2206b8e80941Smrg */ 2207b8e80941Smrg if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8) 2208b8e80941Smrg lowered_width = MIN2(lowered_width, 4); 2209b8e80941Smrg 2210b8e80941Smrg /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct 2211b8e80941Smrg * Register Addressing: 2212b8e80941Smrg * 2213b8e80941Smrg * "When destination spans two registers, the source MUST span two 2214b8e80941Smrg * registers." 2215b8e80941Smrg */ 2216b8e80941Smrg for (unsigned i = 0; i < 3; i++) { 2217b8e80941Smrg if (inst->src[i].file == BAD_FILE) 2218b8e80941Smrg continue; 2219b8e80941Smrg if (inst->size_read(i) <= REG_SIZE) 2220b8e80941Smrg lowered_width = MIN2(lowered_width, 4); 2221b8e80941Smrg 2222b8e80941Smrg /* Interleaved attribute setups use a vertical stride of 0, which 2223b8e80941Smrg * makes them hit the associated instruction decompression bug in gen7. 2224b8e80941Smrg * Split them to prevent this. 2225b8e80941Smrg */ 2226b8e80941Smrg if (inst->src[i].file == ATTR && 2227b8e80941Smrg stage_uses_interleaved_attributes(stage, dispatch_mode)) 2228b8e80941Smrg lowered_width = MIN2(lowered_width, 4); 2229b8e80941Smrg } 2230b8e80941Smrg } 2231b8e80941Smrg 2232b8e80941Smrg /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since 2233b8e80941Smrg * it doesn't support compression in Align16 mode, no matter if it has 2234b8e80941Smrg * force_writemask_all enabled or disabled (the latter is affected by the 2235b8e80941Smrg * compressed instruction bug in gen7, which is another reason to enforce 2236b8e80941Smrg * this limit). 2237b8e80941Smrg */ 2238b8e80941Smrg if (devinfo->gen == 7 && !devinfo->is_haswell && 2239b8e80941Smrg (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) 2240b8e80941Smrg lowered_width = MIN2(lowered_width, 4); 2241b8e80941Smrg 2242b8e80941Smrg return lowered_width; 2243b8e80941Smrg} 2244b8e80941Smrg 2245b8e80941Smrgstatic bool 2246b8e80941Smrgdst_src_regions_overlap(vec4_instruction *inst) 2247b8e80941Smrg{ 2248b8e80941Smrg if (inst->size_written == 0) 2249b8e80941Smrg return false; 2250b8e80941Smrg 2251b8e80941Smrg unsigned dst_start = inst->dst.offset; 2252b8e80941Smrg unsigned dst_end = dst_start + inst->size_written - 1; 2253b8e80941Smrg for (int i = 0; i < 3; i++) { 2254b8e80941Smrg if (inst->src[i].file == BAD_FILE) 2255b8e80941Smrg continue; 2256b8e80941Smrg 2257b8e80941Smrg if (inst->dst.file != inst->src[i].file || 2258b8e80941Smrg inst->dst.nr != inst->src[i].nr) 2259b8e80941Smrg continue; 2260b8e80941Smrg 2261b8e80941Smrg unsigned src_start = inst->src[i].offset; 2262b8e80941Smrg unsigned src_end = src_start + inst->size_read(i) - 1; 2263b8e80941Smrg 2264b8e80941Smrg if ((dst_start >= src_start && dst_start <= src_end) || 2265b8e80941Smrg (dst_end >= src_start && dst_end <= src_end) || 2266b8e80941Smrg (dst_start <= src_start && dst_end >= src_end)) { 2267b8e80941Smrg return true; 2268b8e80941Smrg } 2269b8e80941Smrg } 2270b8e80941Smrg 2271b8e80941Smrg return false; 2272b8e80941Smrg} 2273b8e80941Smrg 2274b8e80941Smrgbool 2275b8e80941Smrgvec4_visitor::lower_simd_width() 2276b8e80941Smrg{ 2277b8e80941Smrg bool progress = false; 2278b8e80941Smrg 2279b8e80941Smrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2280b8e80941Smrg const unsigned lowered_width = 2281b8e80941Smrg get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst); 2282b8e80941Smrg assert(lowered_width <= inst->exec_size); 2283b8e80941Smrg if (lowered_width == inst->exec_size) 2284b8e80941Smrg continue; 2285b8e80941Smrg 2286b8e80941Smrg /* We need to deal with source / destination overlaps when splitting. 2287b8e80941Smrg * The hardware supports reading from and writing to the same register 2288b8e80941Smrg * in the same instruction, but we need to be careful that each split 2289b8e80941Smrg * instruction we produce does not corrupt the source of the next. 2290b8e80941Smrg * 2291b8e80941Smrg * The easiest way to handle this is to make the split instructions write 2292b8e80941Smrg * to temporaries if there is an src/dst overlap and then move from the 2293b8e80941Smrg * temporaries to the original destination. We also need to consider 2294b8e80941Smrg * instructions that do partial writes via align1 opcodes, in which case 2295b8e80941Smrg * we need to make sure that the we initialize the temporary with the 2296b8e80941Smrg * value of the instruction's dst. 2297b8e80941Smrg */ 2298b8e80941Smrg bool needs_temp = dst_src_regions_overlap(inst); 2299b8e80941Smrg for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) { 2300b8e80941Smrg unsigned channel_offset = lowered_width * n; 2301b8e80941Smrg 2302b8e80941Smrg unsigned size_written = lowered_width * type_sz(inst->dst.type); 2303b8e80941Smrg 2304b8e80941Smrg /* Create the split instruction from the original so that we copy all 2305b8e80941Smrg * relevant instruction fields, then set the width and calculate the 2306b8e80941Smrg * new dst/src regions. 2307b8e80941Smrg */ 2308b8e80941Smrg vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst); 2309b8e80941Smrg linst->exec_size = lowered_width; 2310b8e80941Smrg linst->group = channel_offset; 2311b8e80941Smrg linst->size_written = size_written; 2312b8e80941Smrg 2313b8e80941Smrg /* Compute split dst region */ 2314b8e80941Smrg dst_reg dst; 2315b8e80941Smrg if (needs_temp) { 2316b8e80941Smrg unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 2317b8e80941Smrg dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 2318b8e80941Smrg inst->dst.type); 2319b8e80941Smrg if (inst->is_align1_partial_write()) { 2320b8e80941Smrg vec4_instruction *copy = MOV(dst, src_reg(inst->dst)); 2321b8e80941Smrg copy->exec_size = lowered_width; 2322b8e80941Smrg copy->group = channel_offset; 2323b8e80941Smrg copy->size_written = size_written; 2324b8e80941Smrg inst->insert_before(block, copy); 2325b8e80941Smrg } 2326b8e80941Smrg } else { 2327b8e80941Smrg dst = horiz_offset(inst->dst, channel_offset); 2328b8e80941Smrg } 2329b8e80941Smrg linst->dst = dst; 2330b8e80941Smrg 2331b8e80941Smrg /* Compute split source regions */ 2332b8e80941Smrg for (int i = 0; i < 3; i++) { 2333b8e80941Smrg if (linst->src[i].file == BAD_FILE) 2334b8e80941Smrg continue; 2335b8e80941Smrg 2336b8e80941Smrg bool is_interleaved_attr = 2337b8e80941Smrg linst->src[i].file == ATTR && 2338b8e80941Smrg stage_uses_interleaved_attributes(stage, 2339b8e80941Smrg prog_data->dispatch_mode); 2340b8e80941Smrg 2341b8e80941Smrg if (!is_uniform(linst->src[i]) && !is_interleaved_attr) 2342b8e80941Smrg linst->src[i] = horiz_offset(linst->src[i], channel_offset); 2343b8e80941Smrg } 2344b8e80941Smrg 2345b8e80941Smrg inst->insert_before(block, linst); 2346b8e80941Smrg 2347b8e80941Smrg /* If we used a temporary to store the result of the split 2348b8e80941Smrg * instruction, copy the result to the original destination 2349b8e80941Smrg */ 2350b8e80941Smrg if (needs_temp) { 2351b8e80941Smrg vec4_instruction *mov = 2352b8e80941Smrg MOV(offset(inst->dst, lowered_width, n), src_reg(dst)); 2353b8e80941Smrg mov->exec_size = lowered_width; 2354b8e80941Smrg mov->group = channel_offset; 2355b8e80941Smrg mov->size_written = size_written; 2356b8e80941Smrg mov->predicate = inst->predicate; 2357b8e80941Smrg inst->insert_before(block, mov); 2358b8e80941Smrg } 2359b8e80941Smrg } 2360b8e80941Smrg 2361b8e80941Smrg inst->remove(block); 2362b8e80941Smrg progress = true; 2363b8e80941Smrg } 2364b8e80941Smrg 2365b8e80941Smrg if (progress) 2366b8e80941Smrg invalidate_live_intervals(); 2367b8e80941Smrg 2368b8e80941Smrg return progress; 2369b8e80941Smrg} 2370b8e80941Smrg 2371b8e80941Smrgstatic brw_predicate 2372b8e80941Smrgscalarize_predicate(brw_predicate predicate, unsigned writemask) 2373b8e80941Smrg{ 2374b8e80941Smrg if (predicate != BRW_PREDICATE_NORMAL) 2375b8e80941Smrg return predicate; 2376b8e80941Smrg 2377b8e80941Smrg switch (writemask) { 2378b8e80941Smrg case WRITEMASK_X: 2379b8e80941Smrg return BRW_PREDICATE_ALIGN16_REPLICATE_X; 2380b8e80941Smrg case WRITEMASK_Y: 2381b8e80941Smrg return BRW_PREDICATE_ALIGN16_REPLICATE_Y; 2382b8e80941Smrg case WRITEMASK_Z: 2383b8e80941Smrg return BRW_PREDICATE_ALIGN16_REPLICATE_Z; 2384b8e80941Smrg case WRITEMASK_W: 2385b8e80941Smrg return BRW_PREDICATE_ALIGN16_REPLICATE_W; 2386b8e80941Smrg default: 2387b8e80941Smrg unreachable("invalid writemask"); 2388b8e80941Smrg } 2389b8e80941Smrg} 2390b8e80941Smrg 2391b8e80941Smrg/* Gen7 has a hardware decompression bug that we can exploit to represent 2392b8e80941Smrg * handful of additional swizzles natively. 2393b8e80941Smrg */ 2394b8e80941Smrgstatic bool 2395b8e80941Smrgis_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg) 2396b8e80941Smrg{ 2397b8e80941Smrg switch (inst->src[arg].swizzle) { 2398b8e80941Smrg case BRW_SWIZZLE_XXXX: 2399b8e80941Smrg case BRW_SWIZZLE_YYYY: 2400b8e80941Smrg case BRW_SWIZZLE_ZZZZ: 2401b8e80941Smrg case BRW_SWIZZLE_WWWW: 2402b8e80941Smrg case BRW_SWIZZLE_XYXY: 2403b8e80941Smrg case BRW_SWIZZLE_YXYX: 2404b8e80941Smrg case BRW_SWIZZLE_ZWZW: 2405b8e80941Smrg case BRW_SWIZZLE_WZWZ: 2406b8e80941Smrg return true; 2407b8e80941Smrg default: 2408b8e80941Smrg return false; 2409b8e80941Smrg } 2410b8e80941Smrg} 2411b8e80941Smrg 2412b8e80941Smrg/* 64-bit sources use regions with a width of 2. These 2 elements in each row 2413b8e80941Smrg * can be addressed using 32-bit swizzles (which is what the hardware supports) 2414b8e80941Smrg * but it also means that the swizzle we apply on the first two components of a 2415b8e80941Smrg * dvec4 is coupled with the swizzle we use for the last 2. In other words, 2416b8e80941Smrg * only some specific swizzle combinations can be natively supported. 2417b8e80941Smrg * 2418b8e80941Smrg * FIXME: we can go an step further and implement even more swizzle 2419b8e80941Smrg * variations using only partial scalarization. 2420b8e80941Smrg * 2421b8e80941Smrg * For more details see: 2422b8e80941Smrg * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82 2423b8e80941Smrg */ 2424b8e80941Smrgbool 2425b8e80941Smrgvec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg) 2426b8e80941Smrg{ 2427b8e80941Smrg const src_reg &src = inst->src[arg]; 2428b8e80941Smrg assert(type_sz(src.type) == 8); 2429b8e80941Smrg 2430b8e80941Smrg /* Uniform regions have a vstride=0. Because we use 2-wide rows with 2431b8e80941Smrg * 64-bit regions it means that we cannot access components Z/W, so 2432b8e80941Smrg * return false for any such case. Interleaved attributes will also be 2433b8e80941Smrg * mapped to GRF registers with a vstride of 0, so apply the same 2434b8e80941Smrg * treatment. 2435b8e80941Smrg */ 2436b8e80941Smrg if ((is_uniform(src) || 2437b8e80941Smrg (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) && 2438b8e80941Smrg src.file == ATTR)) && 2439b8e80941Smrg (brw_mask_for_swizzle(src.swizzle) & 12)) 2440b8e80941Smrg return false; 2441b8e80941Smrg 2442b8e80941Smrg switch (src.swizzle) { 2443b8e80941Smrg case BRW_SWIZZLE_XYZW: 2444b8e80941Smrg case BRW_SWIZZLE_XXZZ: 2445b8e80941Smrg case BRW_SWIZZLE_YYWW: 2446b8e80941Smrg case BRW_SWIZZLE_YXWZ: 2447b8e80941Smrg return true; 2448b8e80941Smrg default: 2449b8e80941Smrg return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg); 2450b8e80941Smrg } 2451b8e80941Smrg} 2452b8e80941Smrg 2453b8e80941Smrgbool 2454b8e80941Smrgvec4_visitor::scalarize_df() 2455b8e80941Smrg{ 2456b8e80941Smrg bool progress = false; 2457b8e80941Smrg 2458b8e80941Smrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2459b8e80941Smrg /* Skip DF instructions that operate in Align1 mode */ 2460b8e80941Smrg if (is_align1_df(inst)) 2461b8e80941Smrg continue; 2462b8e80941Smrg 2463b8e80941Smrg /* Check if this is a double-precision instruction */ 2464b8e80941Smrg bool is_double = type_sz(inst->dst.type) == 8; 2465b8e80941Smrg for (int arg = 0; !is_double && arg < 3; arg++) { 2466b8e80941Smrg is_double = inst->src[arg].file != BAD_FILE && 2467b8e80941Smrg type_sz(inst->src[arg].type) == 8; 2468b8e80941Smrg } 2469b8e80941Smrg 2470b8e80941Smrg if (!is_double) 2471b8e80941Smrg continue; 2472b8e80941Smrg 2473b8e80941Smrg /* Skip the lowering for specific regioning scenarios that we can 2474b8e80941Smrg * support natively. 2475b8e80941Smrg */ 2476b8e80941Smrg bool skip_lowering = true; 2477b8e80941Smrg 2478b8e80941Smrg /* XY and ZW writemasks operate in 32-bit, which means that they don't 2479b8e80941Smrg * have a native 64-bit representation and they should always be split. 2480b8e80941Smrg */ 2481b8e80941Smrg if (inst->dst.writemask == WRITEMASK_XY || 2482b8e80941Smrg inst->dst.writemask == WRITEMASK_ZW) { 2483b8e80941Smrg skip_lowering = false; 2484b8e80941Smrg } else { 2485b8e80941Smrg for (unsigned i = 0; i < 3; i++) { 2486b8e80941Smrg if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8) 2487b8e80941Smrg continue; 2488b8e80941Smrg skip_lowering = skip_lowering && is_supported_64bit_region(inst, i); 2489b8e80941Smrg } 2490b8e80941Smrg } 2491b8e80941Smrg 2492b8e80941Smrg if (skip_lowering) 2493b8e80941Smrg continue; 2494b8e80941Smrg 2495b8e80941Smrg /* Generate scalar instructions for each enabled channel */ 2496b8e80941Smrg for (unsigned chan = 0; chan < 4; chan++) { 2497b8e80941Smrg unsigned chan_mask = 1 << chan; 2498b8e80941Smrg if (!(inst->dst.writemask & chan_mask)) 2499b8e80941Smrg continue; 2500b8e80941Smrg 2501b8e80941Smrg vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst); 2502b8e80941Smrg 2503b8e80941Smrg for (unsigned i = 0; i < 3; i++) { 2504b8e80941Smrg unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan); 2505b8e80941Smrg scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz); 2506b8e80941Smrg } 2507b8e80941Smrg 2508b8e80941Smrg scalar_inst->dst.writemask = chan_mask; 2509b8e80941Smrg 2510b8e80941Smrg if (inst->predicate != BRW_PREDICATE_NONE) { 2511b8e80941Smrg scalar_inst->predicate = 2512b8e80941Smrg scalarize_predicate(inst->predicate, chan_mask); 2513b8e80941Smrg } 2514b8e80941Smrg 2515b8e80941Smrg inst->insert_before(block, scalar_inst); 2516b8e80941Smrg } 2517b8e80941Smrg 2518b8e80941Smrg inst->remove(block); 2519b8e80941Smrg progress = true; 2520b8e80941Smrg } 2521b8e80941Smrg 2522b8e80941Smrg if (progress) 2523b8e80941Smrg invalidate_live_intervals(); 2524b8e80941Smrg 2525b8e80941Smrg return progress; 2526b8e80941Smrg} 2527b8e80941Smrg 2528b8e80941Smrgbool 2529b8e80941Smrgvec4_visitor::lower_64bit_mad_to_mul_add() 2530b8e80941Smrg{ 2531b8e80941Smrg bool progress = false; 2532b8e80941Smrg 2533b8e80941Smrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2534b8e80941Smrg if (inst->opcode != BRW_OPCODE_MAD) 2535b8e80941Smrg continue; 2536b8e80941Smrg 2537b8e80941Smrg if (type_sz(inst->dst.type) != 8) 2538b8e80941Smrg continue; 2539b8e80941Smrg 2540b8e80941Smrg dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type); 2541b8e80941Smrg 2542b8e80941Smrg /* Use the copy constructor so we copy all relevant instruction fields 2543b8e80941Smrg * from the original mad into the add and mul instructions 2544b8e80941Smrg */ 2545b8e80941Smrg vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst); 2546b8e80941Smrg mul->opcode = BRW_OPCODE_MUL; 2547b8e80941Smrg mul->dst = mul_dst; 2548b8e80941Smrg mul->src[0] = inst->src[1]; 2549b8e80941Smrg mul->src[1] = inst->src[2]; 2550b8e80941Smrg mul->src[2].file = BAD_FILE; 2551b8e80941Smrg 2552b8e80941Smrg vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst); 2553b8e80941Smrg add->opcode = BRW_OPCODE_ADD; 2554b8e80941Smrg add->src[0] = src_reg(mul_dst); 2555b8e80941Smrg add->src[1] = inst->src[0]; 2556b8e80941Smrg add->src[2].file = BAD_FILE; 2557b8e80941Smrg 2558b8e80941Smrg inst->insert_before(block, mul); 2559b8e80941Smrg inst->insert_before(block, add); 2560b8e80941Smrg inst->remove(block); 2561b8e80941Smrg 2562b8e80941Smrg progress = true; 2563b8e80941Smrg } 2564b8e80941Smrg 2565b8e80941Smrg if (progress) 2566b8e80941Smrg invalidate_live_intervals(); 2567b8e80941Smrg 2568b8e80941Smrg return progress; 2569b8e80941Smrg} 2570b8e80941Smrg 2571b8e80941Smrg/* The align16 hardware can only do 32-bit swizzle channels, so we need to 2572b8e80941Smrg * translate the logical 64-bit swizzle channels that we use in the Vec4 IR 2573b8e80941Smrg * to 32-bit swizzle channels in hardware registers. 2574b8e80941Smrg * 2575b8e80941Smrg * @inst and @arg identify the original vec4 IR source operand we need to 2576b8e80941Smrg * translate the swizzle for and @hw_reg is the hardware register where we 2577b8e80941Smrg * will write the hardware swizzle to use. 2578b8e80941Smrg * 2579b8e80941Smrg * This pass assumes that Align16/DF instructions have been fully scalarized 2580b8e80941Smrg * previously so there is just one 64-bit swizzle channel to deal with for any 2581b8e80941Smrg * given Vec4 IR source. 2582b8e80941Smrg */ 2583b8e80941Smrgvoid 2584b8e80941Smrgvec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg, 2585b8e80941Smrg vec4_instruction *inst, int arg) 2586b8e80941Smrg{ 2587b8e80941Smrg src_reg reg = inst->src[arg]; 2588b8e80941Smrg 2589b8e80941Smrg if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE) 2590b8e80941Smrg return; 2591b8e80941Smrg 2592b8e80941Smrg /* If this is not a 64-bit operand or this is a scalar instruction we don't 2593b8e80941Smrg * need to do anything about the swizzles. 2594b8e80941Smrg */ 2595b8e80941Smrg if(type_sz(reg.type) < 8 || is_align1_df(inst)) { 2596b8e80941Smrg hw_reg->swizzle = reg.swizzle; 2597b8e80941Smrg return; 2598b8e80941Smrg } 2599b8e80941Smrg 2600b8e80941Smrg /* Take the 64-bit logical swizzle channel and translate it to 32-bit */ 2601b8e80941Smrg assert(brw_is_single_value_swizzle(reg.swizzle) || 2602b8e80941Smrg is_supported_64bit_region(inst, arg)); 2603b8e80941Smrg 2604b8e80941Smrg /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16 2605b8e80941Smrg * HW can only do 32-bit swizzle channels. 2606b8e80941Smrg */ 2607b8e80941Smrg hw_reg->width = BRW_WIDTH_2; 2608b8e80941Smrg 2609b8e80941Smrg if (is_supported_64bit_region(inst, arg) && 2610b8e80941Smrg !is_gen7_supported_64bit_swizzle(inst, arg)) { 2611b8e80941Smrg /* Supported 64-bit swizzles are those such that their first two 2612b8e80941Smrg * components, when expanded to 32-bit swizzles, match the semantics 2613b8e80941Smrg * of the original 64-bit swizzle with 2-wide row regioning. 2614b8e80941Smrg */ 2615b8e80941Smrg unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 2616b8e80941Smrg unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 2617b8e80941Smrg hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 2618b8e80941Smrg swizzle1 * 2, swizzle1 * 2 + 1); 2619b8e80941Smrg } else { 2620b8e80941Smrg /* If we got here then we have one of the following: 2621b8e80941Smrg * 2622b8e80941Smrg * 1. An unsupported swizzle, which should be single-value thanks to the 2623b8e80941Smrg * scalarization pass. 2624b8e80941Smrg * 2625b8e80941Smrg * 2. A gen7 supported swizzle. These can be single-value or double-value 2626b8e80941Smrg * swizzles. If the latter, they are never cross-dvec2 channels. For 2627b8e80941Smrg * these we always need to activate the gen7 vstride=0 exploit. 2628b8e80941Smrg */ 2629b8e80941Smrg unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 2630b8e80941Smrg unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 2631b8e80941Smrg assert((swizzle0 < 2) == (swizzle1 < 2)); 2632b8e80941Smrg 2633b8e80941Smrg /* To gain access to Z/W components we need to select the second half 2634b8e80941Smrg * of the register and then use a X/Y swizzle to select Z/W respectively. 2635b8e80941Smrg */ 2636b8e80941Smrg if (swizzle0 >= 2) { 2637b8e80941Smrg *hw_reg = suboffset(*hw_reg, 2); 2638b8e80941Smrg swizzle0 -= 2; 2639b8e80941Smrg swizzle1 -= 2; 2640b8e80941Smrg } 2641b8e80941Smrg 2642b8e80941Smrg /* All gen7-specific supported swizzles require the vstride=0 exploit */ 2643b8e80941Smrg if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg)) 2644b8e80941Smrg hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 2645b8e80941Smrg 2646b8e80941Smrg /* Any 64-bit source with an offset at 16B is intended to address the 2647b8e80941Smrg * second half of a register and needs a vertical stride of 0 so we: 2648b8e80941Smrg * 2649b8e80941Smrg * 1. Don't violate register region restrictions. 2650b8e80941Smrg * 2. Activate the gen7 instruction decompresion bug exploit when 2651b8e80941Smrg * execsize > 4 2652b8e80941Smrg */ 2653b8e80941Smrg if (hw_reg->subnr % REG_SIZE == 16) { 2654b8e80941Smrg assert(devinfo->gen == 7); 2655b8e80941Smrg hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 2656b8e80941Smrg } 2657b8e80941Smrg 2658b8e80941Smrg hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 2659b8e80941Smrg swizzle1 * 2, swizzle1 * 2 + 1); 2660b8e80941Smrg } 2661b8e80941Smrg} 2662b8e80941Smrg 2663b8e80941Smrgbool 2664b8e80941Smrgvec4_visitor::run() 2665b8e80941Smrg{ 2666b8e80941Smrg if (shader_time_index >= 0) 2667b8e80941Smrg emit_shader_time_begin(); 2668b8e80941Smrg 2669b8e80941Smrg emit_prolog(); 2670b8e80941Smrg 2671b8e80941Smrg emit_nir_code(); 2672b8e80941Smrg if (failed) 2673b8e80941Smrg return false; 2674b8e80941Smrg base_ir = NULL; 2675b8e80941Smrg 2676b8e80941Smrg emit_thread_end(); 2677b8e80941Smrg 2678b8e80941Smrg calculate_cfg(); 2679b8e80941Smrg 2680b8e80941Smrg /* Before any optimization, push array accesses out to scratch 2681b8e80941Smrg * space where we need them to be. This pass may allocate new 2682b8e80941Smrg * virtual GRFs, so we want to do it early. It also makes sure 2683b8e80941Smrg * that we have reladdr computations available for CSE, since we'll 2684b8e80941Smrg * often do repeated subexpressions for those. 2685b8e80941Smrg */ 2686b8e80941Smrg move_grf_array_access_to_scratch(); 2687b8e80941Smrg move_uniform_array_access_to_pull_constants(); 2688b8e80941Smrg 2689b8e80941Smrg pack_uniform_registers(); 2690b8e80941Smrg move_push_constants_to_pull_constants(); 2691b8e80941Smrg split_virtual_grfs(); 2692b8e80941Smrg 2693b8e80941Smrg#define OPT(pass, args...) ({ \ 2694b8e80941Smrg pass_num++; \ 2695b8e80941Smrg bool this_progress = pass(args); \ 2696b8e80941Smrg \ 2697b8e80941Smrg if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \ 2698b8e80941Smrg char filename[64]; \ 2699b8e80941Smrg snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \ 2700b8e80941Smrg stage_abbrev, nir->info.name, iteration, pass_num); \ 2701b8e80941Smrg \ 2702b8e80941Smrg backend_shader::dump_instructions(filename); \ 2703b8e80941Smrg } \ 2704b8e80941Smrg \ 2705b8e80941Smrg progress = progress || this_progress; \ 2706b8e80941Smrg this_progress; \ 2707b8e80941Smrg }) 2708b8e80941Smrg 2709b8e80941Smrg 2710b8e80941Smrg if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) { 2711b8e80941Smrg char filename[64]; 2712b8e80941Smrg snprintf(filename, 64, "%s-%s-00-00-start", 2713b8e80941Smrg stage_abbrev, nir->info.name); 2714b8e80941Smrg 2715b8e80941Smrg backend_shader::dump_instructions(filename); 2716b8e80941Smrg } 2717b8e80941Smrg 2718b8e80941Smrg bool progress; 2719b8e80941Smrg int iteration = 0; 2720b8e80941Smrg int pass_num = 0; 2721b8e80941Smrg do { 2722b8e80941Smrg progress = false; 2723b8e80941Smrg pass_num = 0; 2724b8e80941Smrg iteration++; 2725b8e80941Smrg 2726b8e80941Smrg OPT(opt_predicated_break, this); 2727b8e80941Smrg OPT(opt_reduce_swizzle); 2728b8e80941Smrg OPT(dead_code_eliminate); 2729b8e80941Smrg OPT(dead_control_flow_eliminate, this); 2730b8e80941Smrg OPT(opt_copy_propagation); 2731b8e80941Smrg OPT(opt_cmod_propagation); 2732b8e80941Smrg OPT(opt_cse); 2733b8e80941Smrg OPT(opt_algebraic); 2734b8e80941Smrg OPT(opt_register_coalesce); 2735b8e80941Smrg OPT(eliminate_find_live_channel); 2736b8e80941Smrg } while (progress); 2737b8e80941Smrg 2738b8e80941Smrg pass_num = 0; 2739b8e80941Smrg 2740b8e80941Smrg if (OPT(opt_vector_float)) { 2741b8e80941Smrg OPT(opt_cse); 2742b8e80941Smrg OPT(opt_copy_propagation, false); 2743b8e80941Smrg OPT(opt_copy_propagation, true); 2744b8e80941Smrg OPT(dead_code_eliminate); 2745b8e80941Smrg } 2746b8e80941Smrg 2747b8e80941Smrg if (devinfo->gen <= 5 && OPT(lower_minmax)) { 2748b8e80941Smrg OPT(opt_cmod_propagation); 2749b8e80941Smrg OPT(opt_cse); 2750b8e80941Smrg OPT(opt_copy_propagation); 2751b8e80941Smrg OPT(dead_code_eliminate); 2752b8e80941Smrg } 2753b8e80941Smrg 2754b8e80941Smrg if (OPT(lower_simd_width)) { 2755b8e80941Smrg OPT(opt_copy_propagation); 2756b8e80941Smrg OPT(dead_code_eliminate); 2757b8e80941Smrg } 2758b8e80941Smrg 2759b8e80941Smrg if (failed) 2760b8e80941Smrg return false; 2761b8e80941Smrg 2762b8e80941Smrg OPT(lower_64bit_mad_to_mul_add); 2763b8e80941Smrg 2764b8e80941Smrg /* Run this before payload setup because tesselation shaders 2765b8e80941Smrg * rely on it to prevent cross dvec2 regioning on DF attributes 2766b8e80941Smrg * that are setup so that XY are on the second half of register and 2767b8e80941Smrg * ZW are in the first half of the next. 2768b8e80941Smrg */ 2769b8e80941Smrg OPT(scalarize_df); 2770b8e80941Smrg 2771b8e80941Smrg setup_payload(); 2772b8e80941Smrg 2773b8e80941Smrg if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) { 2774b8e80941Smrg /* Debug of register spilling: Go spill everything. */ 2775b8e80941Smrg const int grf_count = alloc.count; 2776b8e80941Smrg float spill_costs[alloc.count]; 2777b8e80941Smrg bool no_spill[alloc.count]; 2778b8e80941Smrg evaluate_spill_costs(spill_costs, no_spill); 2779b8e80941Smrg for (int i = 0; i < grf_count; i++) { 2780b8e80941Smrg if (no_spill[i]) 2781b8e80941Smrg continue; 2782b8e80941Smrg spill_reg(i); 2783b8e80941Smrg } 2784b8e80941Smrg 2785b8e80941Smrg /* We want to run this after spilling because 64-bit (un)spills need to 2786b8e80941Smrg * emit code to shuffle 64-bit data for the 32-bit scratch read/write 2787b8e80941Smrg * messages that can produce unsupported 64-bit swizzle regions. 2788b8e80941Smrg */ 2789b8e80941Smrg OPT(scalarize_df); 2790b8e80941Smrg } 2791b8e80941Smrg 2792b8e80941Smrg fixup_3src_null_dest(); 2793b8e80941Smrg 2794b8e80941Smrg bool allocated_without_spills = reg_allocate(); 2795b8e80941Smrg 2796b8e80941Smrg if (!allocated_without_spills) { 2797b8e80941Smrg compiler->shader_perf_log(log_data, 2798b8e80941Smrg "%s shader triggered register spilling. " 2799b8e80941Smrg "Try reducing the number of live vec4 values " 2800b8e80941Smrg "to improve performance.\n", 2801b8e80941Smrg stage_name); 2802b8e80941Smrg 2803b8e80941Smrg while (!reg_allocate()) { 2804b8e80941Smrg if (failed) 2805b8e80941Smrg return false; 2806b8e80941Smrg } 2807b8e80941Smrg 2808b8e80941Smrg /* We want to run this after spilling because 64-bit (un)spills need to 2809b8e80941Smrg * emit code to shuffle 64-bit data for the 32-bit scratch read/write 2810b8e80941Smrg * messages that can produce unsupported 64-bit swizzle regions. 2811b8e80941Smrg */ 2812b8e80941Smrg OPT(scalarize_df); 2813b8e80941Smrg } 2814b8e80941Smrg 2815b8e80941Smrg opt_schedule_instructions(); 2816b8e80941Smrg 2817b8e80941Smrg opt_set_dependency_control(); 2818b8e80941Smrg 2819b8e80941Smrg convert_to_hw_regs(); 2820b8e80941Smrg 2821b8e80941Smrg if (last_scratch > 0) { 2822b8e80941Smrg prog_data->base.total_scratch = 2823b8e80941Smrg brw_get_scratch_size(last_scratch * REG_SIZE); 2824b8e80941Smrg } 2825b8e80941Smrg 2826b8e80941Smrg return !failed; 2827b8e80941Smrg} 2828b8e80941Smrg 2829b8e80941Smrg} /* namespace brw */ 2830b8e80941Smrg 2831b8e80941Smrgextern "C" { 2832b8e80941Smrg 2833b8e80941Smrg/** 2834b8e80941Smrg * Compile a vertex shader. 2835b8e80941Smrg * 2836b8e80941Smrg * Returns the final assembly and the program's size. 2837b8e80941Smrg */ 2838b8e80941Smrgconst unsigned * 2839b8e80941Smrgbrw_compile_vs(const struct brw_compiler *compiler, void *log_data, 2840b8e80941Smrg void *mem_ctx, 2841b8e80941Smrg const struct brw_vs_prog_key *key, 2842b8e80941Smrg struct brw_vs_prog_data *prog_data, 2843b8e80941Smrg nir_shader *shader, 2844b8e80941Smrg int shader_time_index, 2845b8e80941Smrg char **error_str) 2846b8e80941Smrg{ 2847b8e80941Smrg const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX]; 2848b8e80941Smrg shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar); 2849b8e80941Smrg 2850b8e80941Smrg const unsigned *assembly = NULL; 2851b8e80941Smrg 2852b8e80941Smrg if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) { 2853b8e80941Smrg /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy 2854b8e80941Smrg * the edge flag from VERT_ATTRIB_EDGEFLAG. This will be done 2855b8e80941Smrg * automatically by brw_vec4_visitor::emit_urb_slot but we need to 2856b8e80941Smrg * ensure that prog_data->inputs_read is accurate. 2857b8e80941Smrg * 2858b8e80941Smrg * In order to make late NIR passes aware of the change, we actually 2859b8e80941Smrg * whack shader->info.inputs_read instead. This is safe because we just 2860b8e80941Smrg * made a copy of the shader. 2861b8e80941Smrg */ 2862b8e80941Smrg assert(!is_scalar); 2863b8e80941Smrg assert(key->copy_edgeflag); 2864b8e80941Smrg shader->info.inputs_read |= VERT_BIT_EDGEFLAG; 2865b8e80941Smrg } 2866b8e80941Smrg 2867b8e80941Smrg prog_data->inputs_read = shader->info.inputs_read; 2868b8e80941Smrg prog_data->double_inputs_read = shader->info.vs.double_inputs; 2869b8e80941Smrg 2870b8e80941Smrg brw_nir_lower_vs_inputs(shader, key->gl_attrib_wa_flags); 2871b8e80941Smrg brw_nir_lower_vue_outputs(shader); 2872b8e80941Smrg shader = brw_postprocess_nir(shader, compiler, is_scalar); 2873b8e80941Smrg 2874b8e80941Smrg prog_data->base.clip_distance_mask = 2875b8e80941Smrg ((1 << shader->info.clip_distance_array_size) - 1); 2876b8e80941Smrg prog_data->base.cull_distance_mask = 2877b8e80941Smrg ((1 << shader->info.cull_distance_array_size) - 1) << 2878b8e80941Smrg shader->info.clip_distance_array_size; 2879b8e80941Smrg 2880b8e80941Smrg unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read); 2881b8e80941Smrg 2882b8e80941Smrg /* gl_VertexID and gl_InstanceID are system values, but arrive via an 2883b8e80941Smrg * incoming vertex attribute. So, add an extra slot. 2884b8e80941Smrg */ 2885b8e80941Smrg if (shader->info.system_values_read & 2886b8e80941Smrg (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) | 2887b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) | 2888b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) | 2889b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) { 2890b8e80941Smrg nr_attribute_slots++; 2891b8e80941Smrg } 2892b8e80941Smrg 2893b8e80941Smrg /* gl_DrawID and IsIndexedDraw share its very own vec4 */ 2894b8e80941Smrg if (shader->info.system_values_read & 2895b8e80941Smrg (BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID) | 2896b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))) { 2897b8e80941Smrg nr_attribute_slots++; 2898b8e80941Smrg } 2899b8e80941Smrg 2900b8e80941Smrg if (shader->info.system_values_read & 2901b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW)) 2902b8e80941Smrg prog_data->uses_is_indexed_draw = true; 2903b8e80941Smrg 2904b8e80941Smrg if (shader->info.system_values_read & 2905b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX)) 2906b8e80941Smrg prog_data->uses_firstvertex = true; 2907b8e80941Smrg 2908b8e80941Smrg if (shader->info.system_values_read & 2909b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE)) 2910b8e80941Smrg prog_data->uses_baseinstance = true; 2911b8e80941Smrg 2912b8e80941Smrg if (shader->info.system_values_read & 2913b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE)) 2914b8e80941Smrg prog_data->uses_vertexid = true; 2915b8e80941Smrg 2916b8e80941Smrg if (shader->info.system_values_read & 2917b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)) 2918b8e80941Smrg prog_data->uses_instanceid = true; 2919b8e80941Smrg 2920b8e80941Smrg if (shader->info.system_values_read & 2921b8e80941Smrg BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) 2922b8e80941Smrg prog_data->uses_drawid = true; 2923b8e80941Smrg 2924b8e80941Smrg /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry 2925b8e80941Smrg * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in 2926b8e80941Smrg * vec4 mode, the hardware appears to wedge unless we read something. 2927b8e80941Smrg */ 2928b8e80941Smrg if (is_scalar) 2929b8e80941Smrg prog_data->base.urb_read_length = 2930b8e80941Smrg DIV_ROUND_UP(nr_attribute_slots, 2); 2931b8e80941Smrg else 2932b8e80941Smrg prog_data->base.urb_read_length = 2933b8e80941Smrg DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2); 2934b8e80941Smrg 2935b8e80941Smrg prog_data->nr_attribute_slots = nr_attribute_slots; 2936b8e80941Smrg 2937b8e80941Smrg /* Since vertex shaders reuse the same VUE entry for inputs and outputs 2938b8e80941Smrg * (overwriting the original contents), we need to make sure the size is 2939b8e80941Smrg * the larger of the two. 2940b8e80941Smrg */ 2941b8e80941Smrg const unsigned vue_entries = 2942b8e80941Smrg MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots); 2943b8e80941Smrg 2944b8e80941Smrg if (compiler->devinfo->gen == 6) { 2945b8e80941Smrg prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8); 2946b8e80941Smrg } else { 2947b8e80941Smrg prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4); 2948b8e80941Smrg /* On Cannonlake software shall not program an allocation size that 2949b8e80941Smrg * specifies a size that is a multiple of 3 64B (512-bit) cachelines. 2950b8e80941Smrg */ 2951b8e80941Smrg if (compiler->devinfo->gen == 10 && 2952b8e80941Smrg prog_data->base.urb_entry_size % 3 == 0) 2953b8e80941Smrg prog_data->base.urb_entry_size++; 2954b8e80941Smrg } 2955b8e80941Smrg 2956b8e80941Smrg if (INTEL_DEBUG & DEBUG_VS) { 2957b8e80941Smrg fprintf(stderr, "VS Output "); 2958b8e80941Smrg brw_print_vue_map(stderr, &prog_data->base.vue_map); 2959b8e80941Smrg } 2960b8e80941Smrg 2961b8e80941Smrg if (is_scalar) { 2962b8e80941Smrg prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; 2963b8e80941Smrg 2964b8e80941Smrg fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base, 2965b8e80941Smrg NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */ 2966b8e80941Smrg shader, 8, shader_time_index); 2967b8e80941Smrg if (!v.run_vs()) { 2968b8e80941Smrg if (error_str) 2969b8e80941Smrg *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 2970b8e80941Smrg 2971b8e80941Smrg return NULL; 2972b8e80941Smrg } 2973b8e80941Smrg 2974b8e80941Smrg prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; 2975b8e80941Smrg 2976b8e80941Smrg fs_generator g(compiler, log_data, mem_ctx, 2977b8e80941Smrg &prog_data->base.base, v.promoted_constants, 2978b8e80941Smrg v.runtime_check_aads_emit, MESA_SHADER_VERTEX); 2979b8e80941Smrg if (INTEL_DEBUG & DEBUG_VS) { 2980b8e80941Smrg const char *debug_name = 2981b8e80941Smrg ralloc_asprintf(mem_ctx, "%s vertex shader %s", 2982b8e80941Smrg shader->info.label ? shader->info.label : 2983b8e80941Smrg "unnamed", 2984b8e80941Smrg shader->info.name); 2985b8e80941Smrg 2986b8e80941Smrg g.enable_debug(debug_name); 2987b8e80941Smrg } 2988b8e80941Smrg g.generate_code(v.cfg, 8); 2989b8e80941Smrg assembly = g.get_assembly(); 2990b8e80941Smrg } 2991b8e80941Smrg 2992b8e80941Smrg if (!assembly) { 2993b8e80941Smrg prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT; 2994b8e80941Smrg 2995b8e80941Smrg vec4_vs_visitor v(compiler, log_data, key, prog_data, 2996b8e80941Smrg shader, mem_ctx, shader_time_index); 2997b8e80941Smrg if (!v.run()) { 2998b8e80941Smrg if (error_str) 2999b8e80941Smrg *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 3000b8e80941Smrg 3001b8e80941Smrg return NULL; 3002b8e80941Smrg } 3003b8e80941Smrg 3004b8e80941Smrg assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, 3005b8e80941Smrg shader, &prog_data->base, v.cfg); 3006b8e80941Smrg } 3007b8e80941Smrg 3008b8e80941Smrg return assembly; 3009b8e80941Smrg} 3010b8e80941Smrg 3011b8e80941Smrg} /* extern "C" */ 3012