1/*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
5 * (C) Copyright IBM Corporation 2006
6 * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/**
29 * \file arrayobj.c
30 *
31 * Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
32 * the GL_ARB_vertex_array_object extension.
33 *
34 * \todo
35 * The code in this file borrows a lot from bufferobj.c.  There's a certain
36 * amount of cruft left over from that origin that may be unnecessary.
37 *
38 * \author Ian Romanick <idr@us.ibm.com>
39 * \author Brian Paul
40 */
41
42
43#include "glheader.h"
44#include "hash.h"
45#include "image.h"
46#include "imports.h"
47#include "context.h"
48#include "bufferobj.h"
49#include "arrayobj.h"
50#include "macros.h"
51#include "mtypes.h"
52#include "state.h"
53#include "varray.h"
54#include "util/bitscan.h"
55#include "util/u_atomic.h"
56#include "util/u_math.h"
57
58
59const GLubyte
60_mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
61{
62   /* ATTRIBUTE_MAP_MODE_IDENTITY
63    *
64    * Grab vertex processing attribute VERT_ATTRIB_POS from
65    * the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
66    * attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
67    * VERT_ATTRIB_GENERIC0.
68    */
69   {
70      VERT_ATTRIB_POS,                 /* VERT_ATTRIB_POS */
71      VERT_ATTRIB_NORMAL,              /* VERT_ATTRIB_NORMAL */
72      VERT_ATTRIB_COLOR0,              /* VERT_ATTRIB_COLOR0 */
73      VERT_ATTRIB_COLOR1,              /* VERT_ATTRIB_COLOR1 */
74      VERT_ATTRIB_FOG,                 /* VERT_ATTRIB_FOG */
75      VERT_ATTRIB_COLOR_INDEX,         /* VERT_ATTRIB_COLOR_INDEX */
76      VERT_ATTRIB_EDGEFLAG,            /* VERT_ATTRIB_EDGEFLAG */
77      VERT_ATTRIB_TEX0,                /* VERT_ATTRIB_TEX0 */
78      VERT_ATTRIB_TEX1,                /* VERT_ATTRIB_TEX1 */
79      VERT_ATTRIB_TEX2,                /* VERT_ATTRIB_TEX2 */
80      VERT_ATTRIB_TEX3,                /* VERT_ATTRIB_TEX3 */
81      VERT_ATTRIB_TEX4,                /* VERT_ATTRIB_TEX4 */
82      VERT_ATTRIB_TEX5,                /* VERT_ATTRIB_TEX5 */
83      VERT_ATTRIB_TEX6,                /* VERT_ATTRIB_TEX6 */
84      VERT_ATTRIB_TEX7,                /* VERT_ATTRIB_TEX7 */
85      VERT_ATTRIB_POINT_SIZE,          /* VERT_ATTRIB_POINT_SIZE */
86      VERT_ATTRIB_GENERIC0,            /* VERT_ATTRIB_GENERIC0 */
87      VERT_ATTRIB_GENERIC1,            /* VERT_ATTRIB_GENERIC1 */
88      VERT_ATTRIB_GENERIC2,            /* VERT_ATTRIB_GENERIC2 */
89      VERT_ATTRIB_GENERIC3,            /* VERT_ATTRIB_GENERIC3 */
90      VERT_ATTRIB_GENERIC4,            /* VERT_ATTRIB_GENERIC4 */
91      VERT_ATTRIB_GENERIC5,            /* VERT_ATTRIB_GENERIC5 */
92      VERT_ATTRIB_GENERIC6,            /* VERT_ATTRIB_GENERIC6 */
93      VERT_ATTRIB_GENERIC7,            /* VERT_ATTRIB_GENERIC7 */
94      VERT_ATTRIB_GENERIC8,            /* VERT_ATTRIB_GENERIC8 */
95      VERT_ATTRIB_GENERIC9,            /* VERT_ATTRIB_GENERIC9 */
96      VERT_ATTRIB_GENERIC10,           /* VERT_ATTRIB_GENERIC10 */
97      VERT_ATTRIB_GENERIC11,           /* VERT_ATTRIB_GENERIC11 */
98      VERT_ATTRIB_GENERIC12,           /* VERT_ATTRIB_GENERIC12 */
99      VERT_ATTRIB_GENERIC13,           /* VERT_ATTRIB_GENERIC13 */
100      VERT_ATTRIB_GENERIC14,           /* VERT_ATTRIB_GENERIC14 */
101      VERT_ATTRIB_GENERIC15            /* VERT_ATTRIB_GENERIC15 */
102   },
103
104   /* ATTRIBUTE_MAP_MODE_POSITION
105    *
106    * Grab vertex processing attribute VERT_ATTRIB_POS as well as
107    * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
108    * VAO attribute VERT_ATTRIB_POS.
109    */
110   {
111      VERT_ATTRIB_POS,                 /* VERT_ATTRIB_POS */
112      VERT_ATTRIB_NORMAL,              /* VERT_ATTRIB_NORMAL */
113      VERT_ATTRIB_COLOR0,              /* VERT_ATTRIB_COLOR0 */
114      VERT_ATTRIB_COLOR1,              /* VERT_ATTRIB_COLOR1 */
115      VERT_ATTRIB_FOG,                 /* VERT_ATTRIB_FOG */
116      VERT_ATTRIB_COLOR_INDEX,         /* VERT_ATTRIB_COLOR_INDEX */
117      VERT_ATTRIB_EDGEFLAG,            /* VERT_ATTRIB_EDGEFLAG */
118      VERT_ATTRIB_TEX0,                /* VERT_ATTRIB_TEX0 */
119      VERT_ATTRIB_TEX1,                /* VERT_ATTRIB_TEX1 */
120      VERT_ATTRIB_TEX2,                /* VERT_ATTRIB_TEX2 */
121      VERT_ATTRIB_TEX3,                /* VERT_ATTRIB_TEX3 */
122      VERT_ATTRIB_TEX4,                /* VERT_ATTRIB_TEX4 */
123      VERT_ATTRIB_TEX5,                /* VERT_ATTRIB_TEX5 */
124      VERT_ATTRIB_TEX6,                /* VERT_ATTRIB_TEX6 */
125      VERT_ATTRIB_TEX7,                /* VERT_ATTRIB_TEX7 */
126      VERT_ATTRIB_POINT_SIZE,          /* VERT_ATTRIB_POINT_SIZE */
127      VERT_ATTRIB_POS,                 /* VERT_ATTRIB_GENERIC0 */
128      VERT_ATTRIB_GENERIC1,            /* VERT_ATTRIB_GENERIC1 */
129      VERT_ATTRIB_GENERIC2,            /* VERT_ATTRIB_GENERIC2 */
130      VERT_ATTRIB_GENERIC3,            /* VERT_ATTRIB_GENERIC3 */
131      VERT_ATTRIB_GENERIC4,            /* VERT_ATTRIB_GENERIC4 */
132      VERT_ATTRIB_GENERIC5,            /* VERT_ATTRIB_GENERIC5 */
133      VERT_ATTRIB_GENERIC6,            /* VERT_ATTRIB_GENERIC6 */
134      VERT_ATTRIB_GENERIC7,            /* VERT_ATTRIB_GENERIC7 */
135      VERT_ATTRIB_GENERIC8,            /* VERT_ATTRIB_GENERIC8 */
136      VERT_ATTRIB_GENERIC9,            /* VERT_ATTRIB_GENERIC9 */
137      VERT_ATTRIB_GENERIC10,           /* VERT_ATTRIB_GENERIC10 */
138      VERT_ATTRIB_GENERIC11,           /* VERT_ATTRIB_GENERIC11 */
139      VERT_ATTRIB_GENERIC12,           /* VERT_ATTRIB_GENERIC12 */
140      VERT_ATTRIB_GENERIC13,           /* VERT_ATTRIB_GENERIC13 */
141      VERT_ATTRIB_GENERIC14,           /* VERT_ATTRIB_GENERIC14 */
142      VERT_ATTRIB_GENERIC15            /* VERT_ATTRIB_GENERIC15 */
143   },
144
145   /* ATTRIBUTE_MAP_MODE_GENERIC0
146    *
147    * Grab vertex processing attribute VERT_ATTRIB_POS as well as
148    * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
149    * VAO attribute VERT_ATTRIB_GENERIC0.
150    */
151   {
152      VERT_ATTRIB_GENERIC0,            /* VERT_ATTRIB_POS */
153      VERT_ATTRIB_NORMAL,              /* VERT_ATTRIB_NORMAL */
154      VERT_ATTRIB_COLOR0,              /* VERT_ATTRIB_COLOR0 */
155      VERT_ATTRIB_COLOR1,              /* VERT_ATTRIB_COLOR1 */
156      VERT_ATTRIB_FOG,                 /* VERT_ATTRIB_FOG */
157      VERT_ATTRIB_COLOR_INDEX,         /* VERT_ATTRIB_COLOR_INDEX */
158      VERT_ATTRIB_EDGEFLAG,            /* VERT_ATTRIB_EDGEFLAG */
159      VERT_ATTRIB_TEX0,                /* VERT_ATTRIB_TEX0 */
160      VERT_ATTRIB_TEX1,                /* VERT_ATTRIB_TEX1 */
161      VERT_ATTRIB_TEX2,                /* VERT_ATTRIB_TEX2 */
162      VERT_ATTRIB_TEX3,                /* VERT_ATTRIB_TEX3 */
163      VERT_ATTRIB_TEX4,                /* VERT_ATTRIB_TEX4 */
164      VERT_ATTRIB_TEX5,                /* VERT_ATTRIB_TEX5 */
165      VERT_ATTRIB_TEX6,                /* VERT_ATTRIB_TEX6 */
166      VERT_ATTRIB_TEX7,                /* VERT_ATTRIB_TEX7 */
167      VERT_ATTRIB_POINT_SIZE,          /* VERT_ATTRIB_POINT_SIZE */
168      VERT_ATTRIB_GENERIC0,            /* VERT_ATTRIB_GENERIC0 */
169      VERT_ATTRIB_GENERIC1,            /* VERT_ATTRIB_GENERIC1 */
170      VERT_ATTRIB_GENERIC2,            /* VERT_ATTRIB_GENERIC2 */
171      VERT_ATTRIB_GENERIC3,            /* VERT_ATTRIB_GENERIC3 */
172      VERT_ATTRIB_GENERIC4,            /* VERT_ATTRIB_GENERIC4 */
173      VERT_ATTRIB_GENERIC5,            /* VERT_ATTRIB_GENERIC5 */
174      VERT_ATTRIB_GENERIC6,            /* VERT_ATTRIB_GENERIC6 */
175      VERT_ATTRIB_GENERIC7,            /* VERT_ATTRIB_GENERIC7 */
176      VERT_ATTRIB_GENERIC8,            /* VERT_ATTRIB_GENERIC8 */
177      VERT_ATTRIB_GENERIC9,            /* VERT_ATTRIB_GENERIC9 */
178      VERT_ATTRIB_GENERIC10,           /* VERT_ATTRIB_GENERIC10 */
179      VERT_ATTRIB_GENERIC11,           /* VERT_ATTRIB_GENERIC11 */
180      VERT_ATTRIB_GENERIC12,           /* VERT_ATTRIB_GENERIC12 */
181      VERT_ATTRIB_GENERIC13,           /* VERT_ATTRIB_GENERIC13 */
182      VERT_ATTRIB_GENERIC14,           /* VERT_ATTRIB_GENERIC14 */
183      VERT_ATTRIB_GENERIC15            /* VERT_ATTRIB_GENERIC15 */
184   }
185};
186
187
188/**
189 * Look up the array object for the given ID.
190 *
191 * \returns
192 * Either a pointer to the array object with the specified ID or \c NULL for
193 * a non-existent ID.  The spec defines ID 0 as being technically
194 * non-existent.
195 */
196
197struct gl_vertex_array_object *
198_mesa_lookup_vao(struct gl_context *ctx, GLuint id)
199{
200   /* The ARB_direct_state_access specification says:
201    *
202    *    "<vaobj> is [compatibility profile:
203    *     zero, indicating the default vertex array object, or]
204    *     the name of the vertex array object."
205    */
206   if (id == 0) {
207      if (ctx->API == API_OPENGL_COMPAT)
208         return ctx->Array.DefaultVAO;
209
210      return NULL;
211   } else {
212      struct gl_vertex_array_object *vao;
213
214      if (ctx->Array.LastLookedUpVAO &&
215          ctx->Array.LastLookedUpVAO->Name == id) {
216         vao = ctx->Array.LastLookedUpVAO;
217      } else {
218         vao = (struct gl_vertex_array_object *)
219            _mesa_HashLookupLocked(ctx->Array.Objects, id);
220
221         _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
222      }
223
224      return vao;
225   }
226}
227
228
229/**
230 * Looks up the array object for the given ID.
231 *
232 * Unlike _mesa_lookup_vao, this function generates a GL_INVALID_OPERATION
233 * error if the array object does not exist. It also returns the default
234 * array object when ctx is a compatibility profile context and id is zero.
235 */
236struct gl_vertex_array_object *
237_mesa_lookup_vao_err(struct gl_context *ctx, GLuint id, const char *caller)
238{
239   /* The ARB_direct_state_access specification says:
240    *
241    *    "<vaobj> is [compatibility profile:
242    *     zero, indicating the default vertex array object, or]
243    *     the name of the vertex array object."
244    */
245   if (id == 0) {
246      if (ctx->API == API_OPENGL_CORE) {
247         _mesa_error(ctx, GL_INVALID_OPERATION,
248                     "%s(zero is not valid vaobj name in a core profile "
249                     "context)", caller);
250         return NULL;
251      }
252
253      return ctx->Array.DefaultVAO;
254   } else {
255      struct gl_vertex_array_object *vao;
256
257      if (ctx->Array.LastLookedUpVAO &&
258          ctx->Array.LastLookedUpVAO->Name == id) {
259         vao = ctx->Array.LastLookedUpVAO;
260      } else {
261         vao = (struct gl_vertex_array_object *)
262            _mesa_HashLookupLocked(ctx->Array.Objects, id);
263
264         /* The ARB_direct_state_access specification says:
265          *
266          *    "An INVALID_OPERATION error is generated if <vaobj> is not
267          *     [compatibility profile: zero or] the name of an existing
268          *     vertex array object."
269          */
270         if (!vao || !vao->EverBound) {
271            _mesa_error(ctx, GL_INVALID_OPERATION,
272                        "%s(non-existent vaobj=%u)", caller, id);
273            return NULL;
274         }
275
276         _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
277      }
278
279      return vao;
280   }
281}
282
283
284/**
285 * For all the vertex binding points in the array object, unbind any pointers
286 * to any buffer objects (VBOs).
287 * This is done just prior to array object destruction.
288 */
289static void
290unbind_array_object_vbos(struct gl_context *ctx, struct gl_vertex_array_object *obj)
291{
292   GLuint i;
293
294   for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
295      _mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
296}
297
298
299/**
300 * Allocate and initialize a new vertex array object.
301 */
302struct gl_vertex_array_object *
303_mesa_new_vao(struct gl_context *ctx, GLuint name)
304{
305   struct gl_vertex_array_object *obj = CALLOC_STRUCT(gl_vertex_array_object);
306   if (obj)
307      _mesa_initialize_vao(ctx, obj, name);
308   return obj;
309}
310
311
312/**
313 * Delete an array object.
314 */
315void
316_mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
317{
318   unbind_array_object_vbos(ctx, obj);
319   _mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
320   free(obj->Label);
321   free(obj);
322}
323
324
325/**
326 * Set ptr to vao w/ reference counting.
327 * Note: this should only be called from the _mesa_reference_vao()
328 * inline function.
329 */
330void
331_mesa_reference_vao_(struct gl_context *ctx,
332                     struct gl_vertex_array_object **ptr,
333                     struct gl_vertex_array_object *vao)
334{
335   assert(*ptr != vao);
336
337   if (*ptr) {
338      /* Unreference the old array object */
339      struct gl_vertex_array_object *oldObj = *ptr;
340
341      bool deleteFlag;
342      if (oldObj->SharedAndImmutable) {
343         deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
344      } else {
345         assert(oldObj->RefCount > 0);
346         oldObj->RefCount--;
347         deleteFlag = (oldObj->RefCount == 0);
348      }
349
350      if (deleteFlag)
351         _mesa_delete_vao(ctx, oldObj);
352
353      *ptr = NULL;
354   }
355   assert(!*ptr);
356
357   if (vao) {
358      /* reference new array object */
359      if (vao->SharedAndImmutable) {
360         p_atomic_inc(&vao->RefCount);
361      } else {
362         assert(vao->RefCount > 0);
363         vao->RefCount++;
364      }
365
366      *ptr = vao;
367   }
368}
369
370
371/**
372 * Initialize attributes of a vertex array within a vertex array object.
373 * \param vao  the container vertex array object
374 * \param index  which array in the VAO to initialize
375 * \param size  number of components (1, 2, 3 or 4) per attribute
376 * \param type  datatype of the attribute (GL_FLOAT, GL_INT, etc).
377 */
378static void
379init_array(struct gl_context *ctx,
380           struct gl_vertex_array_object *vao,
381           gl_vert_attrib index, GLint size, GLint type)
382{
383   assert(index < ARRAY_SIZE(vao->VertexAttrib));
384   struct gl_array_attributes *array = &vao->VertexAttrib[index];
385   assert(index < ARRAY_SIZE(vao->BufferBinding));
386   struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[index];
387
388   _mesa_set_vertex_format(&array->Format, size, type, GL_RGBA,
389                           GL_FALSE, GL_FALSE, GL_FALSE);
390   array->Stride = 0;
391   array->Ptr = NULL;
392   array->RelativeOffset = 0;
393   ASSERT_BITFIELD_SIZE(struct gl_array_attributes, BufferBindingIndex,
394                        VERT_ATTRIB_MAX - 1);
395   array->BufferBindingIndex = index;
396
397   binding->Offset = 0;
398   binding->Stride = array->Format._ElementSize;
399   binding->BufferObj = NULL;
400   binding->_BoundArrays = BITFIELD_BIT(index);
401
402   /* Vertex array buffers */
403   _mesa_reference_buffer_object(ctx, &binding->BufferObj,
404                                 ctx->Shared->NullBufferObj);
405}
406
407
408/**
409 * Initialize a gl_vertex_array_object's arrays.
410 */
411void
412_mesa_initialize_vao(struct gl_context *ctx,
413                     struct gl_vertex_array_object *vao,
414                     GLuint name)
415{
416   GLuint i;
417
418   vao->Name = name;
419
420   vao->RefCount = 1;
421   vao->SharedAndImmutable = false;
422
423   /* Init the individual arrays */
424   for (i = 0; i < ARRAY_SIZE(vao->VertexAttrib); i++) {
425      switch (i) {
426      case VERT_ATTRIB_NORMAL:
427         init_array(ctx, vao, VERT_ATTRIB_NORMAL, 3, GL_FLOAT);
428         break;
429      case VERT_ATTRIB_COLOR1:
430         init_array(ctx, vao, VERT_ATTRIB_COLOR1, 3, GL_FLOAT);
431         break;
432      case VERT_ATTRIB_FOG:
433         init_array(ctx, vao, VERT_ATTRIB_FOG, 1, GL_FLOAT);
434         break;
435      case VERT_ATTRIB_COLOR_INDEX:
436         init_array(ctx, vao, VERT_ATTRIB_COLOR_INDEX, 1, GL_FLOAT);
437         break;
438      case VERT_ATTRIB_EDGEFLAG:
439         init_array(ctx, vao, VERT_ATTRIB_EDGEFLAG, 1, GL_UNSIGNED_BYTE);
440         break;
441      case VERT_ATTRIB_POINT_SIZE:
442         init_array(ctx, vao, VERT_ATTRIB_POINT_SIZE, 1, GL_FLOAT);
443         break;
444      default:
445         init_array(ctx, vao, i, 4, GL_FLOAT);
446         break;
447      }
448   }
449
450   vao->_AttributeMapMode = ATTRIBUTE_MAP_MODE_IDENTITY;
451
452   _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj,
453                                 ctx->Shared->NullBufferObj);
454}
455
456
457/**
458 * Compute the offset range for the provided binding.
459 *
460 * This is a helper function for the below.
461 */
462static void
463compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
464                         const struct gl_vertex_buffer_binding *binding,
465                         GLsizeiptr* min, GLsizeiptr* max)
466{
467   /* The function is meant to work on VBO bindings */
468   assert(_mesa_is_bufferobj(binding->BufferObj));
469
470   /* Start with an inverted range of relative offsets. */
471   GLuint min_offset = ~(GLuint)0;
472   GLuint max_offset = 0;
473
474   /* We work on the unmapped originaly VAO array entries. */
475   GLbitfield mask = vao->Enabled & binding->_BoundArrays;
476   /* The binding should be active somehow, not to return inverted ranges */
477   assert(mask);
478   while (mask) {
479      const int i = u_bit_scan(&mask);
480      const GLuint off = vao->VertexAttrib[i].RelativeOffset;
481      min_offset = MIN2(off, min_offset);
482      max_offset = MAX2(off, max_offset);
483   }
484
485   *min = binding->Offset + (GLsizeiptr)min_offset;
486   *max = binding->Offset + (GLsizeiptr)max_offset;
487}
488
489
490/**
491 * Update the unique binding and pos/generic0 map tracking in the vao.
492 *
493 * The idea is to build up information in the vao so that a consuming
494 * backend can execute the following to set up buffer and vertex element
495 * information:
496 *
497 * const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
498 *
499 * // Attribute data is in a VBO.
500 * GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
501 * while (vbomask) {
502 *    // The attribute index to start pulling a binding
503 *    const gl_vert_attrib i = ffs(vbomask) - 1;
504 *    const struct gl_vertex_buffer_binding *const binding
505 *       = _mesa_draw_buffer_binding(vao, i);
506 *
507 *    <insert code to handle the vertex buffer object at binding>
508 *
509 *    const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
510 *    GLbitfield attrmask = vbomask & boundmask;
511 *    assert(attrmask);
512 *    // Walk attributes belonging to the binding
513 *    while (attrmask) {
514 *       const gl_vert_attrib attr = u_bit_scan(&attrmask);
515 *       const struct gl_array_attributes *const attrib
516 *          = _mesa_draw_array_attrib(vao, attr);
517 *
518 *       <insert code to handle the vertex element refering to the binding>
519 *    }
520 *    vbomask &= ~boundmask;
521 * }
522 *
523 * // Process user space buffers
524 * GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
525 * while (usermask) {
526 *    // The attribute index to start pulling a binding
527 *    const gl_vert_attrib i = ffs(usermask) - 1;
528 *    const struct gl_vertex_buffer_binding *const binding
529 *       = _mesa_draw_buffer_binding(vao, i);
530 *
531 *    <insert code to handle a set of interleaved user space arrays at binding>
532 *
533 *    const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
534 *    GLbitfield attrmask = usermask & boundmask;
535 *    assert(attrmask);
536 *    // Walk interleaved attributes with a common stride and instance divisor
537 *    while (attrmask) {
538 *       const gl_vert_attrib attr = u_bit_scan(&attrmask);
539 *       const struct gl_array_attributes *const attrib
540 *          = _mesa_draw_array_attrib(vao, attr);
541 *
542 *       <insert code to handle non vbo vertex arrays>
543 *    }
544 *    usermask &= ~boundmask;
545 * }
546 *
547 * // Process values that should have better been uniforms in the application
548 * GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
549 * while (curmask) {
550 *    const gl_vert_attrib attr = u_bit_scan(&curmask);
551 *    const struct gl_array_attributes *const attrib
552 *       = _mesa_draw_current_attrib(ctx, attr);
553 *
554 *    <insert code to handle current values>
555 * }
556 *
557 *
558 * Note that the scan below must not incoporate any context state.
559 * The rationale is that once a VAO is finalized it should not
560 * be touched anymore. That means, do not incorporate the
561 * gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
562 * A backend driver may further reduce the handled vertex processing
563 * inputs based on their vertex shader inputs. But scanning for
564 * collapsable binding points to reduce relocs is done based on the
565 * enabled arrays.
566 * Also VAOs may be shared between contexts due to their use in dlists
567 * thus no context state should bleed into the VAO.
568 */
569void
570_mesa_update_vao_derived_arrays(struct gl_context *ctx,
571                                struct gl_vertex_array_object *vao)
572{
573   /* Make sure we do not run into problems with shared objects */
574   assert(!vao->SharedAndImmutable || vao->NewArrays == 0);
575
576   /* Limit used for common binding scanning below. */
577   const GLsizeiptr MaxRelativeOffset =
578      ctx->Const.MaxVertexAttribRelativeOffset;
579
580   /* The gl_vertex_array_object::_AttributeMapMode denotes the way
581    * VERT_ATTRIB_{POS,GENERIC0} mapping is done.
582    *
583    * This mapping is used to map between the OpenGL api visible
584    * VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
585    * The mapping only depends on the enabled bits of the
586    * VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
587    *
588    * This map needs to be applied when finally translating to the bitmasks
589    * as consumed by the driver backends. The duplicate scanning is here
590    * can as well be done in the OpenGL API numbering without this map.
591    */
592   const gl_attribute_map_mode mode = vao->_AttributeMapMode;
593   /* Enabled array bits. */
594   const GLbitfield enabled = vao->Enabled;
595   /* VBO array bits. */
596   const GLbitfield vbos = vao->VertexAttribBufferMask;
597
598   /* Compute and store effectively enabled and mapped vbo arrays */
599   vao->_EffEnabledVBO = _mesa_vao_enable_to_vp_inputs(mode, enabled & vbos);
600   /* Walk those enabled arrays that have a real vbo attached */
601   GLbitfield mask = enabled;
602   while (mask) {
603      /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
604      const int i = ffs(mask) - 1;
605      /* The binding from the first to be processed attribute. */
606      const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
607      struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
608
609      /* The scan goes different for user space arrays than vbos */
610      if (_mesa_is_bufferobj(binding->BufferObj)) {
611         /* The bound arrays. */
612         const GLbitfield bound = enabled & binding->_BoundArrays;
613
614         /* Start this current effective binding with the actual bound arrays */
615         GLbitfield eff_bound_arrays = bound;
616
617         /*
618          * If there is nothing left to scan just update the effective binding
619          * information. If the VAO is already only using a single binding point
620          * we end up here. So the overhead of this scan for an application
621          * carefully preparing the VAO for draw is low.
622          */
623
624         GLbitfield scanmask = mask & vbos & ~bound;
625         /* Is there something left to scan? */
626         if (scanmask == 0) {
627            /* Just update the back reference from the attrib to the binding and
628             * the effective offset.
629             */
630            GLbitfield attrmask = eff_bound_arrays;
631            while (attrmask) {
632               const int j = u_bit_scan(&attrmask);
633               struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
634
635               /* Update the index into the common binding point and offset */
636               attrib2->_EffBufferBindingIndex = bindex;
637               attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
638               assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
639            }
640            /* Finally this is the set of effectively bound arrays with the
641             * original binding offset.
642             */
643            binding->_EffOffset = binding->Offset;
644            /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
645            binding->_EffBoundArrays =
646               _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
647
648         } else {
649            /* In the VBO case, scan for attribute/binding
650             * combinations with relative bindings in the range of
651             * [0, ctx->Const.MaxVertexAttribRelativeOffset].
652             * Note that this does also go beyond just interleaved arrays
653             * as long as they use the same VBO, binding parameters and the
654             * offsets stay within bounds that the backend still can handle.
655             */
656
657            GLsizeiptr min_offset, max_offset;
658            compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
659            assert(max_offset <= min_offset + MaxRelativeOffset);
660
661            /* Now scan. */
662            while (scanmask) {
663               /* Do not use u_bit_scan as we can walk multiple
664                * attrib arrays at once
665                */
666               const int j = ffs(scanmask) - 1;
667               const struct gl_array_attributes *attrib2 =
668                  &vao->VertexAttrib[j];
669               const struct gl_vertex_buffer_binding *binding2 =
670                  &vao->BufferBinding[attrib2->BufferBindingIndex];
671
672               /* Remove those attrib bits from the mask that are bound to the
673                * same effective binding point.
674                */
675               const GLbitfield bound2 = enabled & binding2->_BoundArrays;
676               scanmask &= ~bound2;
677
678               /* Check if we have an identical binding */
679               if (binding->Stride != binding2->Stride)
680                  continue;
681               if (binding->InstanceDivisor != binding2->InstanceDivisor)
682                  continue;
683               if (binding->BufferObj != binding2->BufferObj)
684                  continue;
685               /* Check if we can fold both bindings into a common binding */
686               GLsizeiptr min_offset2, max_offset2;
687               compute_vbo_offset_range(vao, binding2,
688                                        &min_offset2, &max_offset2);
689               /* If the relative offset is within the limits ... */
690               if (min_offset + MaxRelativeOffset < max_offset2)
691                  continue;
692               if (min_offset2 + MaxRelativeOffset < max_offset)
693                  continue;
694               /* ... add this array to the effective binding */
695               eff_bound_arrays |= bound2;
696               min_offset = MIN2(min_offset, min_offset2);
697               max_offset = MAX2(max_offset, max_offset2);
698               assert(max_offset <= min_offset + MaxRelativeOffset);
699            }
700
701            /* Update the back reference from the attrib to the binding */
702            GLbitfield attrmask = eff_bound_arrays;
703            while (attrmask) {
704               const int j = u_bit_scan(&attrmask);
705               struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
706               const struct gl_vertex_buffer_binding *binding2 =
707                  &vao->BufferBinding[attrib2->BufferBindingIndex];
708
709               /* Update the index into the common binding point and offset */
710               attrib2->_EffBufferBindingIndex = bindex;
711               attrib2->_EffRelativeOffset =
712                  binding2->Offset + attrib2->RelativeOffset - min_offset;
713               assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
714            }
715            /* Finally this is the set of effectively bound arrays */
716            binding->_EffOffset = min_offset;
717            /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
718            binding->_EffBoundArrays =
719               _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
720         }
721
722         /* Mark all the effective bound arrays as processed. */
723         mask &= ~eff_bound_arrays;
724
725      } else {
726         /* Scanning of common bindings for user space arrays.
727          */
728
729         const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
730         const GLbitfield bound = VERT_BIT(i);
731
732         /* Note that user space array pointers can only happen using a one
733          * to one binding point to array mapping.
734          * The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
735          * user space arrays collected at multiple binding points.
736          * The only provider of user space interleaved arrays with a single
737          * binding point is the mesa internal vbo module. But that one
738          * provides a perfect interleaved set of arrays.
739          *
740          * If this would not be true we would potentially get attribute arrays
741          * with user space pointers that may not lie within the
742          * MaxRelativeOffset range but still attached to a single binding.
743          * Then we would need to store the effective attribute and binding
744          * grouping information in a seperate array beside
745          * gl_array_attributes/gl_vertex_buffer_binding.
746          */
747         assert(util_bitcount(binding->_BoundArrays & vao->Enabled) == 1
748                || (vao->Enabled & ~binding->_BoundArrays) == 0);
749
750         /* Start this current effective binding with the array */
751         GLbitfield eff_bound_arrays = bound;
752
753         const GLubyte *ptr = attrib->Ptr;
754         unsigned vertex_end = attrib->Format._ElementSize;
755
756         /* Walk other user space arrays and see which are interleaved
757          * using the same binding parameters.
758          */
759         GLbitfield scanmask = mask & ~vbos & ~bound;
760         while (scanmask) {
761            const int j = u_bit_scan(&scanmask);
762            const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
763            const struct gl_vertex_buffer_binding *binding2 =
764               &vao->BufferBinding[attrib2->BufferBindingIndex];
765
766            /* See the comment at the same assert above. */
767            assert(util_bitcount(binding2->_BoundArrays & vao->Enabled) == 1
768                   || (vao->Enabled & ~binding->_BoundArrays) == 0);
769
770            /* Check if we have an identical binding */
771            if (binding->Stride != binding2->Stride)
772               continue;
773            if (binding->InstanceDivisor != binding2->InstanceDivisor)
774               continue;
775            if (ptr <= attrib2->Ptr) {
776               if (ptr + binding->Stride < attrib2->Ptr +
777                   attrib2->Format._ElementSize)
778                  continue;
779               unsigned end = attrib2->Ptr + attrib2->Format._ElementSize - ptr;
780               vertex_end = MAX2(vertex_end, end);
781            } else {
782               if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
783                  continue;
784               vertex_end += (GLsizei)(ptr - attrib2->Ptr);
785               ptr = attrib2->Ptr;
786            }
787
788            /* User space buffer object */
789            assert(!_mesa_is_bufferobj(binding2->BufferObj));
790
791            eff_bound_arrays |= VERT_BIT(j);
792         }
793
794         /* Update the back reference from the attrib to the binding */
795         GLbitfield attrmask = eff_bound_arrays;
796         while (attrmask) {
797            const int j = u_bit_scan(&attrmask);
798            struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
799
800            /* Update the index into the common binding point and the offset */
801            attrib2->_EffBufferBindingIndex = bindex;
802            attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
803            assert(attrib2->_EffRelativeOffset <= binding->Stride);
804         }
805         /* Finally this is the set of effectively bound arrays */
806         binding->_EffOffset = (GLintptr)ptr;
807         /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
808         binding->_EffBoundArrays =
809            _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
810
811         /* Mark all the effective bound arrays as processed. */
812         mask &= ~eff_bound_arrays;
813      }
814   }
815
816#ifndef NDEBUG
817   /* Make sure the above code works as expected. */
818   for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
819      /* Query the original api defined attrib/binding information ... */
820      const unsigned char *const map =_mesa_vao_attribute_map[mode];
821      if (vao->Enabled & VERT_BIT(map[attr])) {
822         const struct gl_array_attributes *attrib =
823            &vao->VertexAttrib[map[attr]];
824         const struct gl_vertex_buffer_binding *binding =
825            &vao->BufferBinding[attrib->BufferBindingIndex];
826         /* ... and compare that with the computed attrib/binding */
827         const struct gl_vertex_buffer_binding *binding2 =
828            &vao->BufferBinding[attrib->_EffBufferBindingIndex];
829         assert(binding->Stride == binding2->Stride);
830         assert(binding->InstanceDivisor == binding2->InstanceDivisor);
831         assert(binding->BufferObj == binding2->BufferObj);
832         if (_mesa_is_bufferobj(binding->BufferObj)) {
833            assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
834            assert(binding->Offset + attrib->RelativeOffset ==
835                   binding2->_EffOffset + attrib->_EffRelativeOffset);
836         } else {
837            assert(attrib->_EffRelativeOffset < binding->Stride);
838            assert((GLintptr)attrib->Ptr ==
839                   binding2->_EffOffset + attrib->_EffRelativeOffset);
840         }
841      }
842   }
843#endif
844}
845
846
847void
848_mesa_set_vao_immutable(struct gl_context *ctx,
849                        struct gl_vertex_array_object *vao)
850{
851   _mesa_update_vao_derived_arrays(ctx, vao);
852   vao->NewArrays = 0;
853   vao->SharedAndImmutable = true;
854}
855
856
857bool
858_mesa_all_varyings_in_vbos(const struct gl_vertex_array_object *vao)
859{
860   /* Walk those enabled arrays that have the default vbo attached */
861   GLbitfield mask = vao->Enabled & ~vao->VertexAttribBufferMask;
862
863   while (mask) {
864      /* Do not use u_bit_scan64 as we can walk multiple
865       * attrib arrays at once
866       */
867      const int i = ffs(mask) - 1;
868      const struct gl_array_attributes *attrib_array =
869         &vao->VertexAttrib[i];
870      const struct gl_vertex_buffer_binding *buffer_binding =
871         &vao->BufferBinding[attrib_array->BufferBindingIndex];
872
873      /* We have already masked out vao->VertexAttribBufferMask  */
874      assert(!_mesa_is_bufferobj(buffer_binding->BufferObj));
875
876      /* Bail out once we find the first non vbo with a non zero stride */
877      if (buffer_binding->Stride != 0)
878         return false;
879
880      /* Note that we cannot use the xor variant since the _BoundArray mask
881       * may contain array attributes that are bound but not enabled.
882       */
883      mask &= ~buffer_binding->_BoundArrays;
884   }
885
886   return true;
887}
888
889bool
890_mesa_all_buffers_are_unmapped(const struct gl_vertex_array_object *vao)
891{
892   /* Walk the enabled arrays that have a vbo attached */
893   GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
894
895   while (mask) {
896      const int i = ffs(mask) - 1;
897      const struct gl_array_attributes *attrib_array =
898         &vao->VertexAttrib[i];
899      const struct gl_vertex_buffer_binding *buffer_binding =
900         &vao->BufferBinding[attrib_array->BufferBindingIndex];
901
902      /* We have already masked with vao->VertexAttribBufferMask  */
903      assert(_mesa_is_bufferobj(buffer_binding->BufferObj));
904
905      /* Bail out once we find the first disallowed mapping */
906      if (_mesa_check_disallowed_mapping(buffer_binding->BufferObj))
907         return false;
908
909      /* We have handled everything that is bound to this buffer_binding. */
910      mask &= ~buffer_binding->_BoundArrays;
911   }
912
913   return true;
914}
915
916
917/**
918 * Map buffer objects used in attribute arrays.
919 */
920void
921_mesa_vao_map_arrays(struct gl_context *ctx, struct gl_vertex_array_object *vao,
922                     GLbitfield access)
923{
924   GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
925   while (mask) {
926      /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
927      const gl_vert_attrib attr = ffs(mask) - 1;
928      const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
929      struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
930      mask &= ~binding->_BoundArrays;
931
932      struct gl_buffer_object *bo = binding->BufferObj;
933      assert(_mesa_is_bufferobj(bo));
934      if (_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
935         continue;
936
937      ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
938   }
939}
940
941
942/**
943 * Map buffer objects used in the vao, attribute arrays and index buffer.
944 */
945void
946_mesa_vao_map(struct gl_context *ctx, struct gl_vertex_array_object *vao,
947              GLbitfield access)
948{
949   struct gl_buffer_object *bo = vao->IndexBufferObj;
950
951   /* map the index buffer, if there is one, and not already mapped */
952   if (_mesa_is_bufferobj(bo) && !_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
953      ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
954
955   _mesa_vao_map_arrays(ctx, vao, access);
956}
957
958
959/**
960 * Unmap buffer objects used in attribute arrays.
961 */
962void
963_mesa_vao_unmap_arrays(struct gl_context *ctx,
964                       struct gl_vertex_array_object *vao)
965{
966   GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
967   while (mask) {
968      /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
969      const gl_vert_attrib attr = ffs(mask) - 1;
970      const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
971      struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
972      mask &= ~binding->_BoundArrays;
973
974      struct gl_buffer_object *bo = binding->BufferObj;
975      assert(_mesa_is_bufferobj(bo));
976      if (!_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
977         continue;
978
979      ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
980   }
981}
982
983
984/**
985 * Unmap buffer objects used in the vao, attribute arrays and index buffer.
986 */
987void
988_mesa_vao_unmap(struct gl_context *ctx, struct gl_vertex_array_object *vao)
989{
990   struct gl_buffer_object *bo = vao->IndexBufferObj;
991
992   /* unmap the index buffer, if there is one, and still mapped */
993   if (_mesa_is_bufferobj(bo) && _mesa_bufferobj_mapped(bo, MAP_INTERNAL))
994      ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
995
996   _mesa_vao_unmap_arrays(ctx, vao);
997}
998
999
1000/**********************************************************************/
1001/* API Functions                                                      */
1002/**********************************************************************/
1003
1004
1005/**
1006 * ARB version of glBindVertexArray()
1007 */
1008static ALWAYS_INLINE void
1009bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
1010{
1011   struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
1012   struct gl_vertex_array_object *newObj = NULL;
1013
1014   assert(oldObj != NULL);
1015
1016   if (oldObj->Name == id)
1017      return;   /* rebinding the same array object- no change */
1018
1019   /*
1020    * Get pointer to new array object (newObj)
1021    */
1022   if (id == 0) {
1023      /* The spec says there is no array object named 0, but we use
1024       * one internally because it simplifies things.
1025       */
1026      newObj = ctx->Array.DefaultVAO;
1027   }
1028   else {
1029      /* non-default array object */
1030      newObj = _mesa_lookup_vao(ctx, id);
1031      if (!no_error && !newObj) {
1032         _mesa_error(ctx, GL_INVALID_OPERATION,
1033                     "glBindVertexArray(non-gen name)");
1034         return;
1035      }
1036
1037      newObj->EverBound = GL_TRUE;
1038   }
1039
1040   /* The _DrawArrays pointer is pointing at the VAO being unbound and
1041    * that VAO may be in the process of being deleted. If it's not going
1042    * to be deleted, this will have no effect, because the pointer needs
1043    * to be updated by the VBO module anyway.
1044    *
1045    * Before the VBO module can update the pointer, we have to set it
1046    * to NULL for drivers not to set up arrays which are not bound,
1047    * or to prevent a crash if the VAO being unbound is going to be
1048    * deleted.
1049    */
1050   _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1051
1052   _mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
1053}
1054
1055
1056void GLAPIENTRY
1057_mesa_BindVertexArray_no_error(GLuint id)
1058{
1059   GET_CURRENT_CONTEXT(ctx);
1060   bind_vertex_array(ctx, id, true);
1061}
1062
1063
1064void GLAPIENTRY
1065_mesa_BindVertexArray(GLuint id)
1066{
1067   GET_CURRENT_CONTEXT(ctx);
1068   bind_vertex_array(ctx, id, false);
1069}
1070
1071
1072/**
1073 * Delete a set of array objects.
1074 *
1075 * \param n      Number of array objects to delete.
1076 * \param ids    Array of \c n array object IDs.
1077 */
1078static void
1079delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
1080{
1081   GLsizei i;
1082
1083   for (i = 0; i < n; i++) {
1084      /* IDs equal to 0 should be silently ignored. */
1085      if (!ids[i])
1086         continue;
1087
1088      struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
1089
1090      if (obj) {
1091         assert(obj->Name == ids[i]);
1092
1093         /* If the array object is currently bound, the spec says "the binding
1094          * for that object reverts to zero and the default vertex array
1095          * becomes current."
1096          */
1097         if (obj == ctx->Array.VAO)
1098            _mesa_BindVertexArray_no_error(0);
1099
1100         /* The ID is immediately freed for re-use */
1101         _mesa_HashRemoveLocked(ctx->Array.Objects, obj->Name);
1102
1103         if (ctx->Array.LastLookedUpVAO == obj)
1104            _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
1105         if (ctx->Array._DrawVAO == obj)
1106            _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1107
1108         /* Unreference the array object.
1109          * If refcount hits zero, the object will be deleted.
1110          */
1111         _mesa_reference_vao(ctx, &obj, NULL);
1112      }
1113   }
1114}
1115
1116
1117void GLAPIENTRY
1118_mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
1119{
1120   GET_CURRENT_CONTEXT(ctx);
1121   delete_vertex_arrays(ctx, n, ids);
1122}
1123
1124
1125void GLAPIENTRY
1126_mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
1127{
1128   GET_CURRENT_CONTEXT(ctx);
1129
1130   if (n < 0) {
1131      _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
1132      return;
1133   }
1134
1135   delete_vertex_arrays(ctx, n, ids);
1136}
1137
1138
1139/**
1140 * Generate a set of unique array object IDs and store them in \c arrays.
1141 * Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
1142 * below.
1143 *
1144 * \param n       Number of IDs to generate.
1145 * \param arrays  Array of \c n locations to store the IDs.
1146 * \param create  Indicates that the objects should also be created.
1147 * \param func    The name of the GL entry point.
1148 */
1149static void
1150gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1151                  bool create, const char *func)
1152{
1153   GLuint first;
1154   GLint i;
1155
1156   if (!arrays)
1157      return;
1158
1159   first = _mesa_HashFindFreeKeyBlock(ctx->Array.Objects, n);
1160
1161   /* For the sake of simplicity we create the array objects in both
1162    * the Gen* and Create* cases.  The only difference is the value of
1163    * EverBound, which is set to true in the Create* case.
1164    */
1165   for (i = 0; i < n; i++) {
1166      struct gl_vertex_array_object *obj;
1167      GLuint name = first + i;
1168
1169      obj = _mesa_new_vao(ctx, name);
1170      if (!obj) {
1171         _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
1172         return;
1173      }
1174      obj->EverBound = create;
1175      _mesa_HashInsertLocked(ctx->Array.Objects, obj->Name, obj);
1176      arrays[i] = first + i;
1177   }
1178}
1179
1180
1181static void
1182gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1183                      bool create, const char *func)
1184{
1185   if (n < 0) {
1186      _mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
1187      return;
1188   }
1189
1190   gen_vertex_arrays(ctx, n, arrays, create, func);
1191}
1192
1193
1194/**
1195 * ARB version of glGenVertexArrays()
1196 * All arrays will be required to live in VBOs.
1197 */
1198void GLAPIENTRY
1199_mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
1200{
1201   GET_CURRENT_CONTEXT(ctx);
1202   gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
1203}
1204
1205
1206void GLAPIENTRY
1207_mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
1208{
1209   GET_CURRENT_CONTEXT(ctx);
1210   gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
1211}
1212
1213
1214/**
1215 * ARB_direct_state_access
1216 * Generates ID's and creates the array objects.
1217 */
1218void GLAPIENTRY
1219_mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
1220{
1221   GET_CURRENT_CONTEXT(ctx);
1222   gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
1223}
1224
1225
1226void GLAPIENTRY
1227_mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
1228{
1229   GET_CURRENT_CONTEXT(ctx);
1230   gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
1231}
1232
1233
1234/**
1235 * Determine if ID is the name of an array object.
1236 *
1237 * \param id  ID of the potential array object.
1238 * \return  \c GL_TRUE if \c id is the name of a array object,
1239 *          \c GL_FALSE otherwise.
1240 */
1241GLboolean GLAPIENTRY
1242_mesa_IsVertexArray( GLuint id )
1243{
1244   struct gl_vertex_array_object * obj;
1245   GET_CURRENT_CONTEXT(ctx);
1246   ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1247
1248   obj = _mesa_lookup_vao(ctx, id);
1249
1250   return obj != NULL && obj->EverBound;
1251}
1252
1253
1254/**
1255 * Sets the element array buffer binding of a vertex array object.
1256 *
1257 * This is the ARB_direct_state_access equivalent of
1258 * glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
1259 */
1260static ALWAYS_INLINE void
1261vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
1262                            bool no_error)
1263{
1264   struct gl_vertex_array_object *vao;
1265   struct gl_buffer_object *bufObj;
1266
1267   ASSERT_OUTSIDE_BEGIN_END(ctx);
1268
1269   if (!no_error) {
1270      /* The GL_ARB_direct_state_access specification says:
1271       *
1272       *    "An INVALID_OPERATION error is generated by
1273       *     VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
1274       *     zero or] the name of an existing vertex array object."
1275       */
1276      vao =_mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayElementBuffer");
1277      if (!vao)
1278         return;
1279   } else {
1280      vao = _mesa_lookup_vao(ctx, vaobj);
1281   }
1282
1283   if (buffer != 0) {
1284      if (!no_error) {
1285         /* The GL_ARB_direct_state_access specification says:
1286          *
1287          *    "An INVALID_OPERATION error is generated if <buffer> is not zero
1288          *     or the name of an existing buffer object."
1289          */
1290         bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
1291                                             "glVertexArrayElementBuffer");
1292      } else {
1293         bufObj = _mesa_lookup_bufferobj(ctx, buffer);
1294      }
1295   } else {
1296      bufObj = ctx->Shared->NullBufferObj;
1297   }
1298
1299   if (bufObj) {
1300      bufObj->UsageHistory |= USAGE_ELEMENT_ARRAY_BUFFER;
1301      _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
1302   }
1303}
1304
1305
1306void GLAPIENTRY
1307_mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
1308{
1309   GET_CURRENT_CONTEXT(ctx);
1310   vertex_array_element_buffer(ctx, vaobj, buffer, true);
1311}
1312
1313
1314void GLAPIENTRY
1315_mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
1316{
1317   GET_CURRENT_CONTEXT(ctx);
1318   vertex_array_element_buffer(ctx, vaobj, buffer, false);
1319}
1320
1321
1322void GLAPIENTRY
1323_mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
1324{
1325   GET_CURRENT_CONTEXT(ctx);
1326   struct gl_vertex_array_object *vao;
1327
1328   ASSERT_OUTSIDE_BEGIN_END(ctx);
1329
1330   /* The GL_ARB_direct_state_access specification says:
1331    *
1332    *   "An INVALID_OPERATION error is generated if <vaobj> is not
1333    *    [compatibility profile: zero or] the name of an existing
1334    *    vertex array object."
1335    */
1336   vao =_mesa_lookup_vao_err(ctx, vaobj, "glGetVertexArrayiv");
1337   if (!vao)
1338      return;
1339
1340   /* The GL_ARB_direct_state_access specification says:
1341    *
1342    *   "An INVALID_ENUM error is generated if <pname> is not
1343    *    ELEMENT_ARRAY_BUFFER_BINDING."
1344    */
1345   if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
1346      _mesa_error(ctx, GL_INVALID_ENUM,
1347                  "glGetVertexArrayiv(pname != "
1348                  "GL_ELEMENT_ARRAY_BUFFER_BINDING)");
1349      return;
1350   }
1351
1352   param[0] = vao->IndexBufferObj->Name;
1353}
1354