1/**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc.  All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30#include "main/glheader.h"
31#include "main/context.h"
32#include "main/imports.h"
33#include "main/macros.h"
34#include "main/samplerobj.h"
35#include "main/shaderobj.h"
36#include "main/state.h"
37#include "main/texenvprogram.h"
38#include "main/texobj.h"
39#include "main/uniforms.h"
40#include "compiler/glsl/ir_builder.h"
41#include "compiler/glsl/ir_optimization.h"
42#include "compiler/glsl/glsl_parser_extras.h"
43#include "compiler/glsl/glsl_symbol_table.h"
44#include "compiler/glsl_types.h"
45#include "program/ir_to_mesa.h"
46#include "program/program.h"
47#include "program/programopt.h"
48#include "program/prog_cache.h"
49#include "program/prog_instruction.h"
50#include "program/prog_parameter.h"
51#include "program/prog_print.h"
52#include "program/prog_statevars.h"
53#include "util/bitscan.h"
54
55using namespace ir_builder;
56
57/*
58 * Note on texture units:
59 *
60 * The number of texture units supported by fixed-function fragment
61 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
62 * That's because there's a one-to-one correspondence between texture
63 * coordinates and samplers in fixed-function processing.
64 *
65 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
66 * sets of texcoords, so is fixed-function fragment processing.
67 *
68 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
69 */
70
71
72static GLboolean
73texenv_doing_secondary_color(struct gl_context *ctx)
74{
75   if (ctx->Light.Enabled &&
76       (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
77      return GL_TRUE;
78
79   if (ctx->Fog.ColorSumEnabled)
80      return GL_TRUE;
81
82   return GL_FALSE;
83}
84
85struct state_key {
86   GLuint nr_enabled_units:4;
87   GLuint separate_specular:1;
88   GLuint fog_mode:2;          /**< FOG_x */
89   GLuint inputs_available:12;
90   GLuint num_draw_buffers:4;
91
92   /* NOTE: This array of structs must be last! (see "keySize" below) */
93   struct {
94      GLuint enabled:1;
95      GLuint source_index:4;   /**< TEXTURE_x_INDEX */
96      GLuint shadow:1;
97
98      /***
99       * These are taken from struct gl_tex_env_combine_packed
100       * @{
101       */
102      GLuint ModeRGB:4;
103      GLuint ModeA:4;
104      GLuint ScaleShiftRGB:2;
105      GLuint ScaleShiftA:2;
106      GLuint NumArgsRGB:3;
107      GLuint NumArgsA:3;
108      struct gl_tex_env_argument ArgsRGB[MAX_COMBINER_TERMS];
109      struct gl_tex_env_argument ArgsA[MAX_COMBINER_TERMS];
110      /** @} */
111   } unit[MAX_TEXTURE_COORD_UNITS];
112};
113
114
115/**
116 * Do we need to clamp the results of the given texture env/combine mode?
117 * If the inputs to the mode are in [0,1] we don't always have to clamp
118 * the results.
119 */
120static GLboolean
121need_saturate( GLuint mode )
122{
123   switch (mode) {
124   case TEXENV_MODE_REPLACE:
125   case TEXENV_MODE_MODULATE:
126   case TEXENV_MODE_INTERPOLATE:
127      return GL_FALSE;
128   case TEXENV_MODE_ADD:
129   case TEXENV_MODE_ADD_SIGNED:
130   case TEXENV_MODE_SUBTRACT:
131   case TEXENV_MODE_DOT3_RGB:
132   case TEXENV_MODE_DOT3_RGB_EXT:
133   case TEXENV_MODE_DOT3_RGBA:
134   case TEXENV_MODE_DOT3_RGBA_EXT:
135   case TEXENV_MODE_MODULATE_ADD_ATI:
136   case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
137   case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
138   case TEXENV_MODE_ADD_PRODUCTS_NV:
139   case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
140      return GL_TRUE;
141   default:
142      assert(0);
143      return GL_FALSE;
144   }
145}
146
147#define VERT_BIT_TEX_ANY    (0xff << VERT_ATTRIB_TEX0)
148
149/**
150 * Identify all possible varying inputs.  The fragment program will
151 * never reference non-varying inputs, but will track them via state
152 * constants instead.
153 *
154 * This function figures out all the inputs that the fragment program
155 * has access to and filters input bitmask.
156 */
157static GLbitfield filter_fp_input_mask( GLbitfield fp_inputs,
158		    struct gl_context *ctx )
159{
160   if (ctx->VertexProgram._Overriden) {
161      /* Somebody's messing with the vertex program and we don't have
162       * a clue what's happening.  Assume that it could be producing
163       * all possible outputs.
164       */
165      return fp_inputs;
166   }
167
168   if (ctx->RenderMode == GL_FEEDBACK) {
169      /* _NEW_RENDERMODE */
170      return fp_inputs & (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
171   }
172
173   /* _NEW_PROGRAM */
174   const GLboolean vertexShader =
175         ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] != NULL;
176   const GLboolean vertexProgram = _mesa_arb_vertex_program_enabled(ctx);
177
178   if (!(vertexProgram || vertexShader)) {
179      /* Fixed function vertex logic */
180      GLbitfield possible_inputs = 0;
181
182      /* _NEW_VARYING_VP_INPUTS */
183      GLbitfield varying_inputs = ctx->varying_vp_inputs;
184
185      /* These get generated in the setup routine regardless of the
186       * vertex program:
187       */
188      /* _NEW_POINT */
189      if (ctx->Point.PointSprite) {
190         /* All texture varyings are possible to use */
191         possible_inputs = VARYING_BITS_TEX_ANY;
192      }
193      else {
194         /* _NEW_TEXTURE_STATE */
195         const GLbitfield possible_tex_inputs =
196               ctx->Texture._TexGenEnabled |
197               ctx->Texture._TexMatEnabled |
198               ((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0);
199
200         possible_inputs = (possible_tex_inputs << VARYING_SLOT_TEX0);
201      }
202
203      /* First look at what values may be computed by the generated
204       * vertex program:
205       */
206      /* _NEW_LIGHT */
207      if (ctx->Light.Enabled) {
208         possible_inputs |= VARYING_BIT_COL0;
209
210         if (texenv_doing_secondary_color(ctx))
211            possible_inputs |= VARYING_BIT_COL1;
212      }
213
214      /* Then look at what might be varying as a result of enabled
215       * arrays, etc:
216       */
217      if (varying_inputs & VERT_BIT_COLOR0)
218         possible_inputs |= VARYING_BIT_COL0;
219      if (varying_inputs & VERT_BIT_COLOR1)
220         possible_inputs |= VARYING_BIT_COL1;
221
222      return fp_inputs & possible_inputs;
223   }
224
225   /* calculate from vp->outputs */
226   struct gl_program *vprog;
227
228   /* Choose GLSL vertex shader over ARB vertex program.  Need this
229    * since vertex shader state validation comes after fragment state
230    * validation (see additional comments in state.c).
231    */
232   if (ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY] != NULL)
233      vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY];
234   else if (ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL] != NULL)
235      vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL];
236   else if (vertexShader)
237      vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX];
238   else
239      vprog = ctx->VertexProgram.Current;
240
241   GLbitfield possible_inputs = vprog->info.outputs_written;
242
243   /* These get generated in the setup routine regardless of the
244    * vertex program:
245    */
246   /* _NEW_POINT */
247   if (ctx->Point.PointSprite) {
248      /* All texture varyings are possible to use */
249      possible_inputs |= VARYING_BITS_TEX_ANY;
250   }
251
252   return fp_inputs & possible_inputs;
253}
254
255
256/**
257 * Examine current texture environment state and generate a unique
258 * key to identify it.
259 */
260static GLuint make_state_key( struct gl_context *ctx,  struct state_key *key )
261{
262   GLbitfield inputs_referenced = VARYING_BIT_COL0;
263   GLbitfield mask;
264   GLuint keySize;
265
266   memset(key, 0, sizeof(*key));
267
268   /* _NEW_TEXTURE_OBJECT */
269   mask = ctx->Texture._EnabledCoordUnits;
270   int i = -1;
271   while (mask) {
272      i = u_bit_scan(&mask);
273      const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
274      const struct gl_texture_object *texObj = texUnit->_Current;
275      const struct gl_tex_env_combine_packed *comb =
276         &ctx->Texture.FixedFuncUnit[i]._CurrentCombinePacked;
277
278      if (!texObj)
279         continue;
280
281      key->unit[i].enabled = 1;
282      inputs_referenced |= VARYING_BIT_TEX(i);
283
284      key->unit[i].source_index = texObj->TargetIndex;
285
286      const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, i);
287      if (samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) {
288         const GLenum format = _mesa_texture_base_format(texObj);
289         key->unit[i].shadow = (format == GL_DEPTH_COMPONENT ||
290				format == GL_DEPTH_STENCIL_EXT);
291      }
292
293      key->unit[i].ModeRGB = comb->ModeRGB;
294      key->unit[i].ModeA = comb->ModeA;
295      key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
296      key->unit[i].ScaleShiftA = comb->ScaleShiftA;
297      key->unit[i].NumArgsRGB = comb->NumArgsRGB;
298      key->unit[i].NumArgsA = comb->NumArgsA;
299
300      memcpy(key->unit[i].ArgsRGB, comb->ArgsRGB, sizeof comb->ArgsRGB);
301      memcpy(key->unit[i].ArgsA, comb->ArgsA, sizeof comb->ArgsA);
302   }
303
304   key->nr_enabled_units = i + 1;
305
306   /* _NEW_LIGHT | _NEW_FOG */
307   if (texenv_doing_secondary_color(ctx)) {
308      key->separate_specular = 1;
309      inputs_referenced |= VARYING_BIT_COL1;
310   }
311
312   /* _NEW_FOG */
313   key->fog_mode = ctx->Fog._PackedEnabledMode;
314
315   /* _NEW_BUFFERS */
316   key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
317
318   /* _NEW_COLOR */
319   if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
320      /* if alpha test is enabled we need to emit at least one color */
321      key->num_draw_buffers = 1;
322   }
323
324   key->inputs_available = filter_fp_input_mask(inputs_referenced, ctx);
325
326   /* compute size of state key, ignoring unused texture units */
327   keySize = sizeof(*key) - sizeof(key->unit)
328      + key->nr_enabled_units * sizeof(key->unit[0]);
329
330   return keySize;
331}
332
333
334/** State used to build the fragment program:
335 */
336class texenv_fragment_program : public ir_factory {
337public:
338   struct gl_shader_program *shader_program;
339   struct gl_shader *shader;
340   exec_list *top_instructions;
341   struct state_key *state;
342
343   ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
344   /* Reg containing each texture unit's sampled texture color,
345    * else undef.
346    */
347
348   /* Texcoord override from bumpmapping. */
349   ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
350
351   /* Reg containing texcoord for a texture unit,
352    * needed for bump mapping, else undef.
353    */
354
355   ir_rvalue *src_previous;	/**< Reg containing color from previous
356				 * stage.  May need to be decl'd.
357				 */
358};
359
360static ir_rvalue *
361get_current_attrib(texenv_fragment_program *p, GLuint attrib)
362{
363   ir_variable *current;
364   ir_rvalue *val;
365
366   current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
367   assert(current);
368   current->data.max_array_access = MAX2(current->data.max_array_access, (int)attrib);
369   val = new(p->mem_ctx) ir_dereference_variable(current);
370   ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
371   return new(p->mem_ctx) ir_dereference_array(val, index);
372}
373
374static ir_rvalue *
375get_gl_Color(texenv_fragment_program *p)
376{
377   if (p->state->inputs_available & VARYING_BIT_COL0) {
378      ir_variable *var = p->shader->symbols->get_variable("gl_Color");
379      assert(var);
380      return new(p->mem_ctx) ir_dereference_variable(var);
381   } else {
382      return get_current_attrib(p, VERT_ATTRIB_COLOR0);
383   }
384}
385
386static ir_rvalue *
387get_source(texenv_fragment_program *p,
388	   GLuint src, GLuint unit)
389{
390   ir_variable *var;
391   ir_dereference *deref;
392
393   switch (src) {
394   case TEXENV_SRC_TEXTURE:
395      return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
396
397   case TEXENV_SRC_TEXTURE0:
398   case TEXENV_SRC_TEXTURE1:
399   case TEXENV_SRC_TEXTURE2:
400   case TEXENV_SRC_TEXTURE3:
401   case TEXENV_SRC_TEXTURE4:
402   case TEXENV_SRC_TEXTURE5:
403   case TEXENV_SRC_TEXTURE6:
404   case TEXENV_SRC_TEXTURE7:
405      return new(p->mem_ctx)
406	 ir_dereference_variable(p->src_texture[src - TEXENV_SRC_TEXTURE0]);
407
408   case TEXENV_SRC_CONSTANT:
409      var = p->shader->symbols->get_variable("gl_TextureEnvColor");
410      assert(var);
411      deref = new(p->mem_ctx) ir_dereference_variable(var);
412      var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
413      return new(p->mem_ctx) ir_dereference_array(deref,
414						  new(p->mem_ctx) ir_constant(unit));
415
416   case TEXENV_SRC_PRIMARY_COLOR:
417      var = p->shader->symbols->get_variable("gl_Color");
418      assert(var);
419      return new(p->mem_ctx) ir_dereference_variable(var);
420
421   case TEXENV_SRC_ZERO:
422      return new(p->mem_ctx) ir_constant(0.0f);
423
424   case TEXENV_SRC_ONE:
425      return new(p->mem_ctx) ir_constant(1.0f);
426
427   case TEXENV_SRC_PREVIOUS:
428      if (!p->src_previous) {
429	 return get_gl_Color(p);
430      } else {
431	 return p->src_previous->clone(p->mem_ctx, NULL);
432      }
433
434   default:
435      assert(0);
436      return NULL;
437   }
438}
439
440static ir_rvalue *
441emit_combine_source(texenv_fragment_program *p,
442		    GLuint unit,
443		    GLuint source,
444		    GLuint operand)
445{
446   ir_rvalue *src;
447
448   src = get_source(p, source, unit);
449
450   switch (operand) {
451   case TEXENV_OPR_ONE_MINUS_COLOR:
452      return sub(new(p->mem_ctx) ir_constant(1.0f), src);
453
454   case TEXENV_OPR_ALPHA:
455      return src->type->is_scalar() ? src : swizzle_w(src);
456
457   case TEXENV_OPR_ONE_MINUS_ALPHA: {
458      ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
459
460      return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
461   }
462
463   case TEXENV_OPR_COLOR:
464      return src;
465
466   default:
467      assert(0);
468      return src;
469   }
470}
471
472/**
473 * Check if the RGB and Alpha sources and operands match for the given
474 * texture unit's combinder state.  When the RGB and A sources and
475 * operands match, we can emit fewer instructions.
476 */
477static GLboolean args_match( const struct state_key *key, GLuint unit )
478{
479   GLuint i, numArgs = key->unit[unit].NumArgsRGB;
480
481   for (i = 0; i < numArgs; i++) {
482      if (key->unit[unit].ArgsA[i].Source != key->unit[unit].ArgsRGB[i].Source)
483	 return GL_FALSE;
484
485      switch (key->unit[unit].ArgsA[i].Operand) {
486      case TEXENV_OPR_ALPHA:
487	 switch (key->unit[unit].ArgsRGB[i].Operand) {
488	 case TEXENV_OPR_COLOR:
489	 case TEXENV_OPR_ALPHA:
490	    break;
491	 default:
492	    return GL_FALSE;
493	 }
494	 break;
495      case TEXENV_OPR_ONE_MINUS_ALPHA:
496	 switch (key->unit[unit].ArgsRGB[i].Operand) {
497	 case TEXENV_OPR_ONE_MINUS_COLOR:
498	 case TEXENV_OPR_ONE_MINUS_ALPHA:
499	    break;
500	 default:
501	    return GL_FALSE;
502	 }
503	 break;
504      default:
505	 return GL_FALSE;	/* impossible */
506      }
507   }
508
509   return GL_TRUE;
510}
511
512static ir_rvalue *
513smear(ir_rvalue *val)
514{
515   if (!val->type->is_scalar())
516      return val;
517
518   return swizzle_xxxx(val);
519}
520
521static ir_rvalue *
522emit_combine(texenv_fragment_program *p,
523	     GLuint unit,
524	     GLuint nr,
525	     GLuint mode,
526	     const struct gl_tex_env_argument *opt)
527{
528   ir_rvalue *src[MAX_COMBINER_TERMS];
529   ir_rvalue *tmp0, *tmp1;
530   GLuint i;
531
532   assert(nr <= MAX_COMBINER_TERMS);
533
534   for (i = 0; i < nr; i++)
535      src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
536
537   switch (mode) {
538   case TEXENV_MODE_REPLACE:
539      return src[0];
540
541   case TEXENV_MODE_MODULATE:
542      return mul(src[0], src[1]);
543
544   case TEXENV_MODE_ADD:
545      return add(src[0], src[1]);
546
547   case TEXENV_MODE_ADD_SIGNED:
548      return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
549
550   case TEXENV_MODE_INTERPOLATE:
551      /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
552      tmp0 = mul(src[0], src[2]);
553      tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
554			     src[2]->clone(p->mem_ctx, NULL)));
555      return add(tmp0, tmp1);
556
557   case TEXENV_MODE_SUBTRACT:
558      return sub(src[0], src[1]);
559
560   case TEXENV_MODE_DOT3_RGBA:
561   case TEXENV_MODE_DOT3_RGBA_EXT:
562   case TEXENV_MODE_DOT3_RGB_EXT:
563   case TEXENV_MODE_DOT3_RGB: {
564      tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
565      tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
566
567      tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
568      tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
569
570      return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
571   }
572   case TEXENV_MODE_MODULATE_ADD_ATI:
573      return add(mul(src[0], src[2]), src[1]);
574
575   case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
576      return add(add(mul(src[0], src[2]), src[1]),
577		 new(p->mem_ctx) ir_constant(-0.5f));
578
579   case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
580      return sub(mul(src[0], src[2]), src[1]);
581
582   case TEXENV_MODE_ADD_PRODUCTS_NV:
583      return add(mul(src[0], src[1]), mul(src[2], src[3]));
584
585   case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
586      return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
587		 new(p->mem_ctx) ir_constant(-0.5f));
588   default:
589      assert(0);
590      return src[0];
591   }
592}
593
594/**
595 * Generate instructions for one texture unit's env/combiner mode.
596 */
597static ir_rvalue *
598emit_texenv(texenv_fragment_program *p, GLuint unit)
599{
600   const struct state_key *key = p->state;
601   GLboolean rgb_saturate, alpha_saturate;
602   GLuint rgb_shift, alpha_shift;
603
604   if (!key->unit[unit].enabled) {
605      return get_source(p, TEXENV_SRC_PREVIOUS, 0);
606   }
607
608   switch (key->unit[unit].ModeRGB) {
609   case TEXENV_MODE_DOT3_RGB_EXT:
610      alpha_shift = key->unit[unit].ScaleShiftA;
611      rgb_shift = 0;
612      break;
613   case TEXENV_MODE_DOT3_RGBA_EXT:
614      alpha_shift = 0;
615      rgb_shift = 0;
616      break;
617   default:
618      rgb_shift = key->unit[unit].ScaleShiftRGB;
619      alpha_shift = key->unit[unit].ScaleShiftA;
620      break;
621   }
622
623   /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
624    * We don't want to clamp twice.
625    */
626   if (rgb_shift)
627      rgb_saturate = GL_FALSE;  /* saturate after rgb shift */
628   else if (need_saturate(key->unit[unit].ModeRGB))
629      rgb_saturate = GL_TRUE;
630   else
631      rgb_saturate = GL_FALSE;
632
633   if (alpha_shift)
634      alpha_saturate = GL_FALSE;  /* saturate after alpha shift */
635   else if (need_saturate(key->unit[unit].ModeA))
636      alpha_saturate = GL_TRUE;
637   else
638      alpha_saturate = GL_FALSE;
639
640   ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
641   ir_dereference *deref;
642   ir_rvalue *val;
643
644   /* Emit the RGB and A combine ops
645    */
646   if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
647       args_match(key, unit)) {
648      val = emit_combine(p, unit,
649			 key->unit[unit].NumArgsRGB,
650			 key->unit[unit].ModeRGB,
651			 key->unit[unit].ArgsRGB);
652      val = smear(val);
653      if (rgb_saturate)
654	 val = saturate(val);
655
656      p->emit(assign(temp_var, val));
657   }
658   else if (key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA_EXT ||
659	    key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA) {
660      ir_rvalue *val = emit_combine(p, unit,
661				    key->unit[unit].NumArgsRGB,
662				    key->unit[unit].ModeRGB,
663				    key->unit[unit].ArgsRGB);
664      val = smear(val);
665      if (rgb_saturate)
666	 val = saturate(val);
667      p->emit(assign(temp_var, val));
668   }
669   else {
670      /* Need to do something to stop from re-emitting identical
671       * argument calculations here:
672       */
673      val = emit_combine(p, unit,
674			 key->unit[unit].NumArgsRGB,
675			 key->unit[unit].ModeRGB,
676			 key->unit[unit].ArgsRGB);
677      val = swizzle_xyz(smear(val));
678      if (rgb_saturate)
679	 val = saturate(val);
680      p->emit(assign(temp_var, val, WRITEMASK_XYZ));
681
682      val = emit_combine(p, unit,
683			 key->unit[unit].NumArgsA,
684			 key->unit[unit].ModeA,
685			 key->unit[unit].ArgsA);
686      val = swizzle_w(smear(val));
687      if (alpha_saturate)
688	 val = saturate(val);
689      p->emit(assign(temp_var, val, WRITEMASK_W));
690   }
691
692   deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
693
694   /* Deal with the final shift:
695    */
696   if (alpha_shift || rgb_shift) {
697      ir_constant *shift;
698
699      if (rgb_shift == alpha_shift) {
700	 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
701      }
702      else {
703         ir_constant_data const_data;
704
705         const_data.f[0] = float(1 << rgb_shift);
706         const_data.f[1] = float(1 << rgb_shift);
707         const_data.f[2] = float(1 << rgb_shift);
708         const_data.f[3] = float(1 << alpha_shift);
709
710         shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
711                                             &const_data);
712      }
713
714      return saturate(mul(deref, shift));
715   }
716   else
717      return deref;
718}
719
720
721/**
722 * Generate instruction for getting a texture source term.
723 */
724static void load_texture( texenv_fragment_program *p, GLuint unit )
725{
726   ir_dereference *deref;
727
728   if (p->src_texture[unit])
729      return;
730
731   const GLuint texTarget = p->state->unit[unit].source_index;
732   ir_rvalue *texcoord;
733
734   if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
735      texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
736   } else if (p->texcoord_tex[unit]) {
737      texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
738   } else {
739      ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
740      assert(tc_array);
741      texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
742      ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
743      texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
744      tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
745   }
746
747   if (!p->state->unit[unit].enabled) {
748      p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
749					  "dummy_tex");
750      p->emit(p->src_texture[unit]);
751
752      p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
753      return ;
754   }
755
756   const glsl_type *sampler_type = NULL;
757   int coords = 0;
758
759   switch (texTarget) {
760   case TEXTURE_1D_INDEX:
761      if (p->state->unit[unit].shadow)
762	 sampler_type = glsl_type::sampler1DShadow_type;
763      else
764	 sampler_type = glsl_type::sampler1D_type;
765      coords = 1;
766      break;
767   case TEXTURE_1D_ARRAY_INDEX:
768      if (p->state->unit[unit].shadow)
769	 sampler_type = glsl_type::sampler1DArrayShadow_type;
770      else
771	 sampler_type = glsl_type::sampler1DArray_type;
772      coords = 2;
773      break;
774   case TEXTURE_2D_INDEX:
775      if (p->state->unit[unit].shadow)
776	 sampler_type = glsl_type::sampler2DShadow_type;
777      else
778	 sampler_type = glsl_type::sampler2D_type;
779      coords = 2;
780      break;
781   case TEXTURE_2D_ARRAY_INDEX:
782      if (p->state->unit[unit].shadow)
783	 sampler_type = glsl_type::sampler2DArrayShadow_type;
784      else
785	 sampler_type = glsl_type::sampler2DArray_type;
786      coords = 3;
787      break;
788   case TEXTURE_RECT_INDEX:
789      if (p->state->unit[unit].shadow)
790	 sampler_type = glsl_type::sampler2DRectShadow_type;
791      else
792	 sampler_type = glsl_type::sampler2DRect_type;
793      coords = 2;
794      break;
795   case TEXTURE_3D_INDEX:
796      assert(!p->state->unit[unit].shadow);
797      sampler_type = glsl_type::sampler3D_type;
798      coords = 3;
799      break;
800   case TEXTURE_CUBE_INDEX:
801      if (p->state->unit[unit].shadow)
802	 sampler_type = glsl_type::samplerCubeShadow_type;
803      else
804	 sampler_type = glsl_type::samplerCube_type;
805      coords = 3;
806      break;
807   case TEXTURE_EXTERNAL_INDEX:
808      assert(!p->state->unit[unit].shadow);
809      sampler_type = glsl_type::samplerExternalOES_type;
810      coords = 2;
811      break;
812   }
813
814   p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
815				       "tex");
816
817   ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
818
819
820   char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
821   ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
822						      sampler_name,
823						      ir_var_uniform);
824   p->top_instructions->push_head(sampler);
825
826   /* Set the texture unit for this sampler in the same way that
827    * layout(binding=X) would.
828    */
829   sampler->data.explicit_binding = true;
830   sampler->data.binding = unit;
831
832   deref = new(p->mem_ctx) ir_dereference_variable(sampler);
833   tex->set_sampler(deref, glsl_type::vec4_type);
834
835   tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
836
837   if (p->state->unit[unit].shadow) {
838      texcoord = texcoord->clone(p->mem_ctx, NULL);
839      tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
840							  coords, 0, 0, 0,
841							  1);
842      coords++;
843   }
844
845   texcoord = texcoord->clone(p->mem_ctx, NULL);
846   tex->projector = swizzle_w(texcoord);
847
848   p->emit(assign(p->src_texture[unit], tex));
849}
850
851static void
852load_texenv_source(texenv_fragment_program *p,
853		   GLuint src, GLuint unit)
854{
855   switch (src) {
856   case TEXENV_SRC_TEXTURE:
857      load_texture(p, unit);
858      break;
859
860   case TEXENV_SRC_TEXTURE0:
861   case TEXENV_SRC_TEXTURE1:
862   case TEXENV_SRC_TEXTURE2:
863   case TEXENV_SRC_TEXTURE3:
864   case TEXENV_SRC_TEXTURE4:
865   case TEXENV_SRC_TEXTURE5:
866   case TEXENV_SRC_TEXTURE6:
867   case TEXENV_SRC_TEXTURE7:
868      load_texture(p, src - TEXENV_SRC_TEXTURE0);
869      break;
870
871   default:
872      /* not a texture src - do nothing */
873      break;
874   }
875}
876
877
878/**
879 * Generate instructions for loading all texture source terms.
880 */
881static GLboolean
882load_texunit_sources( texenv_fragment_program *p, GLuint unit )
883{
884   const struct state_key *key = p->state;
885   GLuint i;
886
887   for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
888      load_texenv_source( p, key->unit[unit].ArgsRGB[i].Source, unit );
889   }
890
891   for (i = 0; i < key->unit[unit].NumArgsA; i++) {
892      load_texenv_source( p, key->unit[unit].ArgsA[i].Source, unit );
893   }
894
895   return GL_TRUE;
896}
897
898/**
899 * Applies the fog calculations.
900 *
901 * This is basically like the ARB_fragment_prorgam fog options.  Note
902 * that ffvertex_prog.c produces fogcoord for us when
903 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
904 */
905static ir_rvalue *
906emit_fog_instructions(texenv_fragment_program *p,
907		      ir_rvalue *fragcolor)
908{
909   struct state_key *key = p->state;
910   ir_rvalue *f, *temp;
911   ir_variable *params, *oparams;
912   ir_variable *fogcoord;
913
914   /* Temporary storage for the whole fog result.  Fog calculations
915    * only affect rgb so we're hanging on to the .a value of fragcolor
916    * this way.
917    */
918   ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
919   p->emit(assign(fog_result, fragcolor));
920
921   fragcolor = swizzle_xyz(fog_result);
922
923   oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
924   assert(oparams);
925   fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
926   assert(fogcoord);
927   params = p->shader->symbols->get_variable("gl_Fog");
928   assert(params);
929   f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
930
931   ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
932
933   switch (key->fog_mode) {
934   case FOG_LINEAR:
935      /* f = (end - z) / (end - start)
936       *
937       * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
938       * (end / (end - start)) so we can generate a single MAD.
939       */
940      f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
941      break;
942   case FOG_EXP:
943      /* f = e^(-(density * fogcoord))
944       *
945       * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
946       * use EXP2 which is generally the native instruction without
947       * having to do any further math on the fog density uniform.
948       */
949      f = mul(f, swizzle_z(oparams));
950      f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
951      f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
952      break;
953   case FOG_EXP2:
954      /* f = e^(-(density * fogcoord)^2)
955       *
956       * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
957       * can do this like FOG_EXP but with a squaring after the
958       * multiply by density.
959       */
960      ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
961      p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
962
963      f = mul(temp_var, temp_var);
964      f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
965      f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
966      break;
967   }
968
969   p->emit(assign(f_var, saturate(f)));
970
971   f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
972   temp = new(p->mem_ctx) ir_dereference_variable(params);
973   temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
974   temp = mul(swizzle_xyz(temp), f);
975
976   p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
977
978   return new(p->mem_ctx) ir_dereference_variable(fog_result);
979}
980
981static void
982emit_instructions(texenv_fragment_program *p)
983{
984   struct state_key *key = p->state;
985   GLuint unit;
986
987   if (key->nr_enabled_units) {
988      /* First pass - to support texture_env_crossbar, first identify
989       * all referenced texture sources and emit texld instructions
990       * for each:
991       */
992      for (unit = 0; unit < key->nr_enabled_units; unit++)
993	 if (key->unit[unit].enabled) {
994	    load_texunit_sources(p, unit);
995	 }
996
997      /* Second pass - emit combine instructions to build final color:
998       */
999      for (unit = 0; unit < key->nr_enabled_units; unit++) {
1000	 if (key->unit[unit].enabled) {
1001	    p->src_previous = emit_texenv(p, unit);
1002	 }
1003      }
1004   }
1005
1006   ir_rvalue *cf = get_source(p, TEXENV_SRC_PREVIOUS, 0);
1007
1008   if (key->separate_specular) {
1009      ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1010					      "specular_add");
1011      p->emit(assign(spec_result, cf));
1012
1013      ir_rvalue *secondary;
1014      if (p->state->inputs_available & VARYING_BIT_COL1) {
1015	 ir_variable *var =
1016	    p->shader->symbols->get_variable("gl_SecondaryColor");
1017	 assert(var);
1018	 secondary = swizzle_xyz(var);
1019      } else {
1020	 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1021      }
1022
1023      p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1024		     WRITEMASK_XYZ));
1025
1026      cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1027   }
1028
1029   if (key->fog_mode) {
1030      cf = emit_fog_instructions(p, cf);
1031   }
1032
1033   ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1034   assert(frag_color);
1035   p->emit(assign(frag_color, cf));
1036}
1037
1038/**
1039 * Generate a new fragment program which implements the context's
1040 * current texture env/combine mode.
1041 */
1042static struct gl_shader_program *
1043create_new_program(struct gl_context *ctx, struct state_key *key)
1044{
1045   texenv_fragment_program p;
1046   unsigned int unit;
1047   _mesa_glsl_parse_state *state;
1048
1049   p.mem_ctx = ralloc_context(NULL);
1050   p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1051#ifdef DEBUG
1052   p.shader->SourceChecksum = 0xf18ed; /* fixed */
1053#endif
1054   p.shader->ir = new(p.shader) exec_list;
1055   state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1056						p.shader);
1057   p.shader->symbols = state->symbols;
1058   p.top_instructions = p.shader->ir;
1059   p.instructions = p.shader->ir;
1060   p.state = key;
1061   p.shader_program = _mesa_new_shader_program(0);
1062
1063   /* Tell the linker to ignore the fact that we're building a
1064    * separate shader, in case we're in a GLES2 context that would
1065    * normally reject that.  The real problem is that we're building a
1066    * fixed function program in a GLES2 context at all, but that's a
1067    * big mess to clean up.
1068    */
1069   p.shader_program->SeparateShader = GL_TRUE;
1070
1071   /* The legacy GLSL shadow functions follow the depth texture
1072    * mode and return vec4. The GLSL 1.30 shadow functions return float and
1073    * ignore the depth texture mode. That's a shader and state dependency
1074    * that's difficult to deal with. st/mesa uses a simple but not
1075    * completely correct solution: if the shader declares GLSL >= 1.30 and
1076    * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
1077    * instead. Thus, the GLSL 1.30 shadow function will get the result in .x
1078    * and legacy shadow functions will get it in .w as expected.
1079    * For the fixed-function fragment shader, use 120 to get correct behavior
1080    * for GL_ALPHA.
1081    */
1082   state->language_version = 120;
1083
1084   state->es_shader = false;
1085   if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1086      state->OES_EGL_image_external_enable = true;
1087   _mesa_glsl_initialize_types(state);
1088   _mesa_glsl_initialize_variables(p.instructions, state);
1089
1090   for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1091      p.src_texture[unit] = NULL;
1092      p.texcoord_tex[unit] = NULL;
1093   }
1094
1095   p.src_previous = NULL;
1096
1097   ir_function *main_f = new(p.mem_ctx) ir_function("main");
1098   p.emit(main_f);
1099   state->symbols->add_function(main_f);
1100
1101   ir_function_signature *main_sig =
1102      new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1103   main_sig->is_defined = true;
1104   main_f->add_signature(main_sig);
1105
1106   p.instructions = &main_sig->body;
1107   if (key->num_draw_buffers)
1108      emit_instructions(&p);
1109
1110   validate_ir_tree(p.shader->ir);
1111
1112   const struct gl_shader_compiler_options *options =
1113      &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1114
1115   /* Conservative approach: Don't optimize here, the linker does it too. */
1116   if (!ctx->Const.GLSLOptimizeConservatively) {
1117      while (do_common_optimization(p.shader->ir, false, false, options,
1118                                    ctx->Const.NativeIntegers))
1119         ;
1120   }
1121
1122   reparent_ir(p.shader->ir, p.shader->ir);
1123
1124   p.shader->CompileStatus = COMPILE_SUCCESS;
1125   p.shader->Version = state->language_version;
1126   p.shader_program->Shaders =
1127      (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1128   p.shader_program->Shaders[0] = p.shader;
1129   p.shader_program->NumShaders = 1;
1130
1131   _mesa_glsl_link_shader(ctx, p.shader_program);
1132
1133   if (!p.shader_program->data->LinkStatus)
1134      _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1135                    p.shader_program->data->InfoLog);
1136
1137   ralloc_free(p.mem_ctx);
1138   return p.shader_program;
1139}
1140
1141extern "C" {
1142
1143/**
1144 * Return a fragment program which implements the current
1145 * fixed-function texture, fog and color-sum operations.
1146 */
1147struct gl_shader_program *
1148_mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1149{
1150   struct gl_shader_program *shader_program;
1151   struct state_key key;
1152   GLuint keySize;
1153
1154   keySize = make_state_key(ctx, &key);
1155
1156   shader_program = (struct gl_shader_program *)
1157      _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1158                                 &key, keySize);
1159
1160   if (!shader_program) {
1161      shader_program = create_new_program(ctx, &key);
1162
1163      _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1164				&key, keySize, shader_program);
1165   }
1166
1167   return shader_program;
1168}
1169
1170}
1171