1/* 2 * Copyright 2015 Philip Taylor <philip@zaynar.co.uk> 3 * Copyright 2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 */ 24 25/** 26 * \file texcompress_astc.c 27 * 28 * Decompression code for GL_KHR_texture_compression_astc_ldr, which is just 29 * ASTC 2D LDR. 30 * 31 * The ASTC 2D LDR decoder (without the sRGB part) was copied from the OASTC 32 * library written by Philip Taylor. I added sRGB support and adjusted it for 33 * Mesa. - Marek 34 */ 35 36#include "texcompress_astc.h" 37#include "macros.h" 38#include "util/half_float.h" 39#include <stdio.h> 40 41static bool VERBOSE_DECODE = false; 42static bool VERBOSE_WRITE = false; 43 44static inline uint8_t 45uint16_div_64k_to_half_to_unorm8(uint16_t v) 46{ 47 return _mesa_half_to_unorm8(_mesa_uint16_div_64k_to_half(v)); 48} 49 50class decode_error 51{ 52public: 53 enum type { 54 ok, 55 unsupported_hdr_void_extent, 56 reserved_block_mode_1, 57 reserved_block_mode_2, 58 dual_plane_and_too_many_partitions, 59 invalid_range_in_void_extent, 60 weight_grid_exceeds_block_size, 61 invalid_colour_endpoints_size, 62 invalid_colour_endpoints_count, 63 invalid_weight_bits, 64 invalid_num_weights, 65 }; 66}; 67 68 69struct cem_range { 70 uint8_t max; 71 uint8_t t, q, b; 72}; 73 74/* Based on the Color Unquantization Parameters table, 75 * plus the bit-only representations, sorted by increasing size 76 */ 77static cem_range cem_ranges[] = { 78 { 5, 1, 0, 1 }, 79 { 7, 0, 0, 3 }, 80 { 9, 0, 1, 1 }, 81 { 11, 1, 0, 2 }, 82 { 15, 0, 0, 4 }, 83 { 19, 0, 1, 2 }, 84 { 23, 1, 0, 3 }, 85 { 31, 0, 0, 5 }, 86 { 39, 0, 1, 3 }, 87 { 47, 1, 0, 4 }, 88 { 63, 0, 0, 6 }, 89 { 79, 0, 1, 4 }, 90 { 95, 1, 0, 5 }, 91 { 127, 0, 0, 7 }, 92 { 159, 0, 1, 5 }, 93 { 191, 1, 0, 6 }, 94 { 255, 0, 0, 8 }, 95}; 96 97#define CAT_BITS_2(a, b) ( ((a) << 1) | (b) ) 98#define CAT_BITS_3(a, b, c) ( ((a) << 2) | ((b) << 1) | (c) ) 99#define CAT_BITS_4(a, b, c, d) ( ((a) << 3) | ((b) << 2) | ((c) << 1) | (d) ) 100#define CAT_BITS_5(a, b, c, d, e) ( ((a) << 4) | ((b) << 3) | ((c) << 2) | ((d) << 1) | (e) ) 101 102/** 103 * Unpack 5n+8 bits from 'in' into 5 output values. 104 * If n <= 4 then T should be uint32_t, else it must be uint64_t. 105 */ 106template <typename T> 107static void unpack_trit_block(int n, T in, uint8_t *out) 108{ 109 assert(n <= 6); /* else output will overflow uint8_t */ 110 111 uint8_t T0 = (in >> (n)) & 0x1; 112 uint8_t T1 = (in >> (n+1)) & 0x1; 113 uint8_t T2 = (in >> (2*n+2)) & 0x1; 114 uint8_t T3 = (in >> (2*n+3)) & 0x1; 115 uint8_t T4 = (in >> (3*n+4)) & 0x1; 116 uint8_t T5 = (in >> (4*n+5)) & 0x1; 117 uint8_t T6 = (in >> (4*n+6)) & 0x1; 118 uint8_t T7 = (in >> (5*n+7)) & 0x1; 119 uint8_t mmask = (1 << n) - 1; 120 uint8_t m0 = (in >> (0)) & mmask; 121 uint8_t m1 = (in >> (n+2)) & mmask; 122 uint8_t m2 = (in >> (2*n+4)) & mmask; 123 uint8_t m3 = (in >> (3*n+5)) & mmask; 124 uint8_t m4 = (in >> (4*n+7)) & mmask; 125 126 uint8_t C; 127 uint8_t t4, t3, t2, t1, t0; 128 if (CAT_BITS_3(T4, T3, T2) == 0x7) { 129 C = CAT_BITS_5(T7, T6, T5, T1, T0); 130 t4 = t3 = 2; 131 } else { 132 C = CAT_BITS_5(T4, T3, T2, T1, T0); 133 if (CAT_BITS_2(T6, T5) == 0x3) { 134 t4 = 2; 135 t3 = T7; 136 } else { 137 t4 = T7; 138 t3 = CAT_BITS_2(T6, T5); 139 } 140 } 141 142 if ((C & 0x3) == 0x3) { 143 t2 = 2; 144 t1 = (C >> 4) & 0x1; 145 uint8_t C3 = (C >> 3) & 0x1; 146 uint8_t C2 = (C >> 2) & 0x1; 147 t0 = (C3 << 1) | (C2 & ~C3); 148 } else if (((C >> 2) & 0x3) == 0x3) { 149 t2 = 2; 150 t1 = 2; 151 t0 = C & 0x3; 152 } else { 153 t2 = (C >> 4) & 0x1; 154 t1 = (C >> 2) & 0x3; 155 uint8_t C1 = (C >> 1) & 0x1; 156 uint8_t C0 = (C >> 0) & 0x1; 157 t0 = (C1 << 1) | (C0 & ~C1); 158 } 159 160 out[0] = (t0 << n) | m0; 161 out[1] = (t1 << n) | m1; 162 out[2] = (t2 << n) | m2; 163 out[3] = (t3 << n) | m3; 164 out[4] = (t4 << n) | m4; 165} 166 167/** 168 * Unpack 3n+7 bits from 'in' into 3 output values 169 */ 170static void unpack_quint_block(int n, uint32_t in, uint8_t *out) 171{ 172 assert(n <= 5); /* else output will overflow uint8_t */ 173 174 uint8_t Q0 = (in >> (n)) & 0x1; 175 uint8_t Q1 = (in >> (n+1)) & 0x1; 176 uint8_t Q2 = (in >> (n+2)) & 0x1; 177 uint8_t Q3 = (in >> (2*n+3)) & 0x1; 178 uint8_t Q4 = (in >> (2*n+4)) & 0x1; 179 uint8_t Q5 = (in >> (3*n+5)) & 0x1; 180 uint8_t Q6 = (in >> (3*n+6)) & 0x1; 181 uint8_t mmask = (1 << n) - 1; 182 uint8_t m0 = (in >> (0)) & mmask; 183 uint8_t m1 = (in >> (n+3)) & mmask; 184 uint8_t m2 = (in >> (2*n+5)) & mmask; 185 186 uint8_t C; 187 uint8_t q2, q1, q0; 188 if (CAT_BITS_4(Q6, Q5, Q2, Q1) == 0x3) { 189 q2 = CAT_BITS_3(Q0, Q4 & ~Q0, Q3 & ~Q0); 190 q1 = 4; 191 q0 = 4; 192 } else { 193 if (CAT_BITS_2(Q2, Q1) == 0x3) { 194 q2 = 4; 195 C = CAT_BITS_5(Q4, Q3, 0x1 & ~Q6, 0x1 & ~Q5, Q0); 196 } else { 197 q2 = CAT_BITS_2(Q6, Q5); 198 C = CAT_BITS_5(Q4, Q3, Q2, Q1, Q0); 199 } 200 if ((C & 0x7) == 0x5) { 201 q1 = 4; 202 q0 = (C >> 3) & 0x3; 203 } else { 204 q1 = (C >> 3) & 0x3; 205 q0 = C & 0x7; 206 } 207 } 208 out[0] = (q0 << n) | m0; 209 out[1] = (q1 << n) | m1; 210 out[2] = (q2 << n) | m2; 211} 212 213 214struct uint8x4_t 215{ 216 uint8_t v[4]; 217 218 uint8x4_t() { } 219 220 uint8x4_t(int a, int b, int c, int d) 221 { 222 assert(0 <= a && a <= 255); 223 assert(0 <= b && b <= 255); 224 assert(0 <= c && c <= 255); 225 assert(0 <= d && d <= 255); 226 v[0] = a; 227 v[1] = b; 228 v[2] = c; 229 v[3] = d; 230 } 231 232 static uint8x4_t clamped(int a, int b, int c, int d) 233 { 234 uint8x4_t r; 235 r.v[0] = MAX2(0, MIN2(255, a)); 236 r.v[1] = MAX2(0, MIN2(255, b)); 237 r.v[2] = MAX2(0, MIN2(255, c)); 238 r.v[3] = MAX2(0, MIN2(255, d)); 239 return r; 240 } 241}; 242 243static uint8x4_t blue_contract(int r, int g, int b, int a) 244{ 245 return uint8x4_t((r+b) >> 1, (g+b) >> 1, b, a); 246} 247 248static uint8x4_t blue_contract_clamped(int r, int g, int b, int a) 249{ 250 return uint8x4_t::clamped((r+b) >> 1, (g+b) >> 1, b, a); 251} 252 253static void bit_transfer_signed(int &a, int &b) 254{ 255 b >>= 1; 256 b |= a & 0x80; 257 a >>= 1; 258 a &= 0x3f; 259 if (a & 0x20) 260 a -= 0x40; 261} 262 263static uint32_t hash52(uint32_t p) 264{ 265 p ^= p >> 15; 266 p -= p << 17; 267 p += p << 7; 268 p += p << 4; 269 p ^= p >> 5; 270 p += p << 16; 271 p ^= p >> 7; 272 p ^= p >> 3; 273 p ^= p << 6; 274 p ^= p >> 17; 275 return p; 276} 277 278static int select_partition(int seed, int x, int y, int z, int partitioncount, 279 int small_block) 280{ 281 if (small_block) { 282 x <<= 1; 283 y <<= 1; 284 z <<= 1; 285 } 286 seed += (partitioncount - 1) * 1024; 287 uint32_t rnum = hash52(seed); 288 uint8_t seed1 = rnum & 0xF; 289 uint8_t seed2 = (rnum >> 4) & 0xF; 290 uint8_t seed3 = (rnum >> 8) & 0xF; 291 uint8_t seed4 = (rnum >> 12) & 0xF; 292 uint8_t seed5 = (rnum >> 16) & 0xF; 293 uint8_t seed6 = (rnum >> 20) & 0xF; 294 uint8_t seed7 = (rnum >> 24) & 0xF; 295 uint8_t seed8 = (rnum >> 28) & 0xF; 296 uint8_t seed9 = (rnum >> 18) & 0xF; 297 uint8_t seed10 = (rnum >> 22) & 0xF; 298 uint8_t seed11 = (rnum >> 26) & 0xF; 299 uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF; 300 301 seed1 *= seed1; 302 seed2 *= seed2; 303 seed3 *= seed3; 304 seed4 *= seed4; 305 seed5 *= seed5; 306 seed6 *= seed6; 307 seed7 *= seed7; 308 seed8 *= seed8; 309 seed9 *= seed9; 310 seed10 *= seed10; 311 seed11 *= seed11; 312 seed12 *= seed12; 313 314 int sh1, sh2, sh3; 315 if (seed & 1) { 316 sh1 = (seed & 2 ? 4 : 5); 317 sh2 = (partitioncount == 3 ? 6 : 5); 318 } else { 319 sh1 = (partitioncount == 3 ? 6 : 5); 320 sh2 = (seed & 2 ? 4 : 5); 321 } 322 sh3 = (seed & 0x10) ? sh1 : sh2; 323 324 seed1 >>= sh1; 325 seed2 >>= sh2; 326 seed3 >>= sh1; 327 seed4 >>= sh2; 328 seed5 >>= sh1; 329 seed6 >>= sh2; 330 seed7 >>= sh1; 331 seed8 >>= sh2; 332 seed9 >>= sh3; 333 seed10 >>= sh3; 334 seed11 >>= sh3; 335 seed12 >>= sh3; 336 337 int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); 338 int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); 339 int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); 340 int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); 341 342 a &= 0x3F; 343 b &= 0x3F; 344 c &= 0x3F; 345 d &= 0x3F; 346 347 if (partitioncount < 4) 348 d = 0; 349 if (partitioncount < 3) 350 c = 0; 351 352 if (a >= b && a >= c && a >= d) 353 return 0; 354 else if (b >= c && b >= d) 355 return 1; 356 else if (c >= d) 357 return 2; 358 else 359 return 3; 360} 361 362 363struct InputBitVector 364{ 365 uint32_t data[4]; 366 367 void printf_bits(int offset, int count, const char *fmt = "", ...) 368 { 369 char out[129]; 370 memset(out, '.', 128); 371 out[128] = '\0'; 372 int idx = offset; 373 for (int i = 0; i < count; ++i) { 374 out[127 - idx] = ((data[idx >> 5] >> (idx & 31)) & 1) ? '1' : '0'; 375 ++idx; 376 } 377 printf("%s ", out); 378 va_list ap; 379 va_start(ap, fmt); 380 vprintf(fmt, ap); 381 va_end(ap); 382 printf("\n"); 383 } 384 385 uint32_t get_bits(int offset, int count) 386 { 387 assert(count >= 0 && count < 32); 388 389 uint32_t out = 0; 390 if (offset < 32) 391 out |= data[0] >> offset; 392 393 if (0 < offset && offset <= 32) 394 out |= data[1] << (32 - offset); 395 if (32 < offset && offset < 64) 396 out |= data[1] >> (offset - 32); 397 398 if (32 < offset && offset <= 64) 399 out |= data[2] << (64 - offset); 400 if (64 < offset && offset < 96) 401 out |= data[2] >> (offset - 64); 402 403 if (64 < offset && offset <= 96) 404 out |= data[3] << (96 - offset); 405 if (96 < offset && offset < 128) 406 out |= data[3] >> (offset - 96); 407 408 out &= (1 << count) - 1; 409 return out; 410 } 411 412 uint64_t get_bits64(int offset, int count) 413 { 414 assert(count >= 0 && count < 64); 415 416 uint64_t out = 0; 417 if (offset < 32) 418 out |= data[0] >> offset; 419 420 if (offset <= 32) 421 out |= (uint64_t)data[1] << (32 - offset); 422 if (32 < offset && offset < 64) 423 out |= data[1] >> (offset - 32); 424 425 if (0 < offset && offset <= 64) 426 out |= (uint64_t)data[2] << (64 - offset); 427 if (64 < offset && offset < 96) 428 out |= data[2] >> (offset - 64); 429 430 if (32 < offset && offset <= 96) 431 out |= (uint64_t)data[3] << (96 - offset); 432 if (96 < offset && offset < 128) 433 out |= data[3] >> (offset - 96); 434 435 out &= ((uint64_t)1 << count) - 1; 436 return out; 437 } 438 439 uint32_t get_bits_rev(int offset, int count) 440 { 441 assert(offset >= count); 442 uint32_t tmp = get_bits(offset - count, count); 443 uint32_t out = 0; 444 for (int i = 0; i < count; ++i) 445 out |= ((tmp >> i) & 1) << (count - 1 - i); 446 return out; 447 } 448}; 449 450struct OutputBitVector 451{ 452 uint32_t data[4]; 453 int offset; 454 455 OutputBitVector() 456 : offset(0) 457 { 458 memset(data, 0, sizeof(data)); 459 } 460 461 void append(uint32_t value, int size) 462 { 463 if (VERBOSE_WRITE) 464 printf("append offset=%d size=%d values=0x%x\n", offset, size, value); 465 466 assert(offset + size <= 128); 467 468 assert(size <= 32); 469 if (size < 32) 470 assert((value >> size) == 0); 471 472 while (size) { 473 int c = MIN2(size, 32 - (offset & 31)); 474 data[offset >> 5] |= (value << (offset & 31)); 475 offset += c; 476 size -= c; 477 value >>= c; 478 } 479 } 480 481 void append64(uint64_t value, int size) 482 { 483 if (VERBOSE_WRITE) 484 printf("append offset=%d size=%d values=0x%llx\n", offset, size, (unsigned long long)value); 485 486 assert(offset + size <= 128); 487 488 assert(size <= 64); 489 if (size < 64) 490 assert((value >> size) == 0); 491 492 while (size) { 493 int c = MIN2(size, 32 - (offset & 31)); 494 data[offset >> 5] |= (value << (offset & 31)); 495 offset += c; 496 size -= c; 497 value >>= c; 498 } 499 } 500 501 void append(OutputBitVector &v, int size) 502 { 503 if (VERBOSE_WRITE) 504 printf("append vector offset=%d size=%d\n", offset, size); 505 506 assert(offset + size <= 128); 507 int i = 0; 508 while (size >= 32) { 509 append(v.data[i++], 32); 510 size -= 32; 511 } 512 if (size > 0) 513 append(v.data[i] & ((1 << size) - 1), size); 514 } 515 516 void append_end(OutputBitVector &v, int size) 517 { 518 for (int i = 0; i < size; ++i) 519 data[(127 - i) >> 5] |= ((v.data[i >> 5] >> (i & 31)) & 1) << ((127 - i) & 31); 520 } 521 522 /* Insert the given number of '1' bits. (We could use 0s instead, but 1s are 523 * more likely to flush out bugs where we accidentally read undefined bits.) 524 */ 525 void skip(int size) 526 { 527 if (VERBOSE_WRITE) 528 printf("skip offset=%d size=%d\n", offset, size); 529 530 assert(offset + size <= 128); 531 while (size >= 32) { 532 append(0xffffffff, 32); 533 size -= 32; 534 } 535 if (size > 0) 536 append(0xffffffff >> (32 - size), size); 537 } 538}; 539 540 541class Decoder 542{ 543public: 544 Decoder(int block_w, int block_h, int block_d, bool srgb, bool output_unorm8) 545 : block_w(block_w), block_h(block_h), block_d(block_d), srgb(srgb), 546 output_unorm8(output_unorm8) {} 547 548 decode_error::type decode(const uint8_t *in, uint16_t *output) const; 549 550 int block_w, block_h, block_d; 551 bool srgb, output_unorm8; 552}; 553 554struct Block 555{ 556 bool is_error; 557 bool bogus_colour_endpoints; 558 bool bogus_weights; 559 560 int high_prec; 561 int dual_plane; 562 int colour_component_selector; 563 int wt_range; 564 int wt_w, wt_h, wt_d; 565 int num_parts; 566 int partition_index; 567 568 bool is_void_extent; 569 int void_extent_d; 570 int void_extent_min_s; 571 int void_extent_max_s; 572 int void_extent_min_t; 573 int void_extent_max_t; 574 uint16_t void_extent_colour_r; 575 uint16_t void_extent_colour_g; 576 uint16_t void_extent_colour_b; 577 uint16_t void_extent_colour_a; 578 579 bool is_multi_cem; 580 int num_extra_cem_bits; 581 int colour_endpoint_data_offset; 582 int extra_cem_bits; 583 int cem_base_class; 584 int cems[4]; 585 586 int num_cem_values; 587 588 /* Calculated by unpack_weights(): */ 589 uint8_t weights_quant[64 + 4]; /* max 64 values, plus padding for overflows in trit parsing */ 590 591 /* Calculated by unquantise_weights(): */ 592 uint8_t weights[64 + 18]; /* max 64 values, plus padding for the infill interpolation */ 593 594 /* Calculated by unpack_colour_endpoints(): */ 595 uint8_t colour_endpoints_quant[18 + 4]; /* max 18 values, plus padding for overflows in trit parsing */ 596 597 /* Calculated by unquantise_colour_endpoints(): */ 598 uint8_t colour_endpoints[18]; 599 600 /* Calculated by calculate_from_weights(): */ 601 int wt_trits; 602 int wt_quints; 603 int wt_bits; 604 int wt_max; 605 int num_weights; 606 int weight_bits; 607 608 /* Calculated by calculate_remaining_bits(): */ 609 int remaining_bits; 610 611 /* Calculated by calculate_colour_endpoints_size(): */ 612 int colour_endpoint_bits; 613 int ce_max; 614 int ce_trits; 615 int ce_quints; 616 int ce_bits; 617 618 /* Calculated by compute_infill_weights(); */ 619 uint8_t infill_weights[2][216]; /* large enough for 6x6x6 */ 620 621 /* Calculated by decode_colour_endpoints(); */ 622 uint8x4_t endpoints_decoded[2][4]; 623 624 void calculate_from_weights(); 625 void calculate_remaining_bits(); 626 decode_error::type calculate_colour_endpoints_size(); 627 628 void unquantise_weights(); 629 void unquantise_colour_endpoints(); 630 631 decode_error::type decode(const Decoder &decoder, InputBitVector in); 632 633 decode_error::type decode_block_mode(InputBitVector in); 634 decode_error::type decode_void_extent(InputBitVector in); 635 void decode_cem(InputBitVector in); 636 void unpack_colour_endpoints(InputBitVector in); 637 void decode_colour_endpoints(); 638 void unpack_weights(InputBitVector in); 639 void compute_infill_weights(int block_w, int block_h, int block_d); 640 641 void write_decoded(const Decoder &decoder, uint16_t *output); 642}; 643 644 645decode_error::type Decoder::decode(const uint8_t *in, uint16_t *output) const 646{ 647 Block blk; 648 InputBitVector in_vec; 649 memcpy(&in_vec.data, in, 16); 650 decode_error::type err = blk.decode(*this, in_vec); 651 if (err == decode_error::ok) { 652 blk.write_decoded(*this, output); 653 } else { 654 /* Fill output with the error colour */ 655 for (int i = 0; i < block_w * block_h * block_d; ++i) { 656 if (output_unorm8) { 657 output[i*4+0] = 0xff; 658 output[i*4+1] = 0; 659 output[i*4+2] = 0xff; 660 output[i*4+3] = 0xff; 661 } else { 662 assert(!srgb); /* srgb must use unorm8 */ 663 664 output[i*4+0] = FP16_ONE; 665 output[i*4+1] = FP16_ZERO; 666 output[i*4+2] = FP16_ONE; 667 output[i*4+3] = FP16_ONE; 668 } 669 } 670 } 671 return err; 672} 673 674 675decode_error::type Block::decode_void_extent(InputBitVector block) 676{ 677 /* TODO: 3D */ 678 679 is_void_extent = true; 680 void_extent_d = block.get_bits(9, 1); 681 void_extent_min_s = block.get_bits(12, 13); 682 void_extent_max_s = block.get_bits(25, 13); 683 void_extent_min_t = block.get_bits(38, 13); 684 void_extent_max_t = block.get_bits(51, 13); 685 void_extent_colour_r = block.get_bits(64, 16); 686 void_extent_colour_g = block.get_bits(80, 16); 687 void_extent_colour_b = block.get_bits(96, 16); 688 void_extent_colour_a = block.get_bits(112, 16); 689 690 /* TODO: maybe we should do something useful with the extent coordinates? */ 691 692 if (void_extent_d) { 693 return decode_error::unsupported_hdr_void_extent; 694 } 695 696 if (void_extent_min_s == 0x1fff && void_extent_max_s == 0x1fff 697 && void_extent_min_t == 0x1fff && void_extent_max_t == 0x1fff) { 698 699 /* No extents */ 700 701 } else { 702 703 /* Check for illegal encoding */ 704 if (void_extent_min_s >= void_extent_max_s || void_extent_min_t >= void_extent_max_t) { 705 return decode_error::invalid_range_in_void_extent; 706 } 707 } 708 709 return decode_error::ok; 710} 711 712decode_error::type Block::decode_block_mode(InputBitVector in) 713{ 714 dual_plane = in.get_bits(10, 1); 715 high_prec = in.get_bits(9, 1); 716 717 if (in.get_bits(0, 2) != 0x0) { 718 wt_range = (in.get_bits(0, 2) << 1) | in.get_bits(4, 1); 719 int a = in.get_bits(5, 2); 720 int b = in.get_bits(7, 2); 721 switch (in.get_bits(2, 2)) { 722 case 0x0: 723 if (VERBOSE_DECODE) 724 in.printf_bits(0, 11, "DHBBAAR00RR"); 725 wt_w = b + 4; 726 wt_h = a + 2; 727 break; 728 case 0x1: 729 if (VERBOSE_DECODE) 730 in.printf_bits(0, 11, "DHBBAAR01RR"); 731 wt_w = b + 8; 732 wt_h = a + 2; 733 break; 734 case 0x2: 735 if (VERBOSE_DECODE) 736 in.printf_bits(0, 11, "DHBBAAR10RR"); 737 wt_w = a + 2; 738 wt_h = b + 8; 739 break; 740 case 0x3: 741 if ((b & 0x2) == 0) { 742 if (VERBOSE_DECODE) 743 in.printf_bits(0, 11, "DH0BAAR11RR"); 744 wt_w = a + 2; 745 wt_h = b + 6; 746 } else { 747 if (VERBOSE_DECODE) 748 in.printf_bits(0, 11, "DH1BAAR11RR"); 749 wt_w = (b & 0x1) + 2; 750 wt_h = a + 2; 751 } 752 break; 753 } 754 } else { 755 if (in.get_bits(6, 3) == 0x7) { 756 if (in.get_bits(0, 9) == 0x1fc) { 757 if (VERBOSE_DECODE) 758 in.printf_bits(0, 11, "xx111111100 (void extent)"); 759 return decode_void_extent(in); 760 } else { 761 if (VERBOSE_DECODE) 762 in.printf_bits(0, 11, "xx111xxxx00"); 763 return decode_error::reserved_block_mode_1; 764 } 765 } 766 if (in.get_bits(0, 4) == 0x0) { 767 if (VERBOSE_DECODE) 768 in.printf_bits(0, 11, "xxxxxxx0000"); 769 return decode_error::reserved_block_mode_2; 770 } 771 772 wt_range = in.get_bits(1, 3) | in.get_bits(4, 1); 773 int a = in.get_bits(5, 2); 774 int b; 775 776 switch (in.get_bits(7, 2)) { 777 case 0x0: 778 if (VERBOSE_DECODE) 779 in.printf_bits(0, 11, "DH00AARRR00"); 780 wt_w = 12; 781 wt_h = a + 2; 782 break; 783 case 0x1: 784 if (VERBOSE_DECODE) 785 in.printf_bits(0, 11, "DH01AARRR00"); 786 wt_w = a + 2; 787 wt_h = 12; 788 break; 789 case 0x3: 790 if (in.get_bits(5, 1) == 0) { 791 if (VERBOSE_DECODE) 792 in.printf_bits(0, 11, "DH1100RRR00"); 793 wt_w = 6; 794 wt_h = 10; 795 } else { 796 if (VERBOSE_DECODE) 797 in.printf_bits(0, 11, "DH1101RRR00"); 798 wt_w = 10; 799 wt_h = 6; 800 } 801 break; 802 case 0x2: 803 if (VERBOSE_DECODE) 804 in.printf_bits(0, 11, "BB10AARRR00"); 805 b = in.get_bits(9, 2); 806 wt_w = a + 6; 807 wt_h = b + 6; 808 dual_plane = 0; 809 high_prec = 0; 810 break; 811 } 812 } 813 return decode_error::ok; 814} 815 816void Block::decode_cem(InputBitVector in) 817{ 818 cems[0] = cems[1] = cems[2] = cems[3] = -1; 819 820 num_extra_cem_bits = 0; 821 extra_cem_bits = 0; 822 823 if (num_parts > 1) { 824 825 partition_index = in.get_bits(13, 10); 826 if (VERBOSE_DECODE) 827 in.printf_bits(13, 10, "partition ID (%d)", partition_index); 828 829 uint32_t cem = in.get_bits(23, 6); 830 831 if ((cem & 0x3) == 0x0) { 832 cem >>= 2; 833 cem_base_class = cem >> 2; 834 is_multi_cem = false; 835 836 for (int i = 0; i < num_parts; ++i) 837 cems[i] = cem; 838 839 if (VERBOSE_DECODE) 840 in.printf_bits(23, 6, "CEM (single, %d)", cem); 841 } else { 842 843 cem_base_class = (cem & 0x3) - 1; 844 is_multi_cem = true; 845 846 if (VERBOSE_DECODE) 847 in.printf_bits(23, 6, "CEM (multi, base class %d)", cem_base_class); 848 849 int offset = 128 - weight_bits; 850 851 if (num_parts == 2) { 852 if (VERBOSE_DECODE) { 853 in.printf_bits(25, 4, "M0M0 C1 C0"); 854 in.printf_bits(offset - 2, 2, "M1M1"); 855 } 856 857 uint32_t c0 = in.get_bits(25, 1); 858 uint32_t c1 = in.get_bits(26, 1); 859 860 extra_cem_bits = c0 + c1; 861 862 num_extra_cem_bits = 2; 863 864 uint32_t m0 = in.get_bits(27, 2); 865 uint32_t m1 = in.get_bits(offset - 2, 2); 866 867 cems[0] = ((cem_base_class + c0) << 2) | m0; 868 cems[1] = ((cem_base_class + c1) << 2) | m1; 869 870 } else if (num_parts == 3) { 871 if (VERBOSE_DECODE) { 872 in.printf_bits(25, 4, "M0 C2 C1 C0"); 873 in.printf_bits(offset - 5, 5, "M2M2 M1M1 M0"); 874 } 875 876 uint32_t c0 = in.get_bits(25, 1); 877 uint32_t c1 = in.get_bits(26, 1); 878 uint32_t c2 = in.get_bits(27, 1); 879 880 extra_cem_bits = c0 + c1 + c2; 881 882 num_extra_cem_bits = 5; 883 884 uint32_t m0 = in.get_bits(28, 1) | (in.get_bits(128 - weight_bits - 5, 1) << 1); 885 uint32_t m1 = in.get_bits(offset - 4, 2); 886 uint32_t m2 = in.get_bits(offset - 2, 2); 887 888 cems[0] = ((cem_base_class + c0) << 2) | m0; 889 cems[1] = ((cem_base_class + c1) << 2) | m1; 890 cems[2] = ((cem_base_class + c2) << 2) | m2; 891 892 } else if (num_parts == 4) { 893 if (VERBOSE_DECODE) { 894 in.printf_bits(25, 4, "C3 C2 C1 C0"); 895 in.printf_bits(offset - 8, 8, "M3M3 M2M2 M1M1 M0M0"); 896 } 897 898 uint32_t c0 = in.get_bits(25, 1); 899 uint32_t c1 = in.get_bits(26, 1); 900 uint32_t c2 = in.get_bits(27, 1); 901 uint32_t c3 = in.get_bits(28, 1); 902 903 extra_cem_bits = c0 + c1 + c2 + c3; 904 905 num_extra_cem_bits = 8; 906 907 uint32_t m0 = in.get_bits(offset - 8, 2); 908 uint32_t m1 = in.get_bits(offset - 6, 2); 909 uint32_t m2 = in.get_bits(offset - 4, 2); 910 uint32_t m3 = in.get_bits(offset - 2, 2); 911 912 cems[0] = ((cem_base_class + c0) << 2) | m0; 913 cems[1] = ((cem_base_class + c1) << 2) | m1; 914 cems[2] = ((cem_base_class + c2) << 2) | m2; 915 cems[3] = ((cem_base_class + c3) << 2) | m3; 916 } else { 917 unreachable(""); 918 } 919 } 920 921 colour_endpoint_data_offset = 29; 922 923 } else { 924 uint32_t cem = in.get_bits(13, 4); 925 926 cem_base_class = cem >> 2; 927 is_multi_cem = false; 928 929 cems[0] = cem; 930 931 partition_index = -1; 932 933 if (VERBOSE_DECODE) 934 in.printf_bits(13, 4, "CEM = %d (class %d)", cem, cem_base_class); 935 936 colour_endpoint_data_offset = 17; 937 } 938} 939 940void Block::unpack_colour_endpoints(InputBitVector in) 941{ 942 if (ce_trits) { 943 int offset = colour_endpoint_data_offset; 944 int bits_left = colour_endpoint_bits; 945 for (int i = 0; i < num_cem_values; i += 5) { 946 int bits_to_read = MIN2(bits_left, 8 + ce_bits * 5); 947 /* If ce_trits then ce_bits <= 6, so bits_to_read <= 38 and we have to use uint64_t */ 948 uint64_t raw = in.get_bits64(offset, bits_to_read); 949 unpack_trit_block(ce_bits, raw, &colour_endpoints_quant[i]); 950 951 if (VERBOSE_DECODE) 952 in.printf_bits(offset, bits_to_read, 953 "trits [%d,%d,%d,%d,%d]", 954 colour_endpoints_quant[i+0], colour_endpoints_quant[i+1], 955 colour_endpoints_quant[i+2], colour_endpoints_quant[i+3], 956 colour_endpoints_quant[i+4]); 957 958 offset += 8 + ce_bits * 5; 959 bits_left -= 8 + ce_bits * 5; 960 } 961 } else if (ce_quints) { 962 int offset = colour_endpoint_data_offset; 963 int bits_left = colour_endpoint_bits; 964 for (int i = 0; i < num_cem_values; i += 3) { 965 int bits_to_read = MIN2(bits_left, 7 + ce_bits * 3); 966 /* If ce_quints then ce_bits <= 5, so bits_to_read <= 22 and we can use uint32_t */ 967 uint32_t raw = in.get_bits(offset, bits_to_read); 968 unpack_quint_block(ce_bits, raw, &colour_endpoints_quant[i]); 969 970 if (VERBOSE_DECODE) 971 in.printf_bits(offset, bits_to_read, 972 "quints [%d,%d,%d]", 973 colour_endpoints_quant[i], colour_endpoints_quant[i+1], colour_endpoints_quant[i+2]); 974 975 offset += 7 + ce_bits * 3; 976 bits_left -= 7 + ce_bits * 3; 977 } 978 } else { 979 assert((colour_endpoint_bits % ce_bits) == 0); 980 int offset = colour_endpoint_data_offset; 981 for (int i = 0; i < num_cem_values; i++) { 982 colour_endpoints_quant[i] = in.get_bits(offset, ce_bits); 983 984 if (VERBOSE_DECODE) 985 in.printf_bits(offset, ce_bits, "bits [%d]", colour_endpoints_quant[i]); 986 987 offset += ce_bits; 988 } 989 } 990} 991 992void Block::decode_colour_endpoints() 993{ 994 int cem_values_idx = 0; 995 for (int part = 0; part < num_parts; ++part) { 996 uint8_t *v = &colour_endpoints[cem_values_idx]; 997 int v0 = v[0]; 998 int v1 = v[1]; 999 int v2 = v[2]; 1000 int v3 = v[3]; 1001 int v4 = v[4]; 1002 int v5 = v[5]; 1003 int v6 = v[6]; 1004 int v7 = v[7]; 1005 cem_values_idx += ((cems[part] >> 2) + 1) * 2; 1006 1007 uint8x4_t e0, e1; 1008 int s0, s1, L0, L1; 1009 1010 switch (cems[part]) 1011 { 1012 case 0: 1013 e0 = uint8x4_t(v0, v0, v0, 0xff); 1014 e1 = uint8x4_t(v1, v1, v1, 0xff); 1015 break; 1016 case 1: 1017 L0 = (v0 >> 2) | (v1 & 0xc0); 1018 L1 = L0 + (v1 & 0x3f); 1019 if (L1 > 0xff) 1020 L1 = 0xff; 1021 e0 = uint8x4_t(L0, L0, L0, 0xff); 1022 e1 = uint8x4_t(L1, L1, L1, 0xff); 1023 break; 1024 case 4: 1025 e0 = uint8x4_t(v0, v0, v0, v2); 1026 e1 = uint8x4_t(v1, v1, v1, v3); 1027 break; 1028 case 5: 1029 bit_transfer_signed(v1, v0); 1030 bit_transfer_signed(v3, v2); 1031 e0 = uint8x4_t(v0, v0, v0, v2); 1032 e1 = uint8x4_t::clamped(v0+v1, v0+v1, v0+v1, v2+v3); 1033 break; 1034 case 6: 1035 e0 = uint8x4_t(v0*v3 >> 8, v1*v3 >> 8, v2*v3 >> 8, 0xff); 1036 e1 = uint8x4_t(v0, v1, v2, 0xff); 1037 break; 1038 case 8: 1039 s0 = v0 + v2 + v4; 1040 s1 = v1 + v3 + v5; 1041 if (s1 >= s0) { 1042 e0 = uint8x4_t(v0, v2, v4, 0xff); 1043 e1 = uint8x4_t(v1, v3, v5, 0xff); 1044 } else { 1045 e0 = blue_contract(v1, v3, v5, 0xff); 1046 e1 = blue_contract(v0, v2, v4, 0xff); 1047 } 1048 break; 1049 case 9: 1050 bit_transfer_signed(v1, v0); 1051 bit_transfer_signed(v3, v2); 1052 bit_transfer_signed(v5, v4); 1053 if (v1 + v3 + v5 >= 0) { 1054 e0 = uint8x4_t(v0, v2, v4, 0xff); 1055 e1 = uint8x4_t::clamped(v0+v1, v2+v3, v4+v5, 0xff); 1056 } else { 1057 e0 = blue_contract_clamped(v0+v1, v2+v3, v4+v5, 0xff); 1058 e1 = blue_contract(v0, v2, v4, 0xff); 1059 } 1060 break; 1061 case 10: 1062 e0 = uint8x4_t(v0*v3 >> 8, v1*v3 >> 8, v2*v3 >> 8, v4); 1063 e1 = uint8x4_t(v0, v1, v2, v5); 1064 break; 1065 case 12: 1066 s0 = v0 + v2 + v4; 1067 s1 = v1 + v3 + v5; 1068 if (s1 >= s0) { 1069 e0 = uint8x4_t(v0, v2, v4, v6); 1070 e1 = uint8x4_t(v1, v3, v5, v7); 1071 } else { 1072 e0 = blue_contract(v1, v3, v5, v7); 1073 e1 = blue_contract(v0, v2, v4, v6); 1074 } 1075 break; 1076 case 13: 1077 bit_transfer_signed(v1, v0); 1078 bit_transfer_signed(v3, v2); 1079 bit_transfer_signed(v5, v4); 1080 bit_transfer_signed(v7, v6); 1081 if (v1 + v3 + v5 >= 0) { 1082 e0 = uint8x4_t(v0, v2, v4, v6); 1083 e1 = uint8x4_t::clamped(v0+v1, v2+v3, v4+v5, v6+v7); 1084 } else { 1085 e0 = blue_contract_clamped(v0+v1, v2+v3, v4+v5, v6+v7); 1086 e1 = blue_contract(v0, v2, v4, v6); 1087 } 1088 break; 1089 default: 1090 /* HDR endpoints not supported; return error colour */ 1091 e0 = uint8x4_t(255, 0, 255, 255); 1092 e1 = uint8x4_t(255, 0, 255, 255); 1093 break; 1094 } 1095 1096 endpoints_decoded[0][part] = e0; 1097 endpoints_decoded[1][part] = e1; 1098 1099 if (VERBOSE_DECODE) { 1100 printf("cems[%d]=%d v=[", part, cems[part]); 1101 for (int i = 0; i < (cems[part] >> 2) + 1; ++i) { 1102 if (i) 1103 printf(", "); 1104 printf("%3d", v[i]); 1105 } 1106 printf("] e0=[%3d,%4d,%4d,%4d] e1=[%3d,%4d,%4d,%4d]\n", 1107 e0.v[0], e0.v[1], e0.v[2], e0.v[3], 1108 e1.v[0], e1.v[1], e1.v[2], e1.v[3]); 1109 } 1110 } 1111} 1112 1113void Block::unpack_weights(InputBitVector in) 1114{ 1115 if (wt_trits) { 1116 int offset = 128; 1117 int bits_left = weight_bits; 1118 for (int i = 0; i < num_weights; i += 5) { 1119 int bits_to_read = MIN2(bits_left, 8 + 5*wt_bits); 1120 /* If wt_trits then wt_bits <= 3, so bits_to_read <= 23 and we can use uint32_t */ 1121 uint32_t raw = in.get_bits_rev(offset, bits_to_read); 1122 unpack_trit_block(wt_bits, raw, &weights_quant[i]); 1123 1124 if (VERBOSE_DECODE) 1125 in.printf_bits(offset - bits_to_read, bits_to_read, "weight trits [%d,%d,%d,%d,%d]", 1126 weights_quant[i+0], weights_quant[i+1], 1127 weights_quant[i+2], weights_quant[i+3], 1128 weights_quant[i+4]); 1129 1130 offset -= 8 + wt_bits * 5; 1131 bits_left -= 8 + wt_bits * 5; 1132 } 1133 1134 } else if (wt_quints) { 1135 1136 int offset = 128; 1137 int bits_left = weight_bits; 1138 for (int i = 0; i < num_weights; i += 3) { 1139 int bits_to_read = MIN2(bits_left, 7 + 3*wt_bits); 1140 /* If wt_quints then wt_bits <= 2, so bits_to_read <= 13 and we can use uint32_t */ 1141 uint32_t raw = in.get_bits_rev(offset, bits_to_read); 1142 unpack_quint_block(wt_bits, raw, &weights_quant[i]); 1143 1144 if (VERBOSE_DECODE) 1145 in.printf_bits(offset - bits_to_read, bits_to_read, "weight quints [%d,%d,%d]", 1146 weights_quant[i], weights_quant[i+1], weights_quant[i+2]); 1147 1148 offset -= 7 + wt_bits * 3; 1149 bits_left -= 7 + wt_bits * 3; 1150 } 1151 1152 } else { 1153 int offset = 128; 1154 assert((weight_bits % wt_bits) == 0); 1155 for (int i = 0; i < num_weights; ++i) { 1156 weights_quant[i] = in.get_bits_rev(offset, wt_bits); 1157 1158 if (VERBOSE_DECODE) 1159 in.printf_bits(offset - wt_bits, wt_bits, "weight bits [%d]", weights_quant[i]); 1160 1161 offset -= wt_bits; 1162 } 1163 } 1164} 1165 1166void Block::unquantise_weights() 1167{ 1168 assert(num_weights <= (int)ARRAY_SIZE(weights_quant)); 1169 assert(num_weights <= (int)ARRAY_SIZE(weights)); 1170 1171 memset(weights, 0, sizeof(weights)); 1172 1173 for (int i = 0; i < num_weights; ++i) { 1174 1175 uint8_t v = weights_quant[i]; 1176 uint8_t w; 1177 1178 if (wt_trits) { 1179 1180 if (wt_bits == 0) { 1181 w = v * 32; 1182 } else { 1183 uint8_t A, B, C, D; 1184 A = (v & 0x1) ? 0x7F : 0x00; 1185 switch (wt_bits) { 1186 case 1: 1187 B = 0; 1188 C = 50; 1189 D = v >> 1; 1190 break; 1191 case 2: 1192 B = (v & 0x2) ? 0x45 : 0x00; 1193 C = 23; 1194 D = v >> 2; 1195 break; 1196 case 3: 1197 B = ((v & 0x6) >> 1) | ((v & 0x6) << 4); 1198 C = 11; 1199 D = v >> 3; 1200 break; 1201 default: 1202 unreachable(""); 1203 } 1204 uint16_t T = D * C + B; 1205 T = T ^ A; 1206 T = (A & 0x20) | (T >> 2); 1207 assert(T < 64); 1208 if (T > 32) 1209 T++; 1210 w = T; 1211 } 1212 1213 } else if (wt_quints) { 1214 1215 if (wt_bits == 0) { 1216 w = v * 16; 1217 } else { 1218 uint8_t A, B, C, D; 1219 A = (v & 0x1) ? 0x7F : 0x00; 1220 switch (wt_bits) { 1221 case 1: 1222 B = 0; 1223 C = 28; 1224 D = v >> 1; 1225 break; 1226 case 2: 1227 B = (v & 0x2) ? 0x42 : 0x00; 1228 C = 13; 1229 D = v >> 2; 1230 break; 1231 default: 1232 unreachable(""); 1233 } 1234 uint16_t T = D * C + B; 1235 T = T ^ A; 1236 T = (A & 0x20) | (T >> 2); 1237 assert(T < 64); 1238 if (T > 32) 1239 T++; 1240 w = T; 1241 } 1242 weights[i] = w; 1243 1244 } else { 1245 1246 switch (wt_bits) { 1247 case 1: w = v ? 0x3F : 0x00; break; 1248 case 2: w = v | (v << 2) | (v << 4); break; 1249 case 3: w = v | (v << 3); break; 1250 case 4: w = (v >> 2) | (v << 2); break; 1251 case 5: w = (v >> 4) | (v << 1); break; 1252 default: unreachable(""); 1253 } 1254 assert(w < 64); 1255 if (w > 32) 1256 w++; 1257 } 1258 weights[i] = w; 1259 } 1260} 1261 1262void Block::compute_infill_weights(int block_w, int block_h, int block_d) 1263{ 1264 int Ds = block_w <= 1 ? 0 : (1024 + block_w / 2) / (block_w - 1); 1265 int Dt = block_h <= 1 ? 0 : (1024 + block_h / 2) / (block_h - 1); 1266 int Dr = block_d <= 1 ? 0 : (1024 + block_d / 2) / (block_d - 1); 1267 for (int r = 0; r < block_d; ++r) { 1268 for (int t = 0; t < block_h; ++t) { 1269 for (int s = 0; s < block_w; ++s) { 1270 int cs = Ds * s; 1271 int ct = Dt * t; 1272 int cr = Dr * r; 1273 int gs = (cs * (wt_w - 1) + 32) >> 6; 1274 int gt = (ct * (wt_h - 1) + 32) >> 6; 1275 int gr = (cr * (wt_d - 1) + 32) >> 6; 1276 assert(gs >= 0 && gs <= 176); 1277 assert(gt >= 0 && gt <= 176); 1278 assert(gr >= 0 && gr <= 176); 1279 int js = gs >> 4; 1280 int fs = gs & 0xf; 1281 int jt = gt >> 4; 1282 int ft = gt & 0xf; 1283 int jr = gr >> 4; 1284 int fr = gr & 0xf; 1285 1286 /* TODO: 3D */ 1287 (void)jr; 1288 (void)fr; 1289 1290 int w11 = (fs * ft + 8) >> 4; 1291 int w10 = ft - w11; 1292 int w01 = fs - w11; 1293 int w00 = 16 - fs - ft + w11; 1294 1295 if (dual_plane) { 1296 int p00, p01, p10, p11, i0, i1; 1297 int v0 = js + jt * wt_w; 1298 p00 = weights[(v0) * 2]; 1299 p01 = weights[(v0 + 1) * 2]; 1300 p10 = weights[(v0 + wt_w) * 2]; 1301 p11 = weights[(v0 + wt_w + 1) * 2]; 1302 i0 = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; 1303 p00 = weights[(v0) * 2 + 1]; 1304 p01 = weights[(v0 + 1) * 2 + 1]; 1305 p10 = weights[(v0 + wt_w) * 2 + 1]; 1306 p11 = weights[(v0 + wt_w + 1) * 2 + 1]; 1307 assert((v0 + wt_w + 1) * 2 + 1 < (int)ARRAY_SIZE(weights)); 1308 i1 = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; 1309 assert(0 <= i0 && i0 <= 64); 1310 infill_weights[0][s + t*block_w + r*block_w*block_h] = i0; 1311 infill_weights[1][s + t*block_w + r*block_w*block_h] = i1; 1312 } else { 1313 int p00, p01, p10, p11, i; 1314 int v0 = js + jt * wt_w; 1315 p00 = weights[v0]; 1316 p01 = weights[v0 + 1]; 1317 p10 = weights[v0 + wt_w]; 1318 p11 = weights[v0 + wt_w + 1]; 1319 assert(v0 + wt_w + 1 < (int)ARRAY_SIZE(weights)); 1320 i = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; 1321 assert(0 <= i && i <= 64); 1322 infill_weights[0][s + t*block_w + r*block_w*block_h] = i; 1323 } 1324 } 1325 } 1326 } 1327} 1328 1329void Block::unquantise_colour_endpoints() 1330{ 1331 assert(num_cem_values <= (int)ARRAY_SIZE(colour_endpoints_quant)); 1332 assert(num_cem_values <= (int)ARRAY_SIZE(colour_endpoints)); 1333 1334 for (int i = 0; i < num_cem_values; ++i) { 1335 uint8_t v = colour_endpoints_quant[i]; 1336 1337 if (ce_trits) { 1338 uint16_t A, B, C, D; 1339 uint16_t t; 1340 A = (v & 0x1) ? 0x1FF : 0x000; 1341 switch (ce_bits) { 1342 case 1: 1343 B = 0; 1344 C = 204; 1345 D = v >> 1; 1346 break; 1347 case 2: 1348 B = (v & 0x2) ? 0x116 : 0x000; 1349 C = 93; 1350 D = v >> 2; 1351 break; 1352 case 3: 1353 t = ((v >> 1) & 0x3); 1354 B = t | (t << 2) | (t << 7); 1355 C = 44; 1356 D = v >> 3; 1357 break; 1358 case 4: 1359 t = ((v >> 1) & 0x7); 1360 B = t | (t << 6); 1361 C = 22; 1362 D = v >> 4; 1363 break; 1364 case 5: 1365 t = ((v >> 1) & 0xF); 1366 B = (t >> 2) | (t << 5); 1367 C = 11; 1368 D = v >> 5; 1369 break; 1370 case 6: 1371 B = ((v & 0x3E) << 3) | ((v >> 5) & 0x1); 1372 C = 5; 1373 D = v >> 6; 1374 break; 1375 default: 1376 unreachable(""); 1377 } 1378 uint16_t T = D * C + B; 1379 T = T ^ A; 1380 T = (A & 0x80) | (T >> 2); 1381 assert(T < 256); 1382 colour_endpoints[i] = T; 1383 } else if (ce_quints) { 1384 uint16_t A, B, C, D; 1385 uint16_t t; 1386 A = (v & 0x1) ? 0x1FF : 0x000; 1387 switch (ce_bits) { 1388 case 1: 1389 B = 0; 1390 C = 113; 1391 D = v >> 1; 1392 break; 1393 case 2: 1394 B = (v & 0x2) ? 0x10C : 0x000; 1395 C = 54; 1396 D = v >> 2; 1397 break; 1398 case 3: 1399 t = ((v >> 1) & 0x3); 1400 B = (t >> 1) | (t << 1) | (t << 7); 1401 C = 26; 1402 D = v >> 3; 1403 break; 1404 case 4: 1405 t = ((v >> 1) & 0x7); 1406 B = (t >> 1) | (t << 6); 1407 C = 13; 1408 D = v >> 4; 1409 break; 1410 case 5: 1411 t = ((v >> 1) & 0xF); 1412 B = (t >> 4) | (t << 5); 1413 C = 6; 1414 D = v >> 5; 1415 break; 1416 default: 1417 unreachable(""); 1418 } 1419 uint16_t T = D * C + B; 1420 T = T ^ A; 1421 T = (A & 0x80) | (T >> 2); 1422 assert(T < 256); 1423 colour_endpoints[i] = T; 1424 } else { 1425 switch (ce_bits) { 1426 case 1: v = v ? 0xFF : 0x00; break; 1427 case 2: v = (v << 6) | (v << 4) | (v << 2) | v; break; 1428 case 3: v = (v << 5) | (v << 2) | (v >> 1); break; 1429 case 4: v = (v << 4) | v; break; 1430 case 5: v = (v << 3) | (v >> 2); break; 1431 case 6: v = (v << 2) | (v >> 4); break; 1432 case 7: v = (v << 1) | (v >> 6); break; 1433 case 8: break; 1434 default: unreachable(""); 1435 } 1436 colour_endpoints[i] = v; 1437 } 1438 } 1439} 1440 1441decode_error::type Block::decode(const Decoder &decoder, InputBitVector in) 1442{ 1443 decode_error::type err; 1444 1445 is_error = false; 1446 bogus_colour_endpoints = false; 1447 bogus_weights = false; 1448 is_void_extent = false; 1449 1450 wt_d = 1; 1451 /* TODO: 3D */ 1452 1453 /* TODO: test for all the illegal encodings */ 1454 1455 if (VERBOSE_DECODE) 1456 in.printf_bits(0, 128); 1457 1458 err = decode_block_mode(in); 1459 if (err != decode_error::ok) 1460 return err; 1461 1462 if (is_void_extent) 1463 return decode_error::ok; 1464 1465 /* TODO: 3D */ 1466 1467 calculate_from_weights(); 1468 1469 if (VERBOSE_DECODE) 1470 printf("weights_grid=%dx%dx%d dual_plane=%d num_weights=%d high_prec=%d r=%d range=0..%d (%dt %dq %db) weight_bits=%d\n", 1471 wt_w, wt_h, wt_d, dual_plane, num_weights, high_prec, wt_range, wt_max, wt_trits, wt_quints, wt_bits, weight_bits); 1472 1473 if (wt_w > decoder.block_w || wt_h > decoder.block_h || wt_d > decoder.block_d) 1474 return decode_error::weight_grid_exceeds_block_size; 1475 1476 num_parts = in.get_bits(11, 2) + 1; 1477 1478 if (VERBOSE_DECODE) 1479 in.printf_bits(11, 2, "partitions = %d", num_parts); 1480 1481 if (dual_plane && num_parts > 3) 1482 return decode_error::dual_plane_and_too_many_partitions; 1483 1484 decode_cem(in); 1485 1486 if (VERBOSE_DECODE) 1487 printf("cem=[%d,%d,%d,%d] base_cem_class=%d\n", cems[0], cems[1], cems[2], cems[3], cem_base_class); 1488 1489 int num_cem_pairs = (cem_base_class + 1) * num_parts + extra_cem_bits; 1490 num_cem_values = num_cem_pairs * 2; 1491 1492 calculate_remaining_bits(); 1493 err = calculate_colour_endpoints_size(); 1494 if (err != decode_error::ok) 1495 return err; 1496 1497 if (VERBOSE_DECODE) 1498 in.printf_bits(colour_endpoint_data_offset, colour_endpoint_bits, 1499 "endpoint data (%d bits, %d vals, %dt %dq %db)", 1500 colour_endpoint_bits, num_cem_values, ce_trits, ce_quints, ce_bits); 1501 1502 unpack_colour_endpoints(in); 1503 1504 if (VERBOSE_DECODE) { 1505 printf("cem values raw =["); 1506 for (int i = 0; i < num_cem_values; i++) { 1507 if (i) 1508 printf(", "); 1509 printf("%3d", colour_endpoints_quant[i]); 1510 } 1511 printf("]\n"); 1512 } 1513 1514 if (num_cem_values > 18) 1515 return decode_error::invalid_colour_endpoints_count; 1516 1517 unquantise_colour_endpoints(); 1518 1519 if (VERBOSE_DECODE) { 1520 printf("cem values norm=["); 1521 for (int i = 0; i < num_cem_values; i++) { 1522 if (i) 1523 printf(", "); 1524 printf("%3d", colour_endpoints[i]); 1525 } 1526 printf("]\n"); 1527 } 1528 1529 decode_colour_endpoints(); 1530 1531 if (dual_plane) { 1532 int ccs_offset = 128 - weight_bits - num_extra_cem_bits - 2; 1533 colour_component_selector = in.get_bits(ccs_offset, 2); 1534 1535 if (VERBOSE_DECODE) 1536 in.printf_bits(ccs_offset, 2, "colour component selector = %d", colour_component_selector); 1537 } else { 1538 colour_component_selector = 0; 1539 } 1540 1541 1542 if (VERBOSE_DECODE) 1543 in.printf_bits(128 - weight_bits, weight_bits, "weights (%d bits)", weight_bits); 1544 1545 if (num_weights > 64) 1546 return decode_error::invalid_num_weights; 1547 1548 if (weight_bits < 24 || weight_bits > 96) 1549 return decode_error::invalid_weight_bits; 1550 1551 unpack_weights(in); 1552 1553 unquantise_weights(); 1554 1555 if (VERBOSE_DECODE) { 1556 printf("weights=["); 1557 for (int i = 0; i < num_weights; ++i) { 1558 if (i) 1559 printf(", "); 1560 printf("%d", weights[i]); 1561 } 1562 printf("]\n"); 1563 1564 for (int plane = 0; plane <= dual_plane; ++plane) { 1565 printf("weights (plane %d):\n", plane); 1566 int i = 0; 1567 (void)i; 1568 1569 for (int r = 0; r < wt_d; ++r) { 1570 for (int t = 0; t < wt_h; ++t) { 1571 for (int s = 0; s < wt_w; ++s) { 1572 printf("%3d", weights[i++ * (1 + dual_plane) + plane]); 1573 } 1574 printf("\n"); 1575 } 1576 if (r < wt_d - 1) 1577 printf("\n"); 1578 } 1579 } 1580 } 1581 1582 compute_infill_weights(decoder.block_w, decoder.block_h, decoder.block_d); 1583 1584 if (VERBOSE_DECODE) { 1585 for (int plane = 0; plane <= dual_plane; ++plane) { 1586 printf("infilled weights (plane %d):\n", plane); 1587 int i = 0; 1588 (void)i; 1589 1590 for (int r = 0; r < decoder.block_d; ++r) { 1591 for (int t = 0; t < decoder.block_h; ++t) { 1592 for (int s = 0; s < decoder.block_w; ++s) { 1593 printf("%3d", infill_weights[plane][i++]); 1594 } 1595 printf("\n"); 1596 } 1597 if (r < decoder.block_d - 1) 1598 printf("\n"); 1599 } 1600 } 1601 } 1602 if (VERBOSE_DECODE) 1603 printf("\n"); 1604 1605 return decode_error::ok; 1606} 1607 1608void Block::write_decoded(const Decoder &decoder, uint16_t *output) 1609{ 1610 /* sRGB can only be stored as unorm8. */ 1611 assert(!decoder.srgb || decoder.output_unorm8); 1612 1613 if (is_void_extent) { 1614 for (int idx = 0; idx < decoder.block_w*decoder.block_h*decoder.block_d; ++idx) { 1615 if (decoder.output_unorm8) { 1616 if (decoder.srgb) { 1617 output[idx*4+0] = void_extent_colour_r >> 8; 1618 output[idx*4+1] = void_extent_colour_g >> 8; 1619 output[idx*4+2] = void_extent_colour_b >> 8; 1620 } else { 1621 output[idx*4+0] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_r); 1622 output[idx*4+1] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_g); 1623 output[idx*4+2] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_b); 1624 } 1625 output[idx*4+3] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_a); 1626 } else { 1627 /* Store the color as FP16. */ 1628 output[idx*4+0] = _mesa_uint16_div_64k_to_half(void_extent_colour_r); 1629 output[idx*4+1] = _mesa_uint16_div_64k_to_half(void_extent_colour_g); 1630 output[idx*4+2] = _mesa_uint16_div_64k_to_half(void_extent_colour_b); 1631 output[idx*4+3] = _mesa_uint16_div_64k_to_half(void_extent_colour_a); 1632 } 1633 } 1634 return; 1635 } 1636 1637 int small_block = (decoder.block_w * decoder.block_h * decoder.block_d) < 31; 1638 1639 int idx = 0; 1640 for (int z = 0; z < decoder.block_d; ++z) { 1641 for (int y = 0; y < decoder.block_h; ++y) { 1642 for (int x = 0; x < decoder.block_w; ++x) { 1643 1644 int partition; 1645 if (num_parts > 1) { 1646 partition = select_partition(partition_index, x, y, z, num_parts, small_block); 1647 assert(partition < num_parts); 1648 } else { 1649 partition = 0; 1650 } 1651 1652 /* TODO: HDR */ 1653 1654 uint8x4_t e0 = endpoints_decoded[0][partition]; 1655 uint8x4_t e1 = endpoints_decoded[1][partition]; 1656 uint16_t c0[4], c1[4]; 1657 1658 /* Expand to 16 bits. */ 1659 if (decoder.srgb) { 1660 c0[0] = (uint16_t)((e0.v[0] << 8) | 0x80); 1661 c0[1] = (uint16_t)((e0.v[1] << 8) | 0x80); 1662 c0[2] = (uint16_t)((e0.v[2] << 8) | 0x80); 1663 c0[3] = (uint16_t)((e0.v[3] << 8) | 0x80); 1664 1665 c1[0] = (uint16_t)((e1.v[0] << 8) | 0x80); 1666 c1[1] = (uint16_t)((e1.v[1] << 8) | 0x80); 1667 c1[2] = (uint16_t)((e1.v[2] << 8) | 0x80); 1668 c1[3] = (uint16_t)((e1.v[3] << 8) | 0x80); 1669 } else { 1670 c0[0] = (uint16_t)((e0.v[0] << 8) | e0.v[0]); 1671 c0[1] = (uint16_t)((e0.v[1] << 8) | e0.v[1]); 1672 c0[2] = (uint16_t)((e0.v[2] << 8) | e0.v[2]); 1673 c0[3] = (uint16_t)((e0.v[3] << 8) | e0.v[3]); 1674 1675 c1[0] = (uint16_t)((e1.v[0] << 8) | e1.v[0]); 1676 c1[1] = (uint16_t)((e1.v[1] << 8) | e1.v[1]); 1677 c1[2] = (uint16_t)((e1.v[2] << 8) | e1.v[2]); 1678 c1[3] = (uint16_t)((e1.v[3] << 8) | e1.v[3]); 1679 } 1680 1681 int w[4]; 1682 if (dual_plane) { 1683 int w0 = infill_weights[0][idx]; 1684 int w1 = infill_weights[1][idx]; 1685 w[0] = w[1] = w[2] = w[3] = w0; 1686 w[colour_component_selector] = w1; 1687 } else { 1688 int w0 = infill_weights[0][idx]; 1689 w[0] = w[1] = w[2] = w[3] = w0; 1690 } 1691 1692 /* Interpolate to produce UNORM16, applying weights. */ 1693 uint16_t c[4] = { 1694 (uint16_t)((c0[0] * (64 - w[0]) + c1[0] * w[0] + 32) >> 6), 1695 (uint16_t)((c0[1] * (64 - w[1]) + c1[1] * w[1] + 32) >> 6), 1696 (uint16_t)((c0[2] * (64 - w[2]) + c1[2] * w[2] + 32) >> 6), 1697 (uint16_t)((c0[3] * (64 - w[3]) + c1[3] * w[3] + 32) >> 6), 1698 }; 1699 1700 if (decoder.output_unorm8) { 1701 if (decoder.srgb) { 1702 output[idx*4+0] = c[0] >> 8; 1703 output[idx*4+1] = c[1] >> 8; 1704 output[idx*4+2] = c[2] >> 8; 1705 } else { 1706 output[idx*4+0] = c[0] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[0]); 1707 output[idx*4+1] = c[1] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[1]); 1708 output[idx*4+2] = c[2] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[2]); 1709 } 1710 output[idx*4+3] = c[3] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[3]); 1711 } else { 1712 /* Store the color as FP16. */ 1713 output[idx*4+0] = c[0] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[0]); 1714 output[idx*4+1] = c[1] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[1]); 1715 output[idx*4+2] = c[2] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[2]); 1716 output[idx*4+3] = c[3] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[3]); 1717 } 1718 1719 idx++; 1720 } 1721 } 1722 } 1723} 1724 1725void Block::calculate_from_weights() 1726{ 1727 wt_trits = 0; 1728 wt_quints = 0; 1729 wt_bits = 0; 1730 switch (high_prec) { 1731 case 0: 1732 switch (wt_range) { 1733 case 0x2: wt_max = 1; wt_bits = 1; break; 1734 case 0x3: wt_max = 2; wt_trits = 1; break; 1735 case 0x4: wt_max = 3; wt_bits = 2; break; 1736 case 0x5: wt_max = 4; wt_quints = 1; break; 1737 case 0x6: wt_max = 5; wt_trits = 1; wt_bits = 1; break; 1738 case 0x7: wt_max = 7; wt_bits = 3; break; 1739 default: abort(); 1740 } 1741 break; 1742 case 1: 1743 switch (wt_range) { 1744 case 0x2: wt_max = 9; wt_quints = 1; wt_bits = 1; break; 1745 case 0x3: wt_max = 11; wt_trits = 1; wt_bits = 2; break; 1746 case 0x4: wt_max = 15; wt_bits = 4; break; 1747 case 0x5: wt_max = 19; wt_quints = 1; wt_bits = 2; break; 1748 case 0x6: wt_max = 23; wt_trits = 1; wt_bits = 3; break; 1749 case 0x7: wt_max = 31; wt_bits = 5; break; 1750 default: abort(); 1751 } 1752 break; 1753 } 1754 1755 assert(wt_trits || wt_quints || wt_bits); 1756 1757 num_weights = wt_w * wt_h * wt_d; 1758 1759 if (dual_plane) 1760 num_weights *= 2; 1761 1762 weight_bits = 1763 (num_weights * 8 * wt_trits + 4) / 5 1764 + (num_weights * 7 * wt_quints + 2) / 3 1765 + num_weights * wt_bits; 1766} 1767 1768void Block::calculate_remaining_bits() 1769{ 1770 int config_bits; 1771 if (num_parts > 1) { 1772 if (!is_multi_cem) 1773 config_bits = 29; 1774 else 1775 config_bits = 25 + 3 * num_parts; 1776 } else { 1777 config_bits = 17; 1778 } 1779 1780 if (dual_plane) 1781 config_bits += 2; 1782 1783 remaining_bits = 128 - config_bits - weight_bits; 1784} 1785 1786decode_error::type Block::calculate_colour_endpoints_size() 1787{ 1788 /* Specified as illegal */ 1789 if (remaining_bits < (13 * num_cem_values + 4) / 5) { 1790 colour_endpoint_bits = ce_max = ce_trits = ce_quints = ce_bits = 0; 1791 return decode_error::invalid_colour_endpoints_size; 1792 } 1793 1794 /* Find the largest cem_ranges that fits within remaining_bits */ 1795 for (int i = ARRAY_SIZE(cem_ranges)-1; i >= 0; --i) { 1796 int cem_bits; 1797 cem_bits = (num_cem_values * 8 * cem_ranges[i].t + 4) / 5 1798 + (num_cem_values * 7 * cem_ranges[i].q + 2) / 3 1799 + num_cem_values * cem_ranges[i].b; 1800 1801 if (cem_bits <= remaining_bits) 1802 { 1803 colour_endpoint_bits = cem_bits; 1804 ce_max = cem_ranges[i].max; 1805 ce_trits = cem_ranges[i].t; 1806 ce_quints = cem_ranges[i].q; 1807 ce_bits = cem_ranges[i].b; 1808 return decode_error::ok; 1809 } 1810 } 1811 1812 assert(0); 1813 return decode_error::invalid_colour_endpoints_size; 1814} 1815 1816/** 1817 * Decode ASTC 2D LDR texture data. 1818 * 1819 * \param src_width in pixels 1820 * \param src_height in pixels 1821 * \param dst_stride in bytes 1822 */ 1823extern "C" void 1824_mesa_unpack_astc_2d_ldr(uint8_t *dst_row, 1825 unsigned dst_stride, 1826 const uint8_t *src_row, 1827 unsigned src_stride, 1828 unsigned src_width, 1829 unsigned src_height, 1830 mesa_format format) 1831{ 1832 assert(_mesa_is_format_astc_2d(format)); 1833 bool srgb = _mesa_get_format_color_encoding(format) == GL_SRGB; 1834 1835 unsigned blk_w, blk_h; 1836 _mesa_get_format_block_size(format, &blk_w, &blk_h); 1837 1838 const unsigned block_size = 16; 1839 unsigned x_blocks = (src_width + blk_w - 1) / blk_w; 1840 unsigned y_blocks = (src_height + blk_h - 1) / blk_h; 1841 1842 Decoder dec(blk_w, blk_h, 1, srgb, true); 1843 1844 for (unsigned y = 0; y < y_blocks; ++y) { 1845 for (unsigned x = 0; x < x_blocks; ++x) { 1846 /* Same size as the largest block. */ 1847 uint16_t block_out[12 * 12 * 4]; 1848 1849 dec.decode(src_row + x * block_size, block_out); 1850 1851 /* This can be smaller with NPOT dimensions. */ 1852 unsigned dst_blk_w = MIN2(blk_w, src_width - x*blk_w); 1853 unsigned dst_blk_h = MIN2(blk_h, src_height - y*blk_h); 1854 1855 for (unsigned sub_y = 0; sub_y < dst_blk_h; ++sub_y) { 1856 for (unsigned sub_x = 0; sub_x < dst_blk_w; ++sub_x) { 1857 uint8_t *dst = dst_row + sub_y * dst_stride + 1858 (x * blk_w + sub_x) * 4; 1859 const uint16_t *src = &block_out[(sub_y * blk_w + sub_x) * 4]; 1860 1861 dst[0] = src[0]; 1862 dst[1] = src[1]; 1863 dst[2] = src[2]; 1864 dst[3] = src[3]; 1865 } 1866 } 1867 } 1868 src_row += src_stride; 1869 dst_row += dst_stride * blk_h; 1870 } 1871} 1872