1/*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26#include "c99_math.h"
27#include "main/glheader.h"
28#include "main/imports.h"
29#include "main/macros.h"
30#include "main/mtypes.h"
31#include "main/teximage.h"
32#include "swrast/s_aaline.h"
33#include "swrast/s_context.h"
34#include "swrast/s_span.h"
35#include "swrast/swrast.h"
36
37
38#define SUB_PIXEL 4
39
40
41/*
42 * Info about the AA line we're rendering
43 */
44struct LineInfo
45{
46   GLfloat x0, y0;        /* start */
47   GLfloat x1, y1;        /* end */
48   GLfloat dx, dy;        /* direction vector */
49   GLfloat len;           /* length */
50   GLfloat halfWidth;     /* half of line width */
51   GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
52   /* for coverage computation */
53   GLfloat qx0, qy0;      /* quad vertices */
54   GLfloat qx1, qy1;
55   GLfloat qx2, qy2;
56   GLfloat qx3, qy3;
57   GLfloat ex0, ey0;      /* quad edge vectors */
58   GLfloat ex1, ey1;
59   GLfloat ex2, ey2;
60   GLfloat ex3, ey3;
61
62   /* DO_Z */
63   GLfloat zPlane[4];
64   /* DO_RGBA - always enabled */
65   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
66   /* DO_ATTRIBS */
67   GLfloat wPlane[4];
68   GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
69   GLfloat lambda[VARYING_SLOT_MAX];
70   GLfloat texWidth[VARYING_SLOT_MAX];
71   GLfloat texHeight[VARYING_SLOT_MAX];
72
73   SWspan span;
74};
75
76
77
78/*
79 * Compute the equation of a plane used to interpolate line fragment data
80 * such as color, Z, texture coords, etc.
81 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
82 *        z0, and z1 are the end point values to interpolate.
83 * Output:  plane - the plane equation.
84 *
85 * Note: we don't really have enough parameters to specify a plane.
86 * We take the endpoints of the line and compute a plane such that
87 * the cross product of the line vector and the plane normal is
88 * parallel to the projection plane.
89 */
90static void
91compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
92              GLfloat z0, GLfloat z1, GLfloat plane[4])
93{
94#if 0
95   /* original */
96   const GLfloat px = x1 - x0;
97   const GLfloat py = y1 - y0;
98   const GLfloat pz = z1 - z0;
99   const GLfloat qx = -py;
100   const GLfloat qy = px;
101   const GLfloat qz = 0;
102   const GLfloat a = py * qz - pz * qy;
103   const GLfloat b = pz * qx - px * qz;
104   const GLfloat c = px * qy - py * qx;
105   const GLfloat d = -(a * x0 + b * y0 + c * z0);
106   plane[0] = a;
107   plane[1] = b;
108   plane[2] = c;
109   plane[3] = d;
110#else
111   /* simplified */
112   const GLfloat px = x1 - x0;
113   const GLfloat py = y1 - y0;
114   const GLfloat pz = z0 - z1;
115   const GLfloat a = pz * px;
116   const GLfloat b = pz * py;
117   const GLfloat c = px * px + py * py;
118   const GLfloat d = -(a * x0 + b * y0 + c * z0);
119   if (a == 0.0F && b == 0.0F && c == 0.0F && d == 0.0F) {
120      plane[0] = 0.0F;
121      plane[1] = 0.0F;
122      plane[2] = 1.0F;
123      plane[3] = 0.0F;
124   }
125   else {
126      plane[0] = a;
127      plane[1] = b;
128      plane[2] = c;
129      plane[3] = d;
130   }
131#endif
132}
133
134
135static inline void
136constant_plane(GLfloat value, GLfloat plane[4])
137{
138   plane[0] = 0.0F;
139   plane[1] = 0.0F;
140   plane[2] = -1.0F;
141   plane[3] = value;
142}
143
144
145static inline GLfloat
146solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
147{
148   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
149   return z;
150}
151
152#define SOLVE_PLANE(X, Y, PLANE) \
153   ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
154
155
156/*
157 * Return 1 / solve_plane().
158 */
159static inline GLfloat
160solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
161{
162   const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
163   if (denom == 0.0F)
164      return 0.0F;
165   else
166      return -plane[2] / denom;
167}
168
169
170/*
171 * Solve plane and return clamped GLchan value.
172 */
173static inline GLchan
174solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
175{
176   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
177#if CHAN_TYPE == GL_FLOAT
178   return CLAMP(z, 0.0F, CHAN_MAXF);
179#else
180   if (z < 0)
181      return 0;
182   else if (z > CHAN_MAX)
183      return CHAN_MAX;
184   return (GLchan) IROUND_POS(z);
185#endif
186}
187
188
189/*
190 * Compute mipmap level of detail.
191 */
192static inline GLfloat
193compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
194               GLfloat invQ, GLfloat width, GLfloat height)
195{
196   GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
197   GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
198   GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
199   GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
200   GLfloat r1 = dudx * dudx + dudy * dudy;
201   GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
202   GLfloat rho2 = r1 + r2;
203   /* return log base 2 of rho */
204   if (rho2 == 0.0F)
205      return 0.0;
206   else
207      return logf(rho2) * 1.442695f * 0.5f;/* 1.442695 = 1/log(2) */
208}
209
210
211
212
213/*
214 * Fill in the samples[] array with the (x,y) subpixel positions of
215 * xSamples * ySamples sample positions.
216 * Note that the four corner samples are put into the first four
217 * positions of the array.  This allows us to optimize for the common
218 * case of all samples being inside the polygon.
219 */
220static void
221make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
222{
223   const GLfloat dx = 1.0F / (GLfloat) xSamples;
224   const GLfloat dy = 1.0F / (GLfloat) ySamples;
225   GLint x, y;
226   GLint i;
227
228   i = 4;
229   for (x = 0; x < xSamples; x++) {
230      for (y = 0; y < ySamples; y++) {
231         GLint j;
232         if (x == 0 && y == 0) {
233            /* lower left */
234            j = 0;
235         }
236         else if (x == xSamples - 1 && y == 0) {
237            /* lower right */
238            j = 1;
239         }
240         else if (x == 0 && y == ySamples - 1) {
241            /* upper left */
242            j = 2;
243         }
244         else if (x == xSamples - 1 && y == ySamples - 1) {
245            /* upper right */
246            j = 3;
247         }
248         else {
249            j = i++;
250         }
251         samples[j][0] = x * dx + 0.5F * dx;
252         samples[j][1] = y * dy + 0.5F * dy;
253      }
254   }
255}
256
257
258
259/*
260 * Compute how much of the given pixel's area is inside the rectangle
261 * defined by vertices v0, v1, v2, v3.
262 * Vertices MUST be specified in counter-clockwise order.
263 * Return:  coverage in [0, 1].
264 */
265static GLfloat
266compute_coveragef(const struct LineInfo *info,
267                  GLint winx, GLint winy)
268{
269   static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
270   static GLboolean haveSamples = GL_FALSE;
271   const GLfloat x = (GLfloat) winx;
272   const GLfloat y = (GLfloat) winy;
273   GLint stop = 4, i;
274   GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
275
276   if (!haveSamples) {
277      make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
278      haveSamples = GL_TRUE;
279   }
280
281#if 0 /*DEBUG*/
282   {
283      const GLfloat area = dx0 * dy1 - dx1 * dy0;
284      assert(area >= 0.0);
285   }
286#endif
287
288   for (i = 0; i < stop; i++) {
289      const GLfloat sx = x + samples[i][0];
290      const GLfloat sy = y + samples[i][1];
291      const GLfloat fx0 = sx - info->qx0;
292      const GLfloat fy0 = sy - info->qy0;
293      const GLfloat fx1 = sx - info->qx1;
294      const GLfloat fy1 = sy - info->qy1;
295      const GLfloat fx2 = sx - info->qx2;
296      const GLfloat fy2 = sy - info->qy2;
297      const GLfloat fx3 = sx - info->qx3;
298      const GLfloat fy3 = sy - info->qy3;
299      /* cross product determines if sample is inside or outside each edge */
300      GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
301      GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
302      GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
303      GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
304      /* Check if the sample is exactly on an edge.  If so, let cross be a
305       * positive or negative value depending on the direction of the edge.
306       */
307      if (cross0 == 0.0F)
308         cross0 = info->ex0 + info->ey0;
309      if (cross1 == 0.0F)
310         cross1 = info->ex1 + info->ey1;
311      if (cross2 == 0.0F)
312         cross2 = info->ex2 + info->ey2;
313      if (cross3 == 0.0F)
314         cross3 = info->ex3 + info->ey3;
315      if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
316         /* point is outside quadrilateral */
317         insideCount -= 1.0F;
318         stop = SUB_PIXEL * SUB_PIXEL;
319      }
320   }
321   if (stop == 4)
322      return 1.0F;
323   else
324      return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
325}
326
327
328typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
329                          int ix, int iy);
330
331
332
333/*
334 * Draw an AA line segment (called many times per line when stippling)
335 */
336static void
337segment(struct gl_context *ctx,
338        struct LineInfo *line,
339        plot_func plot,
340        GLfloat t0, GLfloat t1)
341{
342   const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
343   const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
344   /* compute the actual segment's endpoints */
345   const GLfloat x0 = line->x0 + t0 * line->dx;
346   const GLfloat y0 = line->y0 + t0 * line->dy;
347   const GLfloat x1 = line->x0 + t1 * line->dx;
348   const GLfloat y1 = line->y0 + t1 * line->dy;
349
350   /* compute vertices of the line-aligned quadrilateral */
351   line->qx0 = x0 - line->yAdj;
352   line->qy0 = y0 + line->xAdj;
353   line->qx1 = x0 + line->yAdj;
354   line->qy1 = y0 - line->xAdj;
355   line->qx2 = x1 + line->yAdj;
356   line->qy2 = y1 - line->xAdj;
357   line->qx3 = x1 - line->yAdj;
358   line->qy3 = y1 + line->xAdj;
359   /* compute the quad's edge vectors (for coverage calc) */
360   line->ex0 = line->qx1 - line->qx0;
361   line->ey0 = line->qy1 - line->qy0;
362   line->ex1 = line->qx2 - line->qx1;
363   line->ey1 = line->qy2 - line->qy1;
364   line->ex2 = line->qx3 - line->qx2;
365   line->ey2 = line->qy3 - line->qy2;
366   line->ex3 = line->qx0 - line->qx3;
367   line->ey3 = line->qy0 - line->qy3;
368
369   if (absDx > absDy) {
370      /* X-major line */
371      GLfloat dydx = line->dy / line->dx;
372      GLfloat xLeft, xRight, yBot, yTop;
373      GLint ix, ixRight;
374      if (x0 < x1) {
375         xLeft = x0 - line->halfWidth;
376         xRight = x1 + line->halfWidth;
377         if (line->dy >= 0.0F) {
378            yBot = y0 - 3.0F * line->halfWidth;
379            yTop = y0 + line->halfWidth;
380         }
381         else {
382            yBot = y0 - line->halfWidth;
383            yTop = y0 + 3.0F * line->halfWidth;
384         }
385      }
386      else {
387         xLeft = x1 - line->halfWidth;
388         xRight = x0 + line->halfWidth;
389         if (line->dy <= 0.0F) {
390            yBot = y1 - 3.0F * line->halfWidth;
391            yTop = y1 + line->halfWidth;
392         }
393         else {
394            yBot = y1 - line->halfWidth;
395            yTop = y1 + 3.0F * line->halfWidth;
396         }
397      }
398
399      /* scan along the line, left-to-right */
400      ixRight = (GLint) (xRight + 1.0F);
401
402      /*printf("avg span height: %g\n", yTop - yBot);*/
403      for (ix = (GLint) xLeft; ix < ixRight; ix++) {
404         const GLint iyBot = (GLint) yBot;
405         const GLint iyTop = (GLint) (yTop + 1.0F);
406         GLint iy;
407         /* scan across the line, bottom-to-top */
408         for (iy = iyBot; iy < iyTop; iy++) {
409            (*plot)(ctx, line, ix, iy);
410         }
411         yBot += dydx;
412         yTop += dydx;
413      }
414   }
415   else {
416      /* Y-major line */
417      GLfloat dxdy = line->dx / line->dy;
418      GLfloat yBot, yTop, xLeft, xRight;
419      GLint iy, iyTop;
420      if (y0 < y1) {
421         yBot = y0 - line->halfWidth;
422         yTop = y1 + line->halfWidth;
423         if (line->dx >= 0.0F) {
424            xLeft = x0 - 3.0F * line->halfWidth;
425            xRight = x0 + line->halfWidth;
426         }
427         else {
428            xLeft = x0 - line->halfWidth;
429            xRight = x0 + 3.0F * line->halfWidth;
430         }
431      }
432      else {
433         yBot = y1 - line->halfWidth;
434         yTop = y0 + line->halfWidth;
435         if (line->dx <= 0.0F) {
436            xLeft = x1 - 3.0F * line->halfWidth;
437            xRight = x1 + line->halfWidth;
438         }
439         else {
440            xLeft = x1 - line->halfWidth;
441            xRight = x1 + 3.0F * line->halfWidth;
442         }
443      }
444
445      /* scan along the line, bottom-to-top */
446      iyTop = (GLint) (yTop + 1.0F);
447
448      /*printf("avg span width: %g\n", xRight - xLeft);*/
449      for (iy = (GLint) yBot; iy < iyTop; iy++) {
450         const GLint ixLeft = (GLint) xLeft;
451         const GLint ixRight = (GLint) (xRight + 1.0F);
452         GLint ix;
453         /* scan across the line, left-to-right */
454         for (ix = ixLeft; ix < ixRight; ix++) {
455            (*plot)(ctx, line, ix, iy);
456         }
457         xLeft += dxdy;
458         xRight += dxdy;
459      }
460   }
461}
462
463
464#define NAME(x) aa_rgba_##x
465#define DO_Z
466#include "s_aalinetemp.h"
467
468
469#define NAME(x)  aa_general_rgba_##x
470#define DO_Z
471#define DO_ATTRIBS
472#include "s_aalinetemp.h"
473
474
475
476void
477_swrast_choose_aa_line_function(struct gl_context *ctx)
478{
479   SWcontext *swrast = SWRAST_CONTEXT(ctx);
480
481   assert(ctx->Line.SmoothFlag);
482
483   if (ctx->Texture._EnabledCoordUnits != 0
484       || _swrast_use_fragment_program(ctx)
485       || (ctx->Light.Enabled &&
486           ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
487       || ctx->Fog.ColorSumEnabled
488       || swrast->_FogEnabled) {
489      swrast->Line = aa_general_rgba_line;
490   }
491   else {
492      swrast->Line = aa_rgba_line;
493   }
494}
495