1/************************************************************************** 2 3Copyright 2002-2008 VMware, Inc. 4 5All Rights Reserved. 6 7Permission is hereby granted, free of charge, to any person obtaining a 8copy of this software and associated documentation files (the "Software"), 9to deal in the Software without restriction, including without limitation 10on the rights to use, copy, modify, merge, publish, distribute, sub 11license, and/or sell copies of the Software, and to permit persons to whom 12the Software is furnished to do so, subject to the following conditions: 13 14The above copyright notice and this permission notice (including the next 15paragraph) shall be included in all copies or substantial portions of the 16Software. 17 18THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21VMWARE AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, 22DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24USE OR OTHER DEALINGS IN THE SOFTWARE. 25 26**************************************************************************/ 27 28/* 29 * Authors: 30 * Keith Whitwell <keithw@vmware.com> 31 */ 32 33#include "main/glheader.h" 34#include "main/bufferobj.h" 35#include "main/context.h" 36#include "main/macros.h" 37#include "main/vtxfmt.h" 38#include "main/dlist.h" 39#include "main/eval.h" 40#include "main/state.h" 41#include "main/light.h" 42#include "main/api_arrayelt.h" 43#include "main/draw_validate.h" 44#include "main/dispatch.h" 45#include "util/bitscan.h" 46 47#include "vbo_noop.h" 48#include "vbo_private.h" 49 50 51/** ID/name for immediate-mode VBO */ 52#define IMM_BUFFER_NAME 0xaabbccdd 53 54 55static void 56vbo_reset_all_attr(struct vbo_exec_context *exec); 57 58 59/** 60 * Close off the last primitive, execute the buffer, restart the 61 * primitive. This is called when we fill a vertex buffer before 62 * hitting glEnd. 63 */ 64static void 65vbo_exec_wrap_buffers(struct vbo_exec_context *exec) 66{ 67 if (exec->vtx.prim_count == 0) { 68 exec->vtx.copied.nr = 0; 69 exec->vtx.vert_count = 0; 70 exec->vtx.buffer_ptr = exec->vtx.buffer_map; 71 } 72 else { 73 struct _mesa_prim *last_prim = &exec->vtx.prim[exec->vtx.prim_count - 1]; 74 const GLuint last_begin = last_prim->begin; 75 GLuint last_count; 76 77 if (_mesa_inside_begin_end(exec->ctx)) { 78 last_prim->count = exec->vtx.vert_count - last_prim->start; 79 } 80 81 last_count = last_prim->count; 82 83 /* Special handling for wrapping GL_LINE_LOOP */ 84 if (last_prim->mode == GL_LINE_LOOP && 85 last_count > 0 && 86 !last_prim->end) { 87 /* draw this section of the incomplete line loop as a line strip */ 88 last_prim->mode = GL_LINE_STRIP; 89 if (!last_prim->begin) { 90 /* This is not the first section of the line loop, so don't 91 * draw the 0th vertex. We're saving it until we draw the 92 * very last section of the loop. 93 */ 94 last_prim->start++; 95 last_prim->count--; 96 } 97 } 98 99 /* Execute the buffer and save copied vertices. 100 */ 101 if (exec->vtx.vert_count) 102 vbo_exec_vtx_flush(exec, GL_FALSE); 103 else { 104 exec->vtx.prim_count = 0; 105 exec->vtx.copied.nr = 0; 106 } 107 108 /* Emit a glBegin to start the new list. 109 */ 110 assert(exec->vtx.prim_count == 0); 111 112 if (_mesa_inside_begin_end(exec->ctx)) { 113 exec->vtx.prim[0].mode = exec->ctx->Driver.CurrentExecPrimitive; 114 exec->vtx.prim[0].begin = 0; 115 exec->vtx.prim[0].end = 0; 116 exec->vtx.prim[0].start = 0; 117 exec->vtx.prim[0].count = 0; 118 exec->vtx.prim_count++; 119 120 if (exec->vtx.copied.nr == last_count) 121 exec->vtx.prim[0].begin = last_begin; 122 } 123 } 124} 125 126 127/** 128 * Deal with buffer wrapping where provoked by the vertex buffer 129 * filling up, as opposed to upgrade_vertex(). 130 */ 131static void 132vbo_exec_vtx_wrap(struct vbo_exec_context *exec) 133{ 134 unsigned numComponents; 135 136 /* Run pipeline on current vertices, copy wrapped vertices 137 * to exec->vtx.copied. 138 */ 139 vbo_exec_wrap_buffers(exec); 140 141 if (!exec->vtx.buffer_ptr) { 142 /* probably ran out of memory earlier when allocating the VBO */ 143 return; 144 } 145 146 /* Copy stored stored vertices to start of new list. 147 */ 148 assert(exec->vtx.max_vert - exec->vtx.vert_count > exec->vtx.copied.nr); 149 150 numComponents = exec->vtx.copied.nr * exec->vtx.vertex_size; 151 memcpy(exec->vtx.buffer_ptr, 152 exec->vtx.copied.buffer, 153 numComponents * sizeof(fi_type)); 154 exec->vtx.buffer_ptr += numComponents; 155 exec->vtx.vert_count += exec->vtx.copied.nr; 156 157 exec->vtx.copied.nr = 0; 158} 159 160 161/** 162 * Copy the active vertex's values to the ctx->Current fields. 163 */ 164static void 165vbo_exec_copy_to_current(struct vbo_exec_context *exec) 166{ 167 struct gl_context *ctx = exec->ctx; 168 struct vbo_context *vbo = vbo_context(ctx); 169 GLbitfield64 enabled = exec->vtx.enabled & (~BITFIELD64_BIT(VBO_ATTRIB_POS)); 170 171 while (enabled) { 172 const int i = u_bit_scan64(&enabled); 173 174 /* Note: the exec->vtx.current[i] pointers point into the 175 * ctx->Current.Attrib and ctx->Light.Material.Attrib arrays. 176 */ 177 GLfloat *current = (GLfloat *)vbo->current[i].Ptr; 178 fi_type tmp[8]; /* space for doubles */ 179 int dmul = 1; 180 181 if (exec->vtx.attrtype[i] == GL_DOUBLE || 182 exec->vtx.attrtype[i] == GL_UNSIGNED_INT64_ARB) 183 dmul = 2; 184 185 assert(exec->vtx.attrsz[i]); 186 187 if (exec->vtx.attrtype[i] == GL_DOUBLE || 188 exec->vtx.attrtype[i] == GL_UNSIGNED_INT64_ARB) { 189 memset(tmp, 0, sizeof(tmp)); 190 memcpy(tmp, exec->vtx.attrptr[i], exec->vtx.attrsz[i] * sizeof(GLfloat)); 191 } else { 192 COPY_CLEAN_4V_TYPE_AS_UNION(tmp, 193 exec->vtx.attrsz[i], 194 exec->vtx.attrptr[i], 195 exec->vtx.attrtype[i]); 196 } 197 198 if (exec->vtx.attrtype[i] != vbo->current[i].Format.Type || 199 memcmp(current, tmp, 4 * sizeof(GLfloat) * dmul) != 0) { 200 memcpy(current, tmp, 4 * sizeof(GLfloat) * dmul); 201 202 /* Given that we explicitly state size here, there is no need 203 * for the COPY_CLEAN above, could just copy 16 bytes and be 204 * done. The only problem is when Mesa accesses ctx->Current 205 * directly. 206 */ 207 /* Size here is in components - not bytes */ 208 vbo_set_vertex_format(&vbo->current[i].Format, 209 exec->vtx.attrsz[i] / dmul, 210 exec->vtx.attrtype[i]); 211 212 /* This triggers rather too much recalculation of Mesa state 213 * that doesn't get used (eg light positions). 214 */ 215 if (i >= VBO_ATTRIB_MAT_FRONT_AMBIENT && 216 i <= VBO_ATTRIB_MAT_BACK_INDEXES) 217 ctx->NewState |= _NEW_LIGHT; 218 219 ctx->NewState |= _NEW_CURRENT_ATTRIB; 220 } 221 } 222 223 /* Colormaterial -- this kindof sucks. 224 */ 225 if (ctx->Light.ColorMaterialEnabled && 226 exec->vtx.attrsz[VBO_ATTRIB_COLOR0]) { 227 _mesa_update_color_material(ctx, 228 ctx->Current.Attrib[VBO_ATTRIB_COLOR0]); 229 } 230} 231 232 233/** 234 * Copy current vertex attribute values into the current vertex. 235 */ 236static void 237vbo_exec_copy_from_current(struct vbo_exec_context *exec) 238{ 239 struct gl_context *ctx = exec->ctx; 240 struct vbo_context *vbo = vbo_context(ctx); 241 GLint i; 242 243 for (i = VBO_ATTRIB_POS + 1; i < VBO_ATTRIB_MAX; i++) { 244 if (exec->vtx.attrtype[i] == GL_DOUBLE || 245 exec->vtx.attrtype[i] == GL_UNSIGNED_INT64_ARB) { 246 memcpy(exec->vtx.attrptr[i], vbo->current[i].Ptr, 247 exec->vtx.attrsz[i] * sizeof(GLfloat)); 248 } else { 249 const fi_type *current = (fi_type *) vbo->current[i].Ptr; 250 switch (exec->vtx.attrsz[i]) { 251 case 4: exec->vtx.attrptr[i][3] = current[3]; 252 case 3: exec->vtx.attrptr[i][2] = current[2]; 253 case 2: exec->vtx.attrptr[i][1] = current[1]; 254 case 1: exec->vtx.attrptr[i][0] = current[0]; 255 break; 256 } 257 } 258 } 259} 260 261 262/** 263 * Flush existing data, set new attrib size, replay copied vertices. 264 * This is called when we transition from a small vertex attribute size 265 * to a larger one. Ex: glTexCoord2f -> glTexCoord4f. 266 * We need to go back over the previous 2-component texcoords and insert 267 * zero and one values. 268 * \param attr VBO_ATTRIB_x vertex attribute value 269 */ 270static void 271vbo_exec_wrap_upgrade_vertex(struct vbo_exec_context *exec, 272 GLuint attr, GLuint newSize) 273{ 274 struct gl_context *ctx = exec->ctx; 275 struct vbo_context *vbo = vbo_context(ctx); 276 const GLint lastcount = exec->vtx.vert_count; 277 fi_type *old_attrptr[VBO_ATTRIB_MAX]; 278 const GLuint old_vtx_size = exec->vtx.vertex_size; /* floats per vertex */ 279 const GLuint oldSize = exec->vtx.attrsz[attr]; 280 GLuint i; 281 282 assert(attr < VBO_ATTRIB_MAX); 283 284 /* Run pipeline on current vertices, copy wrapped vertices 285 * to exec->vtx.copied. 286 */ 287 vbo_exec_wrap_buffers(exec); 288 289 if (unlikely(exec->vtx.copied.nr)) { 290 /* We're in the middle of a primitive, keep the old vertex 291 * format around to be able to translate the copied vertices to 292 * the new format. 293 */ 294 memcpy(old_attrptr, exec->vtx.attrptr, sizeof(old_attrptr)); 295 } 296 297 if (unlikely(oldSize)) { 298 /* Do a COPY_TO_CURRENT to ensure back-copying works for the 299 * case when the attribute already exists in the vertex and is 300 * having its size increased. 301 */ 302 vbo_exec_copy_to_current(exec); 303 } 304 305 /* Heuristic: Attempt to isolate attributes received outside 306 * begin/end so that they don't bloat the vertices. 307 */ 308 if (!_mesa_inside_begin_end(ctx) && 309 !oldSize && lastcount > 8 && exec->vtx.vertex_size) { 310 vbo_exec_copy_to_current(exec); 311 vbo_reset_all_attr(exec); 312 } 313 314 /* Fix up sizes: 315 */ 316 exec->vtx.attrsz[attr] = newSize; 317 exec->vtx.vertex_size += newSize - oldSize; 318 exec->vtx.max_vert = vbo_compute_max_verts(exec); 319 exec->vtx.vert_count = 0; 320 exec->vtx.buffer_ptr = exec->vtx.buffer_map; 321 exec->vtx.enabled |= BITFIELD64_BIT(attr); 322 323 if (unlikely(oldSize)) { 324 /* Size changed, recalculate all the attrptr[] values 325 */ 326 fi_type *tmp = exec->vtx.vertex; 327 328 for (i = 0 ; i < VBO_ATTRIB_MAX ; i++) { 329 if (exec->vtx.attrsz[i]) { 330 exec->vtx.attrptr[i] = tmp; 331 tmp += exec->vtx.attrsz[i]; 332 } 333 else 334 exec->vtx.attrptr[i] = NULL; /* will not be dereferenced */ 335 } 336 337 /* Copy from current to repopulate the vertex with correct 338 * values. 339 */ 340 vbo_exec_copy_from_current(exec); 341 } 342 else { 343 /* Just have to append the new attribute at the end */ 344 exec->vtx.attrptr[attr] = exec->vtx.vertex + 345 exec->vtx.vertex_size - newSize; 346 } 347 348 /* Replay stored vertices to translate them 349 * to new format here. 350 * 351 * -- No need to replay - just copy piecewise 352 */ 353 if (unlikely(exec->vtx.copied.nr)) { 354 fi_type *data = exec->vtx.copied.buffer; 355 fi_type *dest = exec->vtx.buffer_ptr; 356 357 assert(exec->vtx.buffer_ptr == exec->vtx.buffer_map); 358 359 for (i = 0 ; i < exec->vtx.copied.nr ; i++) { 360 GLbitfield64 enabled = exec->vtx.enabled; 361 while (enabled) { 362 const int j = u_bit_scan64(&enabled); 363 GLuint sz = exec->vtx.attrsz[j]; 364 GLint old_offset = old_attrptr[j] - exec->vtx.vertex; 365 GLint new_offset = exec->vtx.attrptr[j] - exec->vtx.vertex; 366 367 assert(sz); 368 369 if (j == attr) { 370 if (oldSize) { 371 fi_type tmp[4]; 372 COPY_CLEAN_4V_TYPE_AS_UNION(tmp, oldSize, 373 data + old_offset, 374 exec->vtx.attrtype[j]); 375 COPY_SZ_4V(dest + new_offset, newSize, tmp); 376 } else { 377 fi_type *current = (fi_type *)vbo->current[j].Ptr; 378 COPY_SZ_4V(dest + new_offset, sz, current); 379 } 380 } 381 else { 382 COPY_SZ_4V(dest + new_offset, sz, data + old_offset); 383 } 384 } 385 386 data += old_vtx_size; 387 dest += exec->vtx.vertex_size; 388 } 389 390 exec->vtx.buffer_ptr = dest; 391 exec->vtx.vert_count += exec->vtx.copied.nr; 392 exec->vtx.copied.nr = 0; 393 } 394} 395 396 397/** 398 * This is when a vertex attribute transitions to a different size. 399 * For example, we saw a bunch of glTexCoord2f() calls and now we got a 400 * glTexCoord4f() call. We promote the array from size=2 to size=4. 401 * \param newSize size of new vertex (number of 32-bit words). 402 * \param attr VBO_ATTRIB_x vertex attribute value 403 */ 404static void 405vbo_exec_fixup_vertex(struct gl_context *ctx, GLuint attr, 406 GLuint newSize, GLenum newType) 407{ 408 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; 409 410 assert(attr < VBO_ATTRIB_MAX); 411 412 if (newSize > exec->vtx.attrsz[attr] || 413 newType != exec->vtx.attrtype[attr]) { 414 /* New size is larger. Need to flush existing vertices and get 415 * an enlarged vertex format. 416 */ 417 vbo_exec_wrap_upgrade_vertex(exec, attr, newSize); 418 } 419 else if (newSize < exec->vtx.active_sz[attr]) { 420 GLuint i; 421 const fi_type *id = 422 vbo_get_default_vals_as_union(exec->vtx.attrtype[attr]); 423 424 /* New size is smaller - just need to fill in some 425 * zeros. Don't need to flush or wrap. 426 */ 427 for (i = newSize; i <= exec->vtx.attrsz[attr]; i++) 428 exec->vtx.attrptr[attr][i-1] = id[i-1]; 429 } 430 431 exec->vtx.active_sz[attr] = newSize; 432 exec->vtx.attrtype[attr] = newType; 433 434 /* Does setting NeedFlush belong here? Necessitates resetting 435 * vtxfmt on each flush (otherwise flags won't get reset 436 * afterwards). 437 */ 438 if (attr == 0) 439 ctx->Driver.NeedFlush |= FLUSH_STORED_VERTICES; 440} 441 442 443/** 444 * Called upon first glVertex, glColor, glTexCoord, etc. 445 */ 446static void 447vbo_exec_begin_vertices(struct gl_context *ctx) 448{ 449 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; 450 451 vbo_exec_vtx_map(exec); 452 453 assert((ctx->Driver.NeedFlush & FLUSH_UPDATE_CURRENT) == 0); 454 assert(exec->begin_vertices_flags); 455 456 ctx->Driver.NeedFlush |= exec->begin_vertices_flags; 457} 458 459 460/** 461 * If index=0, does glVertexAttrib*() alias glVertex() to emit a vertex? 462 * It depends on a few things, including whether we're inside or outside 463 * of glBegin/glEnd. 464 */ 465static inline bool 466is_vertex_position(const struct gl_context *ctx, GLuint index) 467{ 468 return (index == 0 && 469 _mesa_attr_zero_aliases_vertex(ctx) && 470 _mesa_inside_begin_end(ctx)); 471} 472 473 474/** 475 * This macro is used to implement all the glVertex, glColor, glTexCoord, 476 * glVertexAttrib, etc functions. 477 * \param A VBO_ATTRIB_x attribute index 478 * \param N attribute size (1..4) 479 * \param T type (GL_FLOAT, GL_DOUBLE, GL_INT, GL_UNSIGNED_INT) 480 * \param C cast type (fi_type or double) 481 * \param V0, V1, v2, V3 attribute value 482 */ 483#define ATTR_UNION(A, N, T, C, V0, V1, V2, V3) \ 484do { \ 485 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; \ 486 int sz = (sizeof(C) / sizeof(GLfloat)); \ 487 \ 488 assert(sz == 1 || sz == 2); \ 489 \ 490 /* check if attribute size or type is changing */ \ 491 if (unlikely(exec->vtx.active_sz[A] != N * sz) || \ 492 unlikely(exec->vtx.attrtype[A] != T)) { \ 493 vbo_exec_fixup_vertex(ctx, A, N * sz, T); \ 494 } \ 495 \ 496 /* store vertex attribute in vertex buffer */ \ 497 { \ 498 C *dest = (C *)exec->vtx.attrptr[A]; \ 499 if (N>0) dest[0] = V0; \ 500 if (N>1) dest[1] = V1; \ 501 if (N>2) dest[2] = V2; \ 502 if (N>3) dest[3] = V3; \ 503 assert(exec->vtx.attrtype[A] == T); \ 504 } \ 505 \ 506 if ((A) == 0) { \ 507 /* This is a glVertex call */ \ 508 GLuint i; \ 509 \ 510 if (unlikely((ctx->Driver.NeedFlush & FLUSH_UPDATE_CURRENT) == 0)) { \ 511 vbo_exec_begin_vertices(ctx); \ 512 } \ 513 \ 514 if (unlikely(!exec->vtx.buffer_ptr)) { \ 515 vbo_exec_vtx_map(exec); \ 516 } \ 517 assert(exec->vtx.buffer_ptr); \ 518 \ 519 /* copy 32-bit words */ \ 520 for (i = 0; i < exec->vtx.vertex_size; i++) \ 521 exec->vtx.buffer_ptr[i] = exec->vtx.vertex[i]; \ 522 \ 523 exec->vtx.buffer_ptr += exec->vtx.vertex_size; \ 524 \ 525 /* Set FLUSH_STORED_VERTICES to indicate that there's now */ \ 526 /* something to draw (not just updating a color or texcoord).*/ \ 527 ctx->Driver.NeedFlush |= FLUSH_STORED_VERTICES; \ 528 \ 529 if (++exec->vtx.vert_count >= exec->vtx.max_vert) \ 530 vbo_exec_vtx_wrap(exec); \ 531 } else { \ 532 /* we now have accumulated per-vertex attributes */ \ 533 ctx->Driver.NeedFlush |= FLUSH_UPDATE_CURRENT; \ 534 } \ 535} while (0) 536 537 538#undef ERROR 539#define ERROR(err) _mesa_error(ctx, err, __func__) 540#define TAG(x) vbo_##x 541 542#include "vbo_attrib_tmp.h" 543 544 545 546/** 547 * Execute a glMaterial call. Note that if GL_COLOR_MATERIAL is enabled, 548 * this may be a (partial) no-op. 549 */ 550static void GLAPIENTRY 551vbo_Materialfv(GLenum face, GLenum pname, const GLfloat *params) 552{ 553 GLbitfield updateMats; 554 GET_CURRENT_CONTEXT(ctx); 555 556 /* This function should be a no-op when it tries to update material 557 * attributes which are currently tracking glColor via glColorMaterial. 558 * The updateMats var will be a mask of the MAT_BIT_FRONT/BACK_x bits 559 * indicating which material attributes can actually be updated below. 560 */ 561 if (ctx->Light.ColorMaterialEnabled) { 562 updateMats = ~ctx->Light._ColorMaterialBitmask; 563 } 564 else { 565 /* GL_COLOR_MATERIAL is disabled so don't skip any material updates */ 566 updateMats = ALL_MATERIAL_BITS; 567 } 568 569 if (ctx->API == API_OPENGL_COMPAT && face == GL_FRONT) { 570 updateMats &= FRONT_MATERIAL_BITS; 571 } 572 else if (ctx->API == API_OPENGL_COMPAT && face == GL_BACK) { 573 updateMats &= BACK_MATERIAL_BITS; 574 } 575 else if (face != GL_FRONT_AND_BACK) { 576 _mesa_error(ctx, GL_INVALID_ENUM, "glMaterial(invalid face)"); 577 return; 578 } 579 580 switch (pname) { 581 case GL_EMISSION: 582 if (updateMats & MAT_BIT_FRONT_EMISSION) 583 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_EMISSION, 4, params); 584 if (updateMats & MAT_BIT_BACK_EMISSION) 585 MAT_ATTR(VBO_ATTRIB_MAT_BACK_EMISSION, 4, params); 586 break; 587 case GL_AMBIENT: 588 if (updateMats & MAT_BIT_FRONT_AMBIENT) 589 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_AMBIENT, 4, params); 590 if (updateMats & MAT_BIT_BACK_AMBIENT) 591 MAT_ATTR(VBO_ATTRIB_MAT_BACK_AMBIENT, 4, params); 592 break; 593 case GL_DIFFUSE: 594 if (updateMats & MAT_BIT_FRONT_DIFFUSE) 595 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_DIFFUSE, 4, params); 596 if (updateMats & MAT_BIT_BACK_DIFFUSE) 597 MAT_ATTR(VBO_ATTRIB_MAT_BACK_DIFFUSE, 4, params); 598 break; 599 case GL_SPECULAR: 600 if (updateMats & MAT_BIT_FRONT_SPECULAR) 601 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_SPECULAR, 4, params); 602 if (updateMats & MAT_BIT_BACK_SPECULAR) 603 MAT_ATTR(VBO_ATTRIB_MAT_BACK_SPECULAR, 4, params); 604 break; 605 case GL_SHININESS: 606 if (*params < 0 || *params > ctx->Const.MaxShininess) { 607 _mesa_error(ctx, GL_INVALID_VALUE, 608 "glMaterial(invalid shininess: %f out range [0, %f])", 609 *params, ctx->Const.MaxShininess); 610 return; 611 } 612 if (updateMats & MAT_BIT_FRONT_SHININESS) 613 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_SHININESS, 1, params); 614 if (updateMats & MAT_BIT_BACK_SHININESS) 615 MAT_ATTR(VBO_ATTRIB_MAT_BACK_SHININESS, 1, params); 616 break; 617 case GL_COLOR_INDEXES: 618 if (ctx->API != API_OPENGL_COMPAT) { 619 _mesa_error(ctx, GL_INVALID_ENUM, "glMaterialfv(pname)"); 620 return; 621 } 622 if (updateMats & MAT_BIT_FRONT_INDEXES) 623 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_INDEXES, 3, params); 624 if (updateMats & MAT_BIT_BACK_INDEXES) 625 MAT_ATTR(VBO_ATTRIB_MAT_BACK_INDEXES, 3, params); 626 break; 627 case GL_AMBIENT_AND_DIFFUSE: 628 if (updateMats & MAT_BIT_FRONT_AMBIENT) 629 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_AMBIENT, 4, params); 630 if (updateMats & MAT_BIT_FRONT_DIFFUSE) 631 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_DIFFUSE, 4, params); 632 if (updateMats & MAT_BIT_BACK_AMBIENT) 633 MAT_ATTR(VBO_ATTRIB_MAT_BACK_AMBIENT, 4, params); 634 if (updateMats & MAT_BIT_BACK_DIFFUSE) 635 MAT_ATTR(VBO_ATTRIB_MAT_BACK_DIFFUSE, 4, params); 636 break; 637 default: 638 _mesa_error(ctx, GL_INVALID_ENUM, "glMaterialfv(pname)"); 639 return; 640 } 641} 642 643 644/** 645 * Flush (draw) vertices. 646 * \param unmap - leave VBO unmapped after flushing? 647 */ 648static void 649vbo_exec_FlushVertices_internal(struct vbo_exec_context *exec, GLboolean unmap) 650{ 651 if (exec->vtx.vert_count || unmap) { 652 vbo_exec_vtx_flush(exec, unmap); 653 } 654 655 if (exec->vtx.vertex_size) { 656 vbo_exec_copy_to_current(exec); 657 vbo_reset_all_attr(exec); 658 } 659} 660 661 662static void GLAPIENTRY 663vbo_exec_EvalCoord1f(GLfloat u) 664{ 665 GET_CURRENT_CONTEXT(ctx); 666 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; 667 668 { 669 GLint i; 670 if (exec->eval.recalculate_maps) 671 vbo_exec_eval_update(exec); 672 673 for (i = 0; i <= VBO_ATTRIB_TEX7; i++) { 674 if (exec->eval.map1[i].map) 675 if (exec->vtx.active_sz[i] != exec->eval.map1[i].sz) 676 vbo_exec_fixup_vertex(ctx, i, exec->eval.map1[i].sz, GL_FLOAT); 677 } 678 } 679 680 memcpy(exec->vtx.copied.buffer, exec->vtx.vertex, 681 exec->vtx.vertex_size * sizeof(GLfloat)); 682 683 vbo_exec_do_EvalCoord1f(exec, u); 684 685 memcpy(exec->vtx.vertex, exec->vtx.copied.buffer, 686 exec->vtx.vertex_size * sizeof(GLfloat)); 687} 688 689 690static void GLAPIENTRY 691vbo_exec_EvalCoord2f(GLfloat u, GLfloat v) 692{ 693 GET_CURRENT_CONTEXT(ctx); 694 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; 695 696 { 697 GLint i; 698 if (exec->eval.recalculate_maps) 699 vbo_exec_eval_update(exec); 700 701 for (i = 0; i <= VBO_ATTRIB_TEX7; i++) { 702 if (exec->eval.map2[i].map) 703 if (exec->vtx.active_sz[i] != exec->eval.map2[i].sz) 704 vbo_exec_fixup_vertex(ctx, i, exec->eval.map2[i].sz, GL_FLOAT); 705 } 706 707 if (ctx->Eval.AutoNormal) 708 if (exec->vtx.active_sz[VBO_ATTRIB_NORMAL] != 3) 709 vbo_exec_fixup_vertex(ctx, VBO_ATTRIB_NORMAL, 3, GL_FLOAT); 710 } 711 712 memcpy(exec->vtx.copied.buffer, exec->vtx.vertex, 713 exec->vtx.vertex_size * sizeof(GLfloat)); 714 715 vbo_exec_do_EvalCoord2f(exec, u, v); 716 717 memcpy(exec->vtx.vertex, exec->vtx.copied.buffer, 718 exec->vtx.vertex_size * sizeof(GLfloat)); 719} 720 721 722static void GLAPIENTRY 723vbo_exec_EvalCoord1fv(const GLfloat *u) 724{ 725 vbo_exec_EvalCoord1f(u[0]); 726} 727 728 729static void GLAPIENTRY 730vbo_exec_EvalCoord2fv(const GLfloat *u) 731{ 732 vbo_exec_EvalCoord2f(u[0], u[1]); 733} 734 735 736static void GLAPIENTRY 737vbo_exec_EvalPoint1(GLint i) 738{ 739 GET_CURRENT_CONTEXT(ctx); 740 GLfloat du = ((ctx->Eval.MapGrid1u2 - ctx->Eval.MapGrid1u1) / 741 (GLfloat) ctx->Eval.MapGrid1un); 742 GLfloat u = i * du + ctx->Eval.MapGrid1u1; 743 744 vbo_exec_EvalCoord1f(u); 745} 746 747 748static void GLAPIENTRY 749vbo_exec_EvalPoint2(GLint i, GLint j) 750{ 751 GET_CURRENT_CONTEXT(ctx); 752 GLfloat du = ((ctx->Eval.MapGrid2u2 - ctx->Eval.MapGrid2u1) / 753 (GLfloat) ctx->Eval.MapGrid2un); 754 GLfloat dv = ((ctx->Eval.MapGrid2v2 - ctx->Eval.MapGrid2v1) / 755 (GLfloat) ctx->Eval.MapGrid2vn); 756 GLfloat u = i * du + ctx->Eval.MapGrid2u1; 757 GLfloat v = j * dv + ctx->Eval.MapGrid2v1; 758 759 vbo_exec_EvalCoord2f(u, v); 760} 761 762 763/** 764 * Called via glBegin. 765 */ 766static void GLAPIENTRY 767vbo_exec_Begin(GLenum mode) 768{ 769 GET_CURRENT_CONTEXT(ctx); 770 struct vbo_context *vbo = vbo_context(ctx); 771 struct vbo_exec_context *exec = &vbo->exec; 772 int i; 773 774 if (_mesa_inside_begin_end(ctx)) { 775 _mesa_error(ctx, GL_INVALID_OPERATION, "glBegin"); 776 return; 777 } 778 779 if (!_mesa_valid_prim_mode(ctx, mode, "glBegin")) { 780 return; 781 } 782 783 if (ctx->NewState) { 784 _mesa_update_state(ctx); 785 786 CALL_Begin(ctx->Exec, (mode)); 787 return; 788 } 789 790 if (!_mesa_valid_to_render(ctx, "glBegin")) { 791 return; 792 } 793 794 /* Heuristic: attempt to isolate attributes occurring outside 795 * begin/end pairs. 796 */ 797 if (exec->vtx.vertex_size && !exec->vtx.attrsz[0]) 798 vbo_exec_FlushVertices_internal(exec, GL_FALSE); 799 800 i = exec->vtx.prim_count++; 801 exec->vtx.prim[i].mode = mode; 802 exec->vtx.prim[i].begin = 1; 803 exec->vtx.prim[i].end = 0; 804 exec->vtx.prim[i].indexed = 0; 805 exec->vtx.prim[i].pad = 0; 806 exec->vtx.prim[i].start = exec->vtx.vert_count; 807 exec->vtx.prim[i].count = 0; 808 exec->vtx.prim[i].num_instances = 1; 809 exec->vtx.prim[i].base_instance = 0; 810 exec->vtx.prim[i].is_indirect = 0; 811 812 ctx->Driver.CurrentExecPrimitive = mode; 813 814 ctx->Exec = ctx->BeginEnd; 815 816 /* We may have been called from a display list, in which case we should 817 * leave dlist.c's dispatch table in place. 818 */ 819 if (ctx->CurrentClientDispatch == ctx->MarshalExec) { 820 ctx->CurrentServerDispatch = ctx->Exec; 821 } else if (ctx->CurrentClientDispatch == ctx->OutsideBeginEnd) { 822 ctx->CurrentClientDispatch = ctx->Exec; 823 _glapi_set_dispatch(ctx->CurrentClientDispatch); 824 } else { 825 assert(ctx->CurrentClientDispatch == ctx->Save); 826 } 827} 828 829 830/** 831 * Try to merge / concatenate the two most recent VBO primitives. 832 */ 833static void 834try_vbo_merge(struct vbo_exec_context *exec) 835{ 836 struct _mesa_prim *cur = &exec->vtx.prim[exec->vtx.prim_count - 1]; 837 838 assert(exec->vtx.prim_count >= 1); 839 840 vbo_try_prim_conversion(cur); 841 842 if (exec->vtx.prim_count >= 2) { 843 struct _mesa_prim *prev = &exec->vtx.prim[exec->vtx.prim_count - 2]; 844 assert(prev == cur - 1); 845 846 if (vbo_can_merge_prims(prev, cur)) { 847 assert(cur->begin); 848 assert(cur->end); 849 assert(prev->begin); 850 assert(prev->end); 851 vbo_merge_prims(prev, cur); 852 exec->vtx.prim_count--; /* drop the last primitive */ 853 } 854 } 855} 856 857 858/** 859 * Called via glEnd. 860 */ 861static void GLAPIENTRY 862vbo_exec_End(void) 863{ 864 GET_CURRENT_CONTEXT(ctx); 865 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; 866 867 if (!_mesa_inside_begin_end(ctx)) { 868 _mesa_error(ctx, GL_INVALID_OPERATION, "glEnd"); 869 return; 870 } 871 872 ctx->Exec = ctx->OutsideBeginEnd; 873 874 if (ctx->CurrentClientDispatch == ctx->MarshalExec) { 875 ctx->CurrentServerDispatch = ctx->Exec; 876 } else if (ctx->CurrentClientDispatch == ctx->BeginEnd) { 877 ctx->CurrentClientDispatch = ctx->Exec; 878 _glapi_set_dispatch(ctx->CurrentClientDispatch); 879 } 880 881 if (exec->vtx.prim_count > 0) { 882 /* close off current primitive */ 883 struct _mesa_prim *last_prim = &exec->vtx.prim[exec->vtx.prim_count - 1]; 884 885 last_prim->end = 1; 886 last_prim->count = exec->vtx.vert_count - last_prim->start; 887 888 /* Special handling for GL_LINE_LOOP */ 889 if (last_prim->mode == GL_LINE_LOOP && last_prim->begin == 0) { 890 /* We're finishing drawing a line loop. Append 0th vertex onto 891 * end of vertex buffer so we can draw it as a line strip. 892 */ 893 const fi_type *src = exec->vtx.buffer_map + 894 last_prim->start * exec->vtx.vertex_size; 895 fi_type *dst = exec->vtx.buffer_map + 896 exec->vtx.vert_count * exec->vtx.vertex_size; 897 898 /* copy 0th vertex to end of buffer */ 899 memcpy(dst, src, exec->vtx.vertex_size * sizeof(fi_type)); 900 901 last_prim->start++; /* skip vertex0 */ 902 /* note that last_prim->count stays unchanged */ 903 last_prim->mode = GL_LINE_STRIP; 904 905 /* Increment the vertex count so the next primitive doesn't 906 * overwrite the last vertex which we just added. 907 */ 908 exec->vtx.vert_count++; 909 exec->vtx.buffer_ptr += exec->vtx.vertex_size; 910 } 911 912 try_vbo_merge(exec); 913 } 914 915 ctx->Driver.CurrentExecPrimitive = PRIM_OUTSIDE_BEGIN_END; 916 917 if (exec->vtx.prim_count == VBO_MAX_PRIM) 918 vbo_exec_vtx_flush(exec, GL_FALSE); 919 920 if (MESA_DEBUG_FLAGS & DEBUG_ALWAYS_FLUSH) { 921 _mesa_flush(ctx); 922 } 923} 924 925 926/** 927 * Called via glPrimitiveRestartNV() 928 */ 929static void GLAPIENTRY 930vbo_exec_PrimitiveRestartNV(void) 931{ 932 GLenum curPrim; 933 GET_CURRENT_CONTEXT(ctx); 934 935 curPrim = ctx->Driver.CurrentExecPrimitive; 936 937 if (curPrim == PRIM_OUTSIDE_BEGIN_END) { 938 _mesa_error(ctx, GL_INVALID_OPERATION, "glPrimitiveRestartNV"); 939 } 940 else { 941 vbo_exec_End(); 942 vbo_exec_Begin(curPrim); 943 } 944} 945 946 947static void 948vbo_exec_vtxfmt_init(struct vbo_exec_context *exec) 949{ 950 struct gl_context *ctx = exec->ctx; 951 GLvertexformat *vfmt = &exec->vtxfmt; 952 953 vfmt->ArrayElement = _ae_ArrayElement; 954 955 vfmt->Begin = vbo_exec_Begin; 956 vfmt->End = vbo_exec_End; 957 vfmt->PrimitiveRestartNV = vbo_exec_PrimitiveRestartNV; 958 959 vfmt->CallList = _mesa_CallList; 960 vfmt->CallLists = _mesa_CallLists; 961 962 vfmt->EvalCoord1f = vbo_exec_EvalCoord1f; 963 vfmt->EvalCoord1fv = vbo_exec_EvalCoord1fv; 964 vfmt->EvalCoord2f = vbo_exec_EvalCoord2f; 965 vfmt->EvalCoord2fv = vbo_exec_EvalCoord2fv; 966 vfmt->EvalPoint1 = vbo_exec_EvalPoint1; 967 vfmt->EvalPoint2 = vbo_exec_EvalPoint2; 968 969 /* from attrib_tmp.h: 970 */ 971 vfmt->Color3f = vbo_Color3f; 972 vfmt->Color3fv = vbo_Color3fv; 973 vfmt->Color4f = vbo_Color4f; 974 vfmt->Color4fv = vbo_Color4fv; 975 vfmt->FogCoordfEXT = vbo_FogCoordfEXT; 976 vfmt->FogCoordfvEXT = vbo_FogCoordfvEXT; 977 vfmt->MultiTexCoord1fARB = vbo_MultiTexCoord1f; 978 vfmt->MultiTexCoord1fvARB = vbo_MultiTexCoord1fv; 979 vfmt->MultiTexCoord2fARB = vbo_MultiTexCoord2f; 980 vfmt->MultiTexCoord2fvARB = vbo_MultiTexCoord2fv; 981 vfmt->MultiTexCoord3fARB = vbo_MultiTexCoord3f; 982 vfmt->MultiTexCoord3fvARB = vbo_MultiTexCoord3fv; 983 vfmt->MultiTexCoord4fARB = vbo_MultiTexCoord4f; 984 vfmt->MultiTexCoord4fvARB = vbo_MultiTexCoord4fv; 985 vfmt->Normal3f = vbo_Normal3f; 986 vfmt->Normal3fv = vbo_Normal3fv; 987 vfmt->SecondaryColor3fEXT = vbo_SecondaryColor3fEXT; 988 vfmt->SecondaryColor3fvEXT = vbo_SecondaryColor3fvEXT; 989 vfmt->TexCoord1f = vbo_TexCoord1f; 990 vfmt->TexCoord1fv = vbo_TexCoord1fv; 991 vfmt->TexCoord2f = vbo_TexCoord2f; 992 vfmt->TexCoord2fv = vbo_TexCoord2fv; 993 vfmt->TexCoord3f = vbo_TexCoord3f; 994 vfmt->TexCoord3fv = vbo_TexCoord3fv; 995 vfmt->TexCoord4f = vbo_TexCoord4f; 996 vfmt->TexCoord4fv = vbo_TexCoord4fv; 997 vfmt->Vertex2f = vbo_Vertex2f; 998 vfmt->Vertex2fv = vbo_Vertex2fv; 999 vfmt->Vertex3f = vbo_Vertex3f; 1000 vfmt->Vertex3fv = vbo_Vertex3fv; 1001 vfmt->Vertex4f = vbo_Vertex4f; 1002 vfmt->Vertex4fv = vbo_Vertex4fv; 1003 1004 if (ctx->API == API_OPENGLES2) { 1005 vfmt->VertexAttrib1fARB = _es_VertexAttrib1f; 1006 vfmt->VertexAttrib1fvARB = _es_VertexAttrib1fv; 1007 vfmt->VertexAttrib2fARB = _es_VertexAttrib2f; 1008 vfmt->VertexAttrib2fvARB = _es_VertexAttrib2fv; 1009 vfmt->VertexAttrib3fARB = _es_VertexAttrib3f; 1010 vfmt->VertexAttrib3fvARB = _es_VertexAttrib3fv; 1011 vfmt->VertexAttrib4fARB = _es_VertexAttrib4f; 1012 vfmt->VertexAttrib4fvARB = _es_VertexAttrib4fv; 1013 } else { 1014 vfmt->VertexAttrib1fARB = vbo_VertexAttrib1fARB; 1015 vfmt->VertexAttrib1fvARB = vbo_VertexAttrib1fvARB; 1016 vfmt->VertexAttrib2fARB = vbo_VertexAttrib2fARB; 1017 vfmt->VertexAttrib2fvARB = vbo_VertexAttrib2fvARB; 1018 vfmt->VertexAttrib3fARB = vbo_VertexAttrib3fARB; 1019 vfmt->VertexAttrib3fvARB = vbo_VertexAttrib3fvARB; 1020 vfmt->VertexAttrib4fARB = vbo_VertexAttrib4fARB; 1021 vfmt->VertexAttrib4fvARB = vbo_VertexAttrib4fvARB; 1022 } 1023 1024 /* Note that VertexAttrib4fNV is used from dlist.c and api_arrayelt.c so 1025 * they can have a single entrypoint for updating any of the legacy 1026 * attribs. 1027 */ 1028 vfmt->VertexAttrib1fNV = vbo_VertexAttrib1fNV; 1029 vfmt->VertexAttrib1fvNV = vbo_VertexAttrib1fvNV; 1030 vfmt->VertexAttrib2fNV = vbo_VertexAttrib2fNV; 1031 vfmt->VertexAttrib2fvNV = vbo_VertexAttrib2fvNV; 1032 vfmt->VertexAttrib3fNV = vbo_VertexAttrib3fNV; 1033 vfmt->VertexAttrib3fvNV = vbo_VertexAttrib3fvNV; 1034 vfmt->VertexAttrib4fNV = vbo_VertexAttrib4fNV; 1035 vfmt->VertexAttrib4fvNV = vbo_VertexAttrib4fvNV; 1036 1037 /* integer-valued */ 1038 vfmt->VertexAttribI1i = vbo_VertexAttribI1i; 1039 vfmt->VertexAttribI2i = vbo_VertexAttribI2i; 1040 vfmt->VertexAttribI3i = vbo_VertexAttribI3i; 1041 vfmt->VertexAttribI4i = vbo_VertexAttribI4i; 1042 vfmt->VertexAttribI2iv = vbo_VertexAttribI2iv; 1043 vfmt->VertexAttribI3iv = vbo_VertexAttribI3iv; 1044 vfmt->VertexAttribI4iv = vbo_VertexAttribI4iv; 1045 1046 /* unsigned integer-valued */ 1047 vfmt->VertexAttribI1ui = vbo_VertexAttribI1ui; 1048 vfmt->VertexAttribI2ui = vbo_VertexAttribI2ui; 1049 vfmt->VertexAttribI3ui = vbo_VertexAttribI3ui; 1050 vfmt->VertexAttribI4ui = vbo_VertexAttribI4ui; 1051 vfmt->VertexAttribI2uiv = vbo_VertexAttribI2uiv; 1052 vfmt->VertexAttribI3uiv = vbo_VertexAttribI3uiv; 1053 vfmt->VertexAttribI4uiv = vbo_VertexAttribI4uiv; 1054 1055 vfmt->Materialfv = vbo_Materialfv; 1056 1057 vfmt->EdgeFlag = vbo_EdgeFlag; 1058 vfmt->Indexf = vbo_Indexf; 1059 vfmt->Indexfv = vbo_Indexfv; 1060 1061 /* ARB_vertex_type_2_10_10_10_rev */ 1062 vfmt->VertexP2ui = vbo_VertexP2ui; 1063 vfmt->VertexP2uiv = vbo_VertexP2uiv; 1064 vfmt->VertexP3ui = vbo_VertexP3ui; 1065 vfmt->VertexP3uiv = vbo_VertexP3uiv; 1066 vfmt->VertexP4ui = vbo_VertexP4ui; 1067 vfmt->VertexP4uiv = vbo_VertexP4uiv; 1068 1069 vfmt->TexCoordP1ui = vbo_TexCoordP1ui; 1070 vfmt->TexCoordP1uiv = vbo_TexCoordP1uiv; 1071 vfmt->TexCoordP2ui = vbo_TexCoordP2ui; 1072 vfmt->TexCoordP2uiv = vbo_TexCoordP2uiv; 1073 vfmt->TexCoordP3ui = vbo_TexCoordP3ui; 1074 vfmt->TexCoordP3uiv = vbo_TexCoordP3uiv; 1075 vfmt->TexCoordP4ui = vbo_TexCoordP4ui; 1076 vfmt->TexCoordP4uiv = vbo_TexCoordP4uiv; 1077 1078 vfmt->MultiTexCoordP1ui = vbo_MultiTexCoordP1ui; 1079 vfmt->MultiTexCoordP1uiv = vbo_MultiTexCoordP1uiv; 1080 vfmt->MultiTexCoordP2ui = vbo_MultiTexCoordP2ui; 1081 vfmt->MultiTexCoordP2uiv = vbo_MultiTexCoordP2uiv; 1082 vfmt->MultiTexCoordP3ui = vbo_MultiTexCoordP3ui; 1083 vfmt->MultiTexCoordP3uiv = vbo_MultiTexCoordP3uiv; 1084 vfmt->MultiTexCoordP4ui = vbo_MultiTexCoordP4ui; 1085 vfmt->MultiTexCoordP4uiv = vbo_MultiTexCoordP4uiv; 1086 1087 vfmt->NormalP3ui = vbo_NormalP3ui; 1088 vfmt->NormalP3uiv = vbo_NormalP3uiv; 1089 1090 vfmt->ColorP3ui = vbo_ColorP3ui; 1091 vfmt->ColorP3uiv = vbo_ColorP3uiv; 1092 vfmt->ColorP4ui = vbo_ColorP4ui; 1093 vfmt->ColorP4uiv = vbo_ColorP4uiv; 1094 1095 vfmt->SecondaryColorP3ui = vbo_SecondaryColorP3ui; 1096 vfmt->SecondaryColorP3uiv = vbo_SecondaryColorP3uiv; 1097 1098 vfmt->VertexAttribP1ui = vbo_VertexAttribP1ui; 1099 vfmt->VertexAttribP1uiv = vbo_VertexAttribP1uiv; 1100 vfmt->VertexAttribP2ui = vbo_VertexAttribP2ui; 1101 vfmt->VertexAttribP2uiv = vbo_VertexAttribP2uiv; 1102 vfmt->VertexAttribP3ui = vbo_VertexAttribP3ui; 1103 vfmt->VertexAttribP3uiv = vbo_VertexAttribP3uiv; 1104 vfmt->VertexAttribP4ui = vbo_VertexAttribP4ui; 1105 vfmt->VertexAttribP4uiv = vbo_VertexAttribP4uiv; 1106 1107 vfmt->VertexAttribL1d = vbo_VertexAttribL1d; 1108 vfmt->VertexAttribL2d = vbo_VertexAttribL2d; 1109 vfmt->VertexAttribL3d = vbo_VertexAttribL3d; 1110 vfmt->VertexAttribL4d = vbo_VertexAttribL4d; 1111 1112 vfmt->VertexAttribL1dv = vbo_VertexAttribL1dv; 1113 vfmt->VertexAttribL2dv = vbo_VertexAttribL2dv; 1114 vfmt->VertexAttribL3dv = vbo_VertexAttribL3dv; 1115 vfmt->VertexAttribL4dv = vbo_VertexAttribL4dv; 1116 1117 vfmt->VertexAttribL1ui64ARB = vbo_VertexAttribL1ui64ARB; 1118 vfmt->VertexAttribL1ui64vARB = vbo_VertexAttribL1ui64vARB; 1119} 1120 1121 1122/** 1123 * Tell the VBO module to use a real OpenGL vertex buffer object to 1124 * store accumulated immediate-mode vertex data. 1125 * This replaces the malloced buffer which was created in 1126 * vb_exec_vtx_init() below. 1127 */ 1128void 1129vbo_use_buffer_objects(struct gl_context *ctx) 1130{ 1131 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; 1132 /* Any buffer name but 0 can be used here since this bufferobj won't 1133 * go into the bufferobj hashtable. 1134 */ 1135 GLuint bufName = IMM_BUFFER_NAME; 1136 GLenum target = GL_ARRAY_BUFFER_ARB; 1137 GLenum usage = GL_STREAM_DRAW_ARB; 1138 GLsizei size = VBO_VERT_BUFFER_SIZE; 1139 1140 /* Make sure this func is only used once */ 1141 assert(exec->vtx.bufferobj == ctx->Shared->NullBufferObj); 1142 1143 _mesa_align_free(exec->vtx.buffer_map); 1144 exec->vtx.buffer_map = NULL; 1145 exec->vtx.buffer_ptr = NULL; 1146 1147 /* Allocate a real buffer object now */ 1148 _mesa_reference_buffer_object(ctx, &exec->vtx.bufferobj, NULL); 1149 exec->vtx.bufferobj = ctx->Driver.NewBufferObject(ctx, bufName); 1150 if (!ctx->Driver.BufferData(ctx, target, size, NULL, usage, 1151 GL_MAP_WRITE_BIT | 1152 GL_DYNAMIC_STORAGE_BIT | 1153 GL_CLIENT_STORAGE_BIT, 1154 exec->vtx.bufferobj)) { 1155 _mesa_error(ctx, GL_OUT_OF_MEMORY, "VBO allocation"); 1156 } 1157} 1158 1159 1160/** 1161 * If this function is called, all VBO buffers will be unmapped when 1162 * we flush. 1163 * Otherwise, if a simple command like glColor3f() is called and we flush, 1164 * the current VBO may be left mapped. 1165 */ 1166void 1167vbo_always_unmap_buffers(struct gl_context *ctx) 1168{ 1169 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; 1170 exec->begin_vertices_flags |= FLUSH_STORED_VERTICES; 1171} 1172 1173 1174void 1175vbo_exec_vtx_init(struct vbo_exec_context *exec) 1176{ 1177 struct gl_context *ctx = exec->ctx; 1178 GLuint i; 1179 1180 /* Allocate a buffer object. Will just reuse this object 1181 * continuously, unless vbo_use_buffer_objects() is called to enable 1182 * use of real VBOs. 1183 */ 1184 _mesa_reference_buffer_object(ctx, 1185 &exec->vtx.bufferobj, 1186 ctx->Shared->NullBufferObj); 1187 1188 assert(!exec->vtx.buffer_map); 1189 exec->vtx.buffer_map = _mesa_align_malloc(VBO_VERT_BUFFER_SIZE, 64); 1190 exec->vtx.buffer_ptr = exec->vtx.buffer_map; 1191 1192 vbo_exec_vtxfmt_init(exec); 1193 _mesa_noop_vtxfmt_init(&exec->vtxfmt_noop); 1194 1195 exec->vtx.enabled = 0; 1196 for (i = 0 ; i < VBO_ATTRIB_MAX ; i++) { 1197 assert(i < ARRAY_SIZE(exec->vtx.attrsz)); 1198 exec->vtx.attrsz[i] = 0; 1199 assert(i < ARRAY_SIZE(exec->vtx.attrtype)); 1200 exec->vtx.attrtype[i] = GL_FLOAT; 1201 assert(i < ARRAY_SIZE(exec->vtx.active_sz)); 1202 exec->vtx.active_sz[i] = 0; 1203 } 1204 1205 exec->vtx.vertex_size = 0; 1206 1207 exec->begin_vertices_flags = FLUSH_UPDATE_CURRENT; 1208} 1209 1210 1211void 1212vbo_exec_vtx_destroy(struct vbo_exec_context *exec) 1213{ 1214 /* using a real VBO for vertex data */ 1215 struct gl_context *ctx = exec->ctx; 1216 1217 /* True VBOs should already be unmapped 1218 */ 1219 if (exec->vtx.buffer_map) { 1220 assert(exec->vtx.bufferobj->Name == 0 || 1221 exec->vtx.bufferobj->Name == IMM_BUFFER_NAME); 1222 if (exec->vtx.bufferobj->Name == 0) { 1223 _mesa_align_free(exec->vtx.buffer_map); 1224 exec->vtx.buffer_map = NULL; 1225 exec->vtx.buffer_ptr = NULL; 1226 } 1227 } 1228 1229 /* Free the vertex buffer. Unmap first if needed. 1230 */ 1231 if (_mesa_bufferobj_mapped(exec->vtx.bufferobj, MAP_INTERNAL)) { 1232 ctx->Driver.UnmapBuffer(ctx, exec->vtx.bufferobj, MAP_INTERNAL); 1233 } 1234 _mesa_reference_buffer_object(ctx, &exec->vtx.bufferobj, NULL); 1235} 1236 1237 1238/** 1239 * If inside glBegin()/glEnd(), it should assert(0). Otherwise, if 1240 * FLUSH_STORED_VERTICES bit in \p flags is set flushes any buffered 1241 * vertices, if FLUSH_UPDATE_CURRENT bit is set updates 1242 * __struct gl_contextRec::Current and gl_light_attrib::Material 1243 * 1244 * Note that the default T&L engine never clears the 1245 * FLUSH_UPDATE_CURRENT bit, even after performing the update. 1246 * 1247 * \param flags bitmask of FLUSH_STORED_VERTICES, FLUSH_UPDATE_CURRENT 1248 */ 1249void 1250vbo_exec_FlushVertices(struct gl_context *ctx, GLuint flags) 1251{ 1252 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; 1253 1254#ifdef DEBUG 1255 /* debug check: make sure we don't get called recursively */ 1256 exec->flush_call_depth++; 1257 assert(exec->flush_call_depth == 1); 1258#endif 1259 1260 if (_mesa_inside_begin_end(ctx)) { 1261 /* We've had glBegin but not glEnd! */ 1262#ifdef DEBUG 1263 exec->flush_call_depth--; 1264 assert(exec->flush_call_depth == 0); 1265#endif 1266 return; 1267 } 1268 1269 /* Flush (draw), and make sure VBO is left unmapped when done */ 1270 vbo_exec_FlushVertices_internal(exec, GL_TRUE); 1271 1272 /* Need to do this to ensure vbo_exec_begin_vertices gets called again: 1273 */ 1274 ctx->Driver.NeedFlush &= ~(FLUSH_UPDATE_CURRENT | flags); 1275 1276#ifdef DEBUG 1277 exec->flush_call_depth--; 1278 assert(exec->flush_call_depth == 0); 1279#endif 1280} 1281 1282 1283/** 1284 * Reset the vertex attribute by setting its size to zero. 1285 */ 1286static void 1287vbo_reset_attr(struct vbo_exec_context *exec, GLuint attr) 1288{ 1289 exec->vtx.attrsz[attr] = 0; 1290 exec->vtx.attrtype[attr] = GL_FLOAT; 1291 exec->vtx.active_sz[attr] = 0; 1292} 1293 1294 1295static void 1296vbo_reset_all_attr(struct vbo_exec_context *exec) 1297{ 1298 while (exec->vtx.enabled) { 1299 const int i = u_bit_scan64(&exec->vtx.enabled); 1300 vbo_reset_attr(exec, i); 1301 } 1302 1303 exec->vtx.vertex_size = 0; 1304} 1305 1306 1307void GLAPIENTRY 1308_es_Color4f(GLfloat r, GLfloat g, GLfloat b, GLfloat a) 1309{ 1310 vbo_Color4f(r, g, b, a); 1311} 1312 1313 1314void GLAPIENTRY 1315_es_Normal3f(GLfloat x, GLfloat y, GLfloat z) 1316{ 1317 vbo_Normal3f(x, y, z); 1318} 1319 1320 1321void GLAPIENTRY 1322_es_MultiTexCoord4f(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q) 1323{ 1324 vbo_MultiTexCoord4f(target, s, t, r, q); 1325} 1326 1327 1328void GLAPIENTRY 1329_es_Materialfv(GLenum face, GLenum pname, const GLfloat *params) 1330{ 1331 vbo_Materialfv(face, pname, params); 1332} 1333 1334 1335void GLAPIENTRY 1336_es_Materialf(GLenum face, GLenum pname, GLfloat param) 1337{ 1338 GLfloat p[4]; 1339 p[0] = param; 1340 p[1] = p[2] = p[3] = 0.0F; 1341 vbo_Materialfv(face, pname, p); 1342} 1343 1344 1345/** 1346 * A special version of glVertexAttrib4f that does not treat index 0 as 1347 * VBO_ATTRIB_POS. 1348 */ 1349static void 1350VertexAttrib4f_nopos(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w) 1351{ 1352 GET_CURRENT_CONTEXT(ctx); 1353 if (index < MAX_VERTEX_GENERIC_ATTRIBS) 1354 ATTRF(VBO_ATTRIB_GENERIC0 + index, 4, x, y, z, w); 1355 else 1356 ERROR(GL_INVALID_VALUE); 1357} 1358 1359void GLAPIENTRY 1360_es_VertexAttrib4f(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w) 1361{ 1362 VertexAttrib4f_nopos(index, x, y, z, w); 1363} 1364 1365 1366void GLAPIENTRY 1367_es_VertexAttrib1f(GLuint indx, GLfloat x) 1368{ 1369 VertexAttrib4f_nopos(indx, x, 0.0f, 0.0f, 1.0f); 1370} 1371 1372 1373void GLAPIENTRY 1374_es_VertexAttrib1fv(GLuint indx, const GLfloat* values) 1375{ 1376 VertexAttrib4f_nopos(indx, values[0], 0.0f, 0.0f, 1.0f); 1377} 1378 1379 1380void GLAPIENTRY 1381_es_VertexAttrib2f(GLuint indx, GLfloat x, GLfloat y) 1382{ 1383 VertexAttrib4f_nopos(indx, x, y, 0.0f, 1.0f); 1384} 1385 1386 1387void GLAPIENTRY 1388_es_VertexAttrib2fv(GLuint indx, const GLfloat* values) 1389{ 1390 VertexAttrib4f_nopos(indx, values[0], values[1], 0.0f, 1.0f); 1391} 1392 1393 1394void GLAPIENTRY 1395_es_VertexAttrib3f(GLuint indx, GLfloat x, GLfloat y, GLfloat z) 1396{ 1397 VertexAttrib4f_nopos(indx, x, y, z, 1.0f); 1398} 1399 1400 1401void GLAPIENTRY 1402_es_VertexAttrib3fv(GLuint indx, const GLfloat* values) 1403{ 1404 VertexAttrib4f_nopos(indx, values[0], values[1], values[2], 1.0f); 1405} 1406 1407 1408void GLAPIENTRY 1409_es_VertexAttrib4fv(GLuint indx, const GLfloat* values) 1410{ 1411 VertexAttrib4f_nopos(indx, values[0], values[1], values[2], values[3]); 1412} 1413