1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 5 * Copyright 2015 Philip Taylor <philip@zaynar.co.uk> 6 * Copyright 2018 Advanced Micro Devices, Inc. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the "Software"), 10 * to deal in the Software without restriction, including without limitation 11 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 12 * and/or sell copies of the Software, and to permit persons to whom the 13 * Software is furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included 16 * in all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27#include <math.h> 28#include <assert.h> 29#include "half_float.h" 30#include "rounding.h" 31#include "macros.h" 32 33typedef union { float f; int32_t i; uint32_t u; } fi_type; 34 35/** 36 * Convert a 4-byte float to a 2-byte half float. 37 * 38 * Not all float32 values can be represented exactly as a float16 value. We 39 * round such intermediate float32 values to the nearest float16. When the 40 * float32 lies exactly between to float16 values, we round to the one with 41 * an even mantissa. 42 * 43 * This rounding behavior has several benefits: 44 * - It has no sign bias. 45 * 46 * - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's 47 * GPU ISA. 48 * 49 * - By reproducing the behavior of the GPU (at least on Intel hardware), 50 * compile-time evaluation of constant packHalf2x16 GLSL expressions will 51 * result in the same value as if the expression were executed on the GPU. 52 */ 53uint16_t 54_mesa_float_to_half(float val) 55{ 56 const fi_type fi = {val}; 57 const int flt_m = fi.i & 0x7fffff; 58 const int flt_e = (fi.i >> 23) & 0xff; 59 const int flt_s = (fi.i >> 31) & 0x1; 60 int s, e, m = 0; 61 uint16_t result; 62 63 /* sign bit */ 64 s = flt_s; 65 66 /* handle special cases */ 67 if ((flt_e == 0) && (flt_m == 0)) { 68 /* zero */ 69 /* m = 0; - already set */ 70 e = 0; 71 } 72 else if ((flt_e == 0) && (flt_m != 0)) { 73 /* denorm -- denorm float maps to 0 half */ 74 /* m = 0; - already set */ 75 e = 0; 76 } 77 else if ((flt_e == 0xff) && (flt_m == 0)) { 78 /* infinity */ 79 /* m = 0; - already set */ 80 e = 31; 81 } 82 else if ((flt_e == 0xff) && (flt_m != 0)) { 83 /* NaN */ 84 m = 1; 85 e = 31; 86 } 87 else { 88 /* regular number */ 89 const int new_exp = flt_e - 127; 90 if (new_exp < -14) { 91 /* The float32 lies in the range (0.0, min_normal16) and is rounded 92 * to a nearby float16 value. The result will be either zero, subnormal, 93 * or normal. 94 */ 95 e = 0; 96 m = _mesa_lroundevenf((1 << 24) * fabsf(fi.f)); 97 } 98 else if (new_exp > 15) { 99 /* map this value to infinity */ 100 /* m = 0; - already set */ 101 e = 31; 102 } 103 else { 104 /* The float32 lies in the range 105 * [min_normal16, max_normal16 + max_step16) 106 * and is rounded to a nearby float16 value. The result will be 107 * either normal or infinite. 108 */ 109 e = new_exp + 15; 110 m = _mesa_lroundevenf(flt_m / (float) (1 << 13)); 111 } 112 } 113 114 assert(0 <= m && m <= 1024); 115 if (m == 1024) { 116 /* The float32 was rounded upwards into the range of the next exponent, 117 * so bump the exponent. This correctly handles the case where f32 118 * should be rounded up to float16 infinity. 119 */ 120 ++e; 121 m = 0; 122 } 123 124 result = (s << 15) | (e << 10) | m; 125 return result; 126} 127 128 129/** 130 * Convert a 2-byte half float to a 4-byte float. 131 * Based on code from: 132 * http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html 133 */ 134float 135_mesa_half_to_float(uint16_t val) 136{ 137 /* XXX could also use a 64K-entry lookup table */ 138 const int m = val & 0x3ff; 139 const int e = (val >> 10) & 0x1f; 140 const int s = (val >> 15) & 0x1; 141 int flt_m, flt_e, flt_s; 142 fi_type fi; 143 float result; 144 145 /* sign bit */ 146 flt_s = s; 147 148 /* handle special cases */ 149 if ((e == 0) && (m == 0)) { 150 /* zero */ 151 flt_m = 0; 152 flt_e = 0; 153 } 154 else if ((e == 0) && (m != 0)) { 155 /* denorm -- denorm half will fit in non-denorm single */ 156 const float half_denorm = 1.0f / 16384.0f; /* 2^-14 */ 157 float mantissa = ((float) (m)) / 1024.0f; 158 float sign = s ? -1.0f : 1.0f; 159 return sign * mantissa * half_denorm; 160 } 161 else if ((e == 31) && (m == 0)) { 162 /* infinity */ 163 flt_e = 0xff; 164 flt_m = 0; 165 } 166 else if ((e == 31) && (m != 0)) { 167 /* NaN */ 168 flt_e = 0xff; 169 flt_m = 1; 170 } 171 else { 172 /* regular */ 173 flt_e = e + 112; 174 flt_m = m << 13; 175 } 176 177 fi.i = (flt_s << 31) | (flt_e << 23) | flt_m; 178 result = fi.f; 179 return result; 180} 181 182/** 183 * Convert 0.0 to 0x00, 1.0 to 0xff. 184 * Values outside the range [0.0, 1.0] will give undefined results. 185 */ 186uint8_t _mesa_half_to_unorm8(uint16_t val) 187{ 188 const int m = val & 0x3ff; 189 const int e = (val >> 10) & 0x1f; 190 MAYBE_UNUSED const int s = (val >> 15) & 0x1; 191 192 /* v = round_to_nearest(1.mmmmmmmmmm * 2^(e-15) * 255) 193 * = round_to_nearest((1.mmmmmmmmmm * 255) * 2^(e-15)) 194 * = round_to_nearest((1mmmmmmmmmm * 255) * 2^(e-25)) 195 * = round_to_zero((1mmmmmmmmmm * 255) * 2^(e-25) + 0.5) 196 * = round_to_zero(((1mmmmmmmmmm * 255) * 2^(e-24) + 1) / 2) 197 * 198 * This happens to give the correct answer for zero/subnormals too 199 */ 200 assert(s == 0 && val <= FP16_ONE); /* check 0 <= this <= 1 */ 201 /* (implies e <= 15, which means the bit-shifts below are safe) */ 202 203 uint32_t v = ((1 << 10) | m) * 255; 204 v = ((v >> (24 - e)) + 1) >> 1; 205 return v; 206} 207 208/** 209 * Takes a uint16_t, divides by 65536, converts the infinite-precision 210 * result to fp16 with round-to-zero. Used by the ASTC decoder. 211 */ 212uint16_t _mesa_uint16_div_64k_to_half(uint16_t v) 213{ 214 /* Zero or subnormal. Set the mantissa to (v << 8) and return. */ 215 if (v < 4) 216 return v << 8; 217 218 /* Count the leading 0s in the uint16_t */ 219#ifdef HAVE___BUILTIN_CLZ 220 int n = __builtin_clz(v) - 16; 221#else 222 int n = 16; 223 for (int i = 15; i >= 0; i--) { 224 if (v & (1 << i)) { 225 n = 15 - i; 226 break; 227 } 228 } 229#endif 230 231 /* Shift the mantissa up so bit 16 is the hidden 1 bit, 232 * mask it off, then shift back down to 10 bits 233 */ 234 int m = ( ((uint32_t)v << (n + 1)) & 0xffff ) >> 6; 235 236 /* (0{n} 1 X{15-n}) * 2^-16 237 * = 1.X * 2^(15-n-16) 238 * = 1.X * 2^(14-n - 15) 239 * which is the FP16 form with e = 14 - n 240 */ 241 int e = 14 - n; 242 243 assert(e >= 1 && e <= 30); 244 assert(m >= 0 && m < 0x400); 245 246 return (e << 10) | m; 247} 248