1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28/** @file register_allocate.c 29 * 30 * Graph-coloring register allocator. 31 * 32 * The basic idea of graph coloring is to make a node in a graph for 33 * every thing that needs a register (color) number assigned, and make 34 * edges in the graph between nodes that interfere (can't be allocated 35 * to the same register at the same time). 36 * 37 * During the "simplify" process, any any node with fewer edges than 38 * there are registers means that that edge can get assigned a 39 * register regardless of what its neighbors choose, so that node is 40 * pushed on a stack and removed (with its edges) from the graph. 41 * That likely causes other nodes to become trivially colorable as well. 42 * 43 * Then during the "select" process, nodes are popped off of that 44 * stack, their edges restored, and assigned a color different from 45 * their neighbors. Because they were pushed on the stack only when 46 * they were trivially colorable, any color chosen won't interfere 47 * with the registers to be popped later. 48 * 49 * The downside to most graph coloring is that real hardware often has 50 * limitations, like registers that need to be allocated to a node in 51 * pairs, or aligned on some boundary. This implementation follows 52 * the paper "Retargetable Graph-Coloring Register Allocation for 53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström. 54 * 55 * In this system, there are register classes each containing various 56 * registers, and registers may interfere with other registers. For 57 * example, one might have a class of base registers, and a class of 58 * aligned register pairs that would each interfere with their pair of 59 * the base registers. Each node has a register class it needs to be 60 * assigned to. Define p(B) to be the size of register class B, and 61 * q(B,C) to be the number of registers in B that the worst choice 62 * register in C could conflict with. Then, this system replaces the 63 * basic graph coloring test of "fewer edges from this node than there 64 * are registers" with "For this node of class B, the sum of q(B,C) 65 * for each neighbor node of class C is less than pB". 66 * 67 * A nice feature of the pq test is that q(B,C) can be computed once 68 * up front and stored in a 2-dimensional array, so that the cost of 69 * coloring a node is constant with the number of registers. We do 70 * this during ra_set_finalize(). 71 */ 72 73#include <stdbool.h> 74 75#include "ralloc.h" 76#include "main/imports.h" 77#include "main/macros.h" 78#include "util/bitset.h" 79#include "register_allocate.h" 80 81#define NO_REG ~0U 82 83struct ra_reg { 84 BITSET_WORD *conflicts; 85 unsigned int *conflict_list; 86 unsigned int conflict_list_size; 87 unsigned int num_conflicts; 88}; 89 90struct ra_regs { 91 struct ra_reg *regs; 92 unsigned int count; 93 94 struct ra_class **classes; 95 unsigned int class_count; 96 97 bool round_robin; 98}; 99 100struct ra_class { 101 /** 102 * Bitset indicating which registers belong to this class. 103 * 104 * (If bit N is set, then register N belongs to this class.) 105 */ 106 BITSET_WORD *regs; 107 108 /** 109 * p(B) in Runeson/Nyström paper. 110 * 111 * This is "how many regs are in the set." 112 */ 113 unsigned int p; 114 115 /** 116 * q(B,C) (indexed by C, B is this register class) in 117 * Runeson/Nyström paper. This is "how many registers of B could 118 * the worst choice register from C conflict with". 119 */ 120 unsigned int *q; 121}; 122 123struct ra_node { 124 /** @{ 125 * 126 * List of which nodes this node interferes with. This should be 127 * symmetric with the other node. 128 */ 129 BITSET_WORD *adjacency; 130 unsigned int *adjacency_list; 131 unsigned int adjacency_list_size; 132 unsigned int adjacency_count; 133 /** @} */ 134 135 unsigned int class; 136 137 /* Register, if assigned, or NO_REG. */ 138 unsigned int reg; 139 140 /** 141 * Set when the node is in the trivially colorable stack. When 142 * set, the adjacency to this node is ignored, to implement the 143 * "remove the edge from the graph" in simplification without 144 * having to actually modify the adjacency_list. 145 */ 146 bool in_stack; 147 148 /** 149 * The q total, as defined in the Runeson/Nyström paper, for all the 150 * interfering nodes not in the stack. 151 */ 152 unsigned int q_total; 153 154 /* For an implementation that needs register spilling, this is the 155 * approximate cost of spilling this node. 156 */ 157 float spill_cost; 158}; 159 160struct ra_graph { 161 struct ra_regs *regs; 162 /** 163 * the variables that need register allocation. 164 */ 165 struct ra_node *nodes; 166 unsigned int count; /**< count of nodes. */ 167 168 unsigned int *stack; 169 unsigned int stack_count; 170 171 /** 172 * Tracks the start of the set of optimistically-colored registers in the 173 * stack. 174 */ 175 unsigned int stack_optimistic_start; 176 177 unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs, 178 void *data); 179 void *select_reg_callback_data; 180}; 181 182/** 183 * Creates a set of registers for the allocator. 184 * 185 * mem_ctx is a ralloc context for the allocator. The reg set may be freed 186 * using ralloc_free(). 187 */ 188struct ra_regs * 189ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists) 190{ 191 unsigned int i; 192 struct ra_regs *regs; 193 194 regs = rzalloc(mem_ctx, struct ra_regs); 195 regs->count = count; 196 regs->regs = rzalloc_array(regs, struct ra_reg, count); 197 198 for (i = 0; i < count; i++) { 199 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD, 200 BITSET_WORDS(count)); 201 BITSET_SET(regs->regs[i].conflicts, i); 202 203 if (need_conflict_lists) { 204 regs->regs[i].conflict_list = ralloc_array(regs->regs, 205 unsigned int, 4); 206 regs->regs[i].conflict_list_size = 4; 207 regs->regs[i].conflict_list[0] = i; 208 } else { 209 regs->regs[i].conflict_list = NULL; 210 regs->regs[i].conflict_list_size = 0; 211 } 212 regs->regs[i].num_conflicts = 1; 213 } 214 215 return regs; 216} 217 218/** 219 * The register allocator by default prefers to allocate low register numbers, 220 * since it was written for hardware (gen4/5 Intel) that is limited in its 221 * multithreadedness by the number of registers used in a given shader. 222 * 223 * However, for hardware without that restriction, densely packed register 224 * allocation can put serious constraints on instruction scheduling. This 225 * function tells the allocator to rotate around the registers if possible as 226 * it allocates the nodes. 227 */ 228void 229ra_set_allocate_round_robin(struct ra_regs *regs) 230{ 231 regs->round_robin = true; 232} 233 234static void 235ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2) 236{ 237 struct ra_reg *reg1 = ®s->regs[r1]; 238 239 if (reg1->conflict_list) { 240 if (reg1->conflict_list_size == reg1->num_conflicts) { 241 reg1->conflict_list_size *= 2; 242 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list, 243 unsigned int, reg1->conflict_list_size); 244 } 245 reg1->conflict_list[reg1->num_conflicts++] = r2; 246 } 247 BITSET_SET(reg1->conflicts, r2); 248} 249 250void 251ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2) 252{ 253 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) { 254 ra_add_conflict_list(regs, r1, r2); 255 ra_add_conflict_list(regs, r2, r1); 256 } 257} 258 259/** 260 * Adds a conflict between base_reg and reg, and also between reg and 261 * anything that base_reg conflicts with. 262 * 263 * This can simplify code for setting up multiple register classes 264 * which are aggregates of some base hardware registers, compared to 265 * explicitly using ra_add_reg_conflict. 266 */ 267void 268ra_add_transitive_reg_conflict(struct ra_regs *regs, 269 unsigned int base_reg, unsigned int reg) 270{ 271 unsigned int i; 272 273 ra_add_reg_conflict(regs, reg, base_reg); 274 275 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) { 276 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]); 277 } 278} 279 280/** 281 * Makes every conflict on the given register transitive. In other words, 282 * every register that conflicts with r will now conflict with every other 283 * register conflicting with r. 284 * 285 * This can simplify code for setting up multiple register classes 286 * which are aggregates of some base hardware registers, compared to 287 * explicitly using ra_add_reg_conflict. 288 */ 289void 290ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r) 291{ 292 struct ra_reg *reg = ®s->regs[r]; 293 BITSET_WORD tmp; 294 int c; 295 296 BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) { 297 struct ra_reg *other = ®s->regs[c]; 298 unsigned i; 299 for (i = 0; i < BITSET_WORDS(regs->count); i++) 300 other->conflicts[i] |= reg->conflicts[i]; 301 } 302} 303 304unsigned int 305ra_alloc_reg_class(struct ra_regs *regs) 306{ 307 struct ra_class *class; 308 309 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *, 310 regs->class_count + 1); 311 312 class = rzalloc(regs, struct ra_class); 313 regs->classes[regs->class_count] = class; 314 315 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count)); 316 317 return regs->class_count++; 318} 319 320void 321ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r) 322{ 323 struct ra_class *class = regs->classes[c]; 324 325 BITSET_SET(class->regs, r); 326 class->p++; 327} 328 329/** 330 * Returns true if the register belongs to the given class. 331 */ 332static bool 333reg_belongs_to_class(unsigned int r, struct ra_class *c) 334{ 335 return BITSET_TEST(c->regs, r); 336} 337 338/** 339 * Must be called after all conflicts and register classes have been 340 * set up and before the register set is used for allocation. 341 * To avoid costly q value computation, use the q_values paramater 342 * to pass precomputed q values to this function. 343 */ 344void 345ra_set_finalize(struct ra_regs *regs, unsigned int **q_values) 346{ 347 unsigned int b, c; 348 349 for (b = 0; b < regs->class_count; b++) { 350 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count); 351 } 352 353 if (q_values) { 354 for (b = 0; b < regs->class_count; b++) { 355 for (c = 0; c < regs->class_count; c++) { 356 regs->classes[b]->q[c] = q_values[b][c]; 357 } 358 } 359 } else { 360 /* Compute, for each class B and C, how many regs of B an 361 * allocation to C could conflict with. 362 */ 363 for (b = 0; b < regs->class_count; b++) { 364 for (c = 0; c < regs->class_count; c++) { 365 unsigned int rc; 366 int max_conflicts = 0; 367 368 for (rc = 0; rc < regs->count; rc++) { 369 int conflicts = 0; 370 unsigned int i; 371 372 if (!reg_belongs_to_class(rc, regs->classes[c])) 373 continue; 374 375 for (i = 0; i < regs->regs[rc].num_conflicts; i++) { 376 unsigned int rb = regs->regs[rc].conflict_list[i]; 377 if (reg_belongs_to_class(rb, regs->classes[b])) 378 conflicts++; 379 } 380 max_conflicts = MAX2(max_conflicts, conflicts); 381 } 382 regs->classes[b]->q[c] = max_conflicts; 383 } 384 } 385 } 386 387 for (b = 0; b < regs->count; b++) { 388 ralloc_free(regs->regs[b].conflict_list); 389 regs->regs[b].conflict_list = NULL; 390 } 391} 392 393static void 394ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2) 395{ 396 BITSET_SET(g->nodes[n1].adjacency, n2); 397 398 assert(n1 != n2); 399 400 int n1_class = g->nodes[n1].class; 401 int n2_class = g->nodes[n2].class; 402 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class]; 403 404 if (g->nodes[n1].adjacency_count >= 405 g->nodes[n1].adjacency_list_size) { 406 g->nodes[n1].adjacency_list_size *= 2; 407 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list, 408 unsigned int, 409 g->nodes[n1].adjacency_list_size); 410 } 411 412 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2; 413 g->nodes[n1].adjacency_count++; 414} 415 416struct ra_graph * 417ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count) 418{ 419 struct ra_graph *g; 420 unsigned int i; 421 422 g = rzalloc(NULL, struct ra_graph); 423 g->regs = regs; 424 g->nodes = rzalloc_array(g, struct ra_node, count); 425 g->count = count; 426 427 g->stack = rzalloc_array(g, unsigned int, count); 428 429 for (i = 0; i < count; i++) { 430 int bitset_count = BITSET_WORDS(count); 431 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count); 432 433 g->nodes[i].adjacency_list_size = 4; 434 g->nodes[i].adjacency_list = 435 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size); 436 g->nodes[i].adjacency_count = 0; 437 g->nodes[i].q_total = 0; 438 439 g->nodes[i].reg = NO_REG; 440 } 441 442 return g; 443} 444 445void ra_set_select_reg_callback(struct ra_graph *g, 446 unsigned int (*callback)(struct ra_graph *g, 447 BITSET_WORD *regs, 448 void *data), 449 void *data) 450{ 451 g->select_reg_callback = callback; 452 g->select_reg_callback_data = data; 453} 454 455void 456ra_set_node_class(struct ra_graph *g, 457 unsigned int n, unsigned int class) 458{ 459 g->nodes[n].class = class; 460} 461 462void 463ra_add_node_interference(struct ra_graph *g, 464 unsigned int n1, unsigned int n2) 465{ 466 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) { 467 ra_add_node_adjacency(g, n1, n2); 468 ra_add_node_adjacency(g, n2, n1); 469 } 470} 471 472static bool 473pq_test(struct ra_graph *g, unsigned int n) 474{ 475 int n_class = g->nodes[n].class; 476 477 return g->nodes[n].q_total < g->regs->classes[n_class]->p; 478} 479 480static void 481decrement_q(struct ra_graph *g, unsigned int n) 482{ 483 unsigned int i; 484 int n_class = g->nodes[n].class; 485 486 for (i = 0; i < g->nodes[n].adjacency_count; i++) { 487 unsigned int n2 = g->nodes[n].adjacency_list[i]; 488 unsigned int n2_class = g->nodes[n2].class; 489 490 if (!g->nodes[n2].in_stack) { 491 assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]); 492 g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class]; 493 } 494 } 495} 496 497/** 498 * Simplifies the interference graph by pushing all 499 * trivially-colorable nodes into a stack of nodes to be colored, 500 * removing them from the graph, and rinsing and repeating. 501 * 502 * If we encounter a case where we can't push any nodes on the stack, then 503 * we optimistically choose a node and push it on the stack. We heuristically 504 * push the node with the lowest total q value, since it has the fewest 505 * neighbors and therefore is most likely to be allocated. 506 */ 507static void 508ra_simplify(struct ra_graph *g) 509{ 510 bool progress = true; 511 unsigned int stack_optimistic_start = UINT_MAX; 512 int i; 513 514 while (progress) { 515 unsigned int best_optimistic_node = ~0; 516 unsigned int lowest_q_total = ~0; 517 518 progress = false; 519 520 for (i = g->count - 1; i >= 0; i--) { 521 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG) 522 continue; 523 524 if (pq_test(g, i)) { 525 decrement_q(g, i); 526 g->stack[g->stack_count] = i; 527 g->stack_count++; 528 g->nodes[i].in_stack = true; 529 progress = true; 530 } else { 531 unsigned int new_q_total = g->nodes[i].q_total; 532 if (new_q_total < lowest_q_total) { 533 best_optimistic_node = i; 534 lowest_q_total = new_q_total; 535 } 536 } 537 } 538 539 if (!progress && best_optimistic_node != ~0U) { 540 if (stack_optimistic_start == UINT_MAX) 541 stack_optimistic_start = g->stack_count; 542 543 decrement_q(g, best_optimistic_node); 544 g->stack[g->stack_count] = best_optimistic_node; 545 g->stack_count++; 546 g->nodes[best_optimistic_node].in_stack = true; 547 progress = true; 548 } 549 } 550 551 g->stack_optimistic_start = stack_optimistic_start; 552} 553 554static bool 555ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r) 556{ 557 unsigned int i; 558 559 for (i = 0; i < g->nodes[n].adjacency_count; i++) { 560 unsigned int n2 = g->nodes[n].adjacency_list[i]; 561 562 if (!g->nodes[n2].in_stack && 563 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) { 564 return true; 565 } 566 } 567 568 return false; 569} 570 571/* Computes a bitfield of what regs are available for a given register 572 * selection. 573 * 574 * This lets drivers implement a more complicated policy than our simple first 575 * or round robin policies (which don't require knowing the whole bitset) 576 */ 577static bool 578ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs) 579{ 580 struct ra_class *c = g->regs->classes[g->nodes[n].class]; 581 582 /* Populate with the set of regs that are in the node's class. */ 583 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD)); 584 585 /* Remove any regs that conflict with nodes that we're adjacent to and have 586 * already colored. 587 */ 588 for (int i = 0; i < g->nodes[n].adjacency_count; i++) { 589 unsigned int n2 = g->nodes[n].adjacency_list[i]; 590 unsigned int r = g->nodes[n2].reg; 591 592 if (!g->nodes[n2].in_stack) { 593 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++) 594 regs[j] &= ~g->regs->regs[r].conflicts[j]; 595 } 596 } 597 598 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) { 599 if (regs[i]) 600 return true; 601 } 602 603 return false; 604} 605 606/** 607 * Pops nodes from the stack back into the graph, coloring them with 608 * registers as they go. 609 * 610 * If all nodes were trivially colorable, then this must succeed. If 611 * not (optimistic coloring), then it may return false; 612 */ 613static bool 614ra_select(struct ra_graph *g) 615{ 616 int start_search_reg = 0; 617 BITSET_WORD *select_regs = NULL; 618 619 if (g->select_reg_callback) 620 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD)); 621 622 while (g->stack_count != 0) { 623 unsigned int ri; 624 unsigned int r = -1; 625 int n = g->stack[g->stack_count - 1]; 626 struct ra_class *c = g->regs->classes[g->nodes[n].class]; 627 628 /* set this to false even if we return here so that 629 * ra_get_best_spill_node() considers this node later. 630 */ 631 g->nodes[n].in_stack = false; 632 633 if (g->select_reg_callback) { 634 if (!ra_compute_available_regs(g, n, select_regs)) { 635 free(select_regs); 636 return false; 637 } 638 639 r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data); 640 } else { 641 /* Find the lowest-numbered reg which is not used by a member 642 * of the graph adjacent to us. 643 */ 644 for (ri = 0; ri < g->regs->count; ri++) { 645 r = (start_search_reg + ri) % g->regs->count; 646 if (!reg_belongs_to_class(r, c)) 647 continue; 648 649 if (!ra_any_neighbors_conflict(g, n, r)) 650 break; 651 } 652 653 if (ri >= g->regs->count) 654 return false; 655 } 656 657 g->nodes[n].reg = r; 658 g->stack_count--; 659 660 /* Rotate the starting point except for any nodes above the lowest 661 * optimistically colorable node. The likelihood that we will succeed 662 * at allocating optimistically colorable nodes is highly dependent on 663 * the way that the previous nodes popped off the stack are laid out. 664 * The round-robin strategy increases the fragmentation of the register 665 * file and decreases the number of nearby nodes assigned to the same 666 * color, what increases the likelihood of spilling with respect to the 667 * dense packing strategy. 668 */ 669 if (g->regs->round_robin && 670 g->stack_count - 1 <= g->stack_optimistic_start) 671 start_search_reg = r + 1; 672 } 673 674 free(select_regs); 675 676 return true; 677} 678 679bool 680ra_allocate(struct ra_graph *g) 681{ 682 ra_simplify(g); 683 return ra_select(g); 684} 685 686unsigned int 687ra_get_node_reg(struct ra_graph *g, unsigned int n) 688{ 689 return g->nodes[n].reg; 690} 691 692/** 693 * Forces a node to a specific register. This can be used to avoid 694 * creating a register class containing one node when handling data 695 * that must live in a fixed location and is known to not conflict 696 * with other forced register assignment (as is common with shader 697 * input data). These nodes do not end up in the stack during 698 * ra_simplify(), and thus at ra_select() time it is as if they were 699 * the first popped off the stack and assigned their fixed locations. 700 * Nodes that use this function do not need to be assigned a register 701 * class. 702 * 703 * Must be called before ra_simplify(). 704 */ 705void 706ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg) 707{ 708 g->nodes[n].reg = reg; 709 g->nodes[n].in_stack = false; 710} 711 712static float 713ra_get_spill_benefit(struct ra_graph *g, unsigned int n) 714{ 715 unsigned int j; 716 float benefit = 0; 717 int n_class = g->nodes[n].class; 718 719 /* Define the benefit of eliminating an interference between n, n2 720 * through spilling as q(C, B) / p(C). This is similar to the 721 * "count number of edges" approach of traditional graph coloring, 722 * but takes classes into account. 723 */ 724 for (j = 0; j < g->nodes[n].adjacency_count; j++) { 725 unsigned int n2 = g->nodes[n].adjacency_list[j]; 726 unsigned int n2_class = g->nodes[n2].class; 727 benefit += ((float)g->regs->classes[n_class]->q[n2_class] / 728 g->regs->classes[n_class]->p); 729 } 730 731 return benefit; 732} 733 734/** 735 * Returns a node number to be spilled according to the cost/benefit using 736 * the pq test, or -1 if there are no spillable nodes. 737 */ 738int 739ra_get_best_spill_node(struct ra_graph *g) 740{ 741 unsigned int best_node = -1; 742 float best_benefit = 0.0; 743 unsigned int n; 744 745 /* Consider any nodes that we colored successfully or the node we failed to 746 * color for spilling. When we failed to color a node in ra_select(), we 747 * only considered these nodes, so spilling any other ones would not result 748 * in us making progress. 749 */ 750 for (n = 0; n < g->count; n++) { 751 float cost = g->nodes[n].spill_cost; 752 float benefit; 753 754 if (cost <= 0.0f) 755 continue; 756 757 if (g->nodes[n].in_stack) 758 continue; 759 760 benefit = ra_get_spill_benefit(g, n); 761 762 if (benefit / cost > best_benefit) { 763 best_benefit = benefit / cost; 764 best_node = n; 765 } 766 } 767 768 return best_node; 769} 770 771/** 772 * Only nodes with a spill cost set (cost != 0.0) will be considered 773 * for register spilling. 774 */ 775void 776ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost) 777{ 778 g->nodes[n].spill_cost = cost; 779} 780