1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28/** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors.  Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary.  This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers.  For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers.  Each node has a register class it needs to be
60 * assigned to.  Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with.  Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers.  We do
70 * this during ra_set_finalize().
71 */
72
73#include <stdbool.h>
74
75#include "ralloc.h"
76#include "main/imports.h"
77#include "main/macros.h"
78#include "util/bitset.h"
79#include "register_allocate.h"
80
81#define NO_REG ~0U
82
83struct ra_reg {
84   BITSET_WORD *conflicts;
85   unsigned int *conflict_list;
86   unsigned int conflict_list_size;
87   unsigned int num_conflicts;
88};
89
90struct ra_regs {
91   struct ra_reg *regs;
92   unsigned int count;
93
94   struct ra_class **classes;
95   unsigned int class_count;
96
97   bool round_robin;
98};
99
100struct ra_class {
101   /**
102    * Bitset indicating which registers belong to this class.
103    *
104    * (If bit N is set, then register N belongs to this class.)
105    */
106   BITSET_WORD *regs;
107
108   /**
109    * p(B) in Runeson/Nyström paper.
110    *
111    * This is "how many regs are in the set."
112    */
113   unsigned int p;
114
115   /**
116    * q(B,C) (indexed by C, B is this register class) in
117    * Runeson/Nyström paper.  This is "how many registers of B could
118    * the worst choice register from C conflict with".
119    */
120   unsigned int *q;
121};
122
123struct ra_node {
124   /** @{
125    *
126    * List of which nodes this node interferes with.  This should be
127    * symmetric with the other node.
128    */
129   BITSET_WORD *adjacency;
130   unsigned int *adjacency_list;
131   unsigned int adjacency_list_size;
132   unsigned int adjacency_count;
133   /** @} */
134
135   unsigned int class;
136
137   /* Register, if assigned, or NO_REG. */
138   unsigned int reg;
139
140   /**
141    * Set when the node is in the trivially colorable stack.  When
142    * set, the adjacency to this node is ignored, to implement the
143    * "remove the edge from the graph" in simplification without
144    * having to actually modify the adjacency_list.
145    */
146   bool in_stack;
147
148   /**
149    * The q total, as defined in the Runeson/Nyström paper, for all the
150    * interfering nodes not in the stack.
151    */
152   unsigned int q_total;
153
154   /* For an implementation that needs register spilling, this is the
155    * approximate cost of spilling this node.
156    */
157   float spill_cost;
158};
159
160struct ra_graph {
161   struct ra_regs *regs;
162   /**
163    * the variables that need register allocation.
164    */
165   struct ra_node *nodes;
166   unsigned int count; /**< count of nodes. */
167
168   unsigned int *stack;
169   unsigned int stack_count;
170
171   /**
172    * Tracks the start of the set of optimistically-colored registers in the
173    * stack.
174    */
175   unsigned int stack_optimistic_start;
176
177   unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs,
178                                       void *data);
179   void *select_reg_callback_data;
180};
181
182/**
183 * Creates a set of registers for the allocator.
184 *
185 * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
186 * using ralloc_free().
187 */
188struct ra_regs *
189ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
190{
191   unsigned int i;
192   struct ra_regs *regs;
193
194   regs = rzalloc(mem_ctx, struct ra_regs);
195   regs->count = count;
196   regs->regs = rzalloc_array(regs, struct ra_reg, count);
197
198   for (i = 0; i < count; i++) {
199      regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
200                                              BITSET_WORDS(count));
201      BITSET_SET(regs->regs[i].conflicts, i);
202
203      if (need_conflict_lists) {
204         regs->regs[i].conflict_list = ralloc_array(regs->regs,
205                                                    unsigned int, 4);
206         regs->regs[i].conflict_list_size = 4;
207         regs->regs[i].conflict_list[0] = i;
208      } else {
209         regs->regs[i].conflict_list = NULL;
210         regs->regs[i].conflict_list_size = 0;
211      }
212      regs->regs[i].num_conflicts = 1;
213   }
214
215   return regs;
216}
217
218/**
219 * The register allocator by default prefers to allocate low register numbers,
220 * since it was written for hardware (gen4/5 Intel) that is limited in its
221 * multithreadedness by the number of registers used in a given shader.
222 *
223 * However, for hardware without that restriction, densely packed register
224 * allocation can put serious constraints on instruction scheduling.  This
225 * function tells the allocator to rotate around the registers if possible as
226 * it allocates the nodes.
227 */
228void
229ra_set_allocate_round_robin(struct ra_regs *regs)
230{
231   regs->round_robin = true;
232}
233
234static void
235ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
236{
237   struct ra_reg *reg1 = &regs->regs[r1];
238
239   if (reg1->conflict_list) {
240      if (reg1->conflict_list_size == reg1->num_conflicts) {
241         reg1->conflict_list_size *= 2;
242         reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
243                                        unsigned int, reg1->conflict_list_size);
244      }
245      reg1->conflict_list[reg1->num_conflicts++] = r2;
246   }
247   BITSET_SET(reg1->conflicts, r2);
248}
249
250void
251ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
252{
253   if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
254      ra_add_conflict_list(regs, r1, r2);
255      ra_add_conflict_list(regs, r2, r1);
256   }
257}
258
259/**
260 * Adds a conflict between base_reg and reg, and also between reg and
261 * anything that base_reg conflicts with.
262 *
263 * This can simplify code for setting up multiple register classes
264 * which are aggregates of some base hardware registers, compared to
265 * explicitly using ra_add_reg_conflict.
266 */
267void
268ra_add_transitive_reg_conflict(struct ra_regs *regs,
269                               unsigned int base_reg, unsigned int reg)
270{
271   unsigned int i;
272
273   ra_add_reg_conflict(regs, reg, base_reg);
274
275   for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
276      ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
277   }
278}
279
280/**
281 * Makes every conflict on the given register transitive.  In other words,
282 * every register that conflicts with r will now conflict with every other
283 * register conflicting with r.
284 *
285 * This can simplify code for setting up multiple register classes
286 * which are aggregates of some base hardware registers, compared to
287 * explicitly using ra_add_reg_conflict.
288 */
289void
290ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
291{
292   struct ra_reg *reg = &regs->regs[r];
293   BITSET_WORD tmp;
294   int c;
295
296   BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
297      struct ra_reg *other = &regs->regs[c];
298      unsigned i;
299      for (i = 0; i < BITSET_WORDS(regs->count); i++)
300         other->conflicts[i] |= reg->conflicts[i];
301   }
302}
303
304unsigned int
305ra_alloc_reg_class(struct ra_regs *regs)
306{
307   struct ra_class *class;
308
309   regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
310                            regs->class_count + 1);
311
312   class = rzalloc(regs, struct ra_class);
313   regs->classes[regs->class_count] = class;
314
315   class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
316
317   return regs->class_count++;
318}
319
320void
321ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
322{
323   struct ra_class *class = regs->classes[c];
324
325   BITSET_SET(class->regs, r);
326   class->p++;
327}
328
329/**
330 * Returns true if the register belongs to the given class.
331 */
332static bool
333reg_belongs_to_class(unsigned int r, struct ra_class *c)
334{
335   return BITSET_TEST(c->regs, r);
336}
337
338/**
339 * Must be called after all conflicts and register classes have been
340 * set up and before the register set is used for allocation.
341 * To avoid costly q value computation, use the q_values paramater
342 * to pass precomputed q values to this function.
343 */
344void
345ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
346{
347   unsigned int b, c;
348
349   for (b = 0; b < regs->class_count; b++) {
350      regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
351   }
352
353   if (q_values) {
354      for (b = 0; b < regs->class_count; b++) {
355         for (c = 0; c < regs->class_count; c++) {
356            regs->classes[b]->q[c] = q_values[b][c];
357         }
358      }
359   } else {
360      /* Compute, for each class B and C, how many regs of B an
361       * allocation to C could conflict with.
362       */
363      for (b = 0; b < regs->class_count; b++) {
364         for (c = 0; c < regs->class_count; c++) {
365            unsigned int rc;
366            int max_conflicts = 0;
367
368            for (rc = 0; rc < regs->count; rc++) {
369               int conflicts = 0;
370               unsigned int i;
371
372               if (!reg_belongs_to_class(rc, regs->classes[c]))
373                  continue;
374
375               for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
376                  unsigned int rb = regs->regs[rc].conflict_list[i];
377                  if (reg_belongs_to_class(rb, regs->classes[b]))
378                     conflicts++;
379               }
380               max_conflicts = MAX2(max_conflicts, conflicts);
381            }
382            regs->classes[b]->q[c] = max_conflicts;
383         }
384      }
385   }
386
387   for (b = 0; b < regs->count; b++) {
388      ralloc_free(regs->regs[b].conflict_list);
389      regs->regs[b].conflict_list = NULL;
390   }
391}
392
393static void
394ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
395{
396   BITSET_SET(g->nodes[n1].adjacency, n2);
397
398   assert(n1 != n2);
399
400   int n1_class = g->nodes[n1].class;
401   int n2_class = g->nodes[n2].class;
402   g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
403
404   if (g->nodes[n1].adjacency_count >=
405       g->nodes[n1].adjacency_list_size) {
406      g->nodes[n1].adjacency_list_size *= 2;
407      g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
408                                             unsigned int,
409                                             g->nodes[n1].adjacency_list_size);
410   }
411
412   g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
413   g->nodes[n1].adjacency_count++;
414}
415
416struct ra_graph *
417ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
418{
419   struct ra_graph *g;
420   unsigned int i;
421
422   g = rzalloc(NULL, struct ra_graph);
423   g->regs = regs;
424   g->nodes = rzalloc_array(g, struct ra_node, count);
425   g->count = count;
426
427   g->stack = rzalloc_array(g, unsigned int, count);
428
429   for (i = 0; i < count; i++) {
430      int bitset_count = BITSET_WORDS(count);
431      g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
432
433      g->nodes[i].adjacency_list_size = 4;
434      g->nodes[i].adjacency_list =
435         ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
436      g->nodes[i].adjacency_count = 0;
437      g->nodes[i].q_total = 0;
438
439      g->nodes[i].reg = NO_REG;
440   }
441
442   return g;
443}
444
445void ra_set_select_reg_callback(struct ra_graph *g,
446                                unsigned int (*callback)(struct ra_graph *g,
447                                                         BITSET_WORD *regs,
448                                                         void *data),
449                                void *data)
450{
451   g->select_reg_callback = callback;
452   g->select_reg_callback_data = data;
453}
454
455void
456ra_set_node_class(struct ra_graph *g,
457                  unsigned int n, unsigned int class)
458{
459   g->nodes[n].class = class;
460}
461
462void
463ra_add_node_interference(struct ra_graph *g,
464                         unsigned int n1, unsigned int n2)
465{
466   if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
467      ra_add_node_adjacency(g, n1, n2);
468      ra_add_node_adjacency(g, n2, n1);
469   }
470}
471
472static bool
473pq_test(struct ra_graph *g, unsigned int n)
474{
475   int n_class = g->nodes[n].class;
476
477   return g->nodes[n].q_total < g->regs->classes[n_class]->p;
478}
479
480static void
481decrement_q(struct ra_graph *g, unsigned int n)
482{
483   unsigned int i;
484   int n_class = g->nodes[n].class;
485
486   for (i = 0; i < g->nodes[n].adjacency_count; i++) {
487      unsigned int n2 = g->nodes[n].adjacency_list[i];
488      unsigned int n2_class = g->nodes[n2].class;
489
490      if (!g->nodes[n2].in_stack) {
491         assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
492         g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
493      }
494   }
495}
496
497/**
498 * Simplifies the interference graph by pushing all
499 * trivially-colorable nodes into a stack of nodes to be colored,
500 * removing them from the graph, and rinsing and repeating.
501 *
502 * If we encounter a case where we can't push any nodes on the stack, then
503 * we optimistically choose a node and push it on the stack. We heuristically
504 * push the node with the lowest total q value, since it has the fewest
505 * neighbors and therefore is most likely to be allocated.
506 */
507static void
508ra_simplify(struct ra_graph *g)
509{
510   bool progress = true;
511   unsigned int stack_optimistic_start = UINT_MAX;
512   int i;
513
514   while (progress) {
515      unsigned int best_optimistic_node = ~0;
516      unsigned int lowest_q_total = ~0;
517
518      progress = false;
519
520      for (i = g->count - 1; i >= 0; i--) {
521	 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
522	    continue;
523
524	 if (pq_test(g, i)) {
525	    decrement_q(g, i);
526	    g->stack[g->stack_count] = i;
527	    g->stack_count++;
528	    g->nodes[i].in_stack = true;
529	    progress = true;
530	 } else {
531	    unsigned int new_q_total = g->nodes[i].q_total;
532	    if (new_q_total < lowest_q_total) {
533	       best_optimistic_node = i;
534	       lowest_q_total = new_q_total;
535	    }
536	 }
537      }
538
539      if (!progress && best_optimistic_node != ~0U) {
540         if (stack_optimistic_start == UINT_MAX)
541            stack_optimistic_start = g->stack_count;
542
543	 decrement_q(g, best_optimistic_node);
544	 g->stack[g->stack_count] = best_optimistic_node;
545	 g->stack_count++;
546	 g->nodes[best_optimistic_node].in_stack = true;
547	 progress = true;
548      }
549   }
550
551   g->stack_optimistic_start = stack_optimistic_start;
552}
553
554static bool
555ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
556{
557   unsigned int i;
558
559   for (i = 0; i < g->nodes[n].adjacency_count; i++) {
560      unsigned int n2 = g->nodes[n].adjacency_list[i];
561
562      if (!g->nodes[n2].in_stack &&
563          BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
564         return true;
565      }
566   }
567
568   return false;
569}
570
571/* Computes a bitfield of what regs are available for a given register
572 * selection.
573 *
574 * This lets drivers implement a more complicated policy than our simple first
575 * or round robin policies (which don't require knowing the whole bitset)
576 */
577static bool
578ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
579{
580   struct ra_class *c = g->regs->classes[g->nodes[n].class];
581
582   /* Populate with the set of regs that are in the node's class. */
583   memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
584
585   /* Remove any regs that conflict with nodes that we're adjacent to and have
586    * already colored.
587    */
588   for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
589      unsigned int n2 = g->nodes[n].adjacency_list[i];
590      unsigned int r = g->nodes[n2].reg;
591
592      if (!g->nodes[n2].in_stack) {
593         for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
594            regs[j] &= ~g->regs->regs[r].conflicts[j];
595      }
596   }
597
598   for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
599      if (regs[i])
600         return true;
601   }
602
603   return false;
604}
605
606/**
607 * Pops nodes from the stack back into the graph, coloring them with
608 * registers as they go.
609 *
610 * If all nodes were trivially colorable, then this must succeed.  If
611 * not (optimistic coloring), then it may return false;
612 */
613static bool
614ra_select(struct ra_graph *g)
615{
616   int start_search_reg = 0;
617   BITSET_WORD *select_regs = NULL;
618
619   if (g->select_reg_callback)
620      select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
621
622   while (g->stack_count != 0) {
623      unsigned int ri;
624      unsigned int r = -1;
625      int n = g->stack[g->stack_count - 1];
626      struct ra_class *c = g->regs->classes[g->nodes[n].class];
627
628      /* set this to false even if we return here so that
629       * ra_get_best_spill_node() considers this node later.
630       */
631      g->nodes[n].in_stack = false;
632
633      if (g->select_reg_callback) {
634         if (!ra_compute_available_regs(g, n, select_regs)) {
635            free(select_regs);
636            return false;
637         }
638
639         r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data);
640      } else {
641         /* Find the lowest-numbered reg which is not used by a member
642          * of the graph adjacent to us.
643          */
644         for (ri = 0; ri < g->regs->count; ri++) {
645            r = (start_search_reg + ri) % g->regs->count;
646            if (!reg_belongs_to_class(r, c))
647               continue;
648
649            if (!ra_any_neighbors_conflict(g, n, r))
650               break;
651         }
652
653         if (ri >= g->regs->count)
654            return false;
655      }
656
657      g->nodes[n].reg = r;
658      g->stack_count--;
659
660      /* Rotate the starting point except for any nodes above the lowest
661       * optimistically colorable node.  The likelihood that we will succeed
662       * at allocating optimistically colorable nodes is highly dependent on
663       * the way that the previous nodes popped off the stack are laid out.
664       * The round-robin strategy increases the fragmentation of the register
665       * file and decreases the number of nearby nodes assigned to the same
666       * color, what increases the likelihood of spilling with respect to the
667       * dense packing strategy.
668       */
669      if (g->regs->round_robin &&
670          g->stack_count - 1 <= g->stack_optimistic_start)
671         start_search_reg = r + 1;
672   }
673
674   free(select_regs);
675
676   return true;
677}
678
679bool
680ra_allocate(struct ra_graph *g)
681{
682   ra_simplify(g);
683   return ra_select(g);
684}
685
686unsigned int
687ra_get_node_reg(struct ra_graph *g, unsigned int n)
688{
689   return g->nodes[n].reg;
690}
691
692/**
693 * Forces a node to a specific register.  This can be used to avoid
694 * creating a register class containing one node when handling data
695 * that must live in a fixed location and is known to not conflict
696 * with other forced register assignment (as is common with shader
697 * input data).  These nodes do not end up in the stack during
698 * ra_simplify(), and thus at ra_select() time it is as if they were
699 * the first popped off the stack and assigned their fixed locations.
700 * Nodes that use this function do not need to be assigned a register
701 * class.
702 *
703 * Must be called before ra_simplify().
704 */
705void
706ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
707{
708   g->nodes[n].reg = reg;
709   g->nodes[n].in_stack = false;
710}
711
712static float
713ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
714{
715   unsigned int j;
716   float benefit = 0;
717   int n_class = g->nodes[n].class;
718
719   /* Define the benefit of eliminating an interference between n, n2
720    * through spilling as q(C, B) / p(C).  This is similar to the
721    * "count number of edges" approach of traditional graph coloring,
722    * but takes classes into account.
723    */
724   for (j = 0; j < g->nodes[n].adjacency_count; j++) {
725      unsigned int n2 = g->nodes[n].adjacency_list[j];
726      unsigned int n2_class = g->nodes[n2].class;
727      benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
728                  g->regs->classes[n_class]->p);
729   }
730
731   return benefit;
732}
733
734/**
735 * Returns a node number to be spilled according to the cost/benefit using
736 * the pq test, or -1 if there are no spillable nodes.
737 */
738int
739ra_get_best_spill_node(struct ra_graph *g)
740{
741   unsigned int best_node = -1;
742   float best_benefit = 0.0;
743   unsigned int n;
744
745   /* Consider any nodes that we colored successfully or the node we failed to
746    * color for spilling. When we failed to color a node in ra_select(), we
747    * only considered these nodes, so spilling any other ones would not result
748    * in us making progress.
749    */
750   for (n = 0; n < g->count; n++) {
751      float cost = g->nodes[n].spill_cost;
752      float benefit;
753
754      if (cost <= 0.0f)
755	 continue;
756
757      if (g->nodes[n].in_stack)
758         continue;
759
760      benefit = ra_get_spill_benefit(g, n);
761
762      if (benefit / cost > best_benefit) {
763	 best_benefit = benefit / cost;
764	 best_node = n;
765      }
766   }
767
768   return best_node;
769}
770
771/**
772 * Only nodes with a spill cost set (cost != 0.0) will be considered
773 * for register spilling.
774 */
775void
776ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
777{
778   g->nodes[n].spill_cost = cost;
779}
780