1/*
2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 */
26
27#ifndef _I915_DRM_H_
28#define _I915_DRM_H_
29
30#include "drm.h"
31
32#if defined(__cplusplus)
33extern "C" {
34#endif
35
36/* Please note that modifications to all structs defined here are
37 * subject to backwards-compatibility constraints.
38 */
39
40/**
41 * DOC: uevents generated by i915 on it's device node
42 *
43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44 *	event from the gpu l3 cache. Additional information supplied is ROW,
45 *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46 *	track of these events and if a specific cache-line seems to have a
47 *	persistent error remap it with the l3 remapping tool supplied in
48 *	intel-gpu-tools.  The value supplied with the event is always 1.
49 *
50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51 *	hangcheck. The error detection event is a good indicator of when things
52 *	began to go badly. The value supplied with the event is a 1 upon error
53 *	detection, and a 0 upon reset completion, signifying no more error
54 *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55 *	cause the related events to not be seen.
56 *
57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58 *	GPU. The value supplied with the event is always 1. NOTE: Disable
59 *	reset via module parameter will cause this event to not be seen.
60 */
61#define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62#define I915_ERROR_UEVENT		"ERROR"
63#define I915_RESET_UEVENT		"RESET"
64
65/**
66 * struct i915_user_extension - Base class for defining a chain of extensions
67 *
68 * Many interfaces need to grow over time. In most cases we can simply
69 * extend the struct and have userspace pass in more data. Another option,
70 * as demonstrated by Vulkan's approach to providing extensions for forward
71 * and backward compatibility, is to use a list of optional structs to
72 * provide those extra details.
73 *
74 * The key advantage to using an extension chain is that it allows us to
75 * redefine the interface more easily than an ever growing struct of
76 * increasing complexity, and for large parts of that interface to be
77 * entirely optional. The downside is more pointer chasing; chasing across
78 * the boundary with pointers encapsulated inside u64.
79 *
80 * Example chaining:
81 *
82 * .. code-block:: C
83 *
84 *	struct i915_user_extension ext3 {
85 *		.next_extension = 0, // end
86 *		.name = ...,
87 *	};
88 *	struct i915_user_extension ext2 {
89 *		.next_extension = (uintptr_t)&ext3,
90 *		.name = ...,
91 *	};
92 *	struct i915_user_extension ext1 {
93 *		.next_extension = (uintptr_t)&ext2,
94 *		.name = ...,
95 *	};
96 *
97 * Typically the struct i915_user_extension would be embedded in some uAPI
98 * struct, and in this case we would feed it the head of the chain(i.e ext1),
99 * which would then apply all of the above extensions.
100 *
101 */
102struct i915_user_extension {
103	/**
104	 * @next_extension:
105	 *
106	 * Pointer to the next struct i915_user_extension, or zero if the end.
107	 */
108	__u64 next_extension;
109	/**
110	 * @name: Name of the extension.
111	 *
112	 * Note that the name here is just some integer.
113	 *
114	 * Also note that the name space for this is not global for the whole
115	 * driver, but rather its scope/meaning is limited to the specific piece
116	 * of uAPI which has embedded the struct i915_user_extension.
117	 */
118	__u32 name;
119	/**
120	 * @flags: MBZ
121	 *
122	 * All undefined bits must be zero.
123	 */
124	__u32 flags;
125	/**
126	 * @rsvd: MBZ
127	 *
128	 * Reserved for future use; must be zero.
129	 */
130	__u32 rsvd[4];
131};
132
133/*
134 * MOCS indexes used for GPU surfaces, defining the cacheability of the
135 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136 */
137enum i915_mocs_table_index {
138	/*
139	 * Not cached anywhere, coherency between CPU and GPU accesses is
140	 * guaranteed.
141	 */
142	I915_MOCS_UNCACHED,
143	/*
144	 * Cacheability and coherency controlled by the kernel automatically
145	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146	 * usage of the surface (used for display scanout or not).
147	 */
148	I915_MOCS_PTE,
149	/*
150	 * Cached in all GPU caches available on the platform.
151	 * Coherency between CPU and GPU accesses to the surface is not
152	 * guaranteed without extra synchronization.
153	 */
154	I915_MOCS_CACHED,
155};
156
157/*
158 * Different engines serve different roles, and there may be more than one
159 * engine serving each role. enum drm_i915_gem_engine_class provides a
160 * classification of the role of the engine, which may be used when requesting
161 * operations to be performed on a certain subset of engines, or for providing
162 * information about that group.
163 */
164enum drm_i915_gem_engine_class {
165	I915_ENGINE_CLASS_RENDER	= 0,
166	I915_ENGINE_CLASS_COPY		= 1,
167	I915_ENGINE_CLASS_VIDEO		= 2,
168	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
169
170	/* should be kept compact */
171
172	I915_ENGINE_CLASS_INVALID	= -1
173};
174
175/*
176 * There may be more than one engine fulfilling any role within the system.
177 * Each engine of a class is given a unique instance number and therefore
178 * any engine can be specified by its class:instance tuplet. APIs that allow
179 * access to any engine in the system will use struct i915_engine_class_instance
180 * for this identification.
181 */
182struct i915_engine_class_instance {
183	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
184	__u16 engine_instance;
185#define I915_ENGINE_CLASS_INVALID_NONE -1
186#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
187};
188
189/**
190 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
191 *
192 */
193
194enum drm_i915_pmu_engine_sample {
195	I915_SAMPLE_BUSY = 0,
196	I915_SAMPLE_WAIT = 1,
197	I915_SAMPLE_SEMA = 2
198};
199
200#define I915_PMU_SAMPLE_BITS (4)
201#define I915_PMU_SAMPLE_MASK (0xf)
202#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
203#define I915_PMU_CLASS_SHIFT \
204	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
205
206#define __I915_PMU_ENGINE(class, instance, sample) \
207	((class) << I915_PMU_CLASS_SHIFT | \
208	(instance) << I915_PMU_SAMPLE_BITS | \
209	(sample))
210
211#define I915_PMU_ENGINE_BUSY(class, instance) \
212	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
213
214#define I915_PMU_ENGINE_WAIT(class, instance) \
215	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
216
217#define I915_PMU_ENGINE_SEMA(class, instance) \
218	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
219
220#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
221
222#define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
223#define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
224#define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
225#define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
226#define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
227
228#define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
229
230/* Each region is a minimum of 16k, and there are at most 255 of them.
231 */
232#define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
233				 * of chars for next/prev indices */
234#define I915_LOG_MIN_TEX_REGION_SIZE 14
235
236typedef struct _drm_i915_init {
237	enum {
238		I915_INIT_DMA = 0x01,
239		I915_CLEANUP_DMA = 0x02,
240		I915_RESUME_DMA = 0x03
241	} func;
242	unsigned int mmio_offset;
243	int sarea_priv_offset;
244	unsigned int ring_start;
245	unsigned int ring_end;
246	unsigned int ring_size;
247	unsigned int front_offset;
248	unsigned int back_offset;
249	unsigned int depth_offset;
250	unsigned int w;
251	unsigned int h;
252	unsigned int pitch;
253	unsigned int pitch_bits;
254	unsigned int back_pitch;
255	unsigned int depth_pitch;
256	unsigned int cpp;
257	unsigned int chipset;
258} drm_i915_init_t;
259
260typedef struct _drm_i915_sarea {
261	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
262	int last_upload;	/* last time texture was uploaded */
263	int last_enqueue;	/* last time a buffer was enqueued */
264	int last_dispatch;	/* age of the most recently dispatched buffer */
265	int ctxOwner;		/* last context to upload state */
266	int texAge;
267	int pf_enabled;		/* is pageflipping allowed? */
268	int pf_active;
269	int pf_current_page;	/* which buffer is being displayed? */
270	int perf_boxes;		/* performance boxes to be displayed */
271	int width, height;      /* screen size in pixels */
272
273	drm_handle_t front_handle;
274	int front_offset;
275	int front_size;
276
277	drm_handle_t back_handle;
278	int back_offset;
279	int back_size;
280
281	drm_handle_t depth_handle;
282	int depth_offset;
283	int depth_size;
284
285	drm_handle_t tex_handle;
286	int tex_offset;
287	int tex_size;
288	int log_tex_granularity;
289	int pitch;
290	int rotation;           /* 0, 90, 180 or 270 */
291	int rotated_offset;
292	int rotated_size;
293	int rotated_pitch;
294	int virtualX, virtualY;
295
296	unsigned int front_tiled;
297	unsigned int back_tiled;
298	unsigned int depth_tiled;
299	unsigned int rotated_tiled;
300	unsigned int rotated2_tiled;
301
302	int pipeA_x;
303	int pipeA_y;
304	int pipeA_w;
305	int pipeA_h;
306	int pipeB_x;
307	int pipeB_y;
308	int pipeB_w;
309	int pipeB_h;
310
311	/* fill out some space for old userspace triple buffer */
312	drm_handle_t unused_handle;
313	__u32 unused1, unused2, unused3;
314
315	/* buffer object handles for static buffers. May change
316	 * over the lifetime of the client.
317	 */
318	__u32 front_bo_handle;
319	__u32 back_bo_handle;
320	__u32 unused_bo_handle;
321	__u32 depth_bo_handle;
322
323} drm_i915_sarea_t;
324
325/* due to userspace building against these headers we need some compat here */
326#define planeA_x pipeA_x
327#define planeA_y pipeA_y
328#define planeA_w pipeA_w
329#define planeA_h pipeA_h
330#define planeB_x pipeB_x
331#define planeB_y pipeB_y
332#define planeB_w pipeB_w
333#define planeB_h pipeB_h
334
335/* Flags for perf_boxes
336 */
337#define I915_BOX_RING_EMPTY    0x1
338#define I915_BOX_FLIP          0x2
339#define I915_BOX_WAIT          0x4
340#define I915_BOX_TEXTURE_LOAD  0x8
341#define I915_BOX_LOST_CONTEXT  0x10
342
343/*
344 * i915 specific ioctls.
345 *
346 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
347 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
348 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
349 */
350#define DRM_I915_INIT		0x00
351#define DRM_I915_FLUSH		0x01
352#define DRM_I915_FLIP		0x02
353#define DRM_I915_BATCHBUFFER	0x03
354#define DRM_I915_IRQ_EMIT	0x04
355#define DRM_I915_IRQ_WAIT	0x05
356#define DRM_I915_GETPARAM	0x06
357#define DRM_I915_SETPARAM	0x07
358#define DRM_I915_ALLOC		0x08
359#define DRM_I915_FREE		0x09
360#define DRM_I915_INIT_HEAP	0x0a
361#define DRM_I915_CMDBUFFER	0x0b
362#define DRM_I915_DESTROY_HEAP	0x0c
363#define DRM_I915_SET_VBLANK_PIPE	0x0d
364#define DRM_I915_GET_VBLANK_PIPE	0x0e
365#define DRM_I915_VBLANK_SWAP	0x0f
366#define DRM_I915_HWS_ADDR	0x11
367#define DRM_I915_GEM_INIT	0x13
368#define DRM_I915_GEM_EXECBUFFER	0x14
369#define DRM_I915_GEM_PIN	0x15
370#define DRM_I915_GEM_UNPIN	0x16
371#define DRM_I915_GEM_BUSY	0x17
372#define DRM_I915_GEM_THROTTLE	0x18
373#define DRM_I915_GEM_ENTERVT	0x19
374#define DRM_I915_GEM_LEAVEVT	0x1a
375#define DRM_I915_GEM_CREATE	0x1b
376#define DRM_I915_GEM_PREAD	0x1c
377#define DRM_I915_GEM_PWRITE	0x1d
378#define DRM_I915_GEM_MMAP	0x1e
379#define DRM_I915_GEM_SET_DOMAIN	0x1f
380#define DRM_I915_GEM_SW_FINISH	0x20
381#define DRM_I915_GEM_SET_TILING	0x21
382#define DRM_I915_GEM_GET_TILING	0x22
383#define DRM_I915_GEM_GET_APERTURE 0x23
384#define DRM_I915_GEM_MMAP_GTT	0x24
385#define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
386#define DRM_I915_GEM_MADVISE	0x26
387#define DRM_I915_OVERLAY_PUT_IMAGE	0x27
388#define DRM_I915_OVERLAY_ATTRS	0x28
389#define DRM_I915_GEM_EXECBUFFER2	0x29
390#define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
391#define DRM_I915_GET_SPRITE_COLORKEY	0x2a
392#define DRM_I915_SET_SPRITE_COLORKEY	0x2b
393#define DRM_I915_GEM_WAIT	0x2c
394#define DRM_I915_GEM_CONTEXT_CREATE	0x2d
395#define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
396#define DRM_I915_GEM_SET_CACHING	0x2f
397#define DRM_I915_GEM_GET_CACHING	0x30
398#define DRM_I915_REG_READ		0x31
399#define DRM_I915_GET_RESET_STATS	0x32
400#define DRM_I915_GEM_USERPTR		0x33
401#define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
402#define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
403#define DRM_I915_PERF_OPEN		0x36
404#define DRM_I915_PERF_ADD_CONFIG	0x37
405#define DRM_I915_PERF_REMOVE_CONFIG	0x38
406#define DRM_I915_QUERY			0x39
407#define DRM_I915_GEM_VM_CREATE		0x3a
408#define DRM_I915_GEM_VM_DESTROY		0x3b
409#define DRM_I915_GEM_CREATE_EXT		0x3c
410/* Must be kept compact -- no holes */
411
412#define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
413#define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
414#define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
415#define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
416#define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
417#define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
418#define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
419#define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
420#define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
421#define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
422#define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
423#define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
424#define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
425#define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
426#define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
427#define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
428#define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
429#define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
430#define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
431#define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
432#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
433#define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
434#define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
435#define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
436#define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
437#define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
438#define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
439#define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
440#define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
441#define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
442#define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
443#define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
444#define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
445#define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
446#define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
447#define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
448#define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
449#define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
450#define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
451#define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
452#define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
453#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
454#define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
455#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
456#define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
457#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
458#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
459#define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
460#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
461#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
462#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
463#define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
464#define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
465#define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
466#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
467#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
468#define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
469#define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
470#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
471#define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
472#define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
473#define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
474
475/* Allow drivers to submit batchbuffers directly to hardware, relying
476 * on the security mechanisms provided by hardware.
477 */
478typedef struct drm_i915_batchbuffer {
479	int start;		/* agp offset */
480	int used;		/* nr bytes in use */
481	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
482	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
483	int num_cliprects;	/* mulitpass with multiple cliprects? */
484	struct drm_clip_rect *cliprects;	/* pointer to userspace cliprects */
485} drm_i915_batchbuffer_t;
486
487/* As above, but pass a pointer to userspace buffer which can be
488 * validated by the kernel prior to sending to hardware.
489 */
490typedef struct _drm_i915_cmdbuffer {
491	char *buf;	/* pointer to userspace command buffer */
492	int sz;			/* nr bytes in buf */
493	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
494	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
495	int num_cliprects;	/* mulitpass with multiple cliprects? */
496	struct drm_clip_rect *cliprects;	/* pointer to userspace cliprects */
497} drm_i915_cmdbuffer_t;
498
499/* Userspace can request & wait on irq's:
500 */
501typedef struct drm_i915_irq_emit {
502	int *irq_seq;
503} drm_i915_irq_emit_t;
504
505typedef struct drm_i915_irq_wait {
506	int irq_seq;
507} drm_i915_irq_wait_t;
508
509/*
510 * Different modes of per-process Graphics Translation Table,
511 * see I915_PARAM_HAS_ALIASING_PPGTT
512 */
513#define I915_GEM_PPGTT_NONE	0
514#define I915_GEM_PPGTT_ALIASING	1
515#define I915_GEM_PPGTT_FULL	2
516
517/* Ioctl to query kernel params:
518 */
519#define I915_PARAM_IRQ_ACTIVE            1
520#define I915_PARAM_ALLOW_BATCHBUFFER     2
521#define I915_PARAM_LAST_DISPATCH         3
522#define I915_PARAM_CHIPSET_ID            4
523#define I915_PARAM_HAS_GEM               5
524#define I915_PARAM_NUM_FENCES_AVAIL      6
525#define I915_PARAM_HAS_OVERLAY           7
526#define I915_PARAM_HAS_PAGEFLIPPING	 8
527#define I915_PARAM_HAS_EXECBUF2          9
528#define I915_PARAM_HAS_BSD		 10
529#define I915_PARAM_HAS_BLT		 11
530#define I915_PARAM_HAS_RELAXED_FENCING	 12
531#define I915_PARAM_HAS_COHERENT_RINGS	 13
532#define I915_PARAM_HAS_EXEC_CONSTANTS	 14
533#define I915_PARAM_HAS_RELAXED_DELTA	 15
534#define I915_PARAM_HAS_GEN7_SOL_RESET	 16
535#define I915_PARAM_HAS_LLC     	 	 17
536#define I915_PARAM_HAS_ALIASING_PPGTT	 18
537#define I915_PARAM_HAS_WAIT_TIMEOUT	 19
538#define I915_PARAM_HAS_SEMAPHORES	 20
539#define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
540#define I915_PARAM_HAS_VEBOX		 22
541#define I915_PARAM_HAS_SECURE_BATCHES	 23
542#define I915_PARAM_HAS_PINNED_BATCHES	 24
543#define I915_PARAM_HAS_EXEC_NO_RELOC	 25
544#define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
545#define I915_PARAM_HAS_WT     	 	 27
546#define I915_PARAM_CMD_PARSER_VERSION	 28
547#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
548#define I915_PARAM_MMAP_VERSION          30
549#define I915_PARAM_HAS_BSD2		 31
550#define I915_PARAM_REVISION              32
551#define I915_PARAM_SUBSLICE_TOTAL	 33
552#define I915_PARAM_EU_TOTAL		 34
553#define I915_PARAM_HAS_GPU_RESET	 35
554#define I915_PARAM_HAS_RESOURCE_STREAMER 36
555#define I915_PARAM_HAS_EXEC_SOFTPIN	 37
556#define I915_PARAM_HAS_POOLED_EU	 38
557#define I915_PARAM_MIN_EU_IN_POOL	 39
558#define I915_PARAM_MMAP_GTT_VERSION	 40
559
560/*
561 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
562 * priorities and the driver will attempt to execute batches in priority order.
563 * The param returns a capability bitmask, nonzero implies that the scheduler
564 * is enabled, with different features present according to the mask.
565 *
566 * The initial priority for each batch is supplied by the context and is
567 * controlled via I915_CONTEXT_PARAM_PRIORITY.
568 */
569#define I915_PARAM_HAS_SCHEDULER	 41
570#define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
571#define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
572#define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
573#define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
574#define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
575/*
576 * Indicates the 2k user priority levels are statically mapped into 3 buckets as
577 * follows:
578 *
579 * -1k to -1	Low priority
580 * 0		Normal priority
581 * 1 to 1k	Highest priority
582 */
583#define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
584
585#define I915_PARAM_HUC_STATUS		 42
586
587/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
588 * synchronisation with implicit fencing on individual objects.
589 * See EXEC_OBJECT_ASYNC.
590 */
591#define I915_PARAM_HAS_EXEC_ASYNC	 43
592
593/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
594 * both being able to pass in a sync_file fd to wait upon before executing,
595 * and being able to return a new sync_file fd that is signaled when the
596 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
597 */
598#define I915_PARAM_HAS_EXEC_FENCE	 44
599
600/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
601 * user specified bufffers for post-mortem debugging of GPU hangs. See
602 * EXEC_OBJECT_CAPTURE.
603 */
604#define I915_PARAM_HAS_EXEC_CAPTURE	 45
605
606#define I915_PARAM_SLICE_MASK		 46
607
608/* Assuming it's uniform for each slice, this queries the mask of subslices
609 * per-slice for this system.
610 */
611#define I915_PARAM_SUBSLICE_MASK	 47
612
613/*
614 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
615 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
616 */
617#define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
618
619/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
620 * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
621 */
622#define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
623
624/*
625 * Query whether every context (both per-file default and user created) is
626 * isolated (insofar as HW supports). If this parameter is not true, then
627 * freshly created contexts may inherit values from an existing context,
628 * rather than default HW values. If true, it also ensures (insofar as HW
629 * supports) that all state set by this context will not leak to any other
630 * context.
631 *
632 * As not every engine across every gen support contexts, the returned
633 * value reports the support of context isolation for individual engines by
634 * returning a bitmask of each engine class set to true if that class supports
635 * isolation.
636 */
637#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
638
639/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
640 * registers. This used to be fixed per platform but from CNL onwards, this
641 * might vary depending on the parts.
642 */
643#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
644
645/*
646 * Once upon a time we supposed that writes through the GGTT would be
647 * immediately in physical memory (once flushed out of the CPU path). However,
648 * on a few different processors and chipsets, this is not necessarily the case
649 * as the writes appear to be buffered internally. Thus a read of the backing
650 * storage (physical memory) via a different path (with different physical tags
651 * to the indirect write via the GGTT) will see stale values from before
652 * the GGTT write. Inside the kernel, we can for the most part keep track of
653 * the different read/write domains in use (e.g. set-domain), but the assumption
654 * of coherency is baked into the ABI, hence reporting its true state in this
655 * parameter.
656 *
657 * Reports true when writes via mmap_gtt are immediately visible following an
658 * lfence to flush the WCB.
659 *
660 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
661 * internal buffer and are _not_ immediately visible to third parties accessing
662 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
663 * communications channel when reporting false is strongly disadvised.
664 */
665#define I915_PARAM_MMAP_GTT_COHERENT	52
666
667/*
668 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
669 * execution through use of explicit fence support.
670 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
671 */
672#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
673
674/*
675 * Revision of the i915-perf uAPI. The value returned helps determine what
676 * i915-perf features are available. See drm_i915_perf_property_id.
677 */
678#define I915_PARAM_PERF_REVISION	54
679
680/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
681 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
682 * I915_EXEC_USE_EXTENSIONS.
683 */
684#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
685
686/* Query if the kernel supports the I915_USERPTR_PROBE flag. */
687#define I915_PARAM_HAS_USERPTR_PROBE 56
688
689/* Must be kept compact -- no holes and well documented */
690
691typedef struct drm_i915_getparam {
692	__s32 param;
693	/*
694	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
695	 * compat32 code. Don't repeat this mistake.
696	 */
697	int *value;
698} drm_i915_getparam_t;
699
700/* Ioctl to set kernel params:
701 */
702#define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
703#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
704#define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
705#define I915_SETPARAM_NUM_USED_FENCES                     4
706/* Must be kept compact -- no holes */
707
708typedef struct drm_i915_setparam {
709	int param;
710	int value;
711} drm_i915_setparam_t;
712
713/* A memory manager for regions of shared memory:
714 */
715#define I915_MEM_REGION_AGP 1
716
717typedef struct drm_i915_mem_alloc {
718	int region;
719	int alignment;
720	int size;
721	int *region_offset;	/* offset from start of fb or agp */
722} drm_i915_mem_alloc_t;
723
724typedef struct drm_i915_mem_free {
725	int region;
726	int region_offset;
727} drm_i915_mem_free_t;
728
729typedef struct drm_i915_mem_init_heap {
730	int region;
731	int size;
732	int start;
733} drm_i915_mem_init_heap_t;
734
735/* Allow memory manager to be torn down and re-initialized (eg on
736 * rotate):
737 */
738typedef struct drm_i915_mem_destroy_heap {
739	int region;
740} drm_i915_mem_destroy_heap_t;
741
742/* Allow X server to configure which pipes to monitor for vblank signals
743 */
744#define	DRM_I915_VBLANK_PIPE_A	1
745#define	DRM_I915_VBLANK_PIPE_B	2
746
747typedef struct drm_i915_vblank_pipe {
748	int pipe;
749} drm_i915_vblank_pipe_t;
750
751/* Schedule buffer swap at given vertical blank:
752 */
753typedef struct drm_i915_vblank_swap {
754	drm_drawable_t drawable;
755	enum drm_vblank_seq_type seqtype;
756	unsigned int sequence;
757} drm_i915_vblank_swap_t;
758
759typedef struct drm_i915_hws_addr {
760	__u64 addr;
761} drm_i915_hws_addr_t;
762
763struct drm_i915_gem_init {
764	/**
765	 * Beginning offset in the GTT to be managed by the DRM memory
766	 * manager.
767	 */
768	__u64 gtt_start;
769	/**
770	 * Ending offset in the GTT to be managed by the DRM memory
771	 * manager.
772	 */
773	__u64 gtt_end;
774};
775
776struct drm_i915_gem_create {
777	/**
778	 * Requested size for the object.
779	 *
780	 * The (page-aligned) allocated size for the object will be returned.
781	 */
782	__u64 size;
783	/**
784	 * Returned handle for the object.
785	 *
786	 * Object handles are nonzero.
787	 */
788	__u32 handle;
789	__u32 pad;
790};
791
792struct drm_i915_gem_pread {
793	/** Handle for the object being read. */
794	__u32 handle;
795	__u32 pad;
796	/** Offset into the object to read from */
797	__u64 offset;
798	/** Length of data to read */
799	__u64 size;
800	/**
801	 * Pointer to write the data into.
802	 *
803	 * This is a fixed-size type for 32/64 compatibility.
804	 */
805	__u64 data_ptr;
806};
807
808struct drm_i915_gem_pwrite {
809	/** Handle for the object being written to. */
810	__u32 handle;
811	__u32 pad;
812	/** Offset into the object to write to */
813	__u64 offset;
814	/** Length of data to write */
815	__u64 size;
816	/**
817	 * Pointer to read the data from.
818	 *
819	 * This is a fixed-size type for 32/64 compatibility.
820	 */
821	__u64 data_ptr;
822};
823
824struct drm_i915_gem_mmap {
825	/** Handle for the object being mapped. */
826	__u32 handle;
827	__u32 pad;
828	/** Offset in the object to map. */
829	__u64 offset;
830	/**
831	 * Length of data to map.
832	 *
833	 * The value will be page-aligned.
834	 */
835	__u64 size;
836	/**
837	 * Returned pointer the data was mapped at.
838	 *
839	 * This is a fixed-size type for 32/64 compatibility.
840	 */
841	__u64 addr_ptr;
842
843	/**
844	 * Flags for extended behaviour.
845	 *
846	 * Added in version 2.
847	 */
848	__u64 flags;
849#define I915_MMAP_WC 0x1
850};
851
852struct drm_i915_gem_mmap_gtt {
853	/** Handle for the object being mapped. */
854	__u32 handle;
855	__u32 pad;
856	/**
857	 * Fake offset to use for subsequent mmap call
858	 *
859	 * This is a fixed-size type for 32/64 compatibility.
860	 */
861	__u64 offset;
862};
863
864/**
865 * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
866 *
867 * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
868 * and is used to retrieve the fake offset to mmap an object specified by &handle.
869 *
870 * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
871 * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
872 * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
873 */
874struct drm_i915_gem_mmap_offset {
875	/** @handle: Handle for the object being mapped. */
876	__u32 handle;
877	/** @pad: Must be zero */
878	__u32 pad;
879	/**
880	 * @offset: The fake offset to use for subsequent mmap call
881	 *
882	 * This is a fixed-size type for 32/64 compatibility.
883	 */
884	__u64 offset;
885
886	/**
887	 * @flags: Flags for extended behaviour.
888	 *
889	 * It is mandatory that one of the `MMAP_OFFSET` types
890	 * should be included:
891	 *
892	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
893	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
894	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
895	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
896	 *
897	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
898	 * type. On devices without local memory, this caching mode is invalid.
899	 *
900	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
901	 * be used, depending on the object placement on creation. WB will be used
902	 * when the object can only exist in system memory, WC otherwise.
903	 */
904	__u64 flags;
905
906#define I915_MMAP_OFFSET_GTT	0
907#define I915_MMAP_OFFSET_WC	1
908#define I915_MMAP_OFFSET_WB	2
909#define I915_MMAP_OFFSET_UC	3
910#define I915_MMAP_OFFSET_FIXED	4
911
912	/**
913	 * @extensions: Zero-terminated chain of extensions.
914	 *
915	 * No current extensions defined; mbz.
916	 */
917	__u64 extensions;
918};
919
920/**
921 * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
922 * preparation for accessing the pages via some CPU domain.
923 *
924 * Specifying a new write or read domain will flush the object out of the
925 * previous domain(if required), before then updating the objects domain
926 * tracking with the new domain.
927 *
928 * Note this might involve waiting for the object first if it is still active on
929 * the GPU.
930 *
931 * Supported values for @read_domains and @write_domain:
932 *
933 *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
934 *	- I915_GEM_DOMAIN_CPU: CPU cache domain
935 *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
936 *
937 * All other domains are rejected.
938 *
939 * Note that for discrete, starting from DG1, this is no longer supported, and
940 * is instead rejected. On such platforms the CPU domain is effectively static,
941 * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
942 * which can't be set explicitly and instead depends on the object placements,
943 * as per the below.
944 *
945 * Implicit caching rules, starting from DG1:
946 *
947 *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
948 *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
949 *	  mapped as write-combined only.
950 *
951 *	- Everything else is always allocated and mapped as write-back, with the
952 *	  guarantee that everything is also coherent with the GPU.
953 *
954 * Note that this is likely to change in the future again, where we might need
955 * more flexibility on future devices, so making this all explicit as part of a
956 * new &drm_i915_gem_create_ext extension is probable.
957 */
958struct drm_i915_gem_set_domain {
959	/** @handle: Handle for the object. */
960	__u32 handle;
961
962	/** @read_domains: New read domains. */
963	__u32 read_domains;
964
965	/**
966	 * @write_domain: New write domain.
967	 *
968	 * Note that having something in the write domain implies it's in the
969	 * read domain, and only that read domain.
970	 */
971	__u32 write_domain;
972};
973
974struct drm_i915_gem_sw_finish {
975	/** Handle for the object */
976	__u32 handle;
977};
978
979struct drm_i915_gem_relocation_entry {
980	/**
981	 * Handle of the buffer being pointed to by this relocation entry.
982	 *
983	 * It's appealing to make this be an index into the mm_validate_entry
984	 * list to refer to the buffer, but this allows the driver to create
985	 * a relocation list for state buffers and not re-write it per
986	 * exec using the buffer.
987	 */
988	__u32 target_handle;
989
990	/**
991	 * Value to be added to the offset of the target buffer to make up
992	 * the relocation entry.
993	 */
994	__u32 delta;
995
996	/** Offset in the buffer the relocation entry will be written into */
997	__u64 offset;
998
999	/**
1000	 * Offset value of the target buffer that the relocation entry was last
1001	 * written as.
1002	 *
1003	 * If the buffer has the same offset as last time, we can skip syncing
1004	 * and writing the relocation.  This value is written back out by
1005	 * the execbuffer ioctl when the relocation is written.
1006	 */
1007	__u64 presumed_offset;
1008
1009	/**
1010	 * Target memory domains read by this operation.
1011	 */
1012	__u32 read_domains;
1013
1014	/**
1015	 * Target memory domains written by this operation.
1016	 *
1017	 * Note that only one domain may be written by the whole
1018	 * execbuffer operation, so that where there are conflicts,
1019	 * the application will get -EINVAL back.
1020	 */
1021	__u32 write_domain;
1022};
1023
1024/** @{
1025 * Intel memory domains
1026 *
1027 * Most of these just align with the various caches in
1028 * the system and are used to flush and invalidate as
1029 * objects end up cached in different domains.
1030 */
1031/** CPU cache */
1032#define I915_GEM_DOMAIN_CPU		0x00000001
1033/** Render cache, used by 2D and 3D drawing */
1034#define I915_GEM_DOMAIN_RENDER		0x00000002
1035/** Sampler cache, used by texture engine */
1036#define I915_GEM_DOMAIN_SAMPLER		0x00000004
1037/** Command queue, used to load batch buffers */
1038#define I915_GEM_DOMAIN_COMMAND		0x00000008
1039/** Instruction cache, used by shader programs */
1040#define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1041/** Vertex address cache */
1042#define I915_GEM_DOMAIN_VERTEX		0x00000020
1043/** GTT domain - aperture and scanout */
1044#define I915_GEM_DOMAIN_GTT		0x00000040
1045/** WC domain - uncached access */
1046#define I915_GEM_DOMAIN_WC		0x00000080
1047/** @} */
1048
1049struct drm_i915_gem_exec_object {
1050	/**
1051	 * User's handle for a buffer to be bound into the GTT for this
1052	 * operation.
1053	 */
1054	__u32 handle;
1055
1056	/** Number of relocations to be performed on this buffer */
1057	__u32 relocation_count;
1058	/**
1059	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1060	 * the relocations to be performed in this buffer.
1061	 */
1062	__u64 relocs_ptr;
1063
1064	/** Required alignment in graphics aperture */
1065	__u64 alignment;
1066
1067	/**
1068	 * Returned value of the updated offset of the object, for future
1069	 * presumed_offset writes.
1070	 */
1071	__u64 offset;
1072};
1073
1074/* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1075struct drm_i915_gem_execbuffer {
1076	/**
1077	 * List of buffers to be validated with their relocations to be
1078	 * performend on them.
1079	 *
1080	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1081	 *
1082	 * These buffers must be listed in an order such that all relocations
1083	 * a buffer is performing refer to buffers that have already appeared
1084	 * in the validate list.
1085	 */
1086	__u64 buffers_ptr;
1087	__u32 buffer_count;
1088
1089	/** Offset in the batchbuffer to start execution from. */
1090	__u32 batch_start_offset;
1091	/** Bytes used in batchbuffer from batch_start_offset */
1092	__u32 batch_len;
1093	__u32 DR1;
1094	__u32 DR4;
1095	__u32 num_cliprects;
1096	/** This is a struct drm_clip_rect *cliprects */
1097	__u64 cliprects_ptr;
1098};
1099
1100struct drm_i915_gem_exec_object2 {
1101	/**
1102	 * User's handle for a buffer to be bound into the GTT for this
1103	 * operation.
1104	 */
1105	__u32 handle;
1106
1107	/** Number of relocations to be performed on this buffer */
1108	__u32 relocation_count;
1109	/**
1110	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1111	 * the relocations to be performed in this buffer.
1112	 */
1113	__u64 relocs_ptr;
1114
1115	/** Required alignment in graphics aperture */
1116	__u64 alignment;
1117
1118	/**
1119	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1120	 * the user with the GTT offset at which this object will be pinned.
1121	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1122	 * presumed_offset of the object.
1123	 * During execbuffer2 the kernel populates it with the value of the
1124	 * current GTT offset of the object, for future presumed_offset writes.
1125	 */
1126	__u64 offset;
1127
1128#define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1129#define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1130#define EXEC_OBJECT_WRITE		 (1<<2)
1131#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1132#define EXEC_OBJECT_PINNED		 (1<<4)
1133#define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1134/* The kernel implicitly tracks GPU activity on all GEM objects, and
1135 * synchronises operations with outstanding rendering. This includes
1136 * rendering on other devices if exported via dma-buf. However, sometimes
1137 * this tracking is too coarse and the user knows better. For example,
1138 * if the object is split into non-overlapping ranges shared between different
1139 * clients or engines (i.e. suballocating objects), the implicit tracking
1140 * by kernel assumes that each operation affects the whole object rather
1141 * than an individual range, causing needless synchronisation between clients.
1142 * The kernel will also forgo any CPU cache flushes prior to rendering from
1143 * the object as the client is expected to be also handling such domain
1144 * tracking.
1145 *
1146 * The kernel maintains the implicit tracking in order to manage resources
1147 * used by the GPU - this flag only disables the synchronisation prior to
1148 * rendering with this object in this execbuf.
1149 *
1150 * Opting out of implicit synhronisation requires the user to do its own
1151 * explicit tracking to avoid rendering corruption. See, for example,
1152 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1153 */
1154#define EXEC_OBJECT_ASYNC		(1<<6)
1155/* Request that the contents of this execobject be copied into the error
1156 * state upon a GPU hang involving this batch for post-mortem debugging.
1157 * These buffers are recorded in no particular order as "user" in
1158 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1159 * if the kernel supports this flag.
1160 */
1161#define EXEC_OBJECT_CAPTURE		(1<<7)
1162/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1163#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1164	__u64 flags;
1165
1166	union {
1167		__u64 rsvd1;
1168		__u64 pad_to_size;
1169	};
1170	__u64 rsvd2;
1171};
1172
1173struct drm_i915_gem_exec_fence {
1174	/**
1175	 * User's handle for a drm_syncobj to wait on or signal.
1176	 */
1177	__u32 handle;
1178
1179#define I915_EXEC_FENCE_WAIT            (1<<0)
1180#define I915_EXEC_FENCE_SIGNAL          (1<<1)
1181#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1182	__u32 flags;
1183};
1184
1185/*
1186 * See drm_i915_gem_execbuffer_ext_timeline_fences.
1187 */
1188#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1189
1190/*
1191 * This structure describes an array of drm_syncobj and associated points for
1192 * timeline variants of drm_syncobj. It is invalid to append this structure to
1193 * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1194 */
1195struct drm_i915_gem_execbuffer_ext_timeline_fences {
1196	struct i915_user_extension base;
1197
1198	/**
1199	 * Number of element in the handles_ptr & value_ptr arrays.
1200	 */
1201	__u64 fence_count;
1202
1203	/**
1204	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1205	 * fence_count.
1206	 */
1207	__u64 handles_ptr;
1208
1209	/**
1210	 * Pointer to an array of u64 values of length fence_count. Values
1211	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1212	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1213	 */
1214	__u64 values_ptr;
1215};
1216
1217struct drm_i915_gem_execbuffer2 {
1218	/**
1219	 * List of gem_exec_object2 structs
1220	 */
1221	__u64 buffers_ptr;
1222	__u32 buffer_count;
1223
1224	/** Offset in the batchbuffer to start execution from. */
1225	__u32 batch_start_offset;
1226	/** Bytes used in batchbuffer from batch_start_offset */
1227	__u32 batch_len;
1228	__u32 DR1;
1229	__u32 DR4;
1230	__u32 num_cliprects;
1231	/**
1232	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1233	 * & I915_EXEC_USE_EXTENSIONS are not set.
1234	 *
1235	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1236	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1237	 * of the array.
1238	 *
1239	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1240	 * single struct i915_user_extension and num_cliprects is 0.
1241	 */
1242	__u64 cliprects_ptr;
1243#define I915_EXEC_RING_MASK              (0x3f)
1244#define I915_EXEC_DEFAULT                (0<<0)
1245#define I915_EXEC_RENDER                 (1<<0)
1246#define I915_EXEC_BSD                    (2<<0)
1247#define I915_EXEC_BLT                    (3<<0)
1248#define I915_EXEC_VEBOX                  (4<<0)
1249
1250/* Used for switching the constants addressing mode on gen4+ RENDER ring.
1251 * Gen6+ only supports relative addressing to dynamic state (default) and
1252 * absolute addressing.
1253 *
1254 * These flags are ignored for the BSD and BLT rings.
1255 */
1256#define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1257#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1258#define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1259#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1260	__u64 flags;
1261	__u64 rsvd1; /* now used for context info */
1262	__u64 rsvd2;
1263};
1264
1265/** Resets the SO write offset registers for transform feedback on gen7. */
1266#define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1267
1268/** Request a privileged ("secure") batch buffer. Note only available for
1269 * DRM_ROOT_ONLY | DRM_MASTER processes.
1270 */
1271#define I915_EXEC_SECURE		(1<<9)
1272
1273/** Inform the kernel that the batch is and will always be pinned. This
1274 * negates the requirement for a workaround to be performed to avoid
1275 * an incoherent CS (such as can be found on 830/845). If this flag is
1276 * not passed, the kernel will endeavour to make sure the batch is
1277 * coherent with the CS before execution. If this flag is passed,
1278 * userspace assumes the responsibility for ensuring the same.
1279 */
1280#define I915_EXEC_IS_PINNED		(1<<10)
1281
1282/** Provide a hint to the kernel that the command stream and auxiliary
1283 * state buffers already holds the correct presumed addresses and so the
1284 * relocation process may be skipped if no buffers need to be moved in
1285 * preparation for the execbuffer.
1286 */
1287#define I915_EXEC_NO_RELOC		(1<<11)
1288
1289/** Use the reloc.handle as an index into the exec object array rather
1290 * than as the per-file handle.
1291 */
1292#define I915_EXEC_HANDLE_LUT		(1<<12)
1293
1294/** Used for switching BSD rings on the platforms with two BSD rings */
1295#define I915_EXEC_BSD_SHIFT	 (13)
1296#define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1297/* default ping-pong mode */
1298#define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1299#define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1300#define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1301
1302/** Tell the kernel that the batchbuffer is processed by
1303 *  the resource streamer.
1304 */
1305#define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1306
1307/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1308 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1309 * the batch.
1310 *
1311 * Returns -EINVAL if the sync_file fd cannot be found.
1312 */
1313#define I915_EXEC_FENCE_IN		(1<<16)
1314
1315/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1316 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1317 * to the caller, and it should be close() after use. (The fd is a regular
1318 * file descriptor and will be cleaned up on process termination. It holds
1319 * a reference to the request, but nothing else.)
1320 *
1321 * The sync_file fd can be combined with other sync_file and passed either
1322 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1323 * will only occur after this request completes), or to other devices.
1324 *
1325 * Using I915_EXEC_FENCE_OUT requires use of
1326 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1327 * back to userspace. Failure to do so will cause the out-fence to always
1328 * be reported as zero, and the real fence fd to be leaked.
1329 */
1330#define I915_EXEC_FENCE_OUT		(1<<17)
1331
1332/*
1333 * Traditionally the execbuf ioctl has only considered the final element in
1334 * the execobject[] to be the executable batch. Often though, the client
1335 * will known the batch object prior to construction and being able to place
1336 * it into the execobject[] array first can simplify the relocation tracking.
1337 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1338 * execobject[] as the * batch instead (the default is to use the last
1339 * element).
1340 */
1341#define I915_EXEC_BATCH_FIRST		(1<<18)
1342
1343/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1344 * define an array of i915_gem_exec_fence structures which specify a set of
1345 * dma fences to wait upon or signal.
1346 */
1347#define I915_EXEC_FENCE_ARRAY   (1<<19)
1348
1349/*
1350 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1351 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1352 * the batch.
1353 *
1354 * Returns -EINVAL if the sync_file fd cannot be found.
1355 */
1356#define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1357
1358/*
1359 * Setting I915_EXEC_USE_EXTENSIONS implies that
1360 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1361 * list of i915_user_extension. Each i915_user_extension node is the base of a
1362 * larger structure. The list of supported structures are listed in the
1363 * drm_i915_gem_execbuffer_ext enum.
1364 */
1365#define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1366
1367#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1368
1369#define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1370#define i915_execbuffer2_set_context_id(eb2, context) \
1371	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1372#define i915_execbuffer2_get_context_id(eb2) \
1373	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1374
1375struct drm_i915_gem_pin {
1376	/** Handle of the buffer to be pinned. */
1377	__u32 handle;
1378	__u32 pad;
1379
1380	/** alignment required within the aperture */
1381	__u64 alignment;
1382
1383	/** Returned GTT offset of the buffer. */
1384	__u64 offset;
1385};
1386
1387struct drm_i915_gem_unpin {
1388	/** Handle of the buffer to be unpinned. */
1389	__u32 handle;
1390	__u32 pad;
1391};
1392
1393struct drm_i915_gem_busy {
1394	/** Handle of the buffer to check for busy */
1395	__u32 handle;
1396
1397	/** Return busy status
1398	 *
1399	 * A return of 0 implies that the object is idle (after
1400	 * having flushed any pending activity), and a non-zero return that
1401	 * the object is still in-flight on the GPU. (The GPU has not yet
1402	 * signaled completion for all pending requests that reference the
1403	 * object.) An object is guaranteed to become idle eventually (so
1404	 * long as no new GPU commands are executed upon it). Due to the
1405	 * asynchronous nature of the hardware, an object reported
1406	 * as busy may become idle before the ioctl is completed.
1407	 *
1408	 * Furthermore, if the object is busy, which engine is busy is only
1409	 * provided as a guide and only indirectly by reporting its class
1410	 * (there may be more than one engine in each class). There are race
1411	 * conditions which prevent the report of which engines are busy from
1412	 * being always accurate.  However, the converse is not true. If the
1413	 * object is idle, the result of the ioctl, that all engines are idle,
1414	 * is accurate.
1415	 *
1416	 * The returned dword is split into two fields to indicate both
1417	 * the engine classess on which the object is being read, and the
1418	 * engine class on which it is currently being written (if any).
1419	 *
1420	 * The low word (bits 0:15) indicate if the object is being written
1421	 * to by any engine (there can only be one, as the GEM implicit
1422	 * synchronisation rules force writes to be serialised). Only the
1423	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1424	 * 1 not 0 etc) for the last write is reported.
1425	 *
1426	 * The high word (bits 16:31) are a bitmask of which engines classes
1427	 * are currently reading from the object. Multiple engines may be
1428	 * reading from the object simultaneously.
1429	 *
1430	 * The value of each engine class is the same as specified in the
1431	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1432	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1433	 * Some hardware may have parallel execution engines, e.g. multiple
1434	 * media engines, which are mapped to the same class identifier and so
1435	 * are not separately reported for busyness.
1436	 *
1437	 * Caveat emptor:
1438	 * Only the boolean result of this query is reliable; that is whether
1439	 * the object is idle or busy. The report of which engines are busy
1440	 * should be only used as a heuristic.
1441	 */
1442	__u32 busy;
1443};
1444
1445/**
1446 * struct drm_i915_gem_caching - Set or get the caching for given object
1447 * handle.
1448 *
1449 * Allow userspace to control the GTT caching bits for a given object when the
1450 * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1451 * ppGTT support, or if the object is used for scanout). Note that this might
1452 * require unbinding the object from the GTT first, if its current caching value
1453 * doesn't match.
1454 *
1455 * Note that this all changes on discrete platforms, starting from DG1, the
1456 * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1457 * caching attributes(WB vs WC) will become an immutable creation time property
1458 * for the object, along with the GTT caching level. For now we don't expose any
1459 * new uAPI for this, instead on DG1 this is all implicit, although this largely
1460 * shouldn't matter since DG1 is coherent by default(without any way of
1461 * controlling it).
1462 *
1463 * Implicit caching rules, starting from DG1:
1464 *
1465 *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1466 *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1467 *       mapped as write-combined only.
1468 *
1469 *     - Everything else is always allocated and mapped as write-back, with the
1470 *       guarantee that everything is also coherent with the GPU.
1471 *
1472 * Note that this is likely to change in the future again, where we might need
1473 * more flexibility on future devices, so making this all explicit as part of a
1474 * new &drm_i915_gem_create_ext extension is probable.
1475 *
1476 * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1477 * caching attributes for the pages might be required(and is expensive) if we
1478 * need to then CPU map the pages later with different caching attributes. This
1479 * inconsistent caching behaviour, while supported on x86, is not universally
1480 * supported on other architectures. So for simplicity we opt for setting
1481 * everything at creation time, whilst also making it immutable, on discrete
1482 * platforms.
1483 */
1484struct drm_i915_gem_caching {
1485	/**
1486	 * @handle: Handle of the buffer to set/get the caching level.
1487	 */
1488	__u32 handle;
1489
1490	/**
1491	 * @caching: The GTT caching level to apply or possible return value.
1492	 *
1493	 * The supported @caching values:
1494	 *
1495	 * I915_CACHING_NONE:
1496	 *
1497	 * GPU access is not coherent with CPU caches.  Default for machines
1498	 * without an LLC. This means manual flushing might be needed, if we
1499	 * want GPU access to be coherent.
1500	 *
1501	 * I915_CACHING_CACHED:
1502	 *
1503	 * GPU access is coherent with CPU caches and furthermore the data is
1504	 * cached in last-level caches shared between CPU cores and the GPU GT.
1505	 *
1506	 * I915_CACHING_DISPLAY:
1507	 *
1508	 * Special GPU caching mode which is coherent with the scanout engines.
1509	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1510	 * special cache mode (like write-through or gfdt flushing) is
1511	 * available. The kernel automatically sets this mode when using a
1512	 * buffer as a scanout target.  Userspace can manually set this mode to
1513	 * avoid a costly stall and clflush in the hotpath of drawing the first
1514	 * frame.
1515	 */
1516#define I915_CACHING_NONE		0
1517#define I915_CACHING_CACHED		1
1518#define I915_CACHING_DISPLAY		2
1519	__u32 caching;
1520};
1521
1522#define I915_TILING_NONE	0
1523#define I915_TILING_X		1
1524#define I915_TILING_Y		2
1525#define I915_TILING_LAST	I915_TILING_Y
1526
1527#define I915_BIT_6_SWIZZLE_NONE		0
1528#define I915_BIT_6_SWIZZLE_9		1
1529#define I915_BIT_6_SWIZZLE_9_10		2
1530#define I915_BIT_6_SWIZZLE_9_11		3
1531#define I915_BIT_6_SWIZZLE_9_10_11	4
1532/* Not seen by userland */
1533#define I915_BIT_6_SWIZZLE_UNKNOWN	5
1534/* Seen by userland. */
1535#define I915_BIT_6_SWIZZLE_9_17		6
1536#define I915_BIT_6_SWIZZLE_9_10_17	7
1537
1538struct drm_i915_gem_set_tiling {
1539	/** Handle of the buffer to have its tiling state updated */
1540	__u32 handle;
1541
1542	/**
1543	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1544	 * I915_TILING_Y).
1545	 *
1546	 * This value is to be set on request, and will be updated by the
1547	 * kernel on successful return with the actual chosen tiling layout.
1548	 *
1549	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1550	 * has bit 6 swizzling that can't be managed correctly by GEM.
1551	 *
1552	 * Buffer contents become undefined when changing tiling_mode.
1553	 */
1554	__u32 tiling_mode;
1555
1556	/**
1557	 * Stride in bytes for the object when in I915_TILING_X or
1558	 * I915_TILING_Y.
1559	 */
1560	__u32 stride;
1561
1562	/**
1563	 * Returned address bit 6 swizzling required for CPU access through
1564	 * mmap mapping.
1565	 */
1566	__u32 swizzle_mode;
1567};
1568
1569struct drm_i915_gem_get_tiling {
1570	/** Handle of the buffer to get tiling state for. */
1571	__u32 handle;
1572
1573	/**
1574	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1575	 * I915_TILING_Y).
1576	 */
1577	__u32 tiling_mode;
1578
1579	/**
1580	 * Returned address bit 6 swizzling required for CPU access through
1581	 * mmap mapping.
1582	 */
1583	__u32 swizzle_mode;
1584
1585	/**
1586	 * Returned address bit 6 swizzling required for CPU access through
1587	 * mmap mapping whilst bound.
1588	 */
1589	__u32 phys_swizzle_mode;
1590};
1591
1592struct drm_i915_gem_get_aperture {
1593	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1594	__u64 aper_size;
1595
1596	/**
1597	 * Available space in the aperture used by i915_gem_execbuffer, in
1598	 * bytes
1599	 */
1600	__u64 aper_available_size;
1601};
1602
1603struct drm_i915_get_pipe_from_crtc_id {
1604	/** ID of CRTC being requested **/
1605	__u32 crtc_id;
1606
1607	/** pipe of requested CRTC **/
1608	__u32 pipe;
1609};
1610
1611#define I915_MADV_WILLNEED 0
1612#define I915_MADV_DONTNEED 1
1613#define __I915_MADV_PURGED 2 /* internal state */
1614
1615struct drm_i915_gem_madvise {
1616	/** Handle of the buffer to change the backing store advice */
1617	__u32 handle;
1618
1619	/* Advice: either the buffer will be needed again in the near future,
1620	 *         or wont be and could be discarded under memory pressure.
1621	 */
1622	__u32 madv;
1623
1624	/** Whether the backing store still exists. */
1625	__u32 retained;
1626};
1627
1628/* flags */
1629#define I915_OVERLAY_TYPE_MASK 		0xff
1630#define I915_OVERLAY_YUV_PLANAR 	0x01
1631#define I915_OVERLAY_YUV_PACKED 	0x02
1632#define I915_OVERLAY_RGB		0x03
1633
1634#define I915_OVERLAY_DEPTH_MASK		0xff00
1635#define I915_OVERLAY_RGB24		0x1000
1636#define I915_OVERLAY_RGB16		0x2000
1637#define I915_OVERLAY_RGB15		0x3000
1638#define I915_OVERLAY_YUV422		0x0100
1639#define I915_OVERLAY_YUV411		0x0200
1640#define I915_OVERLAY_YUV420		0x0300
1641#define I915_OVERLAY_YUV410		0x0400
1642
1643#define I915_OVERLAY_SWAP_MASK		0xff0000
1644#define I915_OVERLAY_NO_SWAP		0x000000
1645#define I915_OVERLAY_UV_SWAP		0x010000
1646#define I915_OVERLAY_Y_SWAP		0x020000
1647#define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1648
1649#define I915_OVERLAY_FLAGS_MASK		0xff000000
1650#define I915_OVERLAY_ENABLE		0x01000000
1651
1652struct drm_intel_overlay_put_image {
1653	/* various flags and src format description */
1654	__u32 flags;
1655	/* source picture description */
1656	__u32 bo_handle;
1657	/* stride values and offsets are in bytes, buffer relative */
1658	__u16 stride_Y; /* stride for packed formats */
1659	__u16 stride_UV;
1660	__u32 offset_Y; /* offset for packet formats */
1661	__u32 offset_U;
1662	__u32 offset_V;
1663	/* in pixels */
1664	__u16 src_width;
1665	__u16 src_height;
1666	/* to compensate the scaling factors for partially covered surfaces */
1667	__u16 src_scan_width;
1668	__u16 src_scan_height;
1669	/* output crtc description */
1670	__u32 crtc_id;
1671	__u16 dst_x;
1672	__u16 dst_y;
1673	__u16 dst_width;
1674	__u16 dst_height;
1675};
1676
1677/* flags */
1678#define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1679#define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1680#define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1681struct drm_intel_overlay_attrs {
1682	__u32 flags;
1683	__u32 color_key;
1684	__s32 brightness;
1685	__u32 contrast;
1686	__u32 saturation;
1687	__u32 gamma0;
1688	__u32 gamma1;
1689	__u32 gamma2;
1690	__u32 gamma3;
1691	__u32 gamma4;
1692	__u32 gamma5;
1693};
1694
1695/*
1696 * Intel sprite handling
1697 *
1698 * Color keying works with a min/mask/max tuple.  Both source and destination
1699 * color keying is allowed.
1700 *
1701 * Source keying:
1702 * Sprite pixels within the min & max values, masked against the color channels
1703 * specified in the mask field, will be transparent.  All other pixels will
1704 * be displayed on top of the primary plane.  For RGB surfaces, only the min
1705 * and mask fields will be used; ranged compares are not allowed.
1706 *
1707 * Destination keying:
1708 * Primary plane pixels that match the min value, masked against the color
1709 * channels specified in the mask field, will be replaced by corresponding
1710 * pixels from the sprite plane.
1711 *
1712 * Note that source & destination keying are exclusive; only one can be
1713 * active on a given plane.
1714 */
1715
1716#define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1717						* flags==0 to disable colorkeying.
1718						*/
1719#define I915_SET_COLORKEY_DESTINATION	(1<<1)
1720#define I915_SET_COLORKEY_SOURCE	(1<<2)
1721struct drm_intel_sprite_colorkey {
1722	__u32 plane_id;
1723	__u32 min_value;
1724	__u32 channel_mask;
1725	__u32 max_value;
1726	__u32 flags;
1727};
1728
1729struct drm_i915_gem_wait {
1730	/** Handle of BO we shall wait on */
1731	__u32 bo_handle;
1732	__u32 flags;
1733	/** Number of nanoseconds to wait, Returns time remaining. */
1734	__s64 timeout_ns;
1735};
1736
1737struct drm_i915_gem_context_create {
1738	__u32 ctx_id; /* output: id of new context*/
1739	__u32 pad;
1740};
1741
1742struct drm_i915_gem_context_create_ext {
1743	__u32 ctx_id; /* output: id of new context*/
1744	__u32 flags;
1745#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1746#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1747#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1748	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1749	__u64 extensions;
1750};
1751
1752struct drm_i915_gem_context_param {
1753	__u32 ctx_id;
1754	__u32 size;
1755	__u64 param;
1756#define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1757/* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1758 * someone somewhere has attempted to use it, never re-use this context
1759 * param number.
1760 */
1761#define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1762#define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1763#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1764#define I915_CONTEXT_PARAM_BANNABLE	0x5
1765#define I915_CONTEXT_PARAM_PRIORITY	0x6
1766#define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1767#define   I915_CONTEXT_DEFAULT_PRIORITY		0
1768#define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1769	/*
1770	 * When using the following param, value should be a pointer to
1771	 * drm_i915_gem_context_param_sseu.
1772	 */
1773#define I915_CONTEXT_PARAM_SSEU		0x7
1774
1775/*
1776 * Not all clients may want to attempt automatic recover of a context after
1777 * a hang (for example, some clients may only submit very small incremental
1778 * batches relying on known logical state of previous batches which will never
1779 * recover correctly and each attempt will hang), and so would prefer that
1780 * the context is forever banned instead.
1781 *
1782 * If set to false (0), after a reset, subsequent (and in flight) rendering
1783 * from this context is discarded, and the client will need to create a new
1784 * context to use instead.
1785 *
1786 * If set to true (1), the kernel will automatically attempt to recover the
1787 * context by skipping the hanging batch and executing the next batch starting
1788 * from the default context state (discarding the incomplete logical context
1789 * state lost due to the reset).
1790 *
1791 * On creation, all new contexts are marked as recoverable.
1792 */
1793#define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1794
1795	/*
1796	 * The id of the associated virtual memory address space (ppGTT) of
1797	 * this context. Can be retrieved and passed to another context
1798	 * (on the same fd) for both to use the same ppGTT and so share
1799	 * address layouts, and avoid reloading the page tables on context
1800	 * switches between themselves.
1801	 *
1802	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1803	 */
1804#define I915_CONTEXT_PARAM_VM		0x9
1805
1806/*
1807 * I915_CONTEXT_PARAM_ENGINES:
1808 *
1809 * Bind this context to operate on this subset of available engines. Henceforth,
1810 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1811 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1812 * and upwards. Slots 0...N are filled in using the specified (class, instance).
1813 * Use
1814 *	engine_class: I915_ENGINE_CLASS_INVALID,
1815 *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1816 * to specify a gap in the array that can be filled in later, e.g. by a
1817 * virtual engine used for load balancing.
1818 *
1819 * Setting the number of engines bound to the context to 0, by passing a zero
1820 * sized argument, will revert back to default settings.
1821 *
1822 * See struct i915_context_param_engines.
1823 *
1824 * Extensions:
1825 *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1826 *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1827 */
1828#define I915_CONTEXT_PARAM_ENGINES	0xa
1829
1830/*
1831 * I915_CONTEXT_PARAM_PERSISTENCE:
1832 *
1833 * Allow the context and active rendering to survive the process until
1834 * completion. Persistence allows fire-and-forget clients to queue up a
1835 * bunch of work, hand the output over to a display server and then quit.
1836 * If the context is marked as not persistent, upon closing (either via
1837 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1838 * or process termination), the context and any outstanding requests will be
1839 * cancelled (and exported fences for cancelled requests marked as -EIO).
1840 *
1841 * By default, new contexts allow persistence.
1842 */
1843#define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1844
1845/* This API has been removed.  On the off chance someone somewhere has
1846 * attempted to use it, never re-use this context param number.
1847 */
1848#define I915_CONTEXT_PARAM_RINGSIZE	0xc
1849/* Must be kept compact -- no holes and well documented */
1850
1851	__u64 value;
1852};
1853
1854/*
1855 * Context SSEU programming
1856 *
1857 * It may be necessary for either functional or performance reason to configure
1858 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1859 * Sub-slice/EU).
1860 *
1861 * This is done by configuring SSEU configuration using the below
1862 * @struct drm_i915_gem_context_param_sseu for every supported engine which
1863 * userspace intends to use.
1864 *
1865 * Not all GPUs or engines support this functionality in which case an error
1866 * code -ENODEV will be returned.
1867 *
1868 * Also, flexibility of possible SSEU configuration permutations varies between
1869 * GPU generations and software imposed limitations. Requesting such a
1870 * combination will return an error code of -EINVAL.
1871 *
1872 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1873 * favour of a single global setting.
1874 */
1875struct drm_i915_gem_context_param_sseu {
1876	/*
1877	 * Engine class & instance to be configured or queried.
1878	 */
1879	struct i915_engine_class_instance engine;
1880
1881	/*
1882	 * Unknown flags must be cleared to zero.
1883	 */
1884	__u32 flags;
1885#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1886
1887	/*
1888	 * Mask of slices to enable for the context. Valid values are a subset
1889	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1890	 */
1891	__u64 slice_mask;
1892
1893	/*
1894	 * Mask of subslices to enable for the context. Valid values are a
1895	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1896	 */
1897	__u64 subslice_mask;
1898
1899	/*
1900	 * Minimum/Maximum number of EUs to enable per subslice for the
1901	 * context. min_eus_per_subslice must be inferior or equal to
1902	 * max_eus_per_subslice.
1903	 */
1904	__u16 min_eus_per_subslice;
1905	__u16 max_eus_per_subslice;
1906
1907	/*
1908	 * Unused for now. Must be cleared to zero.
1909	 */
1910	__u32 rsvd;
1911};
1912
1913/**
1914 * DOC: Virtual Engine uAPI
1915 *
1916 * Virtual engine is a concept where userspace is able to configure a set of
1917 * physical engines, submit a batch buffer, and let the driver execute it on any
1918 * engine from the set as it sees fit.
1919 *
1920 * This is primarily useful on parts which have multiple instances of a same
1921 * class engine, like for example GT3+ Skylake parts with their two VCS engines.
1922 *
1923 * For instance userspace can enumerate all engines of a certain class using the
1924 * previously described `Engine Discovery uAPI`_. After that userspace can
1925 * create a GEM context with a placeholder slot for the virtual engine (using
1926 * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
1927 * and instance respectively) and finally using the
1928 * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
1929 * the same reserved slot.
1930 *
1931 * Example of creating a virtual engine and submitting a batch buffer to it:
1932 *
1933 * .. code-block:: C
1934 *
1935 * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
1936 * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
1937 * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
1938 * 		.num_siblings = 2,
1939 * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
1940 * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
1941 * 	};
1942 * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
1943 * 		.engines = { { I915_ENGINE_CLASS_INVALID,
1944 * 			       I915_ENGINE_CLASS_INVALID_NONE } },
1945 * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
1946 * 	};
1947 * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
1948 * 		.base = {
1949 * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1950 * 		},
1951 * 		.param = {
1952 * 			.param = I915_CONTEXT_PARAM_ENGINES,
1953 * 			.value = to_user_pointer(&engines),
1954 * 			.size = sizeof(engines),
1955 * 		},
1956 * 	};
1957 * 	struct drm_i915_gem_context_create_ext create = {
1958 * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1959 * 		.extensions = to_user_pointer(&p_engines);
1960 * 	};
1961 *
1962 * 	ctx_id = gem_context_create_ext(drm_fd, &create);
1963 *
1964 * 	// Now we have created a GEM context with its engine map containing a
1965 * 	// single virtual engine. Submissions to this slot can go either to
1966 * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
1967 * 	// the driver. The load balancing is dynamic from one batch buffer to
1968 * 	// another and transparent to userspace.
1969 *
1970 * 	...
1971 * 	execbuf.rsvd1 = ctx_id;
1972 * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
1973 * 	gem_execbuf(drm_fd, &execbuf);
1974 */
1975
1976/*
1977 * i915_context_engines_load_balance:
1978 *
1979 * Enable load balancing across this set of engines.
1980 *
1981 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1982 * used will proxy the execbuffer request onto one of the set of engines
1983 * in such a way as to distribute the load evenly across the set.
1984 *
1985 * The set of engines must be compatible (e.g. the same HW class) as they
1986 * will share the same logical GPU context and ring.
1987 *
1988 * To intermix rendering with the virtual engine and direct rendering onto
1989 * the backing engines (bypassing the load balancing proxy), the context must
1990 * be defined to use a single timeline for all engines.
1991 */
1992struct i915_context_engines_load_balance {
1993	struct i915_user_extension base;
1994
1995	__u16 engine_index;
1996	__u16 num_siblings;
1997	__u32 flags; /* all undefined flags must be zero */
1998
1999	__u64 mbz64; /* reserved for future use; must be zero */
2000
2001	struct i915_engine_class_instance engines[0];
2002} __attribute__((packed));
2003
2004#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2005	struct i915_user_extension base; \
2006	__u16 engine_index; \
2007	__u16 num_siblings; \
2008	__u32 flags; \
2009	__u64 mbz64; \
2010	struct i915_engine_class_instance engines[N__]; \
2011} __attribute__((packed)) name__
2012
2013/*
2014 * i915_context_engines_bond:
2015 *
2016 * Constructed bonded pairs for execution within a virtual engine.
2017 *
2018 * All engines are equal, but some are more equal than others. Given
2019 * the distribution of resources in the HW, it may be preferable to run
2020 * a request on a given subset of engines in parallel to a request on a
2021 * specific engine. We enable this selection of engines within a virtual
2022 * engine by specifying bonding pairs, for any given master engine we will
2023 * only execute on one of the corresponding siblings within the virtual engine.
2024 *
2025 * To execute a request in parallel on the master engine and a sibling requires
2026 * coordination with a I915_EXEC_FENCE_SUBMIT.
2027 */
2028struct i915_context_engines_bond {
2029	struct i915_user_extension base;
2030
2031	struct i915_engine_class_instance master;
2032
2033	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2034	__u16 num_bonds;
2035
2036	__u64 flags; /* all undefined flags must be zero */
2037	__u64 mbz64[4]; /* reserved for future use; must be zero */
2038
2039	struct i915_engine_class_instance engines[0];
2040} __attribute__((packed));
2041
2042#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2043	struct i915_user_extension base; \
2044	struct i915_engine_class_instance master; \
2045	__u16 virtual_index; \
2046	__u16 num_bonds; \
2047	__u64 flags; \
2048	__u64 mbz64[4]; \
2049	struct i915_engine_class_instance engines[N__]; \
2050} __attribute__((packed)) name__
2051
2052/**
2053 * DOC: Context Engine Map uAPI
2054 *
2055 * Context engine map is a new way of addressing engines when submitting batch-
2056 * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2057 * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2058 *
2059 * To use it created GEM contexts need to be configured with a list of engines
2060 * the user is intending to submit to. This is accomplished using the
2061 * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2062 * i915_context_param_engines`.
2063 *
2064 * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2065 * configured map.
2066 *
2067 * Example of creating such context and submitting against it:
2068 *
2069 * .. code-block:: C
2070 *
2071 * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2072 * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2073 * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2074 * 	};
2075 * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2076 * 		.base = {
2077 * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2078 * 		},
2079 * 		.param = {
2080 * 			.param = I915_CONTEXT_PARAM_ENGINES,
2081 * 			.value = to_user_pointer(&engines),
2082 * 			.size = sizeof(engines),
2083 * 		},
2084 * 	};
2085 * 	struct drm_i915_gem_context_create_ext create = {
2086 * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2087 * 		.extensions = to_user_pointer(&p_engines);
2088 * 	};
2089 *
2090 * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2091 *
2092 * 	// We have now created a GEM context with two engines in the map:
2093 * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2094 * 	// will not be accessible from this context.
2095 *
2096 * 	...
2097 * 	execbuf.rsvd1 = ctx_id;
2098 * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2099 * 	gem_execbuf(drm_fd, &execbuf);
2100 *
2101 * 	...
2102 * 	execbuf.rsvd1 = ctx_id;
2103 * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2104 * 	gem_execbuf(drm_fd, &execbuf);
2105 */
2106
2107struct i915_context_param_engines {
2108	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2109#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2110#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2111	struct i915_engine_class_instance engines[0];
2112} __attribute__((packed));
2113
2114#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2115	__u64 extensions; \
2116	struct i915_engine_class_instance engines[N__]; \
2117} __attribute__((packed)) name__
2118
2119struct drm_i915_gem_context_create_ext_setparam {
2120#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
2121	struct i915_user_extension base;
2122	struct drm_i915_gem_context_param param;
2123};
2124
2125/* This API has been removed.  On the off chance someone somewhere has
2126 * attempted to use it, never re-use this extension number.
2127 */
2128#define I915_CONTEXT_CREATE_EXT_CLONE 1
2129
2130struct drm_i915_gem_context_destroy {
2131	__u32 ctx_id;
2132	__u32 pad;
2133};
2134
2135/*
2136 * DRM_I915_GEM_VM_CREATE -
2137 *
2138 * Create a new virtual memory address space (ppGTT) for use within a context
2139 * on the same file. Extensions can be provided to configure exactly how the
2140 * address space is setup upon creation.
2141 *
2142 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2143 * returned in the outparam @id.
2144 *
2145 * No flags are defined, with all bits reserved and must be zero.
2146 *
2147 * An extension chain maybe provided, starting with @extensions, and terminated
2148 * by the @next_extension being 0. Currently, no extensions are defined.
2149 *
2150 * DRM_I915_GEM_VM_DESTROY -
2151 *
2152 * Destroys a previously created VM id, specified in @id.
2153 *
2154 * No extensions or flags are allowed currently, and so must be zero.
2155 */
2156struct drm_i915_gem_vm_control {
2157	__u64 extensions;
2158	__u32 flags;
2159	__u32 vm_id;
2160};
2161
2162struct drm_i915_reg_read {
2163	/*
2164	 * Register offset.
2165	 * For 64bit wide registers where the upper 32bits don't immediately
2166	 * follow the lower 32bits, the offset of the lower 32bits must
2167	 * be specified
2168	 */
2169	__u64 offset;
2170#define I915_REG_READ_8B_WA (1ul << 0)
2171
2172	__u64 val; /* Return value */
2173};
2174
2175/* Known registers:
2176 *
2177 * Render engine timestamp - 0x2358 + 64bit - gen7+
2178 * - Note this register returns an invalid value if using the default
2179 *   single instruction 8byte read, in order to workaround that pass
2180 *   flag I915_REG_READ_8B_WA in offset field.
2181 *
2182 */
2183
2184struct drm_i915_reset_stats {
2185	__u32 ctx_id;
2186	__u32 flags;
2187
2188	/* All resets since boot/module reload, for all contexts */
2189	__u32 reset_count;
2190
2191	/* Number of batches lost when active in GPU, for this context */
2192	__u32 batch_active;
2193
2194	/* Number of batches lost pending for execution, for this context */
2195	__u32 batch_pending;
2196
2197	__u32 pad;
2198};
2199
2200/**
2201 * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2202 *
2203 * Userptr objects have several restrictions on what ioctls can be used with the
2204 * object handle.
2205 */
2206struct drm_i915_gem_userptr {
2207	/**
2208	 * @user_ptr: The pointer to the allocated memory.
2209	 *
2210	 * Needs to be aligned to PAGE_SIZE.
2211	 */
2212	__u64 user_ptr;
2213
2214	/**
2215	 * @user_size:
2216	 *
2217	 * The size in bytes for the allocated memory. This will also become the
2218	 * object size.
2219	 *
2220	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2221	 * or larger.
2222	 */
2223	__u64 user_size;
2224
2225	/**
2226	 * @flags:
2227	 *
2228	 * Supported flags:
2229	 *
2230	 * I915_USERPTR_READ_ONLY:
2231	 *
2232	 * Mark the object as readonly, this also means GPU access can only be
2233	 * readonly. This is only supported on HW which supports readonly access
2234	 * through the GTT. If the HW can't support readonly access, an error is
2235	 * returned.
2236	 *
2237	 * I915_USERPTR_PROBE:
2238	 *
2239	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2240	 * indeed pointing to normal memory and that the range is also valid.
2241	 * For example if some garbage address is given to the kernel, then this
2242	 * should complain.
2243	 *
2244	 * Returns -EFAULT if the probe failed.
2245	 *
2246	 * Note that this doesn't populate the backing pages, and also doesn't
2247	 * guarantee that the object will remain valid when the object is
2248	 * eventually used.
2249	 *
2250	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2251	 * returns a non-zero value.
2252	 *
2253	 * I915_USERPTR_UNSYNCHRONIZED:
2254	 *
2255	 * NOT USED. Setting this flag will result in an error.
2256	 */
2257	__u32 flags;
2258#define I915_USERPTR_READ_ONLY 0x1
2259#define I915_USERPTR_PROBE 0x2
2260#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2261	/**
2262	 * @handle: Returned handle for the object.
2263	 *
2264	 * Object handles are nonzero.
2265	 */
2266	__u32 handle;
2267};
2268
2269enum drm_i915_oa_format {
2270	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2271	I915_OA_FORMAT_A29,	    /* HSW only */
2272	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2273	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2274	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2275	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2276	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2277
2278	/* Gen8+ */
2279	I915_OA_FORMAT_A12,
2280	I915_OA_FORMAT_A12_B8_C8,
2281	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2282
2283	I915_OA_FORMAT_MAX	    /* non-ABI */
2284};
2285
2286enum drm_i915_perf_property_id {
2287	/**
2288	 * Open the stream for a specific context handle (as used with
2289	 * execbuffer2). A stream opened for a specific context this way
2290	 * won't typically require root privileges.
2291	 *
2292	 * This property is available in perf revision 1.
2293	 */
2294	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2295
2296	/**
2297	 * A value of 1 requests the inclusion of raw OA unit reports as
2298	 * part of stream samples.
2299	 *
2300	 * This property is available in perf revision 1.
2301	 */
2302	DRM_I915_PERF_PROP_SAMPLE_OA,
2303
2304	/**
2305	 * The value specifies which set of OA unit metrics should be
2306	 * configured, defining the contents of any OA unit reports.
2307	 *
2308	 * This property is available in perf revision 1.
2309	 */
2310	DRM_I915_PERF_PROP_OA_METRICS_SET,
2311
2312	/**
2313	 * The value specifies the size and layout of OA unit reports.
2314	 *
2315	 * This property is available in perf revision 1.
2316	 */
2317	DRM_I915_PERF_PROP_OA_FORMAT,
2318
2319	/**
2320	 * Specifying this property implicitly requests periodic OA unit
2321	 * sampling and (at least on Haswell) the sampling frequency is derived
2322	 * from this exponent as follows:
2323	 *
2324	 *   80ns * 2^(period_exponent + 1)
2325	 *
2326	 * This property is available in perf revision 1.
2327	 */
2328	DRM_I915_PERF_PROP_OA_EXPONENT,
2329
2330	/**
2331	 * Specifying this property is only valid when specify a context to
2332	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2333	 * will hold preemption of the particular context we want to gather
2334	 * performance data about. The execbuf2 submissions must include a
2335	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2336	 *
2337	 * This property is available in perf revision 3.
2338	 */
2339	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2340
2341	/**
2342	 * Specifying this pins all contexts to the specified SSEU power
2343	 * configuration for the duration of the recording.
2344	 *
2345	 * This parameter's value is a pointer to a struct
2346	 * drm_i915_gem_context_param_sseu.
2347	 *
2348	 * This property is available in perf revision 4.
2349	 */
2350	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2351
2352	/**
2353	 * This optional parameter specifies the timer interval in nanoseconds
2354	 * at which the i915 driver will check the OA buffer for available data.
2355	 * Minimum allowed value is 100 microseconds. A default value is used by
2356	 * the driver if this parameter is not specified. Note that larger timer
2357	 * values will reduce cpu consumption during OA perf captures. However,
2358	 * excessively large values would potentially result in OA buffer
2359	 * overwrites as captures reach end of the OA buffer.
2360	 *
2361	 * This property is available in perf revision 5.
2362	 */
2363	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2364
2365	DRM_I915_PERF_PROP_MAX /* non-ABI */
2366};
2367
2368struct drm_i915_perf_open_param {
2369	__u32 flags;
2370#define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2371#define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2372#define I915_PERF_FLAG_DISABLED		(1<<2)
2373
2374	/** The number of u64 (id, value) pairs */
2375	__u32 num_properties;
2376
2377	/**
2378	 * Pointer to array of u64 (id, value) pairs configuring the stream
2379	 * to open.
2380	 */
2381	__u64 properties_ptr;
2382};
2383
2384/*
2385 * Enable data capture for a stream that was either opened in a disabled state
2386 * via I915_PERF_FLAG_DISABLED or was later disabled via
2387 * I915_PERF_IOCTL_DISABLE.
2388 *
2389 * It is intended to be cheaper to disable and enable a stream than it may be
2390 * to close and re-open a stream with the same configuration.
2391 *
2392 * It's undefined whether any pending data for the stream will be lost.
2393 *
2394 * This ioctl is available in perf revision 1.
2395 */
2396#define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2397
2398/*
2399 * Disable data capture for a stream.
2400 *
2401 * It is an error to try and read a stream that is disabled.
2402 *
2403 * This ioctl is available in perf revision 1.
2404 */
2405#define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2406
2407/*
2408 * Change metrics_set captured by a stream.
2409 *
2410 * If the stream is bound to a specific context, the configuration change
2411 * will performed __inline__ with that context such that it takes effect before
2412 * the next execbuf submission.
2413 *
2414 * Returns the previously bound metrics set id, or a negative error code.
2415 *
2416 * This ioctl is available in perf revision 2.
2417 */
2418#define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2419
2420/*
2421 * Common to all i915 perf records
2422 */
2423struct drm_i915_perf_record_header {
2424	__u32 type;
2425	__u16 pad;
2426	__u16 size;
2427};
2428
2429enum drm_i915_perf_record_type {
2430
2431	/**
2432	 * Samples are the work horse record type whose contents are extensible
2433	 * and defined when opening an i915 perf stream based on the given
2434	 * properties.
2435	 *
2436	 * Boolean properties following the naming convention
2437	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2438	 * every sample.
2439	 *
2440	 * The order of these sample properties given by userspace has no
2441	 * affect on the ordering of data within a sample. The order is
2442	 * documented here.
2443	 *
2444	 * struct {
2445	 *     struct drm_i915_perf_record_header header;
2446	 *
2447	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2448	 * };
2449	 */
2450	DRM_I915_PERF_RECORD_SAMPLE = 1,
2451
2452	/*
2453	 * Indicates that one or more OA reports were not written by the
2454	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2455	 * command collides with periodic sampling - which would be more likely
2456	 * at higher sampling frequencies.
2457	 */
2458	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2459
2460	/**
2461	 * An error occurred that resulted in all pending OA reports being lost.
2462	 */
2463	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2464
2465	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2466};
2467
2468/*
2469 * Structure to upload perf dynamic configuration into the kernel.
2470 */
2471struct drm_i915_perf_oa_config {
2472	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2473	char uuid[36];
2474
2475	__u32 n_mux_regs;
2476	__u32 n_boolean_regs;
2477	__u32 n_flex_regs;
2478
2479	/*
2480	 * These fields are pointers to tuples of u32 values (register address,
2481	 * value). For example the expected length of the buffer pointed by
2482	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2483	 */
2484	__u64 mux_regs_ptr;
2485	__u64 boolean_regs_ptr;
2486	__u64 flex_regs_ptr;
2487};
2488
2489/**
2490 * struct drm_i915_query_item - An individual query for the kernel to process.
2491 *
2492 * The behaviour is determined by the @query_id. Note that exactly what
2493 * @data_ptr is also depends on the specific @query_id.
2494 */
2495struct drm_i915_query_item {
2496	/** @query_id: The id for this query */
2497	__u64 query_id;
2498#define DRM_I915_QUERY_TOPOLOGY_INFO    1
2499#define DRM_I915_QUERY_ENGINE_INFO	2
2500#define DRM_I915_QUERY_PERF_CONFIG      3
2501#define DRM_I915_QUERY_MEMORY_REGIONS   4
2502/* Must be kept compact -- no holes and well documented */
2503
2504	/**
2505	 * @length:
2506	 *
2507	 * When set to zero by userspace, this is filled with the size of the
2508	 * data to be written at the @data_ptr pointer. The kernel sets this
2509	 * value to a negative value to signal an error on a particular query
2510	 * item.
2511	 */
2512	__s32 length;
2513
2514	/**
2515	 * @flags:
2516	 *
2517	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2518	 *
2519	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2520	 * following:
2521	 *
2522	 *	- DRM_I915_QUERY_PERF_CONFIG_LIST
2523	 *      - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2524	 *      - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2525	 */
2526	__u32 flags;
2527#define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2528#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2529#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2530
2531	/**
2532	 * @data_ptr:
2533	 *
2534	 * Data will be written at the location pointed by @data_ptr when the
2535	 * value of @length matches the length of the data to be written by the
2536	 * kernel.
2537	 */
2538	__u64 data_ptr;
2539};
2540
2541/**
2542 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2543 * kernel to fill out.
2544 *
2545 * Note that this is generally a two step process for each struct
2546 * drm_i915_query_item in the array:
2547 *
2548 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2549 *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2550 *    kernel will then fill in the size, in bytes, which tells userspace how
2551 *    memory it needs to allocate for the blob(say for an array of properties).
2552 *
2553 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2554 *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2555 *    the &drm_i915_query_item.length should still be the same as what the
2556 *    kernel previously set. At this point the kernel can fill in the blob.
2557 *
2558 * Note that for some query items it can make sense for userspace to just pass
2559 * in a buffer/blob equal to or larger than the required size. In this case only
2560 * a single ioctl call is needed. For some smaller query items this can work
2561 * quite well.
2562 *
2563 */
2564struct drm_i915_query {
2565	/** @num_items: The number of elements in the @items_ptr array */
2566	__u32 num_items;
2567
2568	/**
2569	 * @flags: Unused for now. Must be cleared to zero.
2570	 */
2571	__u32 flags;
2572
2573	/**
2574	 * @items_ptr:
2575	 *
2576	 * Pointer to an array of struct drm_i915_query_item. The number of
2577	 * array elements is @num_items.
2578	 */
2579	__u64 items_ptr;
2580};
2581
2582/*
2583 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2584 *
2585 * data: contains the 3 pieces of information :
2586 *
2587 * - the slice mask with one bit per slice telling whether a slice is
2588 *   available. The availability of slice X can be queried with the following
2589 *   formula :
2590 *
2591 *           (data[X / 8] >> (X % 8)) & 1
2592 *
2593 * - the subslice mask for each slice with one bit per subslice telling
2594 *   whether a subslice is available. Gen12 has dual-subslices, which are
2595 *   similar to two gen11 subslices. For gen12, this array represents dual-
2596 *   subslices. The availability of subslice Y in slice X can be queried
2597 *   with the following formula :
2598 *
2599 *           (data[subslice_offset +
2600 *                 X * subslice_stride +
2601 *                 Y / 8] >> (Y % 8)) & 1
2602 *
2603 * - the EU mask for each subslice in each slice with one bit per EU telling
2604 *   whether an EU is available. The availability of EU Z in subslice Y in
2605 *   slice X can be queried with the following formula :
2606 *
2607 *           (data[eu_offset +
2608 *                 (X * max_subslices + Y) * eu_stride +
2609 *                 Z / 8] >> (Z % 8)) & 1
2610 */
2611struct drm_i915_query_topology_info {
2612	/*
2613	 * Unused for now. Must be cleared to zero.
2614	 */
2615	__u16 flags;
2616
2617	__u16 max_slices;
2618	__u16 max_subslices;
2619	__u16 max_eus_per_subslice;
2620
2621	/*
2622	 * Offset in data[] at which the subslice masks are stored.
2623	 */
2624	__u16 subslice_offset;
2625
2626	/*
2627	 * Stride at which each of the subslice masks for each slice are
2628	 * stored.
2629	 */
2630	__u16 subslice_stride;
2631
2632	/*
2633	 * Offset in data[] at which the EU masks are stored.
2634	 */
2635	__u16 eu_offset;
2636
2637	/*
2638	 * Stride at which each of the EU masks for each subslice are stored.
2639	 */
2640	__u16 eu_stride;
2641
2642	__u8 data[];
2643};
2644
2645/**
2646 * DOC: Engine Discovery uAPI
2647 *
2648 * Engine discovery uAPI is a way of enumerating physical engines present in a
2649 * GPU associated with an open i915 DRM file descriptor. This supersedes the old
2650 * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
2651 * `I915_PARAM_HAS_BLT`.
2652 *
2653 * The need for this interface came starting with Icelake and newer GPUs, which
2654 * started to establish a pattern of having multiple engines of a same class,
2655 * where not all instances were always completely functionally equivalent.
2656 *
2657 * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
2658 * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
2659 *
2660 * Example for getting the list of engines:
2661 *
2662 * .. code-block:: C
2663 *
2664 * 	struct drm_i915_query_engine_info *info;
2665 * 	struct drm_i915_query_item item = {
2666 * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
2667 * 	};
2668 * 	struct drm_i915_query query = {
2669 * 		.num_items = 1,
2670 * 		.items_ptr = (uintptr_t)&item,
2671 * 	};
2672 * 	int err, i;
2673 *
2674 * 	// First query the size of the blob we need, this needs to be large
2675 * 	// enough to hold our array of engines. The kernel will fill out the
2676 * 	// item.length for us, which is the number of bytes we need.
2677 * 	//
2678 * 	// Alternatively a large buffer can be allocated straight away enabling
2679 * 	// querying in one pass, in which case item.length should contain the
2680 * 	// length of the provided buffer.
2681 * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2682 * 	if (err) ...
2683 *
2684 * 	info = calloc(1, item.length);
2685 * 	// Now that we allocated the required number of bytes, we call the ioctl
2686 * 	// again, this time with the data_ptr pointing to our newly allocated
2687 * 	// blob, which the kernel can then populate with info on all engines.
2688 * 	item.data_ptr = (uintptr_t)&info,
2689 *
2690 * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2691 * 	if (err) ...
2692 *
2693 * 	// We can now access each engine in the array
2694 * 	for (i = 0; i < info->num_engines; i++) {
2695 * 		struct drm_i915_engine_info einfo = info->engines[i];
2696 * 		u16 class = einfo.engine.class;
2697 * 		u16 instance = einfo.engine.instance;
2698 * 		....
2699 * 	}
2700 *
2701 * 	free(info);
2702 *
2703 * Each of the enumerated engines, apart from being defined by its class and
2704 * instance (see `struct i915_engine_class_instance`), also can have flags and
2705 * capabilities defined as documented in i915_drm.h.
2706 *
2707 * For instance video engines which support HEVC encoding will have the
2708 * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
2709 *
2710 * Engine discovery only fully comes to its own when combined with the new way
2711 * of addressing engines when submitting batch buffers using contexts with
2712 * engine maps configured.
2713 */
2714
2715/**
2716 * struct drm_i915_engine_info
2717 *
2718 * Describes one engine and it's capabilities as known to the driver.
2719 */
2720struct drm_i915_engine_info {
2721	/** @engine: Engine class and instance. */
2722	struct i915_engine_class_instance engine;
2723
2724	/** @rsvd0: Reserved field. */
2725	__u32 rsvd0;
2726
2727	/** @flags: Engine flags. */
2728	__u64 flags;
2729
2730	/** @capabilities: Capabilities of this engine. */
2731	__u64 capabilities;
2732#define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2733#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2734
2735	/** @rsvd1: Reserved fields. */
2736	__u64 rsvd1[4];
2737};
2738
2739/**
2740 * struct drm_i915_query_engine_info
2741 *
2742 * Engine info query enumerates all engines known to the driver by filling in
2743 * an array of struct drm_i915_engine_info structures.
2744 */
2745struct drm_i915_query_engine_info {
2746	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
2747	__u32 num_engines;
2748
2749	/** @rsvd: MBZ */
2750	__u32 rsvd[3];
2751
2752	/** @engines: Marker for drm_i915_engine_info structures. */
2753	struct drm_i915_engine_info engines[];
2754};
2755
2756/*
2757 * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2758 */
2759struct drm_i915_query_perf_config {
2760	union {
2761		/*
2762		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2763		 * this fields to the number of configurations available.
2764		 */
2765		__u64 n_configs;
2766
2767		/*
2768		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2769		 * i915 will use the value in this field as configuration
2770		 * identifier to decide what data to write into config_ptr.
2771		 */
2772		__u64 config;
2773
2774		/*
2775		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2776		 * i915 will use the value in this field as configuration
2777		 * identifier to decide what data to write into config_ptr.
2778		 *
2779		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2780		 */
2781		char uuid[36];
2782	};
2783
2784	/*
2785	 * Unused for now. Must be cleared to zero.
2786	 */
2787	__u32 flags;
2788
2789	/*
2790	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2791	 * write an array of __u64 of configuration identifiers.
2792	 *
2793	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2794	 * write a struct drm_i915_perf_oa_config. If the following fields of
2795	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2796	 * the associated pointers the values of submitted when the
2797	 * configuration was created :
2798	 *
2799	 *         - n_mux_regs
2800	 *         - n_boolean_regs
2801	 *         - n_flex_regs
2802	 */
2803	__u8 data[];
2804};
2805
2806/**
2807 * enum drm_i915_gem_memory_class - Supported memory classes
2808 */
2809enum drm_i915_gem_memory_class {
2810	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
2811	I915_MEMORY_CLASS_SYSTEM = 0,
2812	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
2813	I915_MEMORY_CLASS_DEVICE,
2814};
2815
2816/**
2817 * struct drm_i915_gem_memory_class_instance - Identify particular memory region
2818 */
2819struct drm_i915_gem_memory_class_instance {
2820	/** @memory_class: See enum drm_i915_gem_memory_class */
2821	__u16 memory_class;
2822
2823	/** @memory_instance: Which instance */
2824	__u16 memory_instance;
2825};
2826
2827/**
2828 * struct drm_i915_memory_region_info - Describes one region as known to the
2829 * driver.
2830 *
2831 * Note that we reserve some stuff here for potential future work. As an example
2832 * we might want expose the capabilities for a given region, which could include
2833 * things like if the region is CPU mappable/accessible, what are the supported
2834 * mapping types etc.
2835 *
2836 * Note that to extend struct drm_i915_memory_region_info and struct
2837 * drm_i915_query_memory_regions in the future the plan is to do the following:
2838 *
2839 * .. code-block:: C
2840 *
2841 *	struct drm_i915_memory_region_info {
2842 *		struct drm_i915_gem_memory_class_instance region;
2843 *		union {
2844 *			__u32 rsvd0;
2845 *			__u32 new_thing1;
2846 *		};
2847 *		...
2848 *		union {
2849 *			__u64 rsvd1[8];
2850 *			struct {
2851 *				__u64 new_thing2;
2852 *				__u64 new_thing3;
2853 *				...
2854 *			};
2855 *		};
2856 *	};
2857 *
2858 * With this things should remain source compatible between versions for
2859 * userspace, even as we add new fields.
2860 *
2861 * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
2862 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
2863 * at &drm_i915_query_item.query_id.
2864 */
2865struct drm_i915_memory_region_info {
2866	/** @region: The class:instance pair encoding */
2867	struct drm_i915_gem_memory_class_instance region;
2868
2869	/** @rsvd0: MBZ */
2870	__u32 rsvd0;
2871
2872	/** @probed_size: Memory probed by the driver (-1 = unknown) */
2873	__u64 probed_size;
2874
2875	/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
2876	__u64 unallocated_size;
2877
2878	/** @rsvd1: MBZ */
2879	__u64 rsvd1[8];
2880};
2881
2882/**
2883 * struct drm_i915_query_memory_regions
2884 *
2885 * The region info query enumerates all regions known to the driver by filling
2886 * in an array of struct drm_i915_memory_region_info structures.
2887 *
2888 * Example for getting the list of supported regions:
2889 *
2890 * .. code-block:: C
2891 *
2892 *	struct drm_i915_query_memory_regions *info;
2893 *	struct drm_i915_query_item item = {
2894 *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
2895 *	};
2896 *	struct drm_i915_query query = {
2897 *		.num_items = 1,
2898 *		.items_ptr = (uintptr_t)&item,
2899 *	};
2900 *	int err, i;
2901 *
2902 *	// First query the size of the blob we need, this needs to be large
2903 *	// enough to hold our array of regions. The kernel will fill out the
2904 *	// item.length for us, which is the number of bytes we need.
2905 *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2906 *	if (err) ...
2907 *
2908 *	info = calloc(1, item.length);
2909 *	// Now that we allocated the required number of bytes, we call the ioctl
2910 *	// again, this time with the data_ptr pointing to our newly allocated
2911 *	// blob, which the kernel can then populate with the all the region info.
2912 *	item.data_ptr = (uintptr_t)&info,
2913 *
2914 *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2915 *	if (err) ...
2916 *
2917 *	// We can now access each region in the array
2918 *	for (i = 0; i < info->num_regions; i++) {
2919 *		struct drm_i915_memory_region_info mr = info->regions[i];
2920 *		u16 class = mr.region.class;
2921 *		u16 instance = mr.region.instance;
2922 *
2923 *		....
2924 *	}
2925 *
2926 *	free(info);
2927 */
2928struct drm_i915_query_memory_regions {
2929	/** @num_regions: Number of supported regions */
2930	__u32 num_regions;
2931
2932	/** @rsvd: MBZ */
2933	__u32 rsvd[3];
2934
2935	/** @regions: Info about each supported region */
2936	struct drm_i915_memory_region_info regions[];
2937};
2938
2939/**
2940 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
2941 * extension support using struct i915_user_extension.
2942 *
2943 * Note that in the future we want to have our buffer flags here, at least for
2944 * the stuff that is immutable. Previously we would have two ioctls, one to
2945 * create the object with gem_create, and another to apply various parameters,
2946 * however this creates some ambiguity for the params which are considered
2947 * immutable. Also in general we're phasing out the various SET/GET ioctls.
2948 */
2949struct drm_i915_gem_create_ext {
2950	/**
2951	 * @size: Requested size for the object.
2952	 *
2953	 * The (page-aligned) allocated size for the object will be returned.
2954	 *
2955	 * Note that for some devices we have might have further minimum
2956	 * page-size restrictions(larger than 4K), like for device local-memory.
2957	 * However in general the final size here should always reflect any
2958	 * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS
2959	 * extension to place the object in device local-memory.
2960	 */
2961	__u64 size;
2962	/**
2963	 * @handle: Returned handle for the object.
2964	 *
2965	 * Object handles are nonzero.
2966	 */
2967	__u32 handle;
2968	/** @flags: MBZ */
2969	__u32 flags;
2970	/**
2971	 * @extensions: The chain of extensions to apply to this object.
2972	 *
2973	 * This will be useful in the future when we need to support several
2974	 * different extensions, and we need to apply more than one when
2975	 * creating the object. See struct i915_user_extension.
2976	 *
2977	 * If we don't supply any extensions then we get the same old gem_create
2978	 * behaviour.
2979	 *
2980	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
2981	 * struct drm_i915_gem_create_ext_memory_regions.
2982	 */
2983#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
2984	__u64 extensions;
2985};
2986
2987/**
2988 * struct drm_i915_gem_create_ext_memory_regions - The
2989 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
2990 *
2991 * Set the object with the desired set of placements/regions in priority
2992 * order. Each entry must be unique and supported by the device.
2993 *
2994 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
2995 * an equivalent layout of class:instance pair encodings. See struct
2996 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
2997 * query the supported regions for a device.
2998 *
2999 * As an example, on discrete devices, if we wish to set the placement as
3000 * device local-memory we can do something like:
3001 *
3002 * .. code-block:: C
3003 *
3004 *	struct drm_i915_gem_memory_class_instance region_lmem = {
3005 *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3006 *              .memory_instance = 0,
3007 *      };
3008 *      struct drm_i915_gem_create_ext_memory_regions regions = {
3009 *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3010 *              .regions = (uintptr_t)&region_lmem,
3011 *              .num_regions = 1,
3012 *      };
3013 *      struct drm_i915_gem_create_ext create_ext = {
3014 *              .size = 16 * PAGE_SIZE,
3015 *              .extensions = (uintptr_t)&regions,
3016 *      };
3017 *
3018 *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3019 *      if (err) ...
3020 *
3021 * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3022 * along with the final object size in &drm_i915_gem_create_ext.size, which
3023 * should account for any rounding up, if required.
3024 */
3025struct drm_i915_gem_create_ext_memory_regions {
3026	/** @base: Extension link. See struct i915_user_extension. */
3027	struct i915_user_extension base;
3028
3029	/** @pad: MBZ */
3030	__u32 pad;
3031	/** @num_regions: Number of elements in the @regions array. */
3032	__u32 num_regions;
3033	/**
3034	 * @regions: The regions/placements array.
3035	 *
3036	 * An array of struct drm_i915_gem_memory_class_instance.
3037	 */
3038	__u64 regions;
3039};
3040
3041#if defined(__cplusplus)
3042}
3043#endif
3044
3045#endif /* _I915_DRM_H_ */
3046