1/* 2 * Copyright © 2019 Valve Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25#include "aco_builder.h" 26#include "aco_ir.h" 27 28#include "util/u_math.h" 29 30#include <set> 31#include <vector> 32 33namespace aco { 34 35namespace { 36 37enum WQMState : uint8_t { 38 Unspecified = 0, 39 Exact = 1 << 0, 40 WQM = 1 << 1, /* with control flow applied */ 41 Preserve_WQM = 1 << 2, 42 Exact_Branch = 1 << 3, 43}; 44 45enum mask_type : uint8_t { 46 mask_type_global = 1 << 0, 47 mask_type_exact = 1 << 1, 48 mask_type_wqm = 1 << 2, 49 mask_type_loop = 1 << 3, /* active lanes of a loop */ 50}; 51 52struct wqm_ctx { 53 Program* program; 54 /* state for WQM propagation */ 55 std::set<unsigned> worklist; 56 std::vector<uint16_t> defined_in; 57 std::vector<bool> needs_wqm; 58 std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */ 59 wqm_ctx(Program* program_) 60 : program(program_), defined_in(program->peekAllocationId(), 0xFFFF), 61 needs_wqm(program->peekAllocationId()), branch_wqm(program->blocks.size()) 62 { 63 for (unsigned i = 0; i < program->blocks.size(); i++) 64 worklist.insert(i); 65 } 66}; 67 68struct loop_info { 69 Block* loop_header; 70 uint16_t num_exec_masks; 71 uint8_t needs; 72 bool has_divergent_break; 73 bool has_divergent_continue; 74 bool has_discard; /* has a discard or demote */ 75 loop_info(Block* b, uint16_t num, uint8_t needs_, bool breaks, bool cont, bool discard) 76 : loop_header(b), num_exec_masks(num), needs(needs_), has_divergent_break(breaks), 77 has_divergent_continue(cont), has_discard(discard) 78 {} 79}; 80 81struct block_info { 82 std::vector<std::pair<Operand, uint8_t>> 83 exec; /* Vector of exec masks. Either a temporary or const -1. */ 84 std::vector<WQMState> instr_needs; 85 uint8_t block_needs; 86 uint8_t ever_again_needs; 87 bool logical_end_wqm; 88 /* more... */ 89}; 90 91struct exec_ctx { 92 Program* program; 93 std::vector<block_info> info; 94 std::vector<loop_info> loop; 95 bool handle_wqm = false; 96 exec_ctx(Program* program_) : program(program_), info(program->blocks.size()) {} 97}; 98 99bool 100needs_exact(aco_ptr<Instruction>& instr) 101{ 102 if (instr->isMUBUF()) { 103 return instr->mubuf().disable_wqm; 104 } else if (instr->isMTBUF()) { 105 return instr->mtbuf().disable_wqm; 106 } else if (instr->isMIMG()) { 107 return instr->mimg().disable_wqm; 108 } else if (instr->isFlatLike()) { 109 return instr->flatlike().disable_wqm; 110 } else { 111 return instr->isEXP(); 112 } 113} 114 115void 116set_needs_wqm(wqm_ctx& ctx, Temp tmp) 117{ 118 if (!ctx.needs_wqm[tmp.id()]) { 119 ctx.needs_wqm[tmp.id()] = true; 120 if (ctx.defined_in[tmp.id()] != 0xFFFF) 121 ctx.worklist.insert(ctx.defined_in[tmp.id()]); 122 } 123} 124 125void 126mark_block_wqm(wqm_ctx& ctx, unsigned block_idx) 127{ 128 if (ctx.branch_wqm[block_idx]) 129 return; 130 131 ctx.branch_wqm[block_idx] = true; 132 ctx.worklist.insert(block_idx); 133 134 Block& block = ctx.program->blocks[block_idx]; 135 136 /* TODO: this sets more branch conditions to WQM than it needs to 137 * it should be enough to stop at the "exec mask top level" */ 138 if (block.kind & block_kind_top_level) 139 return; 140 141 for (unsigned pred_idx : block.logical_preds) 142 mark_block_wqm(ctx, pred_idx); 143} 144 145void 146get_block_needs(wqm_ctx& ctx, exec_ctx& exec_ctx, Block* block) 147{ 148 block_info& info = exec_ctx.info[block->index]; 149 150 std::vector<WQMState> instr_needs(block->instructions.size()); 151 152 for (int i = block->instructions.size() - 1; i >= 0; --i) { 153 aco_ptr<Instruction>& instr = block->instructions[i]; 154 155 WQMState needs = needs_exact(instr) ? Exact : Unspecified; 156 bool propagate_wqm = 157 instr->opcode == aco_opcode::p_wqm || instr->opcode == aco_opcode::p_as_uniform; 158 bool preserve_wqm = instr->opcode == aco_opcode::p_discard_if; 159 bool pred_by_exec = needs_exec_mask(instr.get()); 160 for (const Definition& definition : instr->definitions) { 161 if (!definition.isTemp()) 162 continue; 163 const unsigned def = definition.tempId(); 164 ctx.defined_in[def] = block->index; 165 if (needs == Unspecified && ctx.needs_wqm[def]) { 166 needs = pred_by_exec ? WQM : Unspecified; 167 propagate_wqm = true; 168 } 169 } 170 171 if (instr->isBranch() && ctx.branch_wqm[block->index]) { 172 assert(!(info.block_needs & Exact_Branch)); 173 needs = WQM; 174 propagate_wqm = true; 175 } 176 177 if (propagate_wqm) { 178 for (const Operand& op : instr->operands) { 179 if (op.isTemp()) { 180 set_needs_wqm(ctx, op.getTemp()); 181 } 182 } 183 } else if (preserve_wqm && info.block_needs & WQM) { 184 needs = Preserve_WQM; 185 } 186 187 /* ensure the condition controlling the control flow for this phi is in WQM */ 188 if (needs == WQM && instr->opcode == aco_opcode::p_phi) { 189 for (unsigned pred_idx : block->logical_preds) { 190 mark_block_wqm(ctx, pred_idx); 191 exec_ctx.info[pred_idx].logical_end_wqm = true; 192 ctx.worklist.insert(pred_idx); 193 } 194 } 195 196 if ((instr->opcode == aco_opcode::p_logical_end && info.logical_end_wqm) || 197 instr->opcode == aco_opcode::p_wqm) { 198 assert(needs != Exact); 199 needs = WQM; 200 } 201 202 instr_needs[i] = needs; 203 info.block_needs |= needs; 204 } 205 206 info.instr_needs = instr_needs; 207 208 /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>", 209 * <cond> should be computed in WQM */ 210 if (info.block_needs & WQM && !(block->kind & block_kind_top_level)) { 211 for (unsigned pred_idx : block->logical_preds) 212 mark_block_wqm(ctx, pred_idx); 213 } 214} 215 216/* If an outer loop needs WQM but a nested loop does not, we have to ensure that 217 * the nested loop is done in WQM so that the exec is not empty upon entering 218 * the nested loop. 219 * 220 * TODO: This could be fixed with slightly better code (for loops with divergent 221 * breaks, which might benefit from being in exact) by adding Exact_Branch to a 222 * divergent branch surrounding the nested loop, if such a branch exists. 223 */ 224void 225handle_wqm_loops(wqm_ctx& ctx, exec_ctx& exec_ctx, unsigned preheader) 226{ 227 for (unsigned idx = preheader + 1; idx < exec_ctx.program->blocks.size(); idx++) { 228 Block& block = exec_ctx.program->blocks[idx]; 229 if (block.kind & block_kind_break) 230 mark_block_wqm(ctx, idx); 231 232 if ((block.kind & block_kind_loop_exit) && block.loop_nest_depth == 0) 233 break; 234 } 235} 236 237/* If an outer loop and it's nested loops does not need WQM, 238 * add_branch_code() will ensure that it enters in Exact. We have to 239 * ensure that the exact exec mask is not empty by adding Exact_Branch to 240 * the outer divergent branch. 241 */ 242void 243handle_exact_loops(wqm_ctx& ctx, exec_ctx& exec_ctx, unsigned preheader) 244{ 245 assert(exec_ctx.program->blocks[preheader + 1].kind & block_kind_loop_header); 246 247 int parent_branch = preheader; 248 unsigned rel_branch_depth = 0; 249 for (; parent_branch >= 0; parent_branch--) { 250 Block& branch = exec_ctx.program->blocks[parent_branch]; 251 if (branch.kind & block_kind_branch) { 252 if (rel_branch_depth == 0) 253 break; 254 rel_branch_depth--; 255 } 256 257 /* top-level blocks should never have empty exact exec masks */ 258 if (branch.kind & block_kind_top_level) 259 return; 260 261 if (branch.kind & block_kind_merge) 262 rel_branch_depth++; 263 } 264 assert(parent_branch >= 0); 265 266 ASSERTED Block& branch = exec_ctx.program->blocks[parent_branch]; 267 assert(branch.kind & block_kind_branch); 268 if (ctx.branch_wqm[parent_branch]) { 269 /* The branch can't be done in Exact because some other blocks in it 270 * are in WQM. So instead, ensure that the loop is done in WQM. */ 271 handle_wqm_loops(ctx, exec_ctx, preheader); 272 } else { 273 exec_ctx.info[parent_branch].block_needs |= Exact_Branch; 274 } 275} 276 277void 278calculate_wqm_needs(exec_ctx& exec_ctx) 279{ 280 wqm_ctx ctx(exec_ctx.program); 281 282 while (!ctx.worklist.empty()) { 283 unsigned block_index = *std::prev(ctx.worklist.end()); 284 ctx.worklist.erase(std::prev(ctx.worklist.end())); 285 286 Block& block = exec_ctx.program->blocks[block_index]; 287 get_block_needs(ctx, exec_ctx, &block); 288 289 /* handle_exact_loops() needs information on outer branches, so don't 290 * handle loops until a top-level block. 291 */ 292 if (block.kind & block_kind_top_level && block.index != exec_ctx.program->blocks.size() - 1) { 293 unsigned preheader = block.index; 294 do { 295 Block& preheader_block = exec_ctx.program->blocks[preheader]; 296 if ((preheader_block.kind & block_kind_loop_preheader) && 297 preheader_block.loop_nest_depth == 0) { 298 /* If the loop or a nested loop needs WQM, branch_wqm will be true for the 299 * preheader. 300 */ 301 if (ctx.branch_wqm[preheader]) 302 handle_wqm_loops(ctx, exec_ctx, preheader); 303 else 304 handle_exact_loops(ctx, exec_ctx, preheader); 305 } 306 preheader++; 307 } while (!(exec_ctx.program->blocks[preheader].kind & block_kind_top_level)); 308 } 309 } 310 311 uint8_t ever_again_needs = 0; 312 for (int i = exec_ctx.program->blocks.size() - 1; i >= 0; i--) { 313 exec_ctx.info[i].ever_again_needs = ever_again_needs; 314 Block& block = exec_ctx.program->blocks[i]; 315 316 if (block.kind & block_kind_needs_lowering) 317 exec_ctx.info[i].block_needs |= Exact; 318 319 /* if discard is used somewhere in nested CF, we need to preserve the WQM mask */ 320 if ((block.kind & block_kind_discard || block.kind & block_kind_uses_discard_if) && 321 ever_again_needs & WQM) 322 exec_ctx.info[i].block_needs |= Preserve_WQM; 323 324 ever_again_needs |= exec_ctx.info[i].block_needs & ~Exact_Branch; 325 if (block.kind & block_kind_discard || block.kind & block_kind_uses_discard_if || 326 block.kind & block_kind_uses_demote) 327 ever_again_needs |= Exact; 328 329 /* don't propagate WQM preservation further than the next top_level block */ 330 if (block.kind & block_kind_top_level) 331 ever_again_needs &= ~Preserve_WQM; 332 else 333 exec_ctx.info[i].block_needs &= ~Preserve_WQM; 334 } 335 exec_ctx.handle_wqm = true; 336} 337 338Operand 339get_exec_op(Operand t) 340{ 341 if (t.isUndefined()) 342 return Operand(exec, t.regClass()); 343 else 344 return t; 345} 346 347void 348transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx) 349{ 350 if (ctx.info[idx].exec.back().second & mask_type_wqm) 351 return; 352 if (ctx.info[idx].exec.back().second & mask_type_global) { 353 Operand exec_mask = ctx.info[idx].exec.back().first; 354 if (exec_mask.isUndefined()) { 355 exec_mask = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm), Operand(exec, bld.lm)); 356 ctx.info[idx].exec.back().first = exec_mask; 357 } 358 359 exec_mask = bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), 360 get_exec_op(exec_mask)); 361 ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm); 362 return; 363 } 364 /* otherwise, the WQM mask should be one below the current mask */ 365 ctx.info[idx].exec.pop_back(); 366 assert(ctx.info[idx].exec.back().second & mask_type_wqm); 367 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); 368 assert(ctx.info[idx].exec.back().first.isTemp()); 369 ctx.info[idx].exec.back().first = bld.pseudo( 370 aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first); 371} 372 373void 374transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx) 375{ 376 if (ctx.info[idx].exec.back().second & mask_type_exact) 377 return; 378 /* We can't remove the loop exec mask, because that can cause exec.size() to 379 * be less than num_exec_masks. The loop exec mask also needs to be kept 380 * around for various uses. */ 381 if ((ctx.info[idx].exec.back().second & mask_type_global) && 382 !(ctx.info[idx].exec.back().second & mask_type_loop)) { 383 ctx.info[idx].exec.pop_back(); 384 assert(ctx.info[idx].exec.back().second & mask_type_exact); 385 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); 386 assert(ctx.info[idx].exec.back().first.isTemp()); 387 ctx.info[idx].exec.back().first = bld.pseudo( 388 aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first); 389 return; 390 } 391 /* otherwise, we create an exact mask and push to the stack */ 392 Operand wqm = ctx.info[idx].exec.back().first; 393 if (wqm.isUndefined()) { 394 wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), 395 Definition(exec, bld.lm), ctx.info[idx].exec[0].first, Operand(exec, bld.lm)); 396 } else { 397 bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc), 398 ctx.info[idx].exec[0].first, wqm); 399 } 400 ctx.info[idx].exec.back().first = Operand(wqm); 401 ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type_exact); 402} 403 404unsigned 405add_coupling_code(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions) 406{ 407 unsigned idx = block->index; 408 Builder bld(ctx.program, &instructions); 409 std::vector<unsigned>& preds = block->linear_preds; 410 411 /* start block */ 412 if (idx == 0) { 413 aco_ptr<Instruction>& startpgm = block->instructions[0]; 414 assert(startpgm->opcode == aco_opcode::p_startpgm); 415 bld.insert(std::move(startpgm)); 416 417 Operand start_exec(bld.lm); 418 419 /* exec seems to need to be manually initialized with combined shaders */ 420 if (ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == HWStage::NGG) { 421 start_exec = Operand::c32_or_c64(-1u, bld.lm == s2); 422 bld.copy(Definition(exec, bld.lm), start_exec); 423 } 424 425 if (ctx.handle_wqm) { 426 ctx.info[0].exec.emplace_back(start_exec, mask_type_global | mask_type_exact); 427 /* if this block only needs WQM, initialize already */ 428 if (ctx.info[0].block_needs == WQM) 429 transition_to_WQM(ctx, bld, 0); 430 } else { 431 uint8_t mask = mask_type_global; 432 if (ctx.program->needs_wqm) { 433 bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), 434 Operand(exec, bld.lm)); 435 mask |= mask_type_wqm; 436 } else { 437 mask |= mask_type_exact; 438 } 439 ctx.info[0].exec.emplace_back(start_exec, mask); 440 } 441 442 return 1; 443 } 444 445 /* loop entry block */ 446 if (block->kind & block_kind_loop_header) { 447 assert(preds[0] == idx - 1); 448 ctx.info[idx].exec = ctx.info[idx - 1].exec; 449 loop_info& info = ctx.loop.back(); 450 while (ctx.info[idx].exec.size() > info.num_exec_masks) 451 ctx.info[idx].exec.pop_back(); 452 453 /* create ssa names for outer exec masks */ 454 if (info.has_discard) { 455 aco_ptr<Pseudo_instruction> phi; 456 for (int i = 0; i < info.num_exec_masks - 1; i++) { 457 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, 458 Format::PSEUDO, preds.size(), 1)); 459 phi->definitions[0] = bld.def(bld.lm); 460 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[i].first); 461 ctx.info[idx].exec[i].first = bld.insert(std::move(phi)); 462 } 463 } 464 465 /* create ssa name for restore mask */ 466 if (info.has_divergent_break) { 467 /* this phi might be trivial but ensures a parallelcopy on the loop header */ 468 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>( 469 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; 470 phi->definitions[0] = bld.def(bld.lm); 471 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first); 472 ctx.info[idx].exec.back().first = bld.insert(std::move(phi)); 473 } 474 475 /* create ssa name for loop active mask */ 476 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>( 477 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; 478 if (info.has_divergent_continue) 479 phi->definitions[0] = bld.def(bld.lm); 480 else 481 phi->definitions[0] = Definition(exec, bld.lm); 482 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec.back().first); 483 Temp loop_active = bld.insert(std::move(phi)); 484 485 if (info.has_divergent_break) { 486 uint8_t mask_type = 487 (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop; 488 ctx.info[idx].exec.emplace_back(loop_active, mask_type); 489 } else { 490 ctx.info[idx].exec.back().first = Operand(loop_active); 491 ctx.info[idx].exec.back().second |= mask_type_loop; 492 } 493 494 /* create a parallelcopy to move the active mask to exec */ 495 unsigned i = 0; 496 if (info.has_divergent_continue) { 497 while (block->instructions[i]->opcode != aco_opcode::p_logical_start) { 498 bld.insert(std::move(block->instructions[i])); 499 i++; 500 } 501 uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); 502 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); 503 ctx.info[idx].exec.emplace_back( 504 bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm), 505 ctx.info[idx].exec.back().first), 506 mask_type); 507 } 508 509 return i; 510 } 511 512 /* loop exit block */ 513 if (block->kind & block_kind_loop_exit) { 514 Block* header = ctx.loop.back().loop_header; 515 loop_info& info = ctx.loop.back(); 516 517 for (ASSERTED unsigned pred : preds) 518 assert(ctx.info[pred].exec.size() >= info.num_exec_masks); 519 520 /* fill the loop header phis */ 521 std::vector<unsigned>& header_preds = header->linear_preds; 522 int instr_idx = 0; 523 if (info.has_discard) { 524 while (instr_idx < info.num_exec_masks - 1) { 525 aco_ptr<Instruction>& phi = header->instructions[instr_idx]; 526 assert(phi->opcode == aco_opcode::p_linear_phi); 527 for (unsigned i = 1; i < phi->operands.size(); i++) 528 phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[instr_idx].first); 529 instr_idx++; 530 } 531 } 532 533 { 534 aco_ptr<Instruction>& phi = header->instructions[instr_idx++]; 535 assert(phi->opcode == aco_opcode::p_linear_phi); 536 for (unsigned i = 1; i < phi->operands.size(); i++) 537 phi->operands[i] = 538 get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first); 539 } 540 541 if (info.has_divergent_break) { 542 aco_ptr<Instruction>& phi = header->instructions[instr_idx]; 543 assert(phi->opcode == aco_opcode::p_linear_phi); 544 for (unsigned i = 1; i < phi->operands.size(); i++) 545 phi->operands[i] = 546 get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks].first); 547 } 548 549 assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2); 550 551 /* create the loop exit phis if not trivial */ 552 for (unsigned exec_idx = 0; exec_idx < info.num_exec_masks; exec_idx++) { 553 Operand same = ctx.info[preds[0]].exec[exec_idx].first; 554 uint8_t type = ctx.info[header_preds[0]].exec[exec_idx].second; 555 bool trivial = true; 556 557 for (unsigned i = 1; i < preds.size() && trivial; i++) { 558 if (ctx.info[preds[i]].exec[exec_idx].first != same) 559 trivial = false; 560 } 561 562 if (trivial) { 563 ctx.info[idx].exec.emplace_back(same, type); 564 } else { 565 /* create phi for loop footer */ 566 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>( 567 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; 568 phi->definitions[0] = bld.def(bld.lm); 569 if (exec_idx == info.num_exec_masks - 1u) { 570 phi->definitions[0] = Definition(exec, bld.lm); 571 } 572 for (unsigned i = 0; i < phi->operands.size(); i++) 573 phi->operands[i] = get_exec_op(ctx.info[preds[i]].exec[exec_idx].first); 574 ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type); 575 } 576 } 577 assert(ctx.info[idx].exec.size() == info.num_exec_masks); 578 579 /* create a parallelcopy to move the live mask to exec */ 580 unsigned i = 0; 581 while (block->instructions[i]->opcode != aco_opcode::p_logical_start) { 582 bld.insert(std::move(block->instructions[i])); 583 i++; 584 } 585 586 if (ctx.handle_wqm) { 587 if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { 588 if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 || 589 (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) { 590 ctx.info[idx].exec.back().second |= mask_type_global; 591 transition_to_Exact(ctx, bld, idx); 592 ctx.handle_wqm = false; 593 } 594 } 595 if (ctx.info[idx].block_needs == WQM) 596 transition_to_WQM(ctx, bld, idx); 597 else if (ctx.info[idx].block_needs == Exact) 598 transition_to_Exact(ctx, bld, idx); 599 } 600 601 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); 602 if (get_exec_op(ctx.info[idx].exec.back().first).isTemp()) { 603 /* move current exec mask into exec register */ 604 ctx.info[idx].exec.back().first = bld.pseudo( 605 aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first); 606 } 607 608 ctx.loop.pop_back(); 609 return i; 610 } 611 612 if (preds.size() == 1) { 613 ctx.info[idx].exec = ctx.info[preds[0]].exec; 614 } else { 615 assert(preds.size() == 2); 616 /* if one of the predecessors ends in exact mask, we pop it from stack */ 617 unsigned num_exec_masks = 618 std::min(ctx.info[preds[0]].exec.size(), ctx.info[preds[1]].exec.size()); 619 620 if (block->kind & block_kind_merge) 621 num_exec_masks--; 622 if (block->kind & block_kind_top_level) 623 num_exec_masks = std::min(num_exec_masks, 2u); 624 625 /* create phis for diverged exec masks */ 626 for (unsigned i = 0; i < num_exec_masks; i++) { 627 /* skip trivial phis */ 628 if (ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) { 629 Operand t = ctx.info[preds[0]].exec[i].first; 630 /* discard/demote can change the state of the current exec mask */ 631 assert(!t.isTemp() || 632 ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second); 633 uint8_t mask = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second; 634 ctx.info[idx].exec.emplace_back(t, mask); 635 continue; 636 } 637 638 bool in_exec = i == num_exec_masks - 1 && !(block->kind & block_kind_merge); 639 Temp phi = bld.pseudo(aco_opcode::p_linear_phi, 640 in_exec ? Definition(exec, bld.lm) : bld.def(bld.lm), 641 get_exec_op(ctx.info[preds[0]].exec[i].first), 642 get_exec_op(ctx.info[preds[1]].exec[i].first)); 643 uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second; 644 ctx.info[idx].exec.emplace_back(phi, mask_type); 645 } 646 } 647 648 unsigned i = 0; 649 while (block->instructions[i]->opcode == aco_opcode::p_phi || 650 block->instructions[i]->opcode == aco_opcode::p_linear_phi) { 651 bld.insert(std::move(block->instructions[i])); 652 i++; 653 } 654 655 /* try to satisfy the block's needs */ 656 if (ctx.handle_wqm) { 657 if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { 658 if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 || 659 (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) { 660 ctx.info[idx].exec.back().second |= mask_type_global; 661 transition_to_Exact(ctx, bld, idx); 662 ctx.handle_wqm = false; 663 } 664 } 665 if (ctx.info[idx].block_needs == WQM) 666 transition_to_WQM(ctx, bld, idx); 667 else if (ctx.info[idx].block_needs == Exact) 668 transition_to_Exact(ctx, bld, idx); 669 } 670 671 if (block->kind & block_kind_merge && !ctx.info[idx].exec.back().first.isUndefined()) { 672 Operand restore = ctx.info[idx].exec.back().first; 673 assert(restore.size() == bld.lm.size()); 674 bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm), restore); 675 if (!restore.isConstant()) 676 ctx.info[idx].exec.back().first = Operand(bld.lm); 677 } 678 679 return i; 680} 681 682void 683process_instructions(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions, 684 unsigned idx) 685{ 686 WQMState state; 687 if (ctx.info[block->index].exec.back().second & mask_type_wqm) 688 state = WQM; 689 else { 690 assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact); 691 state = Exact; 692 } 693 694 /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */ 695 bool process = (ctx.handle_wqm && (ctx.info[block->index].block_needs & state) != 696 (ctx.info[block->index].block_needs & (WQM | Exact))) || 697 block->kind & block_kind_uses_discard_if || 698 block->kind & block_kind_uses_demote || block->kind & block_kind_needs_lowering; 699 if (!process) { 700 std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx); 701 instructions.insert(instructions.end(), 702 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it), 703 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>( 704 block->instructions.end())); 705 return; 706 } 707 708 Builder bld(ctx.program, &instructions); 709 710 for (; idx < block->instructions.size(); idx++) { 711 aco_ptr<Instruction> instr = std::move(block->instructions[idx]); 712 713 WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified; 714 715 if (instr->opcode == aco_opcode::p_discard_if) { 716 if (ctx.info[block->index].block_needs & Preserve_WQM) { 717 assert(block->kind & block_kind_top_level); 718 transition_to_WQM(ctx, bld, block->index); 719 ctx.info[block->index].exec.back().second &= ~mask_type_global; 720 } 721 int num = ctx.info[block->index].exec.size(); 722 assert(num); 723 724 /* discard from current exec */ 725 const Operand cond = instr->operands[0]; 726 Temp exit_cond = bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), 727 Operand(exec, bld.lm), cond) 728 .def(1) 729 .getTemp(); 730 731 /* discard from inner to outer exec mask on stack */ 732 for (int i = num - 2; i >= 0; i--) { 733 Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), 734 ctx.info[block->index].exec[i].first, cond); 735 ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp()); 736 exit_cond = andn2->definitions[1].getTemp(); 737 } 738 739 instr->opcode = aco_opcode::p_exit_early_if; 740 instr->operands[0] = bld.scc(exit_cond); 741 assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0); 742 743 } else if (needs == WQM && state != WQM) { 744 transition_to_WQM(ctx, bld, block->index); 745 state = WQM; 746 } else if (needs == Exact && state != Exact) { 747 transition_to_Exact(ctx, bld, block->index); 748 state = Exact; 749 } 750 751 if (instr->opcode == aco_opcode::p_is_helper) { 752 Definition dst = instr->definitions[0]; 753 assert(dst.size() == bld.lm.size()); 754 if (state == Exact) { 755 instr.reset(create_instruction<SOP1_instruction>(bld.w64or32(Builder::s_mov), 756 Format::SOP1, 1, 1)); 757 instr->operands[0] = Operand::zero(); 758 instr->definitions[0] = dst; 759 } else { 760 std::pair<Operand, uint8_t>& exact_mask = ctx.info[block->index].exec[0]; 761 assert(exact_mask.second & mask_type_exact); 762 763 instr.reset(create_instruction<SOP2_instruction>(bld.w64or32(Builder::s_andn2), 764 Format::SOP2, 2, 2)); 765 instr->operands[0] = Operand(exec, bld.lm); /* current exec */ 766 instr->operands[1] = Operand(exact_mask.first); 767 instr->definitions[0] = dst; 768 instr->definitions[1] = bld.def(s1, scc); 769 } 770 } else if (instr->opcode == aco_opcode::p_demote_to_helper) { 771 /* turn demote into discard_if with only exact masks */ 772 assert((ctx.info[block->index].exec[0].second & (mask_type_exact | mask_type_global)) == 773 (mask_type_exact | mask_type_global)); 774 775 int num; 776 Temp cond, exit_cond; 777 if (instr->operands[0].isConstant()) { 778 assert(instr->operands[0].constantValue() == -1u); 779 /* transition to exact and set exec to zero */ 780 exit_cond = bld.tmp(s1); 781 cond = 782 bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)), 783 Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm)); 784 785 num = ctx.info[block->index].exec.size() - 2; 786 if (!(ctx.info[block->index].exec.back().second & mask_type_exact)) { 787 ctx.info[block->index].exec.back().first = Operand(cond); 788 ctx.info[block->index].exec.emplace_back(Operand(bld.lm), mask_type_exact); 789 } 790 } else { 791 /* demote_if: transition to exact */ 792 transition_to_Exact(ctx, bld, block->index); 793 assert(instr->operands[0].isTemp()); 794 cond = instr->operands[0].getTemp(); 795 num = ctx.info[block->index].exec.size() - 1; 796 } 797 798 for (int i = num; i >= 0; i--) { 799 if (ctx.info[block->index].exec[i].second & mask_type_exact) { 800 Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), 801 ctx.info[block->index].exec[i].first, cond); 802 if (i == (int)ctx.info[block->index].exec.size() - 1) { 803 andn2->operands[0] = Operand(exec, bld.lm); 804 andn2->definitions[0] = Definition(exec, bld.lm); 805 } 806 807 ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp()); 808 exit_cond = andn2->definitions[1].getTemp(); 809 } else { 810 assert(i != 0); 811 } 812 } 813 instr->opcode = aco_opcode::p_exit_early_if; 814 instr->operands[0] = bld.scc(exit_cond); 815 state = Exact; 816 817 } else if (instr->opcode == aco_opcode::p_elect) { 818 bool all_lanes_enabled = ctx.info[block->index].exec.back().first.constantEquals(-1u); 819 Definition dst = instr->definitions[0]; 820 821 if (all_lanes_enabled) { 822 bld.copy(Definition(dst), Operand::c32_or_c64(1u, dst.size() == 2)); 823 } else { 824 Temp first_lane_idx = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)); 825 bld.sop2(Builder::s_lshl, Definition(dst), bld.def(s1, scc), 826 Operand::c32_or_c64(1u, dst.size() == 2), Operand(first_lane_idx)); 827 } 828 instr.reset(); 829 continue; 830 } 831 832 bld.insert(std::move(instr)); 833 } 834} 835 836void 837add_branch_code(exec_ctx& ctx, Block* block) 838{ 839 unsigned idx = block->index; 840 Builder bld(ctx.program, block); 841 842 if (idx == ctx.program->blocks.size() - 1) 843 return; 844 845 /* try to disable wqm handling */ 846 if (ctx.handle_wqm && block->kind & block_kind_top_level) { 847 if (ctx.info[idx].exec.size() == 3) { 848 assert(ctx.info[idx].exec[1].second == mask_type_wqm); 849 ctx.info[idx].exec.pop_back(); 850 } 851 assert(ctx.info[idx].exec.size() <= 2); 852 853 if (ctx.info[idx].ever_again_needs == 0 || ctx.info[idx].ever_again_needs == Exact) { 854 /* transition to Exact */ 855 aco_ptr<Instruction> branch = std::move(block->instructions.back()); 856 block->instructions.pop_back(); 857 ctx.info[idx].exec.back().second |= mask_type_global; 858 transition_to_Exact(ctx, bld, idx); 859 bld.insert(std::move(branch)); 860 ctx.handle_wqm = false; 861 862 } else if (ctx.info[idx].block_needs & Preserve_WQM) { 863 /* transition to WQM and remove global flag */ 864 aco_ptr<Instruction> branch = std::move(block->instructions.back()); 865 block->instructions.pop_back(); 866 transition_to_WQM(ctx, bld, idx); 867 ctx.info[idx].exec.back().second &= ~mask_type_global; 868 bld.insert(std::move(branch)); 869 } 870 } 871 872 if (block->kind & block_kind_loop_preheader) { 873 /* collect information about the succeeding loop */ 874 bool has_divergent_break = false; 875 bool has_divergent_continue = false; 876 bool has_discard = false; 877 uint8_t needs = 0; 878 unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth; 879 880 for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) { 881 Block& loop_block = ctx.program->blocks[i]; 882 needs |= ctx.info[i].block_needs; 883 884 if (loop_block.kind & block_kind_uses_discard_if || loop_block.kind & block_kind_discard || 885 loop_block.kind & block_kind_uses_demote) 886 has_discard = true; 887 if (loop_block.loop_nest_depth != loop_nest_depth) 888 continue; 889 890 if (loop_block.kind & block_kind_uniform) 891 continue; 892 else if (loop_block.kind & block_kind_break) 893 has_divergent_break = true; 894 else if (loop_block.kind & block_kind_continue) 895 has_divergent_continue = true; 896 } 897 898 if (ctx.handle_wqm) { 899 if (needs & WQM) { 900 aco_ptr<Instruction> branch = std::move(block->instructions.back()); 901 block->instructions.pop_back(); 902 transition_to_WQM(ctx, bld, idx); 903 bld.insert(std::move(branch)); 904 } else { 905 aco_ptr<Instruction> branch = std::move(block->instructions.back()); 906 block->instructions.pop_back(); 907 transition_to_Exact(ctx, bld, idx); 908 bld.insert(std::move(branch)); 909 } 910 } 911 912 unsigned num_exec_masks = ctx.info[idx].exec.size(); 913 if (block->kind & block_kind_top_level) 914 num_exec_masks = std::min(num_exec_masks, 2u); 915 916 ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks, needs, 917 has_divergent_break, has_divergent_continue, has_discard); 918 } 919 920 /* For normal breaks, this is the exec mask. For discard+break, it's the 921 * old exec mask before it was zero'd. 922 */ 923 Operand break_cond = Operand(exec, bld.lm); 924 925 if (block->kind & block_kind_discard) { 926 927 assert(block->instructions.back()->isBranch()); 928 aco_ptr<Instruction> branch = std::move(block->instructions.back()); 929 block->instructions.pop_back(); 930 931 /* create a discard_if() instruction with the exec mask as condition */ 932 unsigned num = 0; 933 if (ctx.loop.size()) { 934 /* if we're in a loop, only discard from the outer exec masks */ 935 num = ctx.loop.back().num_exec_masks; 936 } else { 937 num = ctx.info[idx].exec.size() - 1; 938 } 939 940 Temp cond = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), 941 Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm)); 942 943 for (int i = num - 1; i >= 0; i--) { 944 Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), 945 get_exec_op(ctx.info[block->index].exec[i].first), cond); 946 if (i == (int)ctx.info[idx].exec.size() - 1) 947 andn2->definitions[0] = Definition(exec, bld.lm); 948 if (i == 0) 949 bld.pseudo(aco_opcode::p_exit_early_if, bld.scc(andn2->definitions[1].getTemp())); 950 ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp()); 951 } 952 assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0); 953 954 break_cond = Operand(cond); 955 bld.insert(std::move(branch)); 956 /* no return here as it can be followed by a divergent break */ 957 } 958 959 if (block->kind & block_kind_continue_or_break) { 960 assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind & 961 block_kind_loop_header); 962 assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & 963 block_kind_loop_exit); 964 assert(block->instructions.back()->opcode == aco_opcode::p_branch); 965 block->instructions.pop_back(); 966 967 bool need_parallelcopy = false; 968 while (!(ctx.info[idx].exec.back().second & mask_type_loop)) { 969 ctx.info[idx].exec.pop_back(); 970 need_parallelcopy = true; 971 } 972 973 if (need_parallelcopy) 974 ctx.info[idx].exec.back().first = bld.pseudo( 975 aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first); 976 bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm), 977 block->linear_succs[1], block->linear_succs[0]); 978 return; 979 } 980 981 if (block->kind & block_kind_uniform) { 982 Pseudo_branch_instruction& branch = block->instructions.back()->branch(); 983 if (branch.opcode == aco_opcode::p_branch) { 984 branch.target[0] = block->linear_succs[0]; 985 } else { 986 branch.target[0] = block->linear_succs[1]; 987 branch.target[1] = block->linear_succs[0]; 988 } 989 return; 990 } 991 992 if (block->kind & block_kind_branch) { 993 994 if (ctx.handle_wqm && ctx.info[idx].exec.size() >= 2 && 995 ctx.info[idx].exec.back().second == mask_type_exact && 996 !(ctx.info[idx].block_needs & Exact_Branch) && 997 ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].second & mask_type_wqm) { 998 /* return to wqm before branching */ 999 ctx.info[idx].exec.pop_back(); 1000 } 1001 1002 // orig = s_and_saveexec_b64 1003 assert(block->linear_succs.size() == 2); 1004 assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z); 1005 Temp cond = block->instructions.back()->operands[0].getTemp(); 1006 block->instructions.pop_back(); 1007 1008 if (ctx.info[idx].block_needs & Exact_Branch) 1009 transition_to_Exact(ctx, bld, idx); 1010 1011 uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); 1012 if (ctx.info[idx].exec.back().first.constantEquals(-1u)) { 1013 bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm), cond); 1014 } else { 1015 Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), 1016 Definition(exec, bld.lm), cond, Operand(exec, bld.lm)); 1017 1018 ctx.info[idx].exec.back().first = Operand(old_exec); 1019 } 1020 1021 /* add next current exec to the stack */ 1022 ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type); 1023 1024 bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm), 1025 block->linear_succs[1], block->linear_succs[0]); 1026 return; 1027 } 1028 1029 if (block->kind & block_kind_invert) { 1030 // exec = s_andn2_b64 (original_exec, exec) 1031 assert(block->instructions.back()->opcode == aco_opcode::p_branch); 1032 block->instructions.pop_back(); 1033 assert(ctx.info[idx].exec.size() >= 2); 1034 Operand orig_exec = ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].first; 1035 bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), orig_exec, 1036 Operand(exec, bld.lm)); 1037 1038 bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm), 1039 block->linear_succs[1], block->linear_succs[0]); 1040 return; 1041 } 1042 1043 if (block->kind & block_kind_break) { 1044 // loop_mask = s_andn2_b64 (loop_mask, exec) 1045 assert(block->instructions.back()->opcode == aco_opcode::p_branch); 1046 block->instructions.pop_back(); 1047 1048 Temp cond = Temp(); 1049 for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { 1050 cond = bld.tmp(s1); 1051 Operand exec_mask = ctx.info[idx].exec[exec_idx].first; 1052 exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)), 1053 exec_mask, break_cond); 1054 ctx.info[idx].exec[exec_idx].first = exec_mask; 1055 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) 1056 break; 1057 } 1058 1059 /* check if the successor is the merge block, otherwise set exec to 0 */ 1060 // TODO: this could be done better by directly branching to the merge block 1061 unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; 1062 Block& succ = ctx.program->blocks[succ_idx]; 1063 if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { 1064 bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes())); 1065 } 1066 1067 bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), bld.scc(cond), 1068 block->linear_succs[1], block->linear_succs[0]); 1069 return; 1070 } 1071 1072 if (block->kind & block_kind_continue) { 1073 assert(block->instructions.back()->opcode == aco_opcode::p_branch); 1074 block->instructions.pop_back(); 1075 1076 Temp cond = Temp(); 1077 for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { 1078 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) 1079 break; 1080 cond = bld.tmp(s1); 1081 Operand exec_mask = ctx.info[idx].exec[exec_idx].first; 1082 exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)), 1083 exec_mask, Operand(exec, bld.lm)); 1084 ctx.info[idx].exec[exec_idx].first = exec_mask; 1085 } 1086 assert(cond != Temp()); 1087 1088 /* check if the successor is the merge block, otherwise set exec to 0 */ 1089 // TODO: this could be done better by directly branching to the merge block 1090 unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; 1091 Block& succ = ctx.program->blocks[succ_idx]; 1092 if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { 1093 bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes())); 1094 } 1095 1096 bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), bld.scc(cond), 1097 block->linear_succs[1], block->linear_succs[0]); 1098 return; 1099 } 1100} 1101 1102void 1103process_block(exec_ctx& ctx, Block* block) 1104{ 1105 std::vector<aco_ptr<Instruction>> instructions; 1106 instructions.reserve(block->instructions.size()); 1107 1108 unsigned idx = add_coupling_code(ctx, block, instructions); 1109 1110 assert(block->index != ctx.program->blocks.size() - 1 || 1111 ctx.info[block->index].exec.size() <= 2); 1112 1113 process_instructions(ctx, block, instructions, idx); 1114 1115 block->instructions = std::move(instructions); 1116 1117 add_branch_code(ctx, block); 1118} 1119 1120} /* end namespace */ 1121 1122void 1123insert_exec_mask(Program* program) 1124{ 1125 exec_ctx ctx(program); 1126 1127 if (program->needs_wqm && program->needs_exact) 1128 calculate_wqm_needs(ctx); 1129 1130 for (Block& block : program->blocks) 1131 process_block(ctx, &block); 1132} 1133 1134} // namespace aco 1135