1/*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "aco_builder.h"
26#include "aco_ir.h"
27
28#include "util/u_math.h"
29
30#include <set>
31#include <vector>
32
33namespace aco {
34
35namespace {
36
37enum WQMState : uint8_t {
38   Unspecified = 0,
39   Exact = 1 << 0,
40   WQM = 1 << 1, /* with control flow applied */
41   Preserve_WQM = 1 << 2,
42   Exact_Branch = 1 << 3,
43};
44
45enum mask_type : uint8_t {
46   mask_type_global = 1 << 0,
47   mask_type_exact = 1 << 1,
48   mask_type_wqm = 1 << 2,
49   mask_type_loop = 1 << 3, /* active lanes of a loop */
50};
51
52struct wqm_ctx {
53   Program* program;
54   /* state for WQM propagation */
55   std::set<unsigned> worklist;
56   std::vector<uint16_t> defined_in;
57   std::vector<bool> needs_wqm;
58   std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */
59   wqm_ctx(Program* program_)
60       : program(program_), defined_in(program->peekAllocationId(), 0xFFFF),
61         needs_wqm(program->peekAllocationId()), branch_wqm(program->blocks.size())
62   {
63      for (unsigned i = 0; i < program->blocks.size(); i++)
64         worklist.insert(i);
65   }
66};
67
68struct loop_info {
69   Block* loop_header;
70   uint16_t num_exec_masks;
71   uint8_t needs;
72   bool has_divergent_break;
73   bool has_divergent_continue;
74   bool has_discard; /* has a discard or demote */
75   loop_info(Block* b, uint16_t num, uint8_t needs_, bool breaks, bool cont, bool discard)
76       : loop_header(b), num_exec_masks(num), needs(needs_), has_divergent_break(breaks),
77         has_divergent_continue(cont), has_discard(discard)
78   {}
79};
80
81struct block_info {
82   std::vector<std::pair<Operand, uint8_t>>
83      exec; /* Vector of exec masks. Either a temporary or const -1. */
84   std::vector<WQMState> instr_needs;
85   uint8_t block_needs;
86   uint8_t ever_again_needs;
87   bool logical_end_wqm;
88   /* more... */
89};
90
91struct exec_ctx {
92   Program* program;
93   std::vector<block_info> info;
94   std::vector<loop_info> loop;
95   bool handle_wqm = false;
96   exec_ctx(Program* program_) : program(program_), info(program->blocks.size()) {}
97};
98
99bool
100needs_exact(aco_ptr<Instruction>& instr)
101{
102   if (instr->isMUBUF()) {
103      return instr->mubuf().disable_wqm;
104   } else if (instr->isMTBUF()) {
105      return instr->mtbuf().disable_wqm;
106   } else if (instr->isMIMG()) {
107      return instr->mimg().disable_wqm;
108   } else if (instr->isFlatLike()) {
109      return instr->flatlike().disable_wqm;
110   } else {
111      return instr->isEXP();
112   }
113}
114
115void
116set_needs_wqm(wqm_ctx& ctx, Temp tmp)
117{
118   if (!ctx.needs_wqm[tmp.id()]) {
119      ctx.needs_wqm[tmp.id()] = true;
120      if (ctx.defined_in[tmp.id()] != 0xFFFF)
121         ctx.worklist.insert(ctx.defined_in[tmp.id()]);
122   }
123}
124
125void
126mark_block_wqm(wqm_ctx& ctx, unsigned block_idx)
127{
128   if (ctx.branch_wqm[block_idx])
129      return;
130
131   ctx.branch_wqm[block_idx] = true;
132   ctx.worklist.insert(block_idx);
133
134   Block& block = ctx.program->blocks[block_idx];
135
136   /* TODO: this sets more branch conditions to WQM than it needs to
137    * it should be enough to stop at the "exec mask top level" */
138   if (block.kind & block_kind_top_level)
139      return;
140
141   for (unsigned pred_idx : block.logical_preds)
142      mark_block_wqm(ctx, pred_idx);
143}
144
145void
146get_block_needs(wqm_ctx& ctx, exec_ctx& exec_ctx, Block* block)
147{
148   block_info& info = exec_ctx.info[block->index];
149
150   std::vector<WQMState> instr_needs(block->instructions.size());
151
152   for (int i = block->instructions.size() - 1; i >= 0; --i) {
153      aco_ptr<Instruction>& instr = block->instructions[i];
154
155      WQMState needs = needs_exact(instr) ? Exact : Unspecified;
156      bool propagate_wqm =
157         instr->opcode == aco_opcode::p_wqm || instr->opcode == aco_opcode::p_as_uniform;
158      bool preserve_wqm = instr->opcode == aco_opcode::p_discard_if;
159      bool pred_by_exec = needs_exec_mask(instr.get());
160      for (const Definition& definition : instr->definitions) {
161         if (!definition.isTemp())
162            continue;
163         const unsigned def = definition.tempId();
164         ctx.defined_in[def] = block->index;
165         if (needs == Unspecified && ctx.needs_wqm[def]) {
166            needs = pred_by_exec ? WQM : Unspecified;
167            propagate_wqm = true;
168         }
169      }
170
171      if (instr->isBranch() && ctx.branch_wqm[block->index]) {
172         assert(!(info.block_needs & Exact_Branch));
173         needs = WQM;
174         propagate_wqm = true;
175      }
176
177      if (propagate_wqm) {
178         for (const Operand& op : instr->operands) {
179            if (op.isTemp()) {
180               set_needs_wqm(ctx, op.getTemp());
181            }
182         }
183      } else if (preserve_wqm && info.block_needs & WQM) {
184         needs = Preserve_WQM;
185      }
186
187      /* ensure the condition controlling the control flow for this phi is in WQM */
188      if (needs == WQM && instr->opcode == aco_opcode::p_phi) {
189         for (unsigned pred_idx : block->logical_preds) {
190            mark_block_wqm(ctx, pred_idx);
191            exec_ctx.info[pred_idx].logical_end_wqm = true;
192            ctx.worklist.insert(pred_idx);
193         }
194      }
195
196      if ((instr->opcode == aco_opcode::p_logical_end && info.logical_end_wqm) ||
197          instr->opcode == aco_opcode::p_wqm) {
198         assert(needs != Exact);
199         needs = WQM;
200      }
201
202      instr_needs[i] = needs;
203      info.block_needs |= needs;
204   }
205
206   info.instr_needs = instr_needs;
207
208   /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>",
209    * <cond> should be computed in WQM */
210   if (info.block_needs & WQM && !(block->kind & block_kind_top_level)) {
211      for (unsigned pred_idx : block->logical_preds)
212         mark_block_wqm(ctx, pred_idx);
213   }
214}
215
216/* If an outer loop needs WQM but a nested loop does not, we have to ensure that
217 * the nested loop is done in WQM so that the exec is not empty upon entering
218 * the nested loop.
219 *
220 * TODO: This could be fixed with slightly better code (for loops with divergent
221 * breaks, which might benefit from being in exact) by adding Exact_Branch to a
222 * divergent branch surrounding the nested loop, if such a branch exists.
223 */
224void
225handle_wqm_loops(wqm_ctx& ctx, exec_ctx& exec_ctx, unsigned preheader)
226{
227   for (unsigned idx = preheader + 1; idx < exec_ctx.program->blocks.size(); idx++) {
228      Block& block = exec_ctx.program->blocks[idx];
229      if (block.kind & block_kind_break)
230         mark_block_wqm(ctx, idx);
231
232      if ((block.kind & block_kind_loop_exit) && block.loop_nest_depth == 0)
233         break;
234   }
235}
236
237/* If an outer loop and it's nested loops does not need WQM,
238 * add_branch_code() will ensure that it enters in Exact. We have to
239 * ensure that the exact exec mask is not empty by adding Exact_Branch to
240 * the outer divergent branch.
241 */
242void
243handle_exact_loops(wqm_ctx& ctx, exec_ctx& exec_ctx, unsigned preheader)
244{
245   assert(exec_ctx.program->blocks[preheader + 1].kind & block_kind_loop_header);
246
247   int parent_branch = preheader;
248   unsigned rel_branch_depth = 0;
249   for (; parent_branch >= 0; parent_branch--) {
250      Block& branch = exec_ctx.program->blocks[parent_branch];
251      if (branch.kind & block_kind_branch) {
252         if (rel_branch_depth == 0)
253            break;
254         rel_branch_depth--;
255      }
256
257      /* top-level blocks should never have empty exact exec masks */
258      if (branch.kind & block_kind_top_level)
259         return;
260
261      if (branch.kind & block_kind_merge)
262         rel_branch_depth++;
263   }
264   assert(parent_branch >= 0);
265
266   ASSERTED Block& branch = exec_ctx.program->blocks[parent_branch];
267   assert(branch.kind & block_kind_branch);
268   if (ctx.branch_wqm[parent_branch]) {
269      /* The branch can't be done in Exact because some other blocks in it
270       * are in WQM. So instead, ensure that the loop is done in WQM. */
271      handle_wqm_loops(ctx, exec_ctx, preheader);
272   } else {
273      exec_ctx.info[parent_branch].block_needs |= Exact_Branch;
274   }
275}
276
277void
278calculate_wqm_needs(exec_ctx& exec_ctx)
279{
280   wqm_ctx ctx(exec_ctx.program);
281
282   while (!ctx.worklist.empty()) {
283      unsigned block_index = *std::prev(ctx.worklist.end());
284      ctx.worklist.erase(std::prev(ctx.worklist.end()));
285
286      Block& block = exec_ctx.program->blocks[block_index];
287      get_block_needs(ctx, exec_ctx, &block);
288
289      /* handle_exact_loops() needs information on outer branches, so don't
290       * handle loops until a top-level block.
291       */
292      if (block.kind & block_kind_top_level && block.index != exec_ctx.program->blocks.size() - 1) {
293         unsigned preheader = block.index;
294         do {
295            Block& preheader_block = exec_ctx.program->blocks[preheader];
296            if ((preheader_block.kind & block_kind_loop_preheader) &&
297                preheader_block.loop_nest_depth == 0) {
298               /* If the loop or a nested loop needs WQM, branch_wqm will be true for the
299                * preheader.
300                */
301               if (ctx.branch_wqm[preheader])
302                  handle_wqm_loops(ctx, exec_ctx, preheader);
303               else
304                  handle_exact_loops(ctx, exec_ctx, preheader);
305            }
306            preheader++;
307         } while (!(exec_ctx.program->blocks[preheader].kind & block_kind_top_level));
308      }
309   }
310
311   uint8_t ever_again_needs = 0;
312   for (int i = exec_ctx.program->blocks.size() - 1; i >= 0; i--) {
313      exec_ctx.info[i].ever_again_needs = ever_again_needs;
314      Block& block = exec_ctx.program->blocks[i];
315
316      if (block.kind & block_kind_needs_lowering)
317         exec_ctx.info[i].block_needs |= Exact;
318
319      /* if discard is used somewhere in nested CF, we need to preserve the WQM mask */
320      if ((block.kind & block_kind_discard || block.kind & block_kind_uses_discard_if) &&
321          ever_again_needs & WQM)
322         exec_ctx.info[i].block_needs |= Preserve_WQM;
323
324      ever_again_needs |= exec_ctx.info[i].block_needs & ~Exact_Branch;
325      if (block.kind & block_kind_discard || block.kind & block_kind_uses_discard_if ||
326          block.kind & block_kind_uses_demote)
327         ever_again_needs |= Exact;
328
329      /* don't propagate WQM preservation further than the next top_level block */
330      if (block.kind & block_kind_top_level)
331         ever_again_needs &= ~Preserve_WQM;
332      else
333         exec_ctx.info[i].block_needs &= ~Preserve_WQM;
334   }
335   exec_ctx.handle_wqm = true;
336}
337
338Operand
339get_exec_op(Operand t)
340{
341   if (t.isUndefined())
342      return Operand(exec, t.regClass());
343   else
344      return t;
345}
346
347void
348transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx)
349{
350   if (ctx.info[idx].exec.back().second & mask_type_wqm)
351      return;
352   if (ctx.info[idx].exec.back().second & mask_type_global) {
353      Operand exec_mask = ctx.info[idx].exec.back().first;
354      if (exec_mask.isUndefined()) {
355         exec_mask = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm), Operand(exec, bld.lm));
356         ctx.info[idx].exec.back().first = exec_mask;
357      }
358
359      exec_mask = bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc),
360                           get_exec_op(exec_mask));
361      ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm);
362      return;
363   }
364   /* otherwise, the WQM mask should be one below the current mask */
365   ctx.info[idx].exec.pop_back();
366   assert(ctx.info[idx].exec.back().second & mask_type_wqm);
367   assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
368   assert(ctx.info[idx].exec.back().first.isTemp());
369   ctx.info[idx].exec.back().first = bld.pseudo(
370      aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
371}
372
373void
374transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx)
375{
376   if (ctx.info[idx].exec.back().second & mask_type_exact)
377      return;
378   /* We can't remove the loop exec mask, because that can cause exec.size() to
379    * be less than num_exec_masks. The loop exec mask also needs to be kept
380    * around for various uses. */
381   if ((ctx.info[idx].exec.back().second & mask_type_global) &&
382       !(ctx.info[idx].exec.back().second & mask_type_loop)) {
383      ctx.info[idx].exec.pop_back();
384      assert(ctx.info[idx].exec.back().second & mask_type_exact);
385      assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
386      assert(ctx.info[idx].exec.back().first.isTemp());
387      ctx.info[idx].exec.back().first = bld.pseudo(
388         aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
389      return;
390   }
391   /* otherwise, we create an exact mask and push to the stack */
392   Operand wqm = ctx.info[idx].exec.back().first;
393   if (wqm.isUndefined()) {
394      wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
395                     Definition(exec, bld.lm), ctx.info[idx].exec[0].first, Operand(exec, bld.lm));
396   } else {
397      bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc),
398               ctx.info[idx].exec[0].first, wqm);
399   }
400   ctx.info[idx].exec.back().first = Operand(wqm);
401   ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type_exact);
402}
403
404unsigned
405add_coupling_code(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions)
406{
407   unsigned idx = block->index;
408   Builder bld(ctx.program, &instructions);
409   std::vector<unsigned>& preds = block->linear_preds;
410
411   /* start block */
412   if (idx == 0) {
413      aco_ptr<Instruction>& startpgm = block->instructions[0];
414      assert(startpgm->opcode == aco_opcode::p_startpgm);
415      bld.insert(std::move(startpgm));
416
417      Operand start_exec(bld.lm);
418
419      /* exec seems to need to be manually initialized with combined shaders */
420      if (ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == HWStage::NGG) {
421         start_exec = Operand::c32_or_c64(-1u, bld.lm == s2);
422         bld.copy(Definition(exec, bld.lm), start_exec);
423      }
424
425      if (ctx.handle_wqm) {
426         ctx.info[0].exec.emplace_back(start_exec, mask_type_global | mask_type_exact);
427         /* if this block only needs WQM, initialize already */
428         if (ctx.info[0].block_needs == WQM)
429            transition_to_WQM(ctx, bld, 0);
430      } else {
431         uint8_t mask = mask_type_global;
432         if (ctx.program->needs_wqm) {
433            bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc),
434                     Operand(exec, bld.lm));
435            mask |= mask_type_wqm;
436         } else {
437            mask |= mask_type_exact;
438         }
439         ctx.info[0].exec.emplace_back(start_exec, mask);
440      }
441
442      return 1;
443   }
444
445   /* loop entry block */
446   if (block->kind & block_kind_loop_header) {
447      assert(preds[0] == idx - 1);
448      ctx.info[idx].exec = ctx.info[idx - 1].exec;
449      loop_info& info = ctx.loop.back();
450      while (ctx.info[idx].exec.size() > info.num_exec_masks)
451         ctx.info[idx].exec.pop_back();
452
453      /* create ssa names for outer exec masks */
454      if (info.has_discard) {
455         aco_ptr<Pseudo_instruction> phi;
456         for (int i = 0; i < info.num_exec_masks - 1; i++) {
457            phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi,
458                                                             Format::PSEUDO, preds.size(), 1));
459            phi->definitions[0] = bld.def(bld.lm);
460            phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[i].first);
461            ctx.info[idx].exec[i].first = bld.insert(std::move(phi));
462         }
463      }
464
465      /* create ssa name for restore mask */
466      if (info.has_divergent_break) {
467         /* this phi might be trivial but ensures a parallelcopy on the loop header */
468         aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
469            aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
470         phi->definitions[0] = bld.def(bld.lm);
471         phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first);
472         ctx.info[idx].exec.back().first = bld.insert(std::move(phi));
473      }
474
475      /* create ssa name for loop active mask */
476      aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
477         aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
478      if (info.has_divergent_continue)
479         phi->definitions[0] = bld.def(bld.lm);
480      else
481         phi->definitions[0] = Definition(exec, bld.lm);
482      phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec.back().first);
483      Temp loop_active = bld.insert(std::move(phi));
484
485      if (info.has_divergent_break) {
486         uint8_t mask_type =
487            (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop;
488         ctx.info[idx].exec.emplace_back(loop_active, mask_type);
489      } else {
490         ctx.info[idx].exec.back().first = Operand(loop_active);
491         ctx.info[idx].exec.back().second |= mask_type_loop;
492      }
493
494      /* create a parallelcopy to move the active mask to exec */
495      unsigned i = 0;
496      if (info.has_divergent_continue) {
497         while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
498            bld.insert(std::move(block->instructions[i]));
499            i++;
500         }
501         uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
502         assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
503         ctx.info[idx].exec.emplace_back(
504            bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm),
505                       ctx.info[idx].exec.back().first),
506            mask_type);
507      }
508
509      return i;
510   }
511
512   /* loop exit block */
513   if (block->kind & block_kind_loop_exit) {
514      Block* header = ctx.loop.back().loop_header;
515      loop_info& info = ctx.loop.back();
516
517      for (ASSERTED unsigned pred : preds)
518         assert(ctx.info[pred].exec.size() >= info.num_exec_masks);
519
520      /* fill the loop header phis */
521      std::vector<unsigned>& header_preds = header->linear_preds;
522      int instr_idx = 0;
523      if (info.has_discard) {
524         while (instr_idx < info.num_exec_masks - 1) {
525            aco_ptr<Instruction>& phi = header->instructions[instr_idx];
526            assert(phi->opcode == aco_opcode::p_linear_phi);
527            for (unsigned i = 1; i < phi->operands.size(); i++)
528               phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[instr_idx].first);
529            instr_idx++;
530         }
531      }
532
533      {
534         aco_ptr<Instruction>& phi = header->instructions[instr_idx++];
535         assert(phi->opcode == aco_opcode::p_linear_phi);
536         for (unsigned i = 1; i < phi->operands.size(); i++)
537            phi->operands[i] =
538               get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first);
539      }
540
541      if (info.has_divergent_break) {
542         aco_ptr<Instruction>& phi = header->instructions[instr_idx];
543         assert(phi->opcode == aco_opcode::p_linear_phi);
544         for (unsigned i = 1; i < phi->operands.size(); i++)
545            phi->operands[i] =
546               get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks].first);
547      }
548
549      assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2);
550
551      /* create the loop exit phis if not trivial */
552      for (unsigned exec_idx = 0; exec_idx < info.num_exec_masks; exec_idx++) {
553         Operand same = ctx.info[preds[0]].exec[exec_idx].first;
554         uint8_t type = ctx.info[header_preds[0]].exec[exec_idx].second;
555         bool trivial = true;
556
557         for (unsigned i = 1; i < preds.size() && trivial; i++) {
558            if (ctx.info[preds[i]].exec[exec_idx].first != same)
559               trivial = false;
560         }
561
562         if (trivial) {
563            ctx.info[idx].exec.emplace_back(same, type);
564         } else {
565            /* create phi for loop footer */
566            aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
567               aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
568            phi->definitions[0] = bld.def(bld.lm);
569            if (exec_idx == info.num_exec_masks - 1u) {
570               phi->definitions[0] = Definition(exec, bld.lm);
571            }
572            for (unsigned i = 0; i < phi->operands.size(); i++)
573               phi->operands[i] = get_exec_op(ctx.info[preds[i]].exec[exec_idx].first);
574            ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type);
575         }
576      }
577      assert(ctx.info[idx].exec.size() == info.num_exec_masks);
578
579      /* create a parallelcopy to move the live mask to exec */
580      unsigned i = 0;
581      while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
582         bld.insert(std::move(block->instructions[i]));
583         i++;
584      }
585
586      if (ctx.handle_wqm) {
587         if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
588            if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
589                (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
590               ctx.info[idx].exec.back().second |= mask_type_global;
591               transition_to_Exact(ctx, bld, idx);
592               ctx.handle_wqm = false;
593            }
594         }
595         if (ctx.info[idx].block_needs == WQM)
596            transition_to_WQM(ctx, bld, idx);
597         else if (ctx.info[idx].block_needs == Exact)
598            transition_to_Exact(ctx, bld, idx);
599      }
600
601      assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
602      if (get_exec_op(ctx.info[idx].exec.back().first).isTemp()) {
603         /* move current exec mask into exec register */
604         ctx.info[idx].exec.back().first = bld.pseudo(
605            aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
606      }
607
608      ctx.loop.pop_back();
609      return i;
610   }
611
612   if (preds.size() == 1) {
613      ctx.info[idx].exec = ctx.info[preds[0]].exec;
614   } else {
615      assert(preds.size() == 2);
616      /* if one of the predecessors ends in exact mask, we pop it from stack */
617      unsigned num_exec_masks =
618         std::min(ctx.info[preds[0]].exec.size(), ctx.info[preds[1]].exec.size());
619
620      if (block->kind & block_kind_merge)
621         num_exec_masks--;
622      if (block->kind & block_kind_top_level)
623         num_exec_masks = std::min(num_exec_masks, 2u);
624
625      /* create phis for diverged exec masks */
626      for (unsigned i = 0; i < num_exec_masks; i++) {
627         /* skip trivial phis */
628         if (ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) {
629            Operand t = ctx.info[preds[0]].exec[i].first;
630            /* discard/demote can change the state of the current exec mask */
631            assert(!t.isTemp() ||
632                   ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second);
633            uint8_t mask = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
634            ctx.info[idx].exec.emplace_back(t, mask);
635            continue;
636         }
637
638         bool in_exec = i == num_exec_masks - 1 && !(block->kind & block_kind_merge);
639         Temp phi = bld.pseudo(aco_opcode::p_linear_phi,
640                               in_exec ? Definition(exec, bld.lm) : bld.def(bld.lm),
641                               get_exec_op(ctx.info[preds[0]].exec[i].first),
642                               get_exec_op(ctx.info[preds[1]].exec[i].first));
643         uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
644         ctx.info[idx].exec.emplace_back(phi, mask_type);
645      }
646   }
647
648   unsigned i = 0;
649   while (block->instructions[i]->opcode == aco_opcode::p_phi ||
650          block->instructions[i]->opcode == aco_opcode::p_linear_phi) {
651      bld.insert(std::move(block->instructions[i]));
652      i++;
653   }
654
655   /* try to satisfy the block's needs */
656   if (ctx.handle_wqm) {
657      if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
658         if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
659             (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
660            ctx.info[idx].exec.back().second |= mask_type_global;
661            transition_to_Exact(ctx, bld, idx);
662            ctx.handle_wqm = false;
663         }
664      }
665      if (ctx.info[idx].block_needs == WQM)
666         transition_to_WQM(ctx, bld, idx);
667      else if (ctx.info[idx].block_needs == Exact)
668         transition_to_Exact(ctx, bld, idx);
669   }
670
671   if (block->kind & block_kind_merge && !ctx.info[idx].exec.back().first.isUndefined()) {
672      Operand restore = ctx.info[idx].exec.back().first;
673      assert(restore.size() == bld.lm.size());
674      bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm), restore);
675      if (!restore.isConstant())
676         ctx.info[idx].exec.back().first = Operand(bld.lm);
677   }
678
679   return i;
680}
681
682void
683process_instructions(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions,
684                     unsigned idx)
685{
686   WQMState state;
687   if (ctx.info[block->index].exec.back().second & mask_type_wqm)
688      state = WQM;
689   else {
690      assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact);
691      state = Exact;
692   }
693
694   /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */
695   bool process = (ctx.handle_wqm && (ctx.info[block->index].block_needs & state) !=
696                                        (ctx.info[block->index].block_needs & (WQM | Exact))) ||
697                  block->kind & block_kind_uses_discard_if ||
698                  block->kind & block_kind_uses_demote || block->kind & block_kind_needs_lowering;
699   if (!process) {
700      std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx);
701      instructions.insert(instructions.end(),
702                          std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it),
703                          std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(
704                             block->instructions.end()));
705      return;
706   }
707
708   Builder bld(ctx.program, &instructions);
709
710   for (; idx < block->instructions.size(); idx++) {
711      aco_ptr<Instruction> instr = std::move(block->instructions[idx]);
712
713      WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified;
714
715      if (instr->opcode == aco_opcode::p_discard_if) {
716         if (ctx.info[block->index].block_needs & Preserve_WQM) {
717            assert(block->kind & block_kind_top_level);
718            transition_to_WQM(ctx, bld, block->index);
719            ctx.info[block->index].exec.back().second &= ~mask_type_global;
720         }
721         int num = ctx.info[block->index].exec.size();
722         assert(num);
723
724         /* discard from current exec */
725         const Operand cond = instr->operands[0];
726         Temp exit_cond = bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc),
727                                   Operand(exec, bld.lm), cond)
728                             .def(1)
729                             .getTemp();
730
731         /* discard from inner to outer exec mask on stack */
732         for (int i = num - 2; i >= 0; i--) {
733            Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
734                                          ctx.info[block->index].exec[i].first, cond);
735            ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
736            exit_cond = andn2->definitions[1].getTemp();
737         }
738
739         instr->opcode = aco_opcode::p_exit_early_if;
740         instr->operands[0] = bld.scc(exit_cond);
741         assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
742
743      } else if (needs == WQM && state != WQM) {
744         transition_to_WQM(ctx, bld, block->index);
745         state = WQM;
746      } else if (needs == Exact && state != Exact) {
747         transition_to_Exact(ctx, bld, block->index);
748         state = Exact;
749      }
750
751      if (instr->opcode == aco_opcode::p_is_helper) {
752         Definition dst = instr->definitions[0];
753         assert(dst.size() == bld.lm.size());
754         if (state == Exact) {
755            instr.reset(create_instruction<SOP1_instruction>(bld.w64or32(Builder::s_mov),
756                                                             Format::SOP1, 1, 1));
757            instr->operands[0] = Operand::zero();
758            instr->definitions[0] = dst;
759         } else {
760            std::pair<Operand, uint8_t>& exact_mask = ctx.info[block->index].exec[0];
761            assert(exact_mask.second & mask_type_exact);
762
763            instr.reset(create_instruction<SOP2_instruction>(bld.w64or32(Builder::s_andn2),
764                                                             Format::SOP2, 2, 2));
765            instr->operands[0] = Operand(exec, bld.lm); /* current exec */
766            instr->operands[1] = Operand(exact_mask.first);
767            instr->definitions[0] = dst;
768            instr->definitions[1] = bld.def(s1, scc);
769         }
770      } else if (instr->opcode == aco_opcode::p_demote_to_helper) {
771         /* turn demote into discard_if with only exact masks */
772         assert((ctx.info[block->index].exec[0].second & (mask_type_exact | mask_type_global)) ==
773                (mask_type_exact | mask_type_global));
774
775         int num;
776         Temp cond, exit_cond;
777         if (instr->operands[0].isConstant()) {
778            assert(instr->operands[0].constantValue() == -1u);
779            /* transition to exact and set exec to zero */
780            exit_cond = bld.tmp(s1);
781            cond =
782               bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)),
783                        Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm));
784
785            num = ctx.info[block->index].exec.size() - 2;
786            if (!(ctx.info[block->index].exec.back().second & mask_type_exact)) {
787               ctx.info[block->index].exec.back().first = Operand(cond);
788               ctx.info[block->index].exec.emplace_back(Operand(bld.lm), mask_type_exact);
789            }
790         } else {
791            /* demote_if: transition to exact */
792            transition_to_Exact(ctx, bld, block->index);
793            assert(instr->operands[0].isTemp());
794            cond = instr->operands[0].getTemp();
795            num = ctx.info[block->index].exec.size() - 1;
796         }
797
798         for (int i = num; i >= 0; i--) {
799            if (ctx.info[block->index].exec[i].second & mask_type_exact) {
800               Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
801                                             ctx.info[block->index].exec[i].first, cond);
802               if (i == (int)ctx.info[block->index].exec.size() - 1) {
803                  andn2->operands[0] = Operand(exec, bld.lm);
804                  andn2->definitions[0] = Definition(exec, bld.lm);
805               }
806
807               ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
808               exit_cond = andn2->definitions[1].getTemp();
809            } else {
810               assert(i != 0);
811            }
812         }
813         instr->opcode = aco_opcode::p_exit_early_if;
814         instr->operands[0] = bld.scc(exit_cond);
815         state = Exact;
816
817      } else if (instr->opcode == aco_opcode::p_elect) {
818         bool all_lanes_enabled = ctx.info[block->index].exec.back().first.constantEquals(-1u);
819         Definition dst = instr->definitions[0];
820
821         if (all_lanes_enabled) {
822            bld.copy(Definition(dst), Operand::c32_or_c64(1u, dst.size() == 2));
823         } else {
824            Temp first_lane_idx = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
825            bld.sop2(Builder::s_lshl, Definition(dst), bld.def(s1, scc),
826                     Operand::c32_or_c64(1u, dst.size() == 2), Operand(first_lane_idx));
827         }
828         instr.reset();
829         continue;
830      }
831
832      bld.insert(std::move(instr));
833   }
834}
835
836void
837add_branch_code(exec_ctx& ctx, Block* block)
838{
839   unsigned idx = block->index;
840   Builder bld(ctx.program, block);
841
842   if (idx == ctx.program->blocks.size() - 1)
843      return;
844
845   /* try to disable wqm handling */
846   if (ctx.handle_wqm && block->kind & block_kind_top_level) {
847      if (ctx.info[idx].exec.size() == 3) {
848         assert(ctx.info[idx].exec[1].second == mask_type_wqm);
849         ctx.info[idx].exec.pop_back();
850      }
851      assert(ctx.info[idx].exec.size() <= 2);
852
853      if (ctx.info[idx].ever_again_needs == 0 || ctx.info[idx].ever_again_needs == Exact) {
854         /* transition to Exact */
855         aco_ptr<Instruction> branch = std::move(block->instructions.back());
856         block->instructions.pop_back();
857         ctx.info[idx].exec.back().second |= mask_type_global;
858         transition_to_Exact(ctx, bld, idx);
859         bld.insert(std::move(branch));
860         ctx.handle_wqm = false;
861
862      } else if (ctx.info[idx].block_needs & Preserve_WQM) {
863         /* transition to WQM and remove global flag */
864         aco_ptr<Instruction> branch = std::move(block->instructions.back());
865         block->instructions.pop_back();
866         transition_to_WQM(ctx, bld, idx);
867         ctx.info[idx].exec.back().second &= ~mask_type_global;
868         bld.insert(std::move(branch));
869      }
870   }
871
872   if (block->kind & block_kind_loop_preheader) {
873      /* collect information about the succeeding loop */
874      bool has_divergent_break = false;
875      bool has_divergent_continue = false;
876      bool has_discard = false;
877      uint8_t needs = 0;
878      unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth;
879
880      for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) {
881         Block& loop_block = ctx.program->blocks[i];
882         needs |= ctx.info[i].block_needs;
883
884         if (loop_block.kind & block_kind_uses_discard_if || loop_block.kind & block_kind_discard ||
885             loop_block.kind & block_kind_uses_demote)
886            has_discard = true;
887         if (loop_block.loop_nest_depth != loop_nest_depth)
888            continue;
889
890         if (loop_block.kind & block_kind_uniform)
891            continue;
892         else if (loop_block.kind & block_kind_break)
893            has_divergent_break = true;
894         else if (loop_block.kind & block_kind_continue)
895            has_divergent_continue = true;
896      }
897
898      if (ctx.handle_wqm) {
899         if (needs & WQM) {
900            aco_ptr<Instruction> branch = std::move(block->instructions.back());
901            block->instructions.pop_back();
902            transition_to_WQM(ctx, bld, idx);
903            bld.insert(std::move(branch));
904         } else {
905            aco_ptr<Instruction> branch = std::move(block->instructions.back());
906            block->instructions.pop_back();
907            transition_to_Exact(ctx, bld, idx);
908            bld.insert(std::move(branch));
909         }
910      }
911
912      unsigned num_exec_masks = ctx.info[idx].exec.size();
913      if (block->kind & block_kind_top_level)
914         num_exec_masks = std::min(num_exec_masks, 2u);
915
916      ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks, needs,
917                            has_divergent_break, has_divergent_continue, has_discard);
918   }
919
920   /* For normal breaks, this is the exec mask. For discard+break, it's the
921    * old exec mask before it was zero'd.
922    */
923   Operand break_cond = Operand(exec, bld.lm);
924
925   if (block->kind & block_kind_discard) {
926
927      assert(block->instructions.back()->isBranch());
928      aco_ptr<Instruction> branch = std::move(block->instructions.back());
929      block->instructions.pop_back();
930
931      /* create a discard_if() instruction with the exec mask as condition */
932      unsigned num = 0;
933      if (ctx.loop.size()) {
934         /* if we're in a loop, only discard from the outer exec masks */
935         num = ctx.loop.back().num_exec_masks;
936      } else {
937         num = ctx.info[idx].exec.size() - 1;
938      }
939
940      Temp cond = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
941                           Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm));
942
943      for (int i = num - 1; i >= 0; i--) {
944         Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
945                                       get_exec_op(ctx.info[block->index].exec[i].first), cond);
946         if (i == (int)ctx.info[idx].exec.size() - 1)
947            andn2->definitions[0] = Definition(exec, bld.lm);
948         if (i == 0)
949            bld.pseudo(aco_opcode::p_exit_early_if, bld.scc(andn2->definitions[1].getTemp()));
950         ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
951      }
952      assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
953
954      break_cond = Operand(cond);
955      bld.insert(std::move(branch));
956      /* no return here as it can be followed by a divergent break */
957   }
958
959   if (block->kind & block_kind_continue_or_break) {
960      assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind &
961             block_kind_loop_header);
962      assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind &
963             block_kind_loop_exit);
964      assert(block->instructions.back()->opcode == aco_opcode::p_branch);
965      block->instructions.pop_back();
966
967      bool need_parallelcopy = false;
968      while (!(ctx.info[idx].exec.back().second & mask_type_loop)) {
969         ctx.info[idx].exec.pop_back();
970         need_parallelcopy = true;
971      }
972
973      if (need_parallelcopy)
974         ctx.info[idx].exec.back().first = bld.pseudo(
975            aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
976      bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm),
977                 block->linear_succs[1], block->linear_succs[0]);
978      return;
979   }
980
981   if (block->kind & block_kind_uniform) {
982      Pseudo_branch_instruction& branch = block->instructions.back()->branch();
983      if (branch.opcode == aco_opcode::p_branch) {
984         branch.target[0] = block->linear_succs[0];
985      } else {
986         branch.target[0] = block->linear_succs[1];
987         branch.target[1] = block->linear_succs[0];
988      }
989      return;
990   }
991
992   if (block->kind & block_kind_branch) {
993
994      if (ctx.handle_wqm && ctx.info[idx].exec.size() >= 2 &&
995          ctx.info[idx].exec.back().second == mask_type_exact &&
996          !(ctx.info[idx].block_needs & Exact_Branch) &&
997          ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].second & mask_type_wqm) {
998         /* return to wqm before branching */
999         ctx.info[idx].exec.pop_back();
1000      }
1001
1002      // orig = s_and_saveexec_b64
1003      assert(block->linear_succs.size() == 2);
1004      assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z);
1005      Temp cond = block->instructions.back()->operands[0].getTemp();
1006      block->instructions.pop_back();
1007
1008      if (ctx.info[idx].block_needs & Exact_Branch)
1009         transition_to_Exact(ctx, bld, idx);
1010
1011      uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
1012      if (ctx.info[idx].exec.back().first.constantEquals(-1u)) {
1013         bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm), cond);
1014      } else {
1015         Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
1016                                  Definition(exec, bld.lm), cond, Operand(exec, bld.lm));
1017
1018         ctx.info[idx].exec.back().first = Operand(old_exec);
1019      }
1020
1021      /* add next current exec to the stack */
1022      ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type);
1023
1024      bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm),
1025                 block->linear_succs[1], block->linear_succs[0]);
1026      return;
1027   }
1028
1029   if (block->kind & block_kind_invert) {
1030      // exec = s_andn2_b64 (original_exec, exec)
1031      assert(block->instructions.back()->opcode == aco_opcode::p_branch);
1032      block->instructions.pop_back();
1033      assert(ctx.info[idx].exec.size() >= 2);
1034      Operand orig_exec = ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].first;
1035      bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), orig_exec,
1036               Operand(exec, bld.lm));
1037
1038      bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm),
1039                 block->linear_succs[1], block->linear_succs[0]);
1040      return;
1041   }
1042
1043   if (block->kind & block_kind_break) {
1044      // loop_mask = s_andn2_b64 (loop_mask, exec)
1045      assert(block->instructions.back()->opcode == aco_opcode::p_branch);
1046      block->instructions.pop_back();
1047
1048      Temp cond = Temp();
1049      for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
1050         cond = bld.tmp(s1);
1051         Operand exec_mask = ctx.info[idx].exec[exec_idx].first;
1052         exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
1053                              exec_mask, break_cond);
1054         ctx.info[idx].exec[exec_idx].first = exec_mask;
1055         if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
1056            break;
1057      }
1058
1059      /* check if the successor is the merge block, otherwise set exec to 0 */
1060      // TODO: this could be done better by directly branching to the merge block
1061      unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
1062      Block& succ = ctx.program->blocks[succ_idx];
1063      if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
1064         bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes()));
1065      }
1066
1067      bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), bld.scc(cond),
1068                 block->linear_succs[1], block->linear_succs[0]);
1069      return;
1070   }
1071
1072   if (block->kind & block_kind_continue) {
1073      assert(block->instructions.back()->opcode == aco_opcode::p_branch);
1074      block->instructions.pop_back();
1075
1076      Temp cond = Temp();
1077      for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
1078         if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
1079            break;
1080         cond = bld.tmp(s1);
1081         Operand exec_mask = ctx.info[idx].exec[exec_idx].first;
1082         exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
1083                              exec_mask, Operand(exec, bld.lm));
1084         ctx.info[idx].exec[exec_idx].first = exec_mask;
1085      }
1086      assert(cond != Temp());
1087
1088      /* check if the successor is the merge block, otherwise set exec to 0 */
1089      // TODO: this could be done better by directly branching to the merge block
1090      unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
1091      Block& succ = ctx.program->blocks[succ_idx];
1092      if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
1093         bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes()));
1094      }
1095
1096      bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), bld.scc(cond),
1097                 block->linear_succs[1], block->linear_succs[0]);
1098      return;
1099   }
1100}
1101
1102void
1103process_block(exec_ctx& ctx, Block* block)
1104{
1105   std::vector<aco_ptr<Instruction>> instructions;
1106   instructions.reserve(block->instructions.size());
1107
1108   unsigned idx = add_coupling_code(ctx, block, instructions);
1109
1110   assert(block->index != ctx.program->blocks.size() - 1 ||
1111          ctx.info[block->index].exec.size() <= 2);
1112
1113   process_instructions(ctx, block, instructions, idx);
1114
1115   block->instructions = std::move(instructions);
1116
1117   add_branch_code(ctx, block);
1118}
1119
1120} /* end namespace */
1121
1122void
1123insert_exec_mask(Program* program)
1124{
1125   exec_ctx ctx(program);
1126
1127   if (program->needs_wqm && program->needs_exact)
1128      calculate_wqm_needs(ctx);
1129
1130   for (Block& block : program->blocks)
1131      process_block(ctx, &block);
1132}
1133
1134} // namespace aco
1135