1/*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "aco_ir.h"
26
27#include "common/sid.h"
28
29#include <map>
30#include <stack>
31#include <vector>
32
33namespace aco {
34
35namespace {
36
37/**
38 * The general idea of this pass is:
39 * The CFG is traversed in reverse postorder (forward) and loops are processed
40 * several times until no progress is made.
41 * Per BB two wait_ctx is maintained: an in-context and out-context.
42 * The in-context is the joined out-contexts of the predecessors.
43 * The context contains a map: gpr -> wait_entry
44 * consisting of the information about the cnt values to be waited for.
45 * Note: After merge-nodes, it might occur that for the same register
46 *       multiple cnt values are to be waited for.
47 *
48 * The values are updated according to the encountered instructions:
49 * - additional events increment the counter of waits of the same type
50 * - or erase gprs with counters higher than to be waited for.
51 */
52
53// TODO: do a more clever insertion of wait_cnt (lgkm_cnt)
54// when there is a load followed by a use of a previous load
55
56/* Instructions of the same event will finish in-order except for smem
57 * and maybe flat. Instructions of different events may not finish in-order. */
58enum wait_event : uint16_t {
59   event_smem = 1 << 0,
60   event_lds = 1 << 1,
61   event_gds = 1 << 2,
62   event_vmem = 1 << 3,
63   event_vmem_store = 1 << 4, /* GFX10+ */
64   event_flat = 1 << 5,
65   event_exp_pos = 1 << 6,
66   event_exp_param = 1 << 7,
67   event_exp_mrt_null = 1 << 8,
68   event_gds_gpr_lock = 1 << 9,
69   event_vmem_gpr_lock = 1 << 10,
70   event_sendmsg = 1 << 11,
71   num_events = 12,
72};
73
74enum counter_type : uint8_t {
75   counter_exp = 1 << 0,
76   counter_lgkm = 1 << 1,
77   counter_vm = 1 << 2,
78   counter_vs = 1 << 3,
79   num_counters = 4,
80};
81
82static const uint16_t exp_events =
83   event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock;
84static const uint16_t lgkm_events = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
85static const uint16_t vm_events = event_vmem | event_flat;
86static const uint16_t vs_events = event_vmem_store;
87
88uint8_t
89get_counters_for_event(wait_event ev)
90{
91   switch (ev) {
92   case event_smem:
93   case event_lds:
94   case event_gds:
95   case event_sendmsg: return counter_lgkm;
96   case event_vmem: return counter_vm;
97   case event_vmem_store: return counter_vs;
98   case event_flat: return counter_vm | counter_lgkm;
99   case event_exp_pos:
100   case event_exp_param:
101   case event_exp_mrt_null:
102   case event_gds_gpr_lock:
103   case event_vmem_gpr_lock: return counter_exp;
104   default: return 0;
105   }
106}
107
108struct wait_entry {
109   wait_imm imm;
110   uint16_t events;  /* use wait_event notion */
111   uint8_t counters; /* use counter_type notion */
112   bool wait_on_read : 1;
113   bool logical : 1;
114   bool has_vmem_nosampler : 1;
115   bool has_vmem_sampler : 1;
116
117   wait_entry(wait_event event_, wait_imm imm_, bool logical_, bool wait_on_read_)
118       : imm(imm_), events(event_), counters(get_counters_for_event(event_)),
119         wait_on_read(wait_on_read_), logical(logical_), has_vmem_nosampler(false),
120         has_vmem_sampler(false)
121   {}
122
123   bool join(const wait_entry& other)
124   {
125      bool changed = (other.events & ~events) || (other.counters & ~counters) ||
126                     (other.wait_on_read && !wait_on_read) ||
127                     (other.has_vmem_nosampler && !has_vmem_nosampler) ||
128                     (other.has_vmem_sampler && !has_vmem_sampler);
129      events |= other.events;
130      counters |= other.counters;
131      changed |= imm.combine(other.imm);
132      wait_on_read |= other.wait_on_read;
133      has_vmem_nosampler |= other.has_vmem_nosampler;
134      has_vmem_sampler |= other.has_vmem_sampler;
135      assert(logical == other.logical);
136      return changed;
137   }
138
139   void remove_counter(counter_type counter)
140   {
141      counters &= ~counter;
142
143      if (counter == counter_lgkm) {
144         imm.lgkm = wait_imm::unset_counter;
145         events &= ~(event_smem | event_lds | event_gds | event_sendmsg);
146      }
147
148      if (counter == counter_vm) {
149         imm.vm = wait_imm::unset_counter;
150         events &= ~event_vmem;
151         has_vmem_nosampler = false;
152         has_vmem_sampler = false;
153      }
154
155      if (counter == counter_exp) {
156         imm.exp = wait_imm::unset_counter;
157         events &= ~(event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock |
158                     event_vmem_gpr_lock);
159      }
160
161      if (counter == counter_vs) {
162         imm.vs = wait_imm::unset_counter;
163         events &= ~event_vmem_store;
164      }
165
166      if (!(counters & counter_lgkm) && !(counters & counter_vm))
167         events &= ~event_flat;
168   }
169};
170
171struct wait_ctx {
172   Program* program;
173   enum chip_class chip_class;
174   uint16_t max_vm_cnt;
175   uint16_t max_exp_cnt;
176   uint16_t max_lgkm_cnt;
177   uint16_t max_vs_cnt;
178   uint16_t unordered_events = event_smem | event_flat;
179
180   uint8_t vm_cnt = 0;
181   uint8_t exp_cnt = 0;
182   uint8_t lgkm_cnt = 0;
183   uint8_t vs_cnt = 0;
184   bool pending_flat_lgkm = false;
185   bool pending_flat_vm = false;
186   bool pending_s_buffer_store = false; /* GFX10 workaround */
187
188   wait_imm barrier_imm[storage_count];
189   uint16_t barrier_events[storage_count] = {}; /* use wait_event notion */
190
191   std::map<PhysReg, wait_entry> gpr_map;
192
193   wait_ctx() {}
194   wait_ctx(Program* program_)
195       : program(program_), chip_class(program_->chip_class),
196         max_vm_cnt(program_->chip_class >= GFX9 ? 62 : 14), max_exp_cnt(6),
197         max_lgkm_cnt(program_->chip_class >= GFX10 ? 62 : 14),
198         max_vs_cnt(program_->chip_class >= GFX10 ? 62 : 0),
199         unordered_events(event_smem | (program_->chip_class < GFX10 ? event_flat : 0))
200   {}
201
202   bool join(const wait_ctx* other, bool logical)
203   {
204      bool changed = other->exp_cnt > exp_cnt || other->vm_cnt > vm_cnt ||
205                     other->lgkm_cnt > lgkm_cnt || other->vs_cnt > vs_cnt ||
206                     (other->pending_flat_lgkm && !pending_flat_lgkm) ||
207                     (other->pending_flat_vm && !pending_flat_vm);
208
209      exp_cnt = std::max(exp_cnt, other->exp_cnt);
210      vm_cnt = std::max(vm_cnt, other->vm_cnt);
211      lgkm_cnt = std::max(lgkm_cnt, other->lgkm_cnt);
212      vs_cnt = std::max(vs_cnt, other->vs_cnt);
213      pending_flat_lgkm |= other->pending_flat_lgkm;
214      pending_flat_vm |= other->pending_flat_vm;
215      pending_s_buffer_store |= other->pending_s_buffer_store;
216
217      for (const auto& entry : other->gpr_map) {
218         if (entry.second.logical != logical)
219            continue;
220
221         using iterator = std::map<PhysReg, wait_entry>::iterator;
222         const std::pair<iterator, bool> insert_pair = gpr_map.insert(entry);
223         if (insert_pair.second) {
224            changed = true;
225         } else {
226            changed |= insert_pair.first->second.join(entry.second);
227         }
228      }
229
230      for (unsigned i = 0; i < storage_count; i++) {
231         changed |= barrier_imm[i].combine(other->barrier_imm[i]);
232         changed |= (other->barrier_events[i] & ~barrier_events[i]) != 0;
233         barrier_events[i] |= other->barrier_events[i];
234      }
235
236      return changed;
237   }
238
239   void wait_and_remove_from_entry(PhysReg reg, wait_entry& entry, counter_type counter)
240   {
241      entry.remove_counter(counter);
242   }
243};
244
245void
246check_instr(wait_ctx& ctx, wait_imm& wait, Instruction* instr)
247{
248   for (const Operand op : instr->operands) {
249      if (op.isConstant() || op.isUndefined())
250         continue;
251
252      /* check consecutively read gprs */
253      for (unsigned j = 0; j < op.size(); j++) {
254         PhysReg reg{op.physReg() + j};
255         std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(reg);
256         if (it == ctx.gpr_map.end() || !it->second.wait_on_read)
257            continue;
258
259         wait.combine(it->second.imm);
260      }
261   }
262
263   for (const Definition& def : instr->definitions) {
264      /* check consecutively written gprs */
265      for (unsigned j = 0; j < def.getTemp().size(); j++) {
266         PhysReg reg{def.physReg() + j};
267
268         std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(reg);
269         if (it == ctx.gpr_map.end())
270            continue;
271
272         /* Vector Memory reads and writes return in the order they were issued */
273         bool has_sampler = instr->isMIMG() && !instr->operands[1].isUndefined() &&
274                            instr->operands[1].regClass() == s4;
275         if (instr->isVMEM() && ((it->second.events & vm_events) == event_vmem) &&
276             it->second.has_vmem_nosampler == !has_sampler &&
277             it->second.has_vmem_sampler == has_sampler)
278            continue;
279
280         /* LDS reads and writes return in the order they were issued. same for GDS */
281         if (instr->isDS() &&
282             (it->second.events & lgkm_events) == (instr->ds().gds ? event_gds : event_lds))
283            continue;
284
285         wait.combine(it->second.imm);
286      }
287   }
288}
289
290bool
291parse_wait_instr(wait_ctx& ctx, wait_imm& imm, Instruction* instr)
292{
293   if (instr->opcode == aco_opcode::s_waitcnt_vscnt &&
294       instr->definitions[0].physReg() == sgpr_null) {
295      imm.vs = std::min<uint8_t>(imm.vs, instr->sopk().imm);
296      return true;
297   } else if (instr->opcode == aco_opcode::s_waitcnt) {
298      imm.combine(wait_imm(ctx.chip_class, instr->sopp().imm));
299      return true;
300   }
301   return false;
302}
303
304void
305perform_barrier(wait_ctx& ctx, wait_imm& imm, memory_sync_info sync, unsigned semantics)
306{
307   sync_scope subgroup_scope =
308      ctx.program->workgroup_size <= ctx.program->wave_size ? scope_workgroup : scope_subgroup;
309   if ((sync.semantics & semantics) && sync.scope > subgroup_scope) {
310      unsigned storage = sync.storage;
311      while (storage) {
312         unsigned idx = u_bit_scan(&storage);
313
314         /* LDS is private to the workgroup */
315         sync_scope bar_scope_lds = MIN2(sync.scope, scope_workgroup);
316
317         uint16_t events = ctx.barrier_events[idx];
318         if (bar_scope_lds <= subgroup_scope)
319            events &= ~event_lds;
320
321         /* in non-WGP, the L1 (L0 on GFX10+) cache keeps all memory operations
322          * in-order for the same workgroup */
323         if (!ctx.program->wgp_mode && sync.scope <= scope_workgroup)
324            events &= ~(event_vmem | event_vmem_store | event_smem);
325
326         if (events)
327            imm.combine(ctx.barrier_imm[idx]);
328      }
329   }
330}
331
332void
333force_waitcnt(wait_ctx& ctx, wait_imm& imm)
334{
335   if (ctx.vm_cnt)
336      imm.vm = 0;
337   if (ctx.exp_cnt)
338      imm.exp = 0;
339   if (ctx.lgkm_cnt)
340      imm.lgkm = 0;
341
342   if (ctx.chip_class >= GFX10) {
343      if (ctx.vs_cnt)
344         imm.vs = 0;
345   }
346}
347
348void
349kill(wait_imm& imm, Instruction* instr, wait_ctx& ctx, memory_sync_info sync_info)
350{
351   if (debug_flags & DEBUG_FORCE_WAITCNT) {
352      /* Force emitting waitcnt states right after the instruction if there is
353       * something to wait for.
354       */
355      return force_waitcnt(ctx, imm);
356   }
357
358   if (ctx.exp_cnt || ctx.vm_cnt || ctx.lgkm_cnt)
359      check_instr(ctx, imm, instr);
360
361   /* It's required to wait for scalar stores before "writing back" data.
362    * It shouldn't cost anything anyways since we're about to do s_endpgm.
363    */
364   if (ctx.lgkm_cnt && instr->opcode == aco_opcode::s_dcache_wb) {
365      assert(ctx.chip_class >= GFX8);
366      imm.lgkm = 0;
367   }
368
369   if (ctx.chip_class >= GFX10 && instr->isSMEM()) {
370      /* GFX10: A store followed by a load at the same address causes a problem because
371       * the load doesn't load the correct values unless we wait for the store first.
372       * This is NOT mitigated by an s_nop.
373       *
374       * TODO: Refine this when we have proper alias analysis.
375       */
376      if (ctx.pending_s_buffer_store && !instr->smem().definitions.empty() &&
377          !instr->smem().sync.can_reorder()) {
378         imm.lgkm = 0;
379      }
380   }
381
382   if (ctx.program->early_rast && instr->opcode == aco_opcode::exp) {
383      if (instr->exp().dest >= V_008DFC_SQ_EXP_POS && instr->exp().dest < V_008DFC_SQ_EXP_PRIM) {
384
385         /* With early_rast, the HW will start clipping and rasterization after the 1st DONE pos
386          * export. Wait for all stores (and atomics) to complete, so PS can read them.
387          * TODO: This only really applies to DONE pos exports.
388          *       Consider setting the DONE bit earlier.
389          */
390         if (ctx.vs_cnt > 0)
391            imm.vs = 0;
392         if (ctx.vm_cnt > 0)
393            imm.vm = 0;
394      }
395   }
396
397   if (instr->opcode == aco_opcode::p_barrier)
398      perform_barrier(ctx, imm, instr->barrier().sync, semantic_acqrel);
399   else
400      perform_barrier(ctx, imm, sync_info, semantic_release);
401
402   if (!imm.empty()) {
403      if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
404         imm.vm = 0;
405      if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
406         imm.lgkm = 0;
407
408      /* reset counters */
409      ctx.exp_cnt = std::min(ctx.exp_cnt, imm.exp);
410      ctx.vm_cnt = std::min(ctx.vm_cnt, imm.vm);
411      ctx.lgkm_cnt = std::min(ctx.lgkm_cnt, imm.lgkm);
412      ctx.vs_cnt = std::min(ctx.vs_cnt, imm.vs);
413
414      /* update barrier wait imms */
415      for (unsigned i = 0; i < storage_count; i++) {
416         wait_imm& bar = ctx.barrier_imm[i];
417         uint16_t& bar_ev = ctx.barrier_events[i];
418         if (bar.exp != wait_imm::unset_counter && imm.exp <= bar.exp) {
419            bar.exp = wait_imm::unset_counter;
420            bar_ev &= ~exp_events;
421         }
422         if (bar.vm != wait_imm::unset_counter && imm.vm <= bar.vm) {
423            bar.vm = wait_imm::unset_counter;
424            bar_ev &= ~(vm_events & ~event_flat);
425         }
426         if (bar.lgkm != wait_imm::unset_counter && imm.lgkm <= bar.lgkm) {
427            bar.lgkm = wait_imm::unset_counter;
428            bar_ev &= ~(lgkm_events & ~event_flat);
429         }
430         if (bar.vs != wait_imm::unset_counter && imm.vs <= bar.vs) {
431            bar.vs = wait_imm::unset_counter;
432            bar_ev &= ~vs_events;
433         }
434         if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter)
435            bar_ev &= ~event_flat;
436      }
437
438      /* remove all gprs with higher counter from map */
439      std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.begin();
440      while (it != ctx.gpr_map.end()) {
441         if (imm.exp != wait_imm::unset_counter && imm.exp <= it->second.imm.exp)
442            ctx.wait_and_remove_from_entry(it->first, it->second, counter_exp);
443         if (imm.vm != wait_imm::unset_counter && imm.vm <= it->second.imm.vm)
444            ctx.wait_and_remove_from_entry(it->first, it->second, counter_vm);
445         if (imm.lgkm != wait_imm::unset_counter && imm.lgkm <= it->second.imm.lgkm)
446            ctx.wait_and_remove_from_entry(it->first, it->second, counter_lgkm);
447         if (imm.vs != wait_imm::unset_counter && imm.vs <= it->second.imm.vs)
448            ctx.wait_and_remove_from_entry(it->first, it->second, counter_vs);
449         if (!it->second.counters)
450            it = ctx.gpr_map.erase(it);
451         else
452            it++;
453      }
454   }
455
456   if (imm.vm == 0)
457      ctx.pending_flat_vm = false;
458   if (imm.lgkm == 0) {
459      ctx.pending_flat_lgkm = false;
460      ctx.pending_s_buffer_store = false;
461   }
462}
463
464void
465update_barrier_counter(uint8_t* ctr, unsigned max)
466{
467   if (*ctr != wait_imm::unset_counter && *ctr < max)
468      (*ctr)++;
469}
470
471void
472update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, memory_sync_info sync)
473{
474   for (unsigned i = 0; i < storage_count; i++) {
475      wait_imm& bar = ctx.barrier_imm[i];
476      uint16_t& bar_ev = ctx.barrier_events[i];
477      if (sync.storage & (1 << i) && !(sync.semantics & semantic_private)) {
478         bar_ev |= event;
479         if (counters & counter_lgkm)
480            bar.lgkm = 0;
481         if (counters & counter_vm)
482            bar.vm = 0;
483         if (counters & counter_exp)
484            bar.exp = 0;
485         if (counters & counter_vs)
486            bar.vs = 0;
487      } else if (!(bar_ev & ctx.unordered_events) && !(ctx.unordered_events & event)) {
488         if (counters & counter_lgkm && (bar_ev & lgkm_events) == event)
489            update_barrier_counter(&bar.lgkm, ctx.max_lgkm_cnt);
490         if (counters & counter_vm && (bar_ev & vm_events) == event)
491            update_barrier_counter(&bar.vm, ctx.max_vm_cnt);
492         if (counters & counter_exp && (bar_ev & exp_events) == event)
493            update_barrier_counter(&bar.exp, ctx.max_exp_cnt);
494         if (counters & counter_vs && (bar_ev & vs_events) == event)
495            update_barrier_counter(&bar.vs, ctx.max_vs_cnt);
496      }
497   }
498}
499
500void
501update_counters(wait_ctx& ctx, wait_event event, memory_sync_info sync = memory_sync_info())
502{
503   uint8_t counters = get_counters_for_event(event);
504
505   if (counters & counter_lgkm && ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
506      ctx.lgkm_cnt++;
507   if (counters & counter_vm && ctx.vm_cnt <= ctx.max_vm_cnt)
508      ctx.vm_cnt++;
509   if (counters & counter_exp && ctx.exp_cnt <= ctx.max_exp_cnt)
510      ctx.exp_cnt++;
511   if (counters & counter_vs && ctx.vs_cnt <= ctx.max_vs_cnt)
512      ctx.vs_cnt++;
513
514   update_barrier_imm(ctx, counters, event, sync);
515
516   if (ctx.unordered_events & event)
517      return;
518
519   if (ctx.pending_flat_lgkm)
520      counters &= ~counter_lgkm;
521   if (ctx.pending_flat_vm)
522      counters &= ~counter_vm;
523
524   for (std::pair<const PhysReg, wait_entry>& e : ctx.gpr_map) {
525      wait_entry& entry = e.second;
526
527      if (entry.events & ctx.unordered_events)
528         continue;
529
530      assert(entry.events);
531
532      if ((counters & counter_exp) && (entry.events & exp_events) == event &&
533          entry.imm.exp < ctx.max_exp_cnt)
534         entry.imm.exp++;
535      if ((counters & counter_lgkm) && (entry.events & lgkm_events) == event &&
536          entry.imm.lgkm < ctx.max_lgkm_cnt)
537         entry.imm.lgkm++;
538      if ((counters & counter_vm) && (entry.events & vm_events) == event &&
539          entry.imm.vm < ctx.max_vm_cnt)
540         entry.imm.vm++;
541      if ((counters & counter_vs) && (entry.events & vs_events) == event &&
542          entry.imm.vs < ctx.max_vs_cnt)
543         entry.imm.vs++;
544   }
545}
546
547void
548update_counters_for_flat_load(wait_ctx& ctx, memory_sync_info sync = memory_sync_info())
549{
550   assert(ctx.chip_class < GFX10);
551
552   if (ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
553      ctx.lgkm_cnt++;
554   if (ctx.vm_cnt <= ctx.max_vm_cnt)
555      ctx.vm_cnt++;
556
557   update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, sync);
558
559   for (std::pair<PhysReg, wait_entry> e : ctx.gpr_map) {
560      if (e.second.counters & counter_vm)
561         e.second.imm.vm = 0;
562      if (e.second.counters & counter_lgkm)
563         e.second.imm.lgkm = 0;
564   }
565   ctx.pending_flat_lgkm = true;
566   ctx.pending_flat_vm = true;
567}
568
569void
570insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read,
571                  bool has_sampler = false)
572{
573   uint16_t counters = get_counters_for_event(event);
574   wait_imm imm;
575   if (counters & counter_lgkm)
576      imm.lgkm = 0;
577   if (counters & counter_vm)
578      imm.vm = 0;
579   if (counters & counter_exp)
580      imm.exp = 0;
581   if (counters & counter_vs)
582      imm.vs = 0;
583
584   wait_entry new_entry(event, imm, !rc.is_linear(), wait_on_read);
585   new_entry.has_vmem_nosampler = (event & event_vmem) && !has_sampler;
586   new_entry.has_vmem_sampler = (event & event_vmem) && has_sampler;
587
588   for (unsigned i = 0; i < rc.size(); i++) {
589      auto it = ctx.gpr_map.emplace(PhysReg{reg.reg() + i}, new_entry);
590      if (!it.second)
591         it.first->second.join(new_entry);
592   }
593}
594
595void
596insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event, bool has_sampler = false)
597{
598   if (!op.isConstant() && !op.isUndefined())
599      insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false, has_sampler);
600}
601
602void
603insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event, bool has_sampler = false)
604{
605   insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true, has_sampler);
606}
607
608void
609gen(Instruction* instr, wait_ctx& ctx)
610{
611   switch (instr->format) {
612   case Format::EXP: {
613      Export_instruction& exp_instr = instr->exp();
614
615      wait_event ev;
616      if (exp_instr.dest <= 9)
617         ev = event_exp_mrt_null;
618      else if (exp_instr.dest <= 15)
619         ev = event_exp_pos;
620      else
621         ev = event_exp_param;
622      update_counters(ctx, ev);
623
624      /* insert new entries for exported vgprs */
625      for (unsigned i = 0; i < 4; i++) {
626         if (exp_instr.enabled_mask & (1 << i)) {
627            unsigned idx = exp_instr.compressed ? i >> 1 : i;
628            assert(idx < exp_instr.operands.size());
629            insert_wait_entry(ctx, exp_instr.operands[idx], ev);
630         }
631      }
632      insert_wait_entry(ctx, exec, s2, ev, false);
633      break;
634   }
635   case Format::FLAT: {
636      FLAT_instruction& flat = instr->flat();
637      if (ctx.chip_class < GFX10 && !instr->definitions.empty())
638         update_counters_for_flat_load(ctx, flat.sync);
639      else
640         update_counters(ctx, event_flat, flat.sync);
641
642      if (!instr->definitions.empty())
643         insert_wait_entry(ctx, instr->definitions[0], event_flat);
644      break;
645   }
646   case Format::SMEM: {
647      SMEM_instruction& smem = instr->smem();
648      update_counters(ctx, event_smem, smem.sync);
649
650      if (!instr->definitions.empty())
651         insert_wait_entry(ctx, instr->definitions[0], event_smem);
652      else if (ctx.chip_class >= GFX10 && !smem.sync.can_reorder())
653         ctx.pending_s_buffer_store = true;
654
655      break;
656   }
657   case Format::DS: {
658      DS_instruction& ds = instr->ds();
659      update_counters(ctx, ds.gds ? event_gds : event_lds, ds.sync);
660      if (ds.gds)
661         update_counters(ctx, event_gds_gpr_lock);
662
663      if (!instr->definitions.empty())
664         insert_wait_entry(ctx, instr->definitions[0], ds.gds ? event_gds : event_lds);
665
666      if (ds.gds) {
667         for (const Operand& op : instr->operands)
668            insert_wait_entry(ctx, op, event_gds_gpr_lock);
669         insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
670      }
671      break;
672   }
673   case Format::MUBUF:
674   case Format::MTBUF:
675   case Format::MIMG:
676   case Format::GLOBAL: {
677      wait_event ev =
678         !instr->definitions.empty() || ctx.chip_class < GFX10 ? event_vmem : event_vmem_store;
679      update_counters(ctx, ev, get_sync_info(instr));
680
681      bool has_sampler = instr->isMIMG() && !instr->operands[1].isUndefined() &&
682                         instr->operands[1].regClass() == s4;
683
684      if (!instr->definitions.empty())
685         insert_wait_entry(ctx, instr->definitions[0], ev, has_sampler);
686
687      if (ctx.chip_class == GFX6 && instr->format != Format::MIMG && instr->operands.size() == 4) {
688         ctx.exp_cnt++;
689         update_counters(ctx, event_vmem_gpr_lock);
690         insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
691      } else if (ctx.chip_class == GFX6 && instr->isMIMG() && !instr->operands[2].isUndefined()) {
692         ctx.exp_cnt++;
693         update_counters(ctx, event_vmem_gpr_lock);
694         insert_wait_entry(ctx, instr->operands[2], event_vmem_gpr_lock);
695      }
696
697      break;
698   }
699   case Format::SOPP: {
700      if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_sendmsghalt)
701         update_counters(ctx, event_sendmsg);
702      break;
703   }
704   default: break;
705   }
706}
707
708void
709emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm& imm)
710{
711   if (imm.vs != wait_imm::unset_counter) {
712      assert(ctx.chip_class >= GFX10);
713      SOPK_instruction* waitcnt_vs =
714         create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1);
715      waitcnt_vs->definitions[0] = Definition(sgpr_null, s1);
716      waitcnt_vs->imm = imm.vs;
717      instructions.emplace_back(waitcnt_vs);
718      imm.vs = wait_imm::unset_counter;
719   }
720   if (!imm.empty()) {
721      SOPP_instruction* waitcnt =
722         create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt, Format::SOPP, 0, 0);
723      waitcnt->imm = imm.pack(ctx.chip_class);
724      waitcnt->block = -1;
725      instructions.emplace_back(waitcnt);
726   }
727   imm = wait_imm();
728}
729
730void
731handle_block(Program* program, Block& block, wait_ctx& ctx)
732{
733   std::vector<aco_ptr<Instruction>> new_instructions;
734
735   wait_imm queued_imm;
736
737   for (aco_ptr<Instruction>& instr : block.instructions) {
738      bool is_wait = parse_wait_instr(ctx, queued_imm, instr.get());
739
740      memory_sync_info sync_info = get_sync_info(instr.get());
741      kill(queued_imm, instr.get(), ctx, sync_info);
742
743      gen(instr.get(), ctx);
744
745      if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
746         if (!queued_imm.empty())
747            emit_waitcnt(ctx, new_instructions, queued_imm);
748
749         new_instructions.emplace_back(std::move(instr));
750         perform_barrier(ctx, queued_imm, sync_info, semantic_acquire);
751      }
752   }
753
754   if (!queued_imm.empty())
755      emit_waitcnt(ctx, new_instructions, queued_imm);
756
757   block.instructions.swap(new_instructions);
758}
759
760} /* end namespace */
761
762void
763insert_wait_states(Program* program)
764{
765   /* per BB ctx */
766   std::vector<bool> done(program->blocks.size());
767   std::vector<wait_ctx> in_ctx(program->blocks.size(), wait_ctx(program));
768   std::vector<wait_ctx> out_ctx(program->blocks.size(), wait_ctx(program));
769
770   std::stack<unsigned, std::vector<unsigned>> loop_header_indices;
771   unsigned loop_progress = 0;
772
773   if (program->stage.has(SWStage::VS) && program->info->vs.dynamic_inputs) {
774      for (Definition def : program->vs_inputs) {
775         update_counters(in_ctx[0], event_vmem);
776         insert_wait_entry(in_ctx[0], def, event_vmem);
777      }
778   }
779
780   for (unsigned i = 0; i < program->blocks.size();) {
781      Block& current = program->blocks[i++];
782      wait_ctx ctx = in_ctx[current.index];
783
784      if (current.kind & block_kind_loop_header) {
785         loop_header_indices.push(current.index);
786      } else if (current.kind & block_kind_loop_exit) {
787         bool repeat = false;
788         if (loop_progress == loop_header_indices.size()) {
789            i = loop_header_indices.top();
790            repeat = true;
791         }
792         loop_header_indices.pop();
793         loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
794         if (repeat)
795            continue;
796      }
797
798      bool changed = false;
799      for (unsigned b : current.linear_preds)
800         changed |= ctx.join(&out_ctx[b], false);
801      for (unsigned b : current.logical_preds)
802         changed |= ctx.join(&out_ctx[b], true);
803
804      if (done[current.index] && !changed) {
805         in_ctx[current.index] = std::move(ctx);
806         continue;
807      } else {
808         in_ctx[current.index] = ctx;
809      }
810
811      if (current.instructions.empty()) {
812         out_ctx[current.index] = std::move(ctx);
813         continue;
814      }
815
816      loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
817      done[current.index] = true;
818
819      handle_block(program, current, ctx);
820
821      out_ctx[current.index] = std::move(ctx);
822   }
823}
824
825} // namespace aco
826