1/* 2 * Copyright © 2019 Raspberry Pi 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "v3dv_private.h" 25 26#include "drm-uapi/drm_fourcc.h" 27#include "util/format/u_format.h" 28#include "util/u_math.h" 29#include "vk_format_info.h" 30#include "vk_util.h" 31#include "vulkan/wsi/wsi_common.h" 32 33/** 34 * Computes the HW's UIFblock padding for a given height/cpp. 35 * 36 * The goal of the padding is to keep pages of the same color (bank number) at 37 * least half a page away from each other vertically when crossing between 38 * columns of UIF blocks. 39 */ 40static uint32_t 41v3d_get_ub_pad(uint32_t cpp, uint32_t height) 42{ 43 uint32_t utile_h = v3d_utile_height(cpp); 44 uint32_t uif_block_h = utile_h * 2; 45 uint32_t height_ub = height / uif_block_h; 46 47 uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS; 48 49 /* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */ 50 if (height_offset_in_pc == 0) 51 return 0; 52 53 /* Try padding up to where we're offset by at least half a page. */ 54 if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) { 55 /* If we fit entirely in the page cache, don't pad. */ 56 if (height_ub < PAGE_CACHE_UB_ROWS) 57 return 0; 58 else 59 return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc; 60 } 61 62 /* If we're close to being aligned to page cache size, then round up 63 * and rely on XOR. 64 */ 65 if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS) 66 return PAGE_CACHE_UB_ROWS - height_offset_in_pc; 67 68 /* Otherwise, we're far enough away (top and bottom) to not need any 69 * padding. 70 */ 71 return 0; 72} 73 74static void 75v3d_setup_slices(struct v3dv_image *image) 76{ 77 assert(image->cpp > 0); 78 79 uint32_t width = image->vk.extent.width; 80 uint32_t height = image->vk.extent.height; 81 uint32_t depth = image->vk.extent.depth; 82 83 /* Note that power-of-two padding is based on level 1. These are not 84 * equivalent to just util_next_power_of_two(dimension), because at a 85 * level 0 dimension of 9, the level 1 power-of-two padded value is 4, 86 * not 8. 87 */ 88 uint32_t pot_width = 2 * util_next_power_of_two(u_minify(width, 1)); 89 uint32_t pot_height = 2 * util_next_power_of_two(u_minify(height, 1)); 90 uint32_t pot_depth = 2 * util_next_power_of_two(u_minify(depth, 1)); 91 92 uint32_t utile_w = v3d_utile_width(image->cpp); 93 uint32_t utile_h = v3d_utile_height(image->cpp); 94 uint32_t uif_block_w = utile_w * 2; 95 uint32_t uif_block_h = utile_h * 2; 96 97 uint32_t block_width = vk_format_get_blockwidth(image->vk.format); 98 uint32_t block_height = vk_format_get_blockheight(image->vk.format); 99 100 assert(image->vk.samples == VK_SAMPLE_COUNT_1_BIT || 101 image->vk.samples == VK_SAMPLE_COUNT_4_BIT); 102 bool msaa = image->vk.samples != VK_SAMPLE_COUNT_1_BIT; 103 104 bool uif_top = msaa; 105 106 assert(image->vk.array_layers > 0); 107 assert(depth > 0); 108 assert(image->vk.mip_levels >= 1); 109 110 uint32_t offset = 0; 111 for (int32_t i = image->vk.mip_levels - 1; i >= 0; i--) { 112 struct v3d_resource_slice *slice = &image->slices[i]; 113 114 uint32_t level_width, level_height, level_depth; 115 if (i < 2) { 116 level_width = u_minify(width, i); 117 level_height = u_minify(height, i); 118 } else { 119 level_width = u_minify(pot_width, i); 120 level_height = u_minify(pot_height, i); 121 } 122 123 if (i < 1) 124 level_depth = u_minify(depth, i); 125 else 126 level_depth = u_minify(pot_depth, i); 127 128 if (msaa) { 129 level_width *= 2; 130 level_height *= 2; 131 } 132 133 level_width = DIV_ROUND_UP(level_width, block_width); 134 level_height = DIV_ROUND_UP(level_height, block_height); 135 136 if (!image->tiled) { 137 slice->tiling = V3D_TILING_RASTER; 138 if (image->vk.image_type == VK_IMAGE_TYPE_1D) 139 level_width = align(level_width, 64 / image->cpp); 140 } else { 141 if ((i != 0 || !uif_top) && 142 (level_width <= utile_w || level_height <= utile_h)) { 143 slice->tiling = V3D_TILING_LINEARTILE; 144 level_width = align(level_width, utile_w); 145 level_height = align(level_height, utile_h); 146 } else if ((i != 0 || !uif_top) && level_width <= uif_block_w) { 147 slice->tiling = V3D_TILING_UBLINEAR_1_COLUMN; 148 level_width = align(level_width, uif_block_w); 149 level_height = align(level_height, uif_block_h); 150 } else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) { 151 slice->tiling = V3D_TILING_UBLINEAR_2_COLUMN; 152 level_width = align(level_width, 2 * uif_block_w); 153 level_height = align(level_height, uif_block_h); 154 } else { 155 /* We align the width to a 4-block column of UIF blocks, but we 156 * only align height to UIF blocks. 157 */ 158 level_width = align(level_width, 4 * uif_block_w); 159 level_height = align(level_height, uif_block_h); 160 161 slice->ub_pad = v3d_get_ub_pad(image->cpp, level_height); 162 level_height += slice->ub_pad * uif_block_h; 163 164 /* If the padding set us to to be aligned to the page cache size, 165 * then the HW will use the XOR bit on odd columns to get us 166 * perfectly misaligned. 167 */ 168 if ((level_height / uif_block_h) % 169 (V3D_PAGE_CACHE_SIZE / V3D_UIFBLOCK_ROW_SIZE) == 0) { 170 slice->tiling = V3D_TILING_UIF_XOR; 171 } else { 172 slice->tiling = V3D_TILING_UIF_NO_XOR; 173 } 174 } 175 } 176 177 slice->offset = offset; 178 slice->stride = level_width * image->cpp; 179 slice->padded_height = level_height; 180 if (slice->tiling == V3D_TILING_UIF_NO_XOR || 181 slice->tiling == V3D_TILING_UIF_XOR) { 182 slice->padded_height_of_output_image_in_uif_blocks = 183 slice->padded_height / (2 * v3d_utile_height(image->cpp)); 184 } 185 186 slice->size = level_height * slice->stride; 187 uint32_t slice_total_size = slice->size * level_depth; 188 189 /* The HW aligns level 1's base to a page if any of level 1 or 190 * below could be UIF XOR. The lower levels then inherit the 191 * alignment for as long as necesary, thanks to being power of 192 * two aligned. 193 */ 194 if (i == 1 && 195 level_width > 4 * uif_block_w && 196 level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) { 197 slice_total_size = align(slice_total_size, V3D_UIFCFG_PAGE_SIZE); 198 } 199 200 offset += slice_total_size; 201 } 202 203 image->size = offset; 204 205 /* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only 206 * needs to be aligned to utile boundaries. Since tiles are laid out 207 * from small to big in memory, we need to align the later UIF slices 208 * to UIF blocks, if they were preceded by non-UIF-block-aligned LT 209 * slices. 210 * 211 * We additionally align to 4k, which improves UIF XOR performance. 212 */ 213 image->alignment = image->tiled ? 4096 : image->cpp; 214 uint32_t align_offset = 215 align(image->slices[0].offset, image->alignment) - image->slices[0].offset; 216 if (align_offset) { 217 image->size += align_offset; 218 for (int i = 0; i < image->vk.mip_levels; i++) 219 image->slices[i].offset += align_offset; 220 } 221 222 /* Arrays and cube textures have a stride which is the distance from 223 * one full mipmap tree to the next (64b aligned). For 3D textures, 224 * we need to program the stride between slices of miplevel 0. 225 */ 226 if (image->vk.image_type != VK_IMAGE_TYPE_3D) { 227 image->cube_map_stride = 228 align(image->slices[0].offset + image->slices[0].size, 64); 229 image->size += image->cube_map_stride * (image->vk.array_layers - 1); 230 } else { 231 image->cube_map_stride = image->slices[0].size; 232 } 233} 234 235uint32_t 236v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer) 237{ 238 const struct v3d_resource_slice *slice = &image->slices[level]; 239 240 if (image->vk.image_type == VK_IMAGE_TYPE_3D) 241 return image->mem_offset + slice->offset + layer * slice->size; 242 else 243 return image->mem_offset + slice->offset + layer * image->cube_map_stride; 244} 245 246static VkResult 247create_image(struct v3dv_device *device, 248 const VkImageCreateInfo *pCreateInfo, 249 const VkAllocationCallbacks *pAllocator, 250 VkImage *pImage) 251{ 252 struct v3dv_image *image = NULL; 253 254 image = vk_image_create(&device->vk, pCreateInfo, pAllocator, sizeof(*image)); 255 if (image == NULL) 256 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); 257 258 /* When using the simulator the WSI common code will see that our 259 * driver wsi device doesn't match the display device and because of that 260 * it will not attempt to present directly from the swapchain images, 261 * instead it will use the prime blit path (use_prime_blit flag in 262 * struct wsi_swapchain), where it copies the contents of the swapchain 263 * images to a linear buffer with appropriate row stride for presentation. 264 * As a result, on that path, swapchain images do not have any special 265 * requirements and are not created with the pNext structs below. 266 */ 267 VkImageTiling tiling = pCreateInfo->tiling; 268 uint64_t modifier = DRM_FORMAT_MOD_INVALID; 269 if (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { 270 const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = 271 vk_find_struct_const(pCreateInfo->pNext, 272 IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); 273 const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info = 274 vk_find_struct_const(pCreateInfo->pNext, 275 IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT); 276 assert(mod_info || explicit_mod_info); 277 278 if (mod_info) { 279 for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) { 280 switch (mod_info->pDrmFormatModifiers[i]) { 281 case DRM_FORMAT_MOD_LINEAR: 282 if (modifier == DRM_FORMAT_MOD_INVALID) 283 modifier = DRM_FORMAT_MOD_LINEAR; 284 break; 285 case DRM_FORMAT_MOD_BROADCOM_UIF: 286 modifier = DRM_FORMAT_MOD_BROADCOM_UIF; 287 break; 288 } 289 } 290 } else { 291 modifier = explicit_mod_info->drmFormatModifier; 292 } 293 assert(modifier == DRM_FORMAT_MOD_LINEAR || 294 modifier == DRM_FORMAT_MOD_BROADCOM_UIF); 295 } else if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D || 296 image->vk.wsi_legacy_scanout) { 297 tiling = VK_IMAGE_TILING_LINEAR; 298 } 299 300 const struct v3dv_format *format = 301 v3dv_X(device, get_format)(pCreateInfo->format); 302 v3dv_assert(format != NULL && format->supported); 303 304 assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT || 305 pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT); 306 307 image->format = format; 308 image->cpp = vk_format_get_blocksize(image->vk.format); 309 image->tiled = tiling == VK_IMAGE_TILING_OPTIMAL || 310 (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT && 311 modifier != DRM_FORMAT_MOD_LINEAR); 312 313 image->vk.tiling = tiling; 314 image->vk.drm_format_mod = modifier; 315 316 /* Our meta paths can create image views with compatible formats for any 317 * image, so always set this flag to keep the common Vulkan image code 318 * happy. 319 */ 320 image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT; 321 322 v3d_setup_slices(image); 323 324 *pImage = v3dv_image_to_handle(image); 325 326 return VK_SUCCESS; 327} 328 329static VkResult 330create_image_from_swapchain(struct v3dv_device *device, 331 const VkImageCreateInfo *pCreateInfo, 332 const VkImageSwapchainCreateInfoKHR *swapchain_info, 333 const VkAllocationCallbacks *pAllocator, 334 VkImage *pImage) 335{ 336 struct v3dv_image *swapchain_image = 337 v3dv_wsi_get_image_from_swapchain(swapchain_info->swapchain, 0); 338 assert(swapchain_image); 339 340 VkImageCreateInfo local_create_info = *pCreateInfo; 341 local_create_info.pNext = NULL; 342 343 /* Added by wsi code. */ 344 local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; 345 346 /* The spec requires TILING_OPTIMAL as input, but the swapchain image may 347 * privately use a different tiling. See spec anchor 348 * #swapchain-wsi-image-create-info . 349 */ 350 assert(local_create_info.tiling == VK_IMAGE_TILING_OPTIMAL); 351 local_create_info.tiling = swapchain_image->vk.tiling; 352 353 VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = { 354 .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT, 355 .drmFormatModifierCount = 1, 356 .pDrmFormatModifiers = &swapchain_image->vk.drm_format_mod, 357 }; 358 359 if (swapchain_image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) 360 __vk_append_struct(&local_create_info, &local_modifier_info); 361 362 assert(swapchain_image->vk.image_type == local_create_info.imageType); 363 assert(swapchain_image->vk.format == local_create_info.format); 364 assert(swapchain_image->vk.extent.width == local_create_info.extent.width); 365 assert(swapchain_image->vk.extent.height == local_create_info.extent.height); 366 assert(swapchain_image->vk.extent.depth == local_create_info.extent.depth); 367 assert(swapchain_image->vk.array_layers == local_create_info.arrayLayers); 368 assert(swapchain_image->vk.samples == local_create_info.samples); 369 assert(swapchain_image->vk.tiling == local_create_info.tiling); 370 assert((swapchain_image->vk.usage & local_create_info.usage) == 371 local_create_info.usage); 372 373 return create_image(device, &local_create_info, pAllocator, pImage); 374} 375 376VKAPI_ATTR VkResult VKAPI_CALL 377v3dv_CreateImage(VkDevice _device, 378 const VkImageCreateInfo *pCreateInfo, 379 const VkAllocationCallbacks *pAllocator, 380 VkImage *pImage) 381{ 382 V3DV_FROM_HANDLE(v3dv_device, device, _device); 383 384 const VkImageSwapchainCreateInfoKHR *swapchain_info = 385 vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); 386 if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) 387 return create_image_from_swapchain(device, pCreateInfo, swapchain_info, 388 pAllocator, pImage); 389 390 return create_image(device, pCreateInfo, pAllocator, pImage); 391} 392 393VKAPI_ATTR void VKAPI_CALL 394v3dv_GetImageSubresourceLayout(VkDevice device, 395 VkImage _image, 396 const VkImageSubresource *subresource, 397 VkSubresourceLayout *layout) 398{ 399 V3DV_FROM_HANDLE(v3dv_image, image, _image); 400 401 const struct v3d_resource_slice *slice = 402 &image->slices[subresource->mipLevel]; 403 layout->offset = 404 v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer); 405 layout->rowPitch = slice->stride; 406 layout->depthPitch = image->cube_map_stride; 407 layout->arrayPitch = image->cube_map_stride; 408 409 if (image->vk.image_type != VK_IMAGE_TYPE_3D) { 410 layout->size = slice->size; 411 } else { 412 /* For 3D images, the size of the slice represents the size of a 2D slice 413 * in the 3D image, so we have to multiply by the depth extent of the 414 * miplevel. For levels other than the first, we just compute the size 415 * as the distance between consecutive levels (notice that mip levels are 416 * arranged in memory from last to first). 417 */ 418 if (subresource->mipLevel == 0) { 419 layout->size = slice->size * image->vk.extent.depth; 420 } else { 421 const struct v3d_resource_slice *prev_slice = 422 &image->slices[subresource->mipLevel - 1]; 423 layout->size = prev_slice->offset - slice->offset; 424 } 425 } 426} 427 428VKAPI_ATTR void VKAPI_CALL 429v3dv_DestroyImage(VkDevice _device, 430 VkImage _image, 431 const VkAllocationCallbacks* pAllocator) 432{ 433 V3DV_FROM_HANDLE(v3dv_device, device, _device); 434 V3DV_FROM_HANDLE(v3dv_image, image, _image); 435 436 if (image == NULL) 437 return; 438 439 vk_image_destroy(&device->vk, pAllocator, &image->vk); 440} 441 442VkImageViewType 443v3dv_image_type_to_view_type(VkImageType type) 444{ 445 switch (type) { 446 case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D; 447 case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D; 448 case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D; 449 default: 450 unreachable("Invalid image type"); 451 } 452} 453 454static enum pipe_swizzle 455vk_component_mapping_to_pipe_swizzle(VkComponentSwizzle swz) 456{ 457 assert(swz != VK_COMPONENT_SWIZZLE_IDENTITY); 458 459 switch (swz) { 460 case VK_COMPONENT_SWIZZLE_ZERO: 461 return PIPE_SWIZZLE_0; 462 case VK_COMPONENT_SWIZZLE_ONE: 463 return PIPE_SWIZZLE_1; 464 case VK_COMPONENT_SWIZZLE_R: 465 return PIPE_SWIZZLE_X; 466 case VK_COMPONENT_SWIZZLE_G: 467 return PIPE_SWIZZLE_Y; 468 case VK_COMPONENT_SWIZZLE_B: 469 return PIPE_SWIZZLE_Z; 470 case VK_COMPONENT_SWIZZLE_A: 471 return PIPE_SWIZZLE_W; 472 default: 473 unreachable("Unknown VkComponentSwizzle"); 474 }; 475} 476 477VKAPI_ATTR VkResult VKAPI_CALL 478v3dv_CreateImageView(VkDevice _device, 479 const VkImageViewCreateInfo *pCreateInfo, 480 const VkAllocationCallbacks *pAllocator, 481 VkImageView *pView) 482{ 483 V3DV_FROM_HANDLE(v3dv_device, device, _device); 484 V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image); 485 struct v3dv_image_view *iview; 486 487 iview = vk_image_view_create(&device->vk, pCreateInfo, pAllocator, 488 sizeof(*iview)); 489 if (iview == NULL) 490 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); 491 492 const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; 493 494 iview->offset = v3dv_layer_offset(image, iview->vk.base_mip_level, 495 iview->vk.base_array_layer); 496 497 /* If we have D24S8 format but the view only selects the stencil aspect 498 * we want to re-interpret the format as RGBA8_UINT, then map our stencil 499 * data reads to the R component and ignore the GBA channels that contain 500 * the depth aspect data. 501 */ 502 VkFormat format; 503 uint8_t image_view_swizzle[4]; 504 if (pCreateInfo->format == VK_FORMAT_D24_UNORM_S8_UINT && 505 range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) { 506 format = VK_FORMAT_R8G8B8A8_UINT; 507 image_view_swizzle[0] = PIPE_SWIZZLE_X; 508 image_view_swizzle[1] = PIPE_SWIZZLE_0; 509 image_view_swizzle[2] = PIPE_SWIZZLE_0; 510 image_view_swizzle[3] = PIPE_SWIZZLE_1; 511 } else { 512 format = pCreateInfo->format; 513 514 /* FIXME: we are doing this vk to pipe swizzle mapping just to call 515 * util_format_compose_swizzles. Would be good to check if it would be 516 * better to reimplement the latter using vk component 517 */ 518 image_view_swizzle[0] = 519 vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle.r); 520 image_view_swizzle[1] = 521 vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle.g); 522 image_view_swizzle[2] = 523 vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle.b); 524 image_view_swizzle[3] = 525 vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle.a); 526 } 527 528 iview->vk.format = format; 529 iview->format = v3dv_X(device, get_format)(format); 530 assert(iview->format && iview->format->supported); 531 532 if (vk_format_is_depth_or_stencil(iview->vk.format)) { 533 iview->internal_type = 534 v3dv_X(device, get_internal_depth_type)(iview->vk.format); 535 } else { 536 v3dv_X(device, get_internal_type_bpp_for_output_format) 537 (iview->format->rt_type, &iview->internal_type, &iview->internal_bpp); 538 } 539 540 const uint8_t *format_swizzle = v3dv_get_format_swizzle(device, format); 541 util_format_compose_swizzles(format_swizzle, image_view_swizzle, 542 iview->swizzle); 543 iview->swap_rb = iview->swizzle[0] == PIPE_SWIZZLE_Z; 544 545 v3dv_X(device, pack_texture_shader_state)(device, iview); 546 547 *pView = v3dv_image_view_to_handle(iview); 548 549 return VK_SUCCESS; 550} 551 552VKAPI_ATTR void VKAPI_CALL 553v3dv_DestroyImageView(VkDevice _device, 554 VkImageView imageView, 555 const VkAllocationCallbacks* pAllocator) 556{ 557 V3DV_FROM_HANDLE(v3dv_device, device, _device); 558 V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView); 559 560 if (image_view == NULL) 561 return; 562 563 vk_image_view_destroy(&device->vk, pAllocator, &image_view->vk); 564} 565 566VKAPI_ATTR VkResult VKAPI_CALL 567v3dv_CreateBufferView(VkDevice _device, 568 const VkBufferViewCreateInfo *pCreateInfo, 569 const VkAllocationCallbacks *pAllocator, 570 VkBufferView *pView) 571{ 572 V3DV_FROM_HANDLE(v3dv_device, device, _device); 573 574 struct v3dv_buffer *buffer = 575 v3dv_buffer_from_handle(pCreateInfo->buffer); 576 577 struct v3dv_buffer_view *view = 578 vk_object_zalloc(&device->vk, pAllocator, sizeof(*view), 579 VK_OBJECT_TYPE_BUFFER_VIEW); 580 if (!view) 581 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); 582 583 uint32_t range; 584 if (pCreateInfo->range == VK_WHOLE_SIZE) 585 range = buffer->size - pCreateInfo->offset; 586 else 587 range = pCreateInfo->range; 588 589 enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format); 590 uint32_t num_elements = range / util_format_get_blocksize(pipe_format); 591 592 view->buffer = buffer; 593 view->offset = pCreateInfo->offset; 594 view->size = view->offset + range; 595 view->num_elements = num_elements; 596 view->vk_format = pCreateInfo->format; 597 view->format = v3dv_X(device, get_format)(view->vk_format); 598 599 v3dv_X(device, get_internal_type_bpp_for_output_format) 600 (view->format->rt_type, &view->internal_type, &view->internal_bpp); 601 602 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT || 603 buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) 604 v3dv_X(device, pack_texture_shader_state_from_buffer_view)(device, view); 605 606 *pView = v3dv_buffer_view_to_handle(view); 607 608 return VK_SUCCESS; 609} 610 611VKAPI_ATTR void VKAPI_CALL 612v3dv_DestroyBufferView(VkDevice _device, 613 VkBufferView bufferView, 614 const VkAllocationCallbacks *pAllocator) 615{ 616 V3DV_FROM_HANDLE(v3dv_device, device, _device); 617 V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView); 618 619 if (buffer_view == NULL) 620 return; 621 622 vk_object_free(&device->vk, pAllocator, buffer_view); 623} 624