ast_to_hir.cpp revision 01e04c3f
1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file ast_to_hir.c 26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR). 27 * 28 * During the conversion to HIR, the majority of the symantic checking is 29 * preformed on the program. This includes: 30 * 31 * * Symbol table management 32 * * Type checking 33 * * Function binding 34 * 35 * The majority of this work could be done during parsing, and the parser could 36 * probably generate HIR directly. However, this results in frequent changes 37 * to the parser code. Since we do not assume that every system this complier 38 * is built on will have Flex and Bison installed, we have to store the code 39 * generated by these tools in our version control system. In other parts of 40 * the system we've seen problems where a parser was changed but the generated 41 * code was not committed, merge conflicts where created because two developers 42 * had slightly different versions of Bison installed, etc. 43 * 44 * I have also noticed that running Bison generated parsers in GDB is very 45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very 46 * well 'print $1' in GDB. 47 * 48 * As a result, my preference is to put as little C code as possible in the 49 * parser (and lexer) sources. 50 */ 51 52#include "glsl_symbol_table.h" 53#include "glsl_parser_extras.h" 54#include "ast.h" 55#include "compiler/glsl_types.h" 56#include "util/hash_table.h" 57#include "main/mtypes.h" 58#include "main/macros.h" 59#include "main/shaderobj.h" 60#include "ir.h" 61#include "ir_builder.h" 62#include "builtin_functions.h" 63 64using namespace ir_builder; 65 66static void 67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, 68 exec_list *instructions); 69static void 70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state); 71 72static void 73remove_per_vertex_blocks(exec_list *instructions, 74 _mesa_glsl_parse_state *state, ir_variable_mode mode); 75 76/** 77 * Visitor class that finds the first instance of any write-only variable that 78 * is ever read, if any 79 */ 80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor 81{ 82public: 83 read_from_write_only_variable_visitor() : found(NULL) 84 { 85 } 86 87 virtual ir_visitor_status visit(ir_dereference_variable *ir) 88 { 89 if (this->in_assignee) 90 return visit_continue; 91 92 ir_variable *var = ir->variable_referenced(); 93 /* We can have memory_write_only set on both images and buffer variables, 94 * but in the former there is a distinction between reads from 95 * the variable itself (write_only) and from the memory they point to 96 * (memory_write_only), while in the case of buffer variables there is 97 * no such distinction, that is why this check here is limited to 98 * buffer variables alone. 99 */ 100 if (!var || var->data.mode != ir_var_shader_storage) 101 return visit_continue; 102 103 if (var->data.memory_write_only) { 104 found = var; 105 return visit_stop; 106 } 107 108 return visit_continue; 109 } 110 111 ir_variable *get_variable() { 112 return found; 113 } 114 115 virtual ir_visitor_status visit_enter(ir_expression *ir) 116 { 117 /* .length() doesn't actually read anything */ 118 if (ir->operation == ir_unop_ssbo_unsized_array_length) 119 return visit_continue_with_parent; 120 121 return visit_continue; 122 } 123 124private: 125 ir_variable *found; 126}; 127 128void 129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 130{ 131 _mesa_glsl_initialize_variables(instructions, state); 132 133 state->symbols->separate_function_namespace = state->language_version == 110; 134 135 state->current_function = NULL; 136 137 state->toplevel_ir = instructions; 138 139 state->gs_input_prim_type_specified = false; 140 state->tcs_output_vertices_specified = false; 141 state->cs_input_local_size_specified = false; 142 143 /* Section 4.2 of the GLSL 1.20 specification states: 144 * "The built-in functions are scoped in a scope outside the global scope 145 * users declare global variables in. That is, a shader's global scope, 146 * available for user-defined functions and global variables, is nested 147 * inside the scope containing the built-in functions." 148 * 149 * Since built-in functions like ftransform() access built-in variables, 150 * it follows that those must be in the outer scope as well. 151 * 152 * We push scope here to create this nesting effect...but don't pop. 153 * This way, a shader's globals are still in the symbol table for use 154 * by the linker. 155 */ 156 state->symbols->push_scope(); 157 158 foreach_list_typed (ast_node, ast, link, & state->translation_unit) 159 ast->hir(instructions, state); 160 161 verify_subroutine_associated_funcs(state); 162 detect_recursion_unlinked(state, instructions); 163 detect_conflicting_assignments(state, instructions); 164 165 state->toplevel_ir = NULL; 166 167 /* Move all of the variable declarations to the front of the IR list, and 168 * reverse the order. This has the (intended!) side effect that vertex 169 * shader inputs and fragment shader outputs will appear in the IR in the 170 * same order that they appeared in the shader code. This results in the 171 * locations being assigned in the declared order. Many (arguably buggy) 172 * applications depend on this behavior, and it matches what nearly all 173 * other drivers do. 174 */ 175 foreach_in_list_safe(ir_instruction, node, instructions) { 176 ir_variable *const var = node->as_variable(); 177 178 if (var == NULL) 179 continue; 180 181 var->remove(); 182 instructions->push_head(var); 183 } 184 185 /* Figure out if gl_FragCoord is actually used in fragment shader */ 186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord"); 187 if (var != NULL) 188 state->fs_uses_gl_fragcoord = var->data.used; 189 190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec: 191 * 192 * If multiple shaders using members of a built-in block belonging to 193 * the same interface are linked together in the same program, they 194 * must all redeclare the built-in block in the same way, as described 195 * in section 4.3.7 "Interface Blocks" for interface block matching, or 196 * a link error will result. 197 * 198 * The phrase "using members of a built-in block" implies that if two 199 * shaders are linked together and one of them *does not use* any members 200 * of the built-in block, then that shader does not need to have a matching 201 * redeclaration of the built-in block. 202 * 203 * This appears to be a clarification to the behaviour established for 204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL 205 * version. 206 * 207 * The definition of "interface" in section 4.3.7 that applies here is as 208 * follows: 209 * 210 * The boundary between adjacent programmable pipeline stages: This 211 * spans all the outputs in all compilation units of the first stage 212 * and all the inputs in all compilation units of the second stage. 213 * 214 * Therefore this rule applies to both inter- and intra-stage linking. 215 * 216 * The easiest way to implement this is to check whether the shader uses 217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply 218 * remove all the relevant variable declaration from the IR, so that the 219 * linker won't see them and complain about mismatches. 220 */ 221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in); 222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out); 223 224 /* Check that we don't have reads from write-only variables */ 225 read_from_write_only_variable_visitor v; 226 v.run(instructions); 227 ir_variable *error_var = v.get_variable(); 228 if (error_var) { 229 /* It would be nice to have proper location information, but for that 230 * we would need to check this as we process each kind of AST node 231 */ 232 YYLTYPE loc; 233 memset(&loc, 0, sizeof(loc)); 234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'", 235 error_var->name); 236 } 237} 238 239 240static ir_expression_operation 241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from, 242 struct _mesa_glsl_parse_state *state) 243{ 244 switch (to->base_type) { 245 case GLSL_TYPE_FLOAT: 246 switch (from->base_type) { 247 case GLSL_TYPE_INT: return ir_unop_i2f; 248 case GLSL_TYPE_UINT: return ir_unop_u2f; 249 default: return (ir_expression_operation)0; 250 } 251 252 case GLSL_TYPE_UINT: 253 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable 254 && !state->MESA_shader_integer_functions_enable) 255 return (ir_expression_operation)0; 256 switch (from->base_type) { 257 case GLSL_TYPE_INT: return ir_unop_i2u; 258 default: return (ir_expression_operation)0; 259 } 260 261 case GLSL_TYPE_DOUBLE: 262 if (!state->has_double()) 263 return (ir_expression_operation)0; 264 switch (from->base_type) { 265 case GLSL_TYPE_INT: return ir_unop_i2d; 266 case GLSL_TYPE_UINT: return ir_unop_u2d; 267 case GLSL_TYPE_FLOAT: return ir_unop_f2d; 268 case GLSL_TYPE_INT64: return ir_unop_i642d; 269 case GLSL_TYPE_UINT64: return ir_unop_u642d; 270 default: return (ir_expression_operation)0; 271 } 272 273 case GLSL_TYPE_UINT64: 274 if (!state->has_int64()) 275 return (ir_expression_operation)0; 276 switch (from->base_type) { 277 case GLSL_TYPE_INT: return ir_unop_i2u64; 278 case GLSL_TYPE_UINT: return ir_unop_u2u64; 279 case GLSL_TYPE_INT64: return ir_unop_i642u64; 280 default: return (ir_expression_operation)0; 281 } 282 283 case GLSL_TYPE_INT64: 284 if (!state->has_int64()) 285 return (ir_expression_operation)0; 286 switch (from->base_type) { 287 case GLSL_TYPE_INT: return ir_unop_i2i64; 288 default: return (ir_expression_operation)0; 289 } 290 291 default: return (ir_expression_operation)0; 292 } 293} 294 295 296/** 297 * If a conversion is available, convert one operand to a different type 298 * 299 * The \c from \c ir_rvalue is converted "in place". 300 * 301 * \param to Type that the operand it to be converted to 302 * \param from Operand that is being converted 303 * \param state GLSL compiler state 304 * 305 * \return 306 * If a conversion is possible (or unnecessary), \c true is returned. 307 * Otherwise \c false is returned. 308 */ 309static bool 310apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, 311 struct _mesa_glsl_parse_state *state) 312{ 313 void *ctx = state; 314 if (to->base_type == from->type->base_type) 315 return true; 316 317 /* Prior to GLSL 1.20, there are no implicit conversions */ 318 if (!state->is_version(120, 0)) 319 return false; 320 321 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: 322 * 323 * "There are no implicit array or structure conversions. For 324 * example, an array of int cannot be implicitly converted to an 325 * array of float. 326 */ 327 if (!to->is_numeric() || !from->type->is_numeric()) 328 return false; 329 330 /* We don't actually want the specific type `to`, we want a type 331 * with the same base type as `to`, but the same vector width as 332 * `from`. 333 */ 334 to = glsl_type::get_instance(to->base_type, from->type->vector_elements, 335 from->type->matrix_columns); 336 337 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state); 338 if (op) { 339 from = new(ctx) ir_expression(op, to, from, NULL); 340 return true; 341 } else { 342 return false; 343 } 344} 345 346 347static const struct glsl_type * 348arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 349 bool multiply, 350 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 351{ 352 const glsl_type *type_a = value_a->type; 353 const glsl_type *type_b = value_b->type; 354 355 /* From GLSL 1.50 spec, page 56: 356 * 357 * "The arithmetic binary operators add (+), subtract (-), 358 * multiply (*), and divide (/) operate on integer and 359 * floating-point scalars, vectors, and matrices." 360 */ 361 if (!type_a->is_numeric() || !type_b->is_numeric()) { 362 _mesa_glsl_error(loc, state, 363 "operands to arithmetic operators must be numeric"); 364 return glsl_type::error_type; 365 } 366 367 368 /* "If one operand is floating-point based and the other is 369 * not, then the conversions from Section 4.1.10 "Implicit 370 * Conversions" are applied to the non-floating-point-based operand." 371 */ 372 if (!apply_implicit_conversion(type_a, value_b, state) 373 && !apply_implicit_conversion(type_b, value_a, state)) { 374 _mesa_glsl_error(loc, state, 375 "could not implicitly convert operands to " 376 "arithmetic operator"); 377 return glsl_type::error_type; 378 } 379 type_a = value_a->type; 380 type_b = value_b->type; 381 382 /* "If the operands are integer types, they must both be signed or 383 * both be unsigned." 384 * 385 * From this rule and the preceeding conversion it can be inferred that 386 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. 387 * The is_numeric check above already filtered out the case where either 388 * type is not one of these, so now the base types need only be tested for 389 * equality. 390 */ 391 if (type_a->base_type != type_b->base_type) { 392 _mesa_glsl_error(loc, state, 393 "base type mismatch for arithmetic operator"); 394 return glsl_type::error_type; 395 } 396 397 /* "All arithmetic binary operators result in the same fundamental type 398 * (signed integer, unsigned integer, or floating-point) as the 399 * operands they operate on, after operand type conversion. After 400 * conversion, the following cases are valid 401 * 402 * * The two operands are scalars. In this case the operation is 403 * applied, resulting in a scalar." 404 */ 405 if (type_a->is_scalar() && type_b->is_scalar()) 406 return type_a; 407 408 /* "* One operand is a scalar, and the other is a vector or matrix. 409 * In this case, the scalar operation is applied independently to each 410 * component of the vector or matrix, resulting in the same size 411 * vector or matrix." 412 */ 413 if (type_a->is_scalar()) { 414 if (!type_b->is_scalar()) 415 return type_b; 416 } else if (type_b->is_scalar()) { 417 return type_a; 418 } 419 420 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 421 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been 422 * handled. 423 */ 424 assert(!type_a->is_scalar()); 425 assert(!type_b->is_scalar()); 426 427 /* "* The two operands are vectors of the same size. In this case, the 428 * operation is done component-wise resulting in the same size 429 * vector." 430 */ 431 if (type_a->is_vector() && type_b->is_vector()) { 432 if (type_a == type_b) { 433 return type_a; 434 } else { 435 _mesa_glsl_error(loc, state, 436 "vector size mismatch for arithmetic operator"); 437 return glsl_type::error_type; 438 } 439 } 440 441 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 442 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and 443 * <vector, vector> have been handled. At least one of the operands must 444 * be matrix. Further, since there are no integer matrix types, the base 445 * type of both operands must be float. 446 */ 447 assert(type_a->is_matrix() || type_b->is_matrix()); 448 assert(type_a->is_float() || type_a->is_double()); 449 assert(type_b->is_float() || type_b->is_double()); 450 451 /* "* The operator is add (+), subtract (-), or divide (/), and the 452 * operands are matrices with the same number of rows and the same 453 * number of columns. In this case, the operation is done component- 454 * wise resulting in the same size matrix." 455 * * The operator is multiply (*), where both operands are matrices or 456 * one operand is a vector and the other a matrix. A right vector 457 * operand is treated as a column vector and a left vector operand as a 458 * row vector. In all these cases, it is required that the number of 459 * columns of the left operand is equal to the number of rows of the 460 * right operand. Then, the multiply (*) operation does a linear 461 * algebraic multiply, yielding an object that has the same number of 462 * rows as the left operand and the same number of columns as the right 463 * operand. Section 5.10 "Vector and Matrix Operations" explains in 464 * more detail how vectors and matrices are operated on." 465 */ 466 if (! multiply) { 467 if (type_a == type_b) 468 return type_a; 469 } else { 470 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b); 471 472 if (type == glsl_type::error_type) { 473 _mesa_glsl_error(loc, state, 474 "size mismatch for matrix multiplication"); 475 } 476 477 return type; 478 } 479 480 481 /* "All other cases are illegal." 482 */ 483 _mesa_glsl_error(loc, state, "type mismatch"); 484 return glsl_type::error_type; 485} 486 487 488static const struct glsl_type * 489unary_arithmetic_result_type(const struct glsl_type *type, 490 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 491{ 492 /* From GLSL 1.50 spec, page 57: 493 * 494 * "The arithmetic unary operators negate (-), post- and pre-increment 495 * and decrement (-- and ++) operate on integer or floating-point 496 * values (including vectors and matrices). All unary operators work 497 * component-wise on their operands. These result with the same type 498 * they operated on." 499 */ 500 if (!type->is_numeric()) { 501 _mesa_glsl_error(loc, state, 502 "operands to arithmetic operators must be numeric"); 503 return glsl_type::error_type; 504 } 505 506 return type; 507} 508 509/** 510 * \brief Return the result type of a bit-logic operation. 511 * 512 * If the given types to the bit-logic operator are invalid, return 513 * glsl_type::error_type. 514 * 515 * \param value_a LHS of bit-logic op 516 * \param value_b RHS of bit-logic op 517 */ 518static const struct glsl_type * 519bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 520 ast_operators op, 521 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 522{ 523 const glsl_type *type_a = value_a->type; 524 const glsl_type *type_b = value_b->type; 525 526 if (!state->check_bitwise_operations_allowed(loc)) { 527 return glsl_type::error_type; 528 } 529 530 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec: 531 * 532 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or 533 * (|). The operands must be of type signed or unsigned integers or 534 * integer vectors." 535 */ 536 if (!type_a->is_integer_32_64()) { 537 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer", 538 ast_expression::operator_string(op)); 539 return glsl_type::error_type; 540 } 541 if (!type_b->is_integer_32_64()) { 542 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer", 543 ast_expression::operator_string(op)); 544 return glsl_type::error_type; 545 } 546 547 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't 548 * make sense for bitwise operations, as they don't operate on floats. 549 * 550 * GLSL 4.0 added implicit int -> uint conversions, which are relevant 551 * here. It wasn't clear whether or not we should apply them to bitwise 552 * operations. However, Khronos has decided that they should in future 553 * language revisions. Applications also rely on this behavior. We opt 554 * to apply them in general, but issue a portability warning. 555 * 556 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405 557 */ 558 if (type_a->base_type != type_b->base_type) { 559 if (!apply_implicit_conversion(type_a, value_b, state) 560 && !apply_implicit_conversion(type_b, value_a, state)) { 561 _mesa_glsl_error(loc, state, 562 "could not implicitly convert operands to " 563 "`%s` operator", 564 ast_expression::operator_string(op)); 565 return glsl_type::error_type; 566 } else { 567 _mesa_glsl_warning(loc, state, 568 "some implementations may not support implicit " 569 "int -> uint conversions for `%s' operators; " 570 "consider casting explicitly for portability", 571 ast_expression::operator_string(op)); 572 } 573 type_a = value_a->type; 574 type_b = value_b->type; 575 } 576 577 /* "The fundamental types of the operands (signed or unsigned) must 578 * match," 579 */ 580 if (type_a->base_type != type_b->base_type) { 581 _mesa_glsl_error(loc, state, "operands of `%s' must have the same " 582 "base type", ast_expression::operator_string(op)); 583 return glsl_type::error_type; 584 } 585 586 /* "The operands cannot be vectors of differing size." */ 587 if (type_a->is_vector() && 588 type_b->is_vector() && 589 type_a->vector_elements != type_b->vector_elements) { 590 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of " 591 "different sizes", ast_expression::operator_string(op)); 592 return glsl_type::error_type; 593 } 594 595 /* "If one operand is a scalar and the other a vector, the scalar is 596 * applied component-wise to the vector, resulting in the same type as 597 * the vector. The fundamental types of the operands [...] will be the 598 * resulting fundamental type." 599 */ 600 if (type_a->is_scalar()) 601 return type_b; 602 else 603 return type_a; 604} 605 606static const struct glsl_type * 607modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 608 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 609{ 610 const glsl_type *type_a = value_a->type; 611 const glsl_type *type_b = value_b->type; 612 613 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) { 614 return glsl_type::error_type; 615 } 616 617 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says: 618 * 619 * "The operator modulus (%) operates on signed or unsigned integers or 620 * integer vectors." 621 */ 622 if (!type_a->is_integer_32_64()) { 623 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer"); 624 return glsl_type::error_type; 625 } 626 if (!type_b->is_integer_32_64()) { 627 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer"); 628 return glsl_type::error_type; 629 } 630 631 /* "If the fundamental types in the operands do not match, then the 632 * conversions from section 4.1.10 "Implicit Conversions" are applied 633 * to create matching types." 634 * 635 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit 636 * int -> uint conversion rules. Prior to that, there were no implicit 637 * conversions. So it's harmless to apply them universally - no implicit 638 * conversions will exist. If the types don't match, we'll receive false, 639 * and raise an error, satisfying the GLSL 1.50 spec, page 56: 640 * 641 * "The operand types must both be signed or unsigned." 642 */ 643 if (!apply_implicit_conversion(type_a, value_b, state) && 644 !apply_implicit_conversion(type_b, value_a, state)) { 645 _mesa_glsl_error(loc, state, 646 "could not implicitly convert operands to " 647 "modulus (%%) operator"); 648 return glsl_type::error_type; 649 } 650 type_a = value_a->type; 651 type_b = value_b->type; 652 653 /* "The operands cannot be vectors of differing size. If one operand is 654 * a scalar and the other vector, then the scalar is applied component- 655 * wise to the vector, resulting in the same type as the vector. If both 656 * are vectors of the same size, the result is computed component-wise." 657 */ 658 if (type_a->is_vector()) { 659 if (!type_b->is_vector() 660 || (type_a->vector_elements == type_b->vector_elements)) 661 return type_a; 662 } else 663 return type_b; 664 665 /* "The operator modulus (%) is not defined for any other data types 666 * (non-integer types)." 667 */ 668 _mesa_glsl_error(loc, state, "type mismatch"); 669 return glsl_type::error_type; 670} 671 672 673static const struct glsl_type * 674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 675 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 676{ 677 const glsl_type *type_a = value_a->type; 678 const glsl_type *type_b = value_b->type; 679 680 /* From GLSL 1.50 spec, page 56: 681 * "The relational operators greater than (>), less than (<), greater 682 * than or equal (>=), and less than or equal (<=) operate only on 683 * scalar integer and scalar floating-point expressions." 684 */ 685 if (!type_a->is_numeric() 686 || !type_b->is_numeric() 687 || !type_a->is_scalar() 688 || !type_b->is_scalar()) { 689 _mesa_glsl_error(loc, state, 690 "operands to relational operators must be scalar and " 691 "numeric"); 692 return glsl_type::error_type; 693 } 694 695 /* "Either the operands' types must match, or the conversions from 696 * Section 4.1.10 "Implicit Conversions" will be applied to the integer 697 * operand, after which the types must match." 698 */ 699 if (!apply_implicit_conversion(type_a, value_b, state) 700 && !apply_implicit_conversion(type_b, value_a, state)) { 701 _mesa_glsl_error(loc, state, 702 "could not implicitly convert operands to " 703 "relational operator"); 704 return glsl_type::error_type; 705 } 706 type_a = value_a->type; 707 type_b = value_b->type; 708 709 if (type_a->base_type != type_b->base_type) { 710 _mesa_glsl_error(loc, state, "base type mismatch"); 711 return glsl_type::error_type; 712 } 713 714 /* "The result is scalar Boolean." 715 */ 716 return glsl_type::bool_type; 717} 718 719/** 720 * \brief Return the result type of a bit-shift operation. 721 * 722 * If the given types to the bit-shift operator are invalid, return 723 * glsl_type::error_type. 724 * 725 * \param type_a Type of LHS of bit-shift op 726 * \param type_b Type of RHS of bit-shift op 727 */ 728static const struct glsl_type * 729shift_result_type(const struct glsl_type *type_a, 730 const struct glsl_type *type_b, 731 ast_operators op, 732 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 733{ 734 if (!state->check_bitwise_operations_allowed(loc)) { 735 return glsl_type::error_type; 736 } 737 738 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec: 739 * 740 * "The shift operators (<<) and (>>). For both operators, the operands 741 * must be signed or unsigned integers or integer vectors. One operand 742 * can be signed while the other is unsigned." 743 */ 744 if (!type_a->is_integer_32_64()) { 745 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or " 746 "integer vector", ast_expression::operator_string(op)); 747 return glsl_type::error_type; 748 749 } 750 if (!type_b->is_integer()) { 751 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or " 752 "integer vector", ast_expression::operator_string(op)); 753 return glsl_type::error_type; 754 } 755 756 /* "If the first operand is a scalar, the second operand has to be 757 * a scalar as well." 758 */ 759 if (type_a->is_scalar() && !type_b->is_scalar()) { 760 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the " 761 "second must be scalar as well", 762 ast_expression::operator_string(op)); 763 return glsl_type::error_type; 764 } 765 766 /* If both operands are vectors, check that they have same number of 767 * elements. 768 */ 769 if (type_a->is_vector() && 770 type_b->is_vector() && 771 type_a->vector_elements != type_b->vector_elements) { 772 _mesa_glsl_error(loc, state, "vector operands to operator %s must " 773 "have same number of elements", 774 ast_expression::operator_string(op)); 775 return glsl_type::error_type; 776 } 777 778 /* "In all cases, the resulting type will be the same type as the left 779 * operand." 780 */ 781 return type_a; 782} 783 784/** 785 * Returns the innermost array index expression in an rvalue tree. 786 * This is the largest indexing level -- if an array of blocks, then 787 * it is the block index rather than an indexing expression for an 788 * array-typed member of an array of blocks. 789 */ 790static ir_rvalue * 791find_innermost_array_index(ir_rvalue *rv) 792{ 793 ir_dereference_array *last = NULL; 794 while (rv) { 795 if (rv->as_dereference_array()) { 796 last = rv->as_dereference_array(); 797 rv = last->array; 798 } else if (rv->as_dereference_record()) 799 rv = rv->as_dereference_record()->record; 800 else if (rv->as_swizzle()) 801 rv = rv->as_swizzle()->val; 802 else 803 rv = NULL; 804 } 805 806 if (last) 807 return last->array_index; 808 809 return NULL; 810} 811 812/** 813 * Validates that a value can be assigned to a location with a specified type 814 * 815 * Validates that \c rhs can be assigned to some location. If the types are 816 * not an exact match but an automatic conversion is possible, \c rhs will be 817 * converted. 818 * 819 * \return 820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. 821 * Otherwise the actual RHS to be assigned will be returned. This may be 822 * \c rhs, or it may be \c rhs after some type conversion. 823 * 824 * \note 825 * In addition to being used for assignments, this function is used to 826 * type-check return values. 827 */ 828static ir_rvalue * 829validate_assignment(struct _mesa_glsl_parse_state *state, 830 YYLTYPE loc, ir_rvalue *lhs, 831 ir_rvalue *rhs, bool is_initializer) 832{ 833 /* If there is already some error in the RHS, just return it. Anything 834 * else will lead to an avalanche of error message back to the user. 835 */ 836 if (rhs->type->is_error()) 837 return rhs; 838 839 /* In the Tessellation Control Shader: 840 * If a per-vertex output variable is used as an l-value, it is an error 841 * if the expression indicating the vertex number is not the identifier 842 * `gl_InvocationID`. 843 */ 844 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) { 845 ir_variable *var = lhs->variable_referenced(); 846 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) { 847 ir_rvalue *index = find_innermost_array_index(lhs); 848 ir_variable *index_var = index ? index->variable_referenced() : NULL; 849 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) { 850 _mesa_glsl_error(&loc, state, 851 "Tessellation control shader outputs can only " 852 "be indexed by gl_InvocationID"); 853 return NULL; 854 } 855 } 856 } 857 858 /* If the types are identical, the assignment can trivially proceed. 859 */ 860 if (rhs->type == lhs->type) 861 return rhs; 862 863 /* If the array element types are the same and the LHS is unsized, 864 * the assignment is okay for initializers embedded in variable 865 * declarations. 866 * 867 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this 868 * is handled by ir_dereference::is_lvalue. 869 */ 870 const glsl_type *lhs_t = lhs->type; 871 const glsl_type *rhs_t = rhs->type; 872 bool unsized_array = false; 873 while(lhs_t->is_array()) { 874 if (rhs_t == lhs_t) 875 break; /* the rest of the inner arrays match so break out early */ 876 if (!rhs_t->is_array()) { 877 unsized_array = false; 878 break; /* number of dimensions mismatch */ 879 } 880 if (lhs_t->length == rhs_t->length) { 881 lhs_t = lhs_t->fields.array; 882 rhs_t = rhs_t->fields.array; 883 continue; 884 } else if (lhs_t->is_unsized_array()) { 885 unsized_array = true; 886 } else { 887 unsized_array = false; 888 break; /* sized array mismatch */ 889 } 890 lhs_t = lhs_t->fields.array; 891 rhs_t = rhs_t->fields.array; 892 } 893 if (unsized_array) { 894 if (is_initializer) { 895 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type()) 896 return rhs; 897 } else { 898 _mesa_glsl_error(&loc, state, 899 "implicitly sized arrays cannot be assigned"); 900 return NULL; 901 } 902 } 903 904 /* Check for implicit conversion in GLSL 1.20 */ 905 if (apply_implicit_conversion(lhs->type, rhs, state)) { 906 if (rhs->type == lhs->type) 907 return rhs; 908 } 909 910 _mesa_glsl_error(&loc, state, 911 "%s of type %s cannot be assigned to " 912 "variable of type %s", 913 is_initializer ? "initializer" : "value", 914 rhs->type->name, lhs->type->name); 915 916 return NULL; 917} 918 919static void 920mark_whole_array_access(ir_rvalue *access) 921{ 922 ir_dereference_variable *deref = access->as_dereference_variable(); 923 924 if (deref && deref->var) { 925 deref->var->data.max_array_access = deref->type->length - 1; 926 } 927} 928 929static bool 930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, 931 const char *non_lvalue_description, 932 ir_rvalue *lhs, ir_rvalue *rhs, 933 ir_rvalue **out_rvalue, bool needs_rvalue, 934 bool is_initializer, 935 YYLTYPE lhs_loc) 936{ 937 void *ctx = state; 938 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); 939 940 ir_variable *lhs_var = lhs->variable_referenced(); 941 if (lhs_var) 942 lhs_var->data.assigned = true; 943 944 if (!error_emitted) { 945 if (non_lvalue_description != NULL) { 946 _mesa_glsl_error(&lhs_loc, state, 947 "assignment to %s", 948 non_lvalue_description); 949 error_emitted = true; 950 } else if (lhs_var != NULL && (lhs_var->data.read_only || 951 (lhs_var->data.mode == ir_var_shader_storage && 952 lhs_var->data.memory_read_only))) { 953 /* We can have memory_read_only set on both images and buffer variables, 954 * but in the former there is a distinction between assignments to 955 * the variable itself (read_only) and to the memory they point to 956 * (memory_read_only), while in the case of buffer variables there is 957 * no such distinction, that is why this check here is limited to 958 * buffer variables alone. 959 */ 960 _mesa_glsl_error(&lhs_loc, state, 961 "assignment to read-only variable '%s'", 962 lhs_var->name); 963 error_emitted = true; 964 } else if (lhs->type->is_array() && 965 !state->check_version(120, 300, &lhs_loc, 966 "whole array assignment forbidden")) { 967 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: 968 * 969 * "Other binary or unary expressions, non-dereferenced 970 * arrays, function names, swizzles with repeated fields, 971 * and constants cannot be l-values." 972 * 973 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00. 974 */ 975 error_emitted = true; 976 } else if (!lhs->is_lvalue(state)) { 977 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); 978 error_emitted = true; 979 } 980 } 981 982 ir_rvalue *new_rhs = 983 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer); 984 if (new_rhs != NULL) { 985 rhs = new_rhs; 986 987 /* If the LHS array was not declared with a size, it takes it size from 988 * the RHS. If the LHS is an l-value and a whole array, it must be a 989 * dereference of a variable. Any other case would require that the LHS 990 * is either not an l-value or not a whole array. 991 */ 992 if (lhs->type->is_unsized_array()) { 993 ir_dereference *const d = lhs->as_dereference(); 994 995 assert(d != NULL); 996 997 ir_variable *const var = d->variable_referenced(); 998 999 assert(var != NULL); 1000 1001 if (var->data.max_array_access >= rhs->type->array_size()) { 1002 /* FINISHME: This should actually log the location of the RHS. */ 1003 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " 1004 "previous access", 1005 var->data.max_array_access); 1006 } 1007 1008 var->type = glsl_type::get_array_instance(lhs->type->fields.array, 1009 rhs->type->array_size()); 1010 d->type = var->type; 1011 } 1012 if (lhs->type->is_array()) { 1013 mark_whole_array_access(rhs); 1014 mark_whole_array_access(lhs); 1015 } 1016 } else { 1017 error_emitted = true; 1018 } 1019 1020 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, 1021 * but not post_inc) need the converted assigned value as an rvalue 1022 * to handle things like: 1023 * 1024 * i = j += 1; 1025 */ 1026 if (needs_rvalue) { 1027 ir_rvalue *rvalue; 1028 if (!error_emitted) { 1029 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", 1030 ir_var_temporary); 1031 instructions->push_tail(var); 1032 instructions->push_tail(assign(var, rhs)); 1033 1034 ir_dereference_variable *deref_var = 1035 new(ctx) ir_dereference_variable(var); 1036 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var)); 1037 rvalue = new(ctx) ir_dereference_variable(var); 1038 } else { 1039 rvalue = ir_rvalue::error_value(ctx); 1040 } 1041 *out_rvalue = rvalue; 1042 } else { 1043 if (!error_emitted) 1044 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs)); 1045 *out_rvalue = NULL; 1046 } 1047 1048 return error_emitted; 1049} 1050 1051static ir_rvalue * 1052get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) 1053{ 1054 void *ctx = ralloc_parent(lvalue); 1055 ir_variable *var; 1056 1057 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", 1058 ir_var_temporary); 1059 instructions->push_tail(var); 1060 1061 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), 1062 lvalue)); 1063 1064 return new(ctx) ir_dereference_variable(var); 1065} 1066 1067 1068ir_rvalue * 1069ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 1070{ 1071 (void) instructions; 1072 (void) state; 1073 1074 return NULL; 1075} 1076 1077bool 1078ast_node::has_sequence_subexpression() const 1079{ 1080 return false; 1081} 1082 1083void 1084ast_node::set_is_lhs(bool /* new_value */) 1085{ 1086} 1087 1088void 1089ast_function_expression::hir_no_rvalue(exec_list *instructions, 1090 struct _mesa_glsl_parse_state *state) 1091{ 1092 (void)hir(instructions, state); 1093} 1094 1095void 1096ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions, 1097 struct _mesa_glsl_parse_state *state) 1098{ 1099 (void)hir(instructions, state); 1100} 1101 1102static ir_rvalue * 1103do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1) 1104{ 1105 int join_op; 1106 ir_rvalue *cmp = NULL; 1107 1108 if (operation == ir_binop_all_equal) 1109 join_op = ir_binop_logic_and; 1110 else 1111 join_op = ir_binop_logic_or; 1112 1113 switch (op0->type->base_type) { 1114 case GLSL_TYPE_FLOAT: 1115 case GLSL_TYPE_FLOAT16: 1116 case GLSL_TYPE_UINT: 1117 case GLSL_TYPE_INT: 1118 case GLSL_TYPE_BOOL: 1119 case GLSL_TYPE_DOUBLE: 1120 case GLSL_TYPE_UINT64: 1121 case GLSL_TYPE_INT64: 1122 case GLSL_TYPE_UINT16: 1123 case GLSL_TYPE_INT16: 1124 case GLSL_TYPE_UINT8: 1125 case GLSL_TYPE_INT8: 1126 return new(mem_ctx) ir_expression(operation, op0, op1); 1127 1128 case GLSL_TYPE_ARRAY: { 1129 for (unsigned int i = 0; i < op0->type->length; i++) { 1130 ir_rvalue *e0, *e1, *result; 1131 1132 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL), 1133 new(mem_ctx) ir_constant(i)); 1134 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL), 1135 new(mem_ctx) ir_constant(i)); 1136 result = do_comparison(mem_ctx, operation, e0, e1); 1137 1138 if (cmp) { 1139 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 1140 } else { 1141 cmp = result; 1142 } 1143 } 1144 1145 mark_whole_array_access(op0); 1146 mark_whole_array_access(op1); 1147 break; 1148 } 1149 1150 case GLSL_TYPE_STRUCT: { 1151 for (unsigned int i = 0; i < op0->type->length; i++) { 1152 ir_rvalue *e0, *e1, *result; 1153 const char *field_name = op0->type->fields.structure[i].name; 1154 1155 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL), 1156 field_name); 1157 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL), 1158 field_name); 1159 result = do_comparison(mem_ctx, operation, e0, e1); 1160 1161 if (cmp) { 1162 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 1163 } else { 1164 cmp = result; 1165 } 1166 } 1167 break; 1168 } 1169 1170 case GLSL_TYPE_ERROR: 1171 case GLSL_TYPE_VOID: 1172 case GLSL_TYPE_SAMPLER: 1173 case GLSL_TYPE_IMAGE: 1174 case GLSL_TYPE_INTERFACE: 1175 case GLSL_TYPE_ATOMIC_UINT: 1176 case GLSL_TYPE_SUBROUTINE: 1177 case GLSL_TYPE_FUNCTION: 1178 /* I assume a comparison of a struct containing a sampler just 1179 * ignores the sampler present in the type. 1180 */ 1181 break; 1182 } 1183 1184 if (cmp == NULL) 1185 cmp = new(mem_ctx) ir_constant(true); 1186 1187 return cmp; 1188} 1189 1190/* For logical operations, we want to ensure that the operands are 1191 * scalar booleans. If it isn't, emit an error and return a constant 1192 * boolean to avoid triggering cascading error messages. 1193 */ 1194static ir_rvalue * 1195get_scalar_boolean_operand(exec_list *instructions, 1196 struct _mesa_glsl_parse_state *state, 1197 ast_expression *parent_expr, 1198 int operand, 1199 const char *operand_name, 1200 bool *error_emitted) 1201{ 1202 ast_expression *expr = parent_expr->subexpressions[operand]; 1203 void *ctx = state; 1204 ir_rvalue *val = expr->hir(instructions, state); 1205 1206 if (val->type->is_boolean() && val->type->is_scalar()) 1207 return val; 1208 1209 if (!*error_emitted) { 1210 YYLTYPE loc = expr->get_location(); 1211 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean", 1212 operand_name, 1213 parent_expr->operator_string(parent_expr->oper)); 1214 *error_emitted = true; 1215 } 1216 1217 return new(ctx) ir_constant(true); 1218} 1219 1220/** 1221 * If name refers to a builtin array whose maximum allowed size is less than 1222 * size, report an error and return true. Otherwise return false. 1223 */ 1224void 1225check_builtin_array_max_size(const char *name, unsigned size, 1226 YYLTYPE loc, struct _mesa_glsl_parse_state *state) 1227{ 1228 if ((strcmp("gl_TexCoord", name) == 0) 1229 && (size > state->Const.MaxTextureCoords)) { 1230 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: 1231 * 1232 * "The size [of gl_TexCoord] can be at most 1233 * gl_MaxTextureCoords." 1234 */ 1235 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot " 1236 "be larger than gl_MaxTextureCoords (%u)", 1237 state->Const.MaxTextureCoords); 1238 } else if (strcmp("gl_ClipDistance", name) == 0) { 1239 state->clip_dist_size = size; 1240 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) { 1241 /* From section 7.1 (Vertex Shader Special Variables) of the 1242 * GLSL 1.30 spec: 1243 * 1244 * "The gl_ClipDistance array is predeclared as unsized and 1245 * must be sized by the shader either redeclaring it with a 1246 * size or indexing it only with integral constant 1247 * expressions. ... The size can be at most 1248 * gl_MaxClipDistances." 1249 */ 1250 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot " 1251 "be larger than gl_MaxClipDistances (%u)", 1252 state->Const.MaxClipPlanes); 1253 } 1254 } else if (strcmp("gl_CullDistance", name) == 0) { 1255 state->cull_dist_size = size; 1256 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) { 1257 /* From the ARB_cull_distance spec: 1258 * 1259 * "The gl_CullDistance array is predeclared as unsized and 1260 * must be sized by the shader either redeclaring it with 1261 * a size or indexing it only with integral constant 1262 * expressions. The size determines the number and set of 1263 * enabled cull distances and can be at most 1264 * gl_MaxCullDistances." 1265 */ 1266 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot " 1267 "be larger than gl_MaxCullDistances (%u)", 1268 state->Const.MaxClipPlanes); 1269 } 1270 } 1271} 1272 1273/** 1274 * Create the constant 1, of a which is appropriate for incrementing and 1275 * decrementing values of the given GLSL type. For example, if type is vec4, 1276 * this creates a constant value of 1.0 having type float. 1277 * 1278 * If the given type is invalid for increment and decrement operators, return 1279 * a floating point 1--the error will be detected later. 1280 */ 1281static ir_rvalue * 1282constant_one_for_inc_dec(void *ctx, const glsl_type *type) 1283{ 1284 switch (type->base_type) { 1285 case GLSL_TYPE_UINT: 1286 return new(ctx) ir_constant((unsigned) 1); 1287 case GLSL_TYPE_INT: 1288 return new(ctx) ir_constant(1); 1289 case GLSL_TYPE_UINT64: 1290 return new(ctx) ir_constant((uint64_t) 1); 1291 case GLSL_TYPE_INT64: 1292 return new(ctx) ir_constant((int64_t) 1); 1293 default: 1294 case GLSL_TYPE_FLOAT: 1295 return new(ctx) ir_constant(1.0f); 1296 } 1297} 1298 1299ir_rvalue * 1300ast_expression::hir(exec_list *instructions, 1301 struct _mesa_glsl_parse_state *state) 1302{ 1303 return do_hir(instructions, state, true); 1304} 1305 1306void 1307ast_expression::hir_no_rvalue(exec_list *instructions, 1308 struct _mesa_glsl_parse_state *state) 1309{ 1310 do_hir(instructions, state, false); 1311} 1312 1313void 1314ast_expression::set_is_lhs(bool new_value) 1315{ 1316 /* is_lhs is tracked only to print "variable used uninitialized" warnings, 1317 * if we lack an identifier we can just skip it. 1318 */ 1319 if (this->primary_expression.identifier == NULL) 1320 return; 1321 1322 this->is_lhs = new_value; 1323 1324 /* We need to go through the subexpressions tree to cover cases like 1325 * ast_field_selection 1326 */ 1327 if (this->subexpressions[0] != NULL) 1328 this->subexpressions[0]->set_is_lhs(new_value); 1329} 1330 1331ir_rvalue * 1332ast_expression::do_hir(exec_list *instructions, 1333 struct _mesa_glsl_parse_state *state, 1334 bool needs_rvalue) 1335{ 1336 void *ctx = state; 1337 static const int operations[AST_NUM_OPERATORS] = { 1338 -1, /* ast_assign doesn't convert to ir_expression. */ 1339 -1, /* ast_plus doesn't convert to ir_expression. */ 1340 ir_unop_neg, 1341 ir_binop_add, 1342 ir_binop_sub, 1343 ir_binop_mul, 1344 ir_binop_div, 1345 ir_binop_mod, 1346 ir_binop_lshift, 1347 ir_binop_rshift, 1348 ir_binop_less, 1349 ir_binop_less, /* This is correct. See the ast_greater case below. */ 1350 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */ 1351 ir_binop_gequal, 1352 ir_binop_all_equal, 1353 ir_binop_any_nequal, 1354 ir_binop_bit_and, 1355 ir_binop_bit_xor, 1356 ir_binop_bit_or, 1357 ir_unop_bit_not, 1358 ir_binop_logic_and, 1359 ir_binop_logic_xor, 1360 ir_binop_logic_or, 1361 ir_unop_logic_not, 1362 1363 /* Note: The following block of expression types actually convert 1364 * to multiple IR instructions. 1365 */ 1366 ir_binop_mul, /* ast_mul_assign */ 1367 ir_binop_div, /* ast_div_assign */ 1368 ir_binop_mod, /* ast_mod_assign */ 1369 ir_binop_add, /* ast_add_assign */ 1370 ir_binop_sub, /* ast_sub_assign */ 1371 ir_binop_lshift, /* ast_ls_assign */ 1372 ir_binop_rshift, /* ast_rs_assign */ 1373 ir_binop_bit_and, /* ast_and_assign */ 1374 ir_binop_bit_xor, /* ast_xor_assign */ 1375 ir_binop_bit_or, /* ast_or_assign */ 1376 1377 -1, /* ast_conditional doesn't convert to ir_expression. */ 1378 ir_binop_add, /* ast_pre_inc. */ 1379 ir_binop_sub, /* ast_pre_dec. */ 1380 ir_binop_add, /* ast_post_inc. */ 1381 ir_binop_sub, /* ast_post_dec. */ 1382 -1, /* ast_field_selection doesn't conv to ir_expression. */ 1383 -1, /* ast_array_index doesn't convert to ir_expression. */ 1384 -1, /* ast_function_call doesn't conv to ir_expression. */ 1385 -1, /* ast_identifier doesn't convert to ir_expression. */ 1386 -1, /* ast_int_constant doesn't convert to ir_expression. */ 1387 -1, /* ast_uint_constant doesn't conv to ir_expression. */ 1388 -1, /* ast_float_constant doesn't conv to ir_expression. */ 1389 -1, /* ast_bool_constant doesn't conv to ir_expression. */ 1390 -1, /* ast_sequence doesn't convert to ir_expression. */ 1391 -1, /* ast_aggregate shouldn't ever even get here. */ 1392 }; 1393 ir_rvalue *result = NULL; 1394 ir_rvalue *op[3]; 1395 const struct glsl_type *type, *orig_type; 1396 bool error_emitted = false; 1397 YYLTYPE loc; 1398 1399 loc = this->get_location(); 1400 1401 switch (this->oper) { 1402 case ast_aggregate: 1403 unreachable("ast_aggregate: Should never get here."); 1404 1405 case ast_assign: { 1406 this->subexpressions[0]->set_is_lhs(true); 1407 op[0] = this->subexpressions[0]->hir(instructions, state); 1408 op[1] = this->subexpressions[1]->hir(instructions, state); 1409 1410 error_emitted = 1411 do_assignment(instructions, state, 1412 this->subexpressions[0]->non_lvalue_description, 1413 op[0], op[1], &result, needs_rvalue, false, 1414 this->subexpressions[0]->get_location()); 1415 break; 1416 } 1417 1418 case ast_plus: 1419 op[0] = this->subexpressions[0]->hir(instructions, state); 1420 1421 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 1422 1423 error_emitted = type->is_error(); 1424 1425 result = op[0]; 1426 break; 1427 1428 case ast_neg: 1429 op[0] = this->subexpressions[0]->hir(instructions, state); 1430 1431 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 1432 1433 error_emitted = type->is_error(); 1434 1435 result = new(ctx) ir_expression(operations[this->oper], type, 1436 op[0], NULL); 1437 break; 1438 1439 case ast_add: 1440 case ast_sub: 1441 case ast_mul: 1442 case ast_div: 1443 op[0] = this->subexpressions[0]->hir(instructions, state); 1444 op[1] = this->subexpressions[1]->hir(instructions, state); 1445 1446 type = arithmetic_result_type(op[0], op[1], 1447 (this->oper == ast_mul), 1448 state, & loc); 1449 error_emitted = type->is_error(); 1450 1451 result = new(ctx) ir_expression(operations[this->oper], type, 1452 op[0], op[1]); 1453 break; 1454 1455 case ast_mod: 1456 op[0] = this->subexpressions[0]->hir(instructions, state); 1457 op[1] = this->subexpressions[1]->hir(instructions, state); 1458 1459 type = modulus_result_type(op[0], op[1], state, &loc); 1460 1461 assert(operations[this->oper] == ir_binop_mod); 1462 1463 result = new(ctx) ir_expression(operations[this->oper], type, 1464 op[0], op[1]); 1465 error_emitted = type->is_error(); 1466 break; 1467 1468 case ast_lshift: 1469 case ast_rshift: 1470 if (!state->check_bitwise_operations_allowed(&loc)) { 1471 error_emitted = true; 1472 } 1473 1474 op[0] = this->subexpressions[0]->hir(instructions, state); 1475 op[1] = this->subexpressions[1]->hir(instructions, state); 1476 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1477 &loc); 1478 result = new(ctx) ir_expression(operations[this->oper], type, 1479 op[0], op[1]); 1480 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1481 break; 1482 1483 case ast_less: 1484 case ast_greater: 1485 case ast_lequal: 1486 case ast_gequal: 1487 op[0] = this->subexpressions[0]->hir(instructions, state); 1488 op[1] = this->subexpressions[1]->hir(instructions, state); 1489 1490 type = relational_result_type(op[0], op[1], state, & loc); 1491 1492 /* The relational operators must either generate an error or result 1493 * in a scalar boolean. See page 57 of the GLSL 1.50 spec. 1494 */ 1495 assert(type->is_error() 1496 || (type->is_boolean() && type->is_scalar())); 1497 1498 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap 1499 * the arguments and use < or >=. 1500 */ 1501 if (this->oper == ast_greater || this->oper == ast_lequal) { 1502 ir_rvalue *const tmp = op[0]; 1503 op[0] = op[1]; 1504 op[1] = tmp; 1505 } 1506 1507 result = new(ctx) ir_expression(operations[this->oper], type, 1508 op[0], op[1]); 1509 error_emitted = type->is_error(); 1510 break; 1511 1512 case ast_nequal: 1513 case ast_equal: 1514 op[0] = this->subexpressions[0]->hir(instructions, state); 1515 op[1] = this->subexpressions[1]->hir(instructions, state); 1516 1517 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: 1518 * 1519 * "The equality operators equal (==), and not equal (!=) 1520 * operate on all types. They result in a scalar Boolean. If 1521 * the operand types do not match, then there must be a 1522 * conversion from Section 4.1.10 "Implicit Conversions" 1523 * applied to one operand that can make them match, in which 1524 * case this conversion is done." 1525 */ 1526 1527 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) { 1528 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: " 1529 "no operation `%1$s' exists that takes a left-hand " 1530 "operand of type 'void' or a right operand of type " 1531 "'void'", (this->oper == ast_equal) ? "==" : "!="); 1532 error_emitted = true; 1533 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state) 1534 && !apply_implicit_conversion(op[1]->type, op[0], state)) 1535 || (op[0]->type != op[1]->type)) { 1536 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " 1537 "type", (this->oper == ast_equal) ? "==" : "!="); 1538 error_emitted = true; 1539 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) && 1540 !state->check_version(120, 300, &loc, 1541 "array comparisons forbidden")) { 1542 error_emitted = true; 1543 } else if ((op[0]->type->contains_subroutine() || 1544 op[1]->type->contains_subroutine())) { 1545 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden"); 1546 error_emitted = true; 1547 } else if ((op[0]->type->contains_opaque() || 1548 op[1]->type->contains_opaque())) { 1549 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden"); 1550 error_emitted = true; 1551 } 1552 1553 if (error_emitted) { 1554 result = new(ctx) ir_constant(false); 1555 } else { 1556 result = do_comparison(ctx, operations[this->oper], op[0], op[1]); 1557 assert(result->type == glsl_type::bool_type); 1558 } 1559 break; 1560 1561 case ast_bit_and: 1562 case ast_bit_xor: 1563 case ast_bit_or: 1564 op[0] = this->subexpressions[0]->hir(instructions, state); 1565 op[1] = this->subexpressions[1]->hir(instructions, state); 1566 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); 1567 result = new(ctx) ir_expression(operations[this->oper], type, 1568 op[0], op[1]); 1569 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1570 break; 1571 1572 case ast_bit_not: 1573 op[0] = this->subexpressions[0]->hir(instructions, state); 1574 1575 if (!state->check_bitwise_operations_allowed(&loc)) { 1576 error_emitted = true; 1577 } 1578 1579 if (!op[0]->type->is_integer_32_64()) { 1580 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); 1581 error_emitted = true; 1582 } 1583 1584 type = error_emitted ? glsl_type::error_type : op[0]->type; 1585 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL); 1586 break; 1587 1588 case ast_logic_and: { 1589 exec_list rhs_instructions; 1590 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1591 "LHS", &error_emitted); 1592 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, 1593 "RHS", &error_emitted); 1594 1595 if (rhs_instructions.is_empty()) { 1596 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]); 1597 } else { 1598 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1599 "and_tmp", 1600 ir_var_temporary); 1601 instructions->push_tail(tmp); 1602 1603 ir_if *const stmt = new(ctx) ir_if(op[0]); 1604 instructions->push_tail(stmt); 1605 1606 stmt->then_instructions.append_list(&rhs_instructions); 1607 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1608 ir_assignment *const then_assign = 1609 new(ctx) ir_assignment(then_deref, op[1]); 1610 stmt->then_instructions.push_tail(then_assign); 1611 1612 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1613 ir_assignment *const else_assign = 1614 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false)); 1615 stmt->else_instructions.push_tail(else_assign); 1616 1617 result = new(ctx) ir_dereference_variable(tmp); 1618 } 1619 break; 1620 } 1621 1622 case ast_logic_or: { 1623 exec_list rhs_instructions; 1624 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1625 "LHS", &error_emitted); 1626 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, 1627 "RHS", &error_emitted); 1628 1629 if (rhs_instructions.is_empty()) { 1630 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]); 1631 } else { 1632 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1633 "or_tmp", 1634 ir_var_temporary); 1635 instructions->push_tail(tmp); 1636 1637 ir_if *const stmt = new(ctx) ir_if(op[0]); 1638 instructions->push_tail(stmt); 1639 1640 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1641 ir_assignment *const then_assign = 1642 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true)); 1643 stmt->then_instructions.push_tail(then_assign); 1644 1645 stmt->else_instructions.append_list(&rhs_instructions); 1646 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1647 ir_assignment *const else_assign = 1648 new(ctx) ir_assignment(else_deref, op[1]); 1649 stmt->else_instructions.push_tail(else_assign); 1650 1651 result = new(ctx) ir_dereference_variable(tmp); 1652 } 1653 break; 1654 } 1655 1656 case ast_logic_xor: 1657 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1658 * 1659 * "The logical binary operators and (&&), or ( | | ), and 1660 * exclusive or (^^). They operate only on two Boolean 1661 * expressions and result in a Boolean expression." 1662 */ 1663 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS", 1664 &error_emitted); 1665 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS", 1666 &error_emitted); 1667 1668 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1669 op[0], op[1]); 1670 break; 1671 1672 case ast_logic_not: 1673 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1674 "operand", &error_emitted); 1675 1676 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1677 op[0], NULL); 1678 break; 1679 1680 case ast_mul_assign: 1681 case ast_div_assign: 1682 case ast_add_assign: 1683 case ast_sub_assign: { 1684 this->subexpressions[0]->set_is_lhs(true); 1685 op[0] = this->subexpressions[0]->hir(instructions, state); 1686 op[1] = this->subexpressions[1]->hir(instructions, state); 1687 1688 orig_type = op[0]->type; 1689 1690 /* Break out if operand types were not parsed successfully. */ 1691 if ((op[0]->type == glsl_type::error_type || 1692 op[1]->type == glsl_type::error_type)) 1693 break; 1694 1695 type = arithmetic_result_type(op[0], op[1], 1696 (this->oper == ast_mul_assign), 1697 state, & loc); 1698 1699 if (type != orig_type) { 1700 _mesa_glsl_error(& loc, state, 1701 "could not implicitly convert " 1702 "%s to %s", type->name, orig_type->name); 1703 type = glsl_type::error_type; 1704 } 1705 1706 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1707 op[0], op[1]); 1708 1709 error_emitted = 1710 do_assignment(instructions, state, 1711 this->subexpressions[0]->non_lvalue_description, 1712 op[0]->clone(ctx, NULL), temp_rhs, 1713 &result, needs_rvalue, false, 1714 this->subexpressions[0]->get_location()); 1715 1716 /* GLSL 1.10 does not allow array assignment. However, we don't have to 1717 * explicitly test for this because none of the binary expression 1718 * operators allow array operands either. 1719 */ 1720 1721 break; 1722 } 1723 1724 case ast_mod_assign: { 1725 this->subexpressions[0]->set_is_lhs(true); 1726 op[0] = this->subexpressions[0]->hir(instructions, state); 1727 op[1] = this->subexpressions[1]->hir(instructions, state); 1728 1729 orig_type = op[0]->type; 1730 type = modulus_result_type(op[0], op[1], state, &loc); 1731 1732 if (type != orig_type) { 1733 _mesa_glsl_error(& loc, state, 1734 "could not implicitly convert " 1735 "%s to %s", type->name, orig_type->name); 1736 type = glsl_type::error_type; 1737 } 1738 1739 assert(operations[this->oper] == ir_binop_mod); 1740 1741 ir_rvalue *temp_rhs; 1742 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1743 op[0], op[1]); 1744 1745 error_emitted = 1746 do_assignment(instructions, state, 1747 this->subexpressions[0]->non_lvalue_description, 1748 op[0]->clone(ctx, NULL), temp_rhs, 1749 &result, needs_rvalue, false, 1750 this->subexpressions[0]->get_location()); 1751 break; 1752 } 1753 1754 case ast_ls_assign: 1755 case ast_rs_assign: { 1756 this->subexpressions[0]->set_is_lhs(true); 1757 op[0] = this->subexpressions[0]->hir(instructions, state); 1758 op[1] = this->subexpressions[1]->hir(instructions, state); 1759 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1760 &loc); 1761 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1762 type, op[0], op[1]); 1763 error_emitted = 1764 do_assignment(instructions, state, 1765 this->subexpressions[0]->non_lvalue_description, 1766 op[0]->clone(ctx, NULL), temp_rhs, 1767 &result, needs_rvalue, false, 1768 this->subexpressions[0]->get_location()); 1769 break; 1770 } 1771 1772 case ast_and_assign: 1773 case ast_xor_assign: 1774 case ast_or_assign: { 1775 this->subexpressions[0]->set_is_lhs(true); 1776 op[0] = this->subexpressions[0]->hir(instructions, state); 1777 op[1] = this->subexpressions[1]->hir(instructions, state); 1778 1779 orig_type = op[0]->type; 1780 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); 1781 1782 if (type != orig_type) { 1783 _mesa_glsl_error(& loc, state, 1784 "could not implicitly convert " 1785 "%s to %s", type->name, orig_type->name); 1786 type = glsl_type::error_type; 1787 } 1788 1789 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1790 type, op[0], op[1]); 1791 error_emitted = 1792 do_assignment(instructions, state, 1793 this->subexpressions[0]->non_lvalue_description, 1794 op[0]->clone(ctx, NULL), temp_rhs, 1795 &result, needs_rvalue, false, 1796 this->subexpressions[0]->get_location()); 1797 break; 1798 } 1799 1800 case ast_conditional: { 1801 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1802 * 1803 * "The ternary selection operator (?:). It operates on three 1804 * expressions (exp1 ? exp2 : exp3). This operator evaluates the 1805 * first expression, which must result in a scalar Boolean." 1806 */ 1807 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1808 "condition", &error_emitted); 1809 1810 /* The :? operator is implemented by generating an anonymous temporary 1811 * followed by an if-statement. The last instruction in each branch of 1812 * the if-statement assigns a value to the anonymous temporary. This 1813 * temporary is the r-value of the expression. 1814 */ 1815 exec_list then_instructions; 1816 exec_list else_instructions; 1817 1818 op[1] = this->subexpressions[1]->hir(&then_instructions, state); 1819 op[2] = this->subexpressions[2]->hir(&else_instructions, state); 1820 1821 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1822 * 1823 * "The second and third expressions can be any type, as 1824 * long their types match, or there is a conversion in 1825 * Section 4.1.10 "Implicit Conversions" that can be applied 1826 * to one of the expressions to make their types match. This 1827 * resulting matching type is the type of the entire 1828 * expression." 1829 */ 1830 if ((!apply_implicit_conversion(op[1]->type, op[2], state) 1831 && !apply_implicit_conversion(op[2]->type, op[1], state)) 1832 || (op[1]->type != op[2]->type)) { 1833 YYLTYPE loc = this->subexpressions[1]->get_location(); 1834 1835 _mesa_glsl_error(& loc, state, "second and third operands of ?: " 1836 "operator must have matching types"); 1837 error_emitted = true; 1838 type = glsl_type::error_type; 1839 } else { 1840 type = op[1]->type; 1841 } 1842 1843 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1844 * 1845 * "The second and third expressions must be the same type, but can 1846 * be of any type other than an array." 1847 */ 1848 if (type->is_array() && 1849 !state->check_version(120, 300, &loc, 1850 "second and third operands of ?: operator " 1851 "cannot be arrays")) { 1852 error_emitted = true; 1853 } 1854 1855 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types): 1856 * 1857 * "Except for array indexing, structure member selection, and 1858 * parentheses, opaque variables are not allowed to be operands in 1859 * expressions; such use results in a compile-time error." 1860 */ 1861 if (type->contains_opaque()) { 1862 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) { 1863 _mesa_glsl_error(&loc, state, "variables of type %s cannot be " 1864 "operands of the ?: operator", type->name); 1865 error_emitted = true; 1866 } 1867 } 1868 1869 ir_constant *cond_val = op[0]->constant_expression_value(ctx); 1870 1871 if (then_instructions.is_empty() 1872 && else_instructions.is_empty() 1873 && cond_val != NULL) { 1874 result = cond_val->value.b[0] ? op[1] : op[2]; 1875 } else { 1876 /* The copy to conditional_tmp reads the whole array. */ 1877 if (type->is_array()) { 1878 mark_whole_array_access(op[1]); 1879 mark_whole_array_access(op[2]); 1880 } 1881 1882 ir_variable *const tmp = 1883 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); 1884 instructions->push_tail(tmp); 1885 1886 ir_if *const stmt = new(ctx) ir_if(op[0]); 1887 instructions->push_tail(stmt); 1888 1889 then_instructions.move_nodes_to(& stmt->then_instructions); 1890 ir_dereference *const then_deref = 1891 new(ctx) ir_dereference_variable(tmp); 1892 ir_assignment *const then_assign = 1893 new(ctx) ir_assignment(then_deref, op[1]); 1894 stmt->then_instructions.push_tail(then_assign); 1895 1896 else_instructions.move_nodes_to(& stmt->else_instructions); 1897 ir_dereference *const else_deref = 1898 new(ctx) ir_dereference_variable(tmp); 1899 ir_assignment *const else_assign = 1900 new(ctx) ir_assignment(else_deref, op[2]); 1901 stmt->else_instructions.push_tail(else_assign); 1902 1903 result = new(ctx) ir_dereference_variable(tmp); 1904 } 1905 break; 1906 } 1907 1908 case ast_pre_inc: 1909 case ast_pre_dec: { 1910 this->non_lvalue_description = (this->oper == ast_pre_inc) 1911 ? "pre-increment operation" : "pre-decrement operation"; 1912 1913 op[0] = this->subexpressions[0]->hir(instructions, state); 1914 op[1] = constant_one_for_inc_dec(ctx, op[0]->type); 1915 1916 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1917 1918 ir_rvalue *temp_rhs; 1919 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1920 op[0], op[1]); 1921 1922 error_emitted = 1923 do_assignment(instructions, state, 1924 this->subexpressions[0]->non_lvalue_description, 1925 op[0]->clone(ctx, NULL), temp_rhs, 1926 &result, needs_rvalue, false, 1927 this->subexpressions[0]->get_location()); 1928 break; 1929 } 1930 1931 case ast_post_inc: 1932 case ast_post_dec: { 1933 this->non_lvalue_description = (this->oper == ast_post_inc) 1934 ? "post-increment operation" : "post-decrement operation"; 1935 op[0] = this->subexpressions[0]->hir(instructions, state); 1936 op[1] = constant_one_for_inc_dec(ctx, op[0]->type); 1937 1938 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1939 1940 if (error_emitted) { 1941 result = ir_rvalue::error_value(ctx); 1942 break; 1943 } 1944 1945 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1946 1947 ir_rvalue *temp_rhs; 1948 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1949 op[0], op[1]); 1950 1951 /* Get a temporary of a copy of the lvalue before it's modified. 1952 * This may get thrown away later. 1953 */ 1954 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL)); 1955 1956 ir_rvalue *junk_rvalue; 1957 error_emitted = 1958 do_assignment(instructions, state, 1959 this->subexpressions[0]->non_lvalue_description, 1960 op[0]->clone(ctx, NULL), temp_rhs, 1961 &junk_rvalue, false, false, 1962 this->subexpressions[0]->get_location()); 1963 1964 break; 1965 } 1966 1967 case ast_field_selection: 1968 result = _mesa_ast_field_selection_to_hir(this, instructions, state); 1969 break; 1970 1971 case ast_array_index: { 1972 YYLTYPE index_loc = subexpressions[1]->get_location(); 1973 1974 /* Getting if an array is being used uninitialized is beyond what we get 1975 * from ir_value.data.assigned. Setting is_lhs as true would force to 1976 * not raise a uninitialized warning when using an array 1977 */ 1978 subexpressions[0]->set_is_lhs(true); 1979 op[0] = subexpressions[0]->hir(instructions, state); 1980 op[1] = subexpressions[1]->hir(instructions, state); 1981 1982 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1], 1983 loc, index_loc); 1984 1985 if (result->type->is_error()) 1986 error_emitted = true; 1987 1988 break; 1989 } 1990 1991 case ast_unsized_array_dim: 1992 unreachable("ast_unsized_array_dim: Should never get here."); 1993 1994 case ast_function_call: 1995 /* Should *NEVER* get here. ast_function_call should always be handled 1996 * by ast_function_expression::hir. 1997 */ 1998 unreachable("ast_function_call: handled elsewhere "); 1999 2000 case ast_identifier: { 2001 /* ast_identifier can appear several places in a full abstract syntax 2002 * tree. This particular use must be at location specified in the grammar 2003 * as 'variable_identifier'. 2004 */ 2005 ir_variable *var = 2006 state->symbols->get_variable(this->primary_expression.identifier); 2007 2008 if (var == NULL) { 2009 /* the identifier might be a subroutine name */ 2010 char *sub_name; 2011 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier); 2012 var = state->symbols->get_variable(sub_name); 2013 ralloc_free(sub_name); 2014 } 2015 2016 if (var != NULL) { 2017 var->data.used = true; 2018 result = new(ctx) ir_dereference_variable(var); 2019 2020 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) 2021 && !this->is_lhs 2022 && result->variable_referenced()->data.assigned != true 2023 && !is_gl_identifier(var->name)) { 2024 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", 2025 this->primary_expression.identifier); 2026 } 2027 2028 /* From the EXT_shader_framebuffer_fetch spec: 2029 * 2030 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been 2031 * enabled in addition, it's an error to use gl_LastFragData if it 2032 * hasn't been explicitly redeclared with layout(noncoherent)." 2033 */ 2034 if (var->data.fb_fetch_output && var->data.memory_coherent && 2035 !state->EXT_shader_framebuffer_fetch_enable) { 2036 _mesa_glsl_error(&loc, state, 2037 "invalid use of framebuffer fetch output not " 2038 "qualified with layout(noncoherent)"); 2039 } 2040 2041 } else { 2042 _mesa_glsl_error(& loc, state, "`%s' undeclared", 2043 this->primary_expression.identifier); 2044 2045 result = ir_rvalue::error_value(ctx); 2046 error_emitted = true; 2047 } 2048 break; 2049 } 2050 2051 case ast_int_constant: 2052 result = new(ctx) ir_constant(this->primary_expression.int_constant); 2053 break; 2054 2055 case ast_uint_constant: 2056 result = new(ctx) ir_constant(this->primary_expression.uint_constant); 2057 break; 2058 2059 case ast_float_constant: 2060 result = new(ctx) ir_constant(this->primary_expression.float_constant); 2061 break; 2062 2063 case ast_bool_constant: 2064 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); 2065 break; 2066 2067 case ast_double_constant: 2068 result = new(ctx) ir_constant(this->primary_expression.double_constant); 2069 break; 2070 2071 case ast_uint64_constant: 2072 result = new(ctx) ir_constant(this->primary_expression.uint64_constant); 2073 break; 2074 2075 case ast_int64_constant: 2076 result = new(ctx) ir_constant(this->primary_expression.int64_constant); 2077 break; 2078 2079 case ast_sequence: { 2080 /* It should not be possible to generate a sequence in the AST without 2081 * any expressions in it. 2082 */ 2083 assert(!this->expressions.is_empty()); 2084 2085 /* The r-value of a sequence is the last expression in the sequence. If 2086 * the other expressions in the sequence do not have side-effects (and 2087 * therefore add instructions to the instruction list), they get dropped 2088 * on the floor. 2089 */ 2090 exec_node *previous_tail = NULL; 2091 YYLTYPE previous_operand_loc = loc; 2092 2093 foreach_list_typed (ast_node, ast, link, &this->expressions) { 2094 /* If one of the operands of comma operator does not generate any 2095 * code, we want to emit a warning. At each pass through the loop 2096 * previous_tail will point to the last instruction in the stream 2097 * *before* processing the previous operand. Naturally, 2098 * instructions->get_tail_raw() will point to the last instruction in 2099 * the stream *after* processing the previous operand. If the two 2100 * pointers match, then the previous operand had no effect. 2101 * 2102 * The warning behavior here differs slightly from GCC. GCC will 2103 * only emit a warning if none of the left-hand operands have an 2104 * effect. However, it will emit a warning for each. I believe that 2105 * there are some cases in C (especially with GCC extensions) where 2106 * it is useful to have an intermediate step in a sequence have no 2107 * effect, but I don't think these cases exist in GLSL. Either way, 2108 * it would be a giant hassle to replicate that behavior. 2109 */ 2110 if (previous_tail == instructions->get_tail_raw()) { 2111 _mesa_glsl_warning(&previous_operand_loc, state, 2112 "left-hand operand of comma expression has " 2113 "no effect"); 2114 } 2115 2116 /* The tail is directly accessed instead of using the get_tail() 2117 * method for performance reasons. get_tail() has extra code to 2118 * return NULL when the list is empty. We don't care about that 2119 * here, so using get_tail_raw() is fine. 2120 */ 2121 previous_tail = instructions->get_tail_raw(); 2122 previous_operand_loc = ast->get_location(); 2123 2124 result = ast->hir(instructions, state); 2125 } 2126 2127 /* Any errors should have already been emitted in the loop above. 2128 */ 2129 error_emitted = true; 2130 break; 2131 } 2132 } 2133 type = NULL; /* use result->type, not type. */ 2134 assert(result != NULL || !needs_rvalue); 2135 2136 if (result && result->type->is_error() && !error_emitted) 2137 _mesa_glsl_error(& loc, state, "type mismatch"); 2138 2139 return result; 2140} 2141 2142bool 2143ast_expression::has_sequence_subexpression() const 2144{ 2145 switch (this->oper) { 2146 case ast_plus: 2147 case ast_neg: 2148 case ast_bit_not: 2149 case ast_logic_not: 2150 case ast_pre_inc: 2151 case ast_pre_dec: 2152 case ast_post_inc: 2153 case ast_post_dec: 2154 return this->subexpressions[0]->has_sequence_subexpression(); 2155 2156 case ast_assign: 2157 case ast_add: 2158 case ast_sub: 2159 case ast_mul: 2160 case ast_div: 2161 case ast_mod: 2162 case ast_lshift: 2163 case ast_rshift: 2164 case ast_less: 2165 case ast_greater: 2166 case ast_lequal: 2167 case ast_gequal: 2168 case ast_nequal: 2169 case ast_equal: 2170 case ast_bit_and: 2171 case ast_bit_xor: 2172 case ast_bit_or: 2173 case ast_logic_and: 2174 case ast_logic_or: 2175 case ast_logic_xor: 2176 case ast_array_index: 2177 case ast_mul_assign: 2178 case ast_div_assign: 2179 case ast_add_assign: 2180 case ast_sub_assign: 2181 case ast_mod_assign: 2182 case ast_ls_assign: 2183 case ast_rs_assign: 2184 case ast_and_assign: 2185 case ast_xor_assign: 2186 case ast_or_assign: 2187 return this->subexpressions[0]->has_sequence_subexpression() || 2188 this->subexpressions[1]->has_sequence_subexpression(); 2189 2190 case ast_conditional: 2191 return this->subexpressions[0]->has_sequence_subexpression() || 2192 this->subexpressions[1]->has_sequence_subexpression() || 2193 this->subexpressions[2]->has_sequence_subexpression(); 2194 2195 case ast_sequence: 2196 return true; 2197 2198 case ast_field_selection: 2199 case ast_identifier: 2200 case ast_int_constant: 2201 case ast_uint_constant: 2202 case ast_float_constant: 2203 case ast_bool_constant: 2204 case ast_double_constant: 2205 case ast_int64_constant: 2206 case ast_uint64_constant: 2207 return false; 2208 2209 case ast_aggregate: 2210 return false; 2211 2212 case ast_function_call: 2213 unreachable("should be handled by ast_function_expression::hir"); 2214 2215 case ast_unsized_array_dim: 2216 unreachable("ast_unsized_array_dim: Should never get here."); 2217 } 2218 2219 return false; 2220} 2221 2222ir_rvalue * 2223ast_expression_statement::hir(exec_list *instructions, 2224 struct _mesa_glsl_parse_state *state) 2225{ 2226 /* It is possible to have expression statements that don't have an 2227 * expression. This is the solitary semicolon: 2228 * 2229 * for (i = 0; i < 5; i++) 2230 * ; 2231 * 2232 * In this case the expression will be NULL. Test for NULL and don't do 2233 * anything in that case. 2234 */ 2235 if (expression != NULL) 2236 expression->hir_no_rvalue(instructions, state); 2237 2238 /* Statements do not have r-values. 2239 */ 2240 return NULL; 2241} 2242 2243 2244ir_rvalue * 2245ast_compound_statement::hir(exec_list *instructions, 2246 struct _mesa_glsl_parse_state *state) 2247{ 2248 if (new_scope) 2249 state->symbols->push_scope(); 2250 2251 foreach_list_typed (ast_node, ast, link, &this->statements) 2252 ast->hir(instructions, state); 2253 2254 if (new_scope) 2255 state->symbols->pop_scope(); 2256 2257 /* Compound statements do not have r-values. 2258 */ 2259 return NULL; 2260} 2261 2262/** 2263 * Evaluate the given exec_node (which should be an ast_node representing 2264 * a single array dimension) and return its integer value. 2265 */ 2266static unsigned 2267process_array_size(exec_node *node, 2268 struct _mesa_glsl_parse_state *state) 2269{ 2270 void *mem_ctx = state; 2271 2272 exec_list dummy_instructions; 2273 2274 ast_node *array_size = exec_node_data(ast_node, node, link); 2275 2276 /** 2277 * Dimensions other than the outermost dimension can by unsized if they 2278 * are immediately sized by a constructor or initializer. 2279 */ 2280 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim) 2281 return 0; 2282 2283 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); 2284 YYLTYPE loc = array_size->get_location(); 2285 2286 if (ir == NULL) { 2287 _mesa_glsl_error(& loc, state, 2288 "array size could not be resolved"); 2289 return 0; 2290 } 2291 2292 if (!ir->type->is_integer()) { 2293 _mesa_glsl_error(& loc, state, 2294 "array size must be integer type"); 2295 return 0; 2296 } 2297 2298 if (!ir->type->is_scalar()) { 2299 _mesa_glsl_error(& loc, state, 2300 "array size must be scalar type"); 2301 return 0; 2302 } 2303 2304 ir_constant *const size = ir->constant_expression_value(mem_ctx); 2305 if (size == NULL || 2306 (state->is_version(120, 300) && 2307 array_size->has_sequence_subexpression())) { 2308 _mesa_glsl_error(& loc, state, "array size must be a " 2309 "constant valued expression"); 2310 return 0; 2311 } 2312 2313 if (size->value.i[0] <= 0) { 2314 _mesa_glsl_error(& loc, state, "array size must be > 0"); 2315 return 0; 2316 } 2317 2318 assert(size->type == ir->type); 2319 2320 /* If the array size is const (and we've verified that 2321 * it is) then no instructions should have been emitted 2322 * when we converted it to HIR. If they were emitted, 2323 * then either the array size isn't const after all, or 2324 * we are emitting unnecessary instructions. 2325 */ 2326 assert(dummy_instructions.is_empty()); 2327 2328 return size->value.u[0]; 2329} 2330 2331static const glsl_type * 2332process_array_type(YYLTYPE *loc, const glsl_type *base, 2333 ast_array_specifier *array_specifier, 2334 struct _mesa_glsl_parse_state *state) 2335{ 2336 const glsl_type *array_type = base; 2337 2338 if (array_specifier != NULL) { 2339 if (base->is_array()) { 2340 2341 /* From page 19 (page 25) of the GLSL 1.20 spec: 2342 * 2343 * "Only one-dimensional arrays may be declared." 2344 */ 2345 if (!state->check_arrays_of_arrays_allowed(loc)) { 2346 return glsl_type::error_type; 2347 } 2348 } 2349 2350 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw(); 2351 !node->is_head_sentinel(); node = node->prev) { 2352 unsigned array_size = process_array_size(node, state); 2353 array_type = glsl_type::get_array_instance(array_type, array_size); 2354 } 2355 } 2356 2357 return array_type; 2358} 2359 2360static bool 2361precision_qualifier_allowed(const glsl_type *type) 2362{ 2363 /* Precision qualifiers apply to floating point, integer and opaque 2364 * types. 2365 * 2366 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says: 2367 * "Any floating point or any integer declaration can have the type 2368 * preceded by one of these precision qualifiers [...] Literal 2369 * constants do not have precision qualifiers. Neither do Boolean 2370 * variables. 2371 * 2372 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30 2373 * spec also says: 2374 * 2375 * "Precision qualifiers are added for code portability with OpenGL 2376 * ES, not for functionality. They have the same syntax as in OpenGL 2377 * ES." 2378 * 2379 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says: 2380 * 2381 * "uniform lowp sampler2D sampler; 2382 * highp vec2 coord; 2383 * ... 2384 * lowp vec4 col = texture2D (sampler, coord); 2385 * // texture2D returns lowp" 2386 * 2387 * From this, we infer that GLSL 1.30 (and later) should allow precision 2388 * qualifiers on sampler types just like float and integer types. 2389 */ 2390 const glsl_type *const t = type->without_array(); 2391 2392 return (t->is_float() || t->is_integer() || t->contains_opaque()) && 2393 !t->is_record(); 2394} 2395 2396const glsl_type * 2397ast_type_specifier::glsl_type(const char **name, 2398 struct _mesa_glsl_parse_state *state) const 2399{ 2400 const struct glsl_type *type; 2401 2402 if (this->type != NULL) 2403 type = this->type; 2404 else if (structure) 2405 type = structure->type; 2406 else 2407 type = state->symbols->get_type(this->type_name); 2408 *name = this->type_name; 2409 2410 YYLTYPE loc = this->get_location(); 2411 type = process_array_type(&loc, type, this->array_specifier, state); 2412 2413 return type; 2414} 2415 2416/** 2417 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers: 2418 * 2419 * "The precision statement 2420 * 2421 * precision precision-qualifier type; 2422 * 2423 * can be used to establish a default precision qualifier. The type field can 2424 * be either int or float or any of the sampler types, (...) If type is float, 2425 * the directive applies to non-precision-qualified floating point type 2426 * (scalar, vector, and matrix) declarations. If type is int, the directive 2427 * applies to all non-precision-qualified integer type (scalar, vector, signed, 2428 * and unsigned) declarations." 2429 * 2430 * We use the symbol table to keep the values of the default precisions for 2431 * each 'type' in each scope and we use the 'type' string from the precision 2432 * statement as key in the symbol table. When we want to retrieve the default 2433 * precision associated with a given glsl_type we need to know the type string 2434 * associated with it. This is what this function returns. 2435 */ 2436static const char * 2437get_type_name_for_precision_qualifier(const glsl_type *type) 2438{ 2439 switch (type->base_type) { 2440 case GLSL_TYPE_FLOAT: 2441 return "float"; 2442 case GLSL_TYPE_UINT: 2443 case GLSL_TYPE_INT: 2444 return "int"; 2445 case GLSL_TYPE_ATOMIC_UINT: 2446 return "atomic_uint"; 2447 case GLSL_TYPE_IMAGE: 2448 /* fallthrough */ 2449 case GLSL_TYPE_SAMPLER: { 2450 const unsigned type_idx = 2451 type->sampler_array + 2 * type->sampler_shadow; 2452 const unsigned offset = type->is_sampler() ? 0 : 4; 2453 assert(type_idx < 4); 2454 switch (type->sampled_type) { 2455 case GLSL_TYPE_FLOAT: 2456 switch (type->sampler_dimensionality) { 2457 case GLSL_SAMPLER_DIM_1D: { 2458 assert(type->is_sampler()); 2459 static const char *const names[4] = { 2460 "sampler1D", "sampler1DArray", 2461 "sampler1DShadow", "sampler1DArrayShadow" 2462 }; 2463 return names[type_idx]; 2464 } 2465 case GLSL_SAMPLER_DIM_2D: { 2466 static const char *const names[8] = { 2467 "sampler2D", "sampler2DArray", 2468 "sampler2DShadow", "sampler2DArrayShadow", 2469 "image2D", "image2DArray", NULL, NULL 2470 }; 2471 return names[offset + type_idx]; 2472 } 2473 case GLSL_SAMPLER_DIM_3D: { 2474 static const char *const names[8] = { 2475 "sampler3D", NULL, NULL, NULL, 2476 "image3D", NULL, NULL, NULL 2477 }; 2478 return names[offset + type_idx]; 2479 } 2480 case GLSL_SAMPLER_DIM_CUBE: { 2481 static const char *const names[8] = { 2482 "samplerCube", "samplerCubeArray", 2483 "samplerCubeShadow", "samplerCubeArrayShadow", 2484 "imageCube", NULL, NULL, NULL 2485 }; 2486 return names[offset + type_idx]; 2487 } 2488 case GLSL_SAMPLER_DIM_MS: { 2489 assert(type->is_sampler()); 2490 static const char *const names[4] = { 2491 "sampler2DMS", "sampler2DMSArray", NULL, NULL 2492 }; 2493 return names[type_idx]; 2494 } 2495 case GLSL_SAMPLER_DIM_RECT: { 2496 assert(type->is_sampler()); 2497 static const char *const names[4] = { 2498 "samplerRect", NULL, "samplerRectShadow", NULL 2499 }; 2500 return names[type_idx]; 2501 } 2502 case GLSL_SAMPLER_DIM_BUF: { 2503 static const char *const names[8] = { 2504 "samplerBuffer", NULL, NULL, NULL, 2505 "imageBuffer", NULL, NULL, NULL 2506 }; 2507 return names[offset + type_idx]; 2508 } 2509 case GLSL_SAMPLER_DIM_EXTERNAL: { 2510 assert(type->is_sampler()); 2511 static const char *const names[4] = { 2512 "samplerExternalOES", NULL, NULL, NULL 2513 }; 2514 return names[type_idx]; 2515 } 2516 default: 2517 unreachable("Unsupported sampler/image dimensionality"); 2518 } /* sampler/image float dimensionality */ 2519 break; 2520 case GLSL_TYPE_INT: 2521 switch (type->sampler_dimensionality) { 2522 case GLSL_SAMPLER_DIM_1D: { 2523 assert(type->is_sampler()); 2524 static const char *const names[4] = { 2525 "isampler1D", "isampler1DArray", NULL, NULL 2526 }; 2527 return names[type_idx]; 2528 } 2529 case GLSL_SAMPLER_DIM_2D: { 2530 static const char *const names[8] = { 2531 "isampler2D", "isampler2DArray", NULL, NULL, 2532 "iimage2D", "iimage2DArray", NULL, NULL 2533 }; 2534 return names[offset + type_idx]; 2535 } 2536 case GLSL_SAMPLER_DIM_3D: { 2537 static const char *const names[8] = { 2538 "isampler3D", NULL, NULL, NULL, 2539 "iimage3D", NULL, NULL, NULL 2540 }; 2541 return names[offset + type_idx]; 2542 } 2543 case GLSL_SAMPLER_DIM_CUBE: { 2544 static const char *const names[8] = { 2545 "isamplerCube", "isamplerCubeArray", NULL, NULL, 2546 "iimageCube", NULL, NULL, NULL 2547 }; 2548 return names[offset + type_idx]; 2549 } 2550 case GLSL_SAMPLER_DIM_MS: { 2551 assert(type->is_sampler()); 2552 static const char *const names[4] = { 2553 "isampler2DMS", "isampler2DMSArray", NULL, NULL 2554 }; 2555 return names[type_idx]; 2556 } 2557 case GLSL_SAMPLER_DIM_RECT: { 2558 assert(type->is_sampler()); 2559 static const char *const names[4] = { 2560 "isamplerRect", NULL, "isamplerRectShadow", NULL 2561 }; 2562 return names[type_idx]; 2563 } 2564 case GLSL_SAMPLER_DIM_BUF: { 2565 static const char *const names[8] = { 2566 "isamplerBuffer", NULL, NULL, NULL, 2567 "iimageBuffer", NULL, NULL, NULL 2568 }; 2569 return names[offset + type_idx]; 2570 } 2571 default: 2572 unreachable("Unsupported isampler/iimage dimensionality"); 2573 } /* sampler/image int dimensionality */ 2574 break; 2575 case GLSL_TYPE_UINT: 2576 switch (type->sampler_dimensionality) { 2577 case GLSL_SAMPLER_DIM_1D: { 2578 assert(type->is_sampler()); 2579 static const char *const names[4] = { 2580 "usampler1D", "usampler1DArray", NULL, NULL 2581 }; 2582 return names[type_idx]; 2583 } 2584 case GLSL_SAMPLER_DIM_2D: { 2585 static const char *const names[8] = { 2586 "usampler2D", "usampler2DArray", NULL, NULL, 2587 "uimage2D", "uimage2DArray", NULL, NULL 2588 }; 2589 return names[offset + type_idx]; 2590 } 2591 case GLSL_SAMPLER_DIM_3D: { 2592 static const char *const names[8] = { 2593 "usampler3D", NULL, NULL, NULL, 2594 "uimage3D", NULL, NULL, NULL 2595 }; 2596 return names[offset + type_idx]; 2597 } 2598 case GLSL_SAMPLER_DIM_CUBE: { 2599 static const char *const names[8] = { 2600 "usamplerCube", "usamplerCubeArray", NULL, NULL, 2601 "uimageCube", NULL, NULL, NULL 2602 }; 2603 return names[offset + type_idx]; 2604 } 2605 case GLSL_SAMPLER_DIM_MS: { 2606 assert(type->is_sampler()); 2607 static const char *const names[4] = { 2608 "usampler2DMS", "usampler2DMSArray", NULL, NULL 2609 }; 2610 return names[type_idx]; 2611 } 2612 case GLSL_SAMPLER_DIM_RECT: { 2613 assert(type->is_sampler()); 2614 static const char *const names[4] = { 2615 "usamplerRect", NULL, "usamplerRectShadow", NULL 2616 }; 2617 return names[type_idx]; 2618 } 2619 case GLSL_SAMPLER_DIM_BUF: { 2620 static const char *const names[8] = { 2621 "usamplerBuffer", NULL, NULL, NULL, 2622 "uimageBuffer", NULL, NULL, NULL 2623 }; 2624 return names[offset + type_idx]; 2625 } 2626 default: 2627 unreachable("Unsupported usampler/uimage dimensionality"); 2628 } /* sampler/image uint dimensionality */ 2629 break; 2630 default: 2631 unreachable("Unsupported sampler/image type"); 2632 } /* sampler/image type */ 2633 break; 2634 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */ 2635 break; 2636 default: 2637 unreachable("Unsupported type"); 2638 } /* base type */ 2639} 2640 2641static unsigned 2642select_gles_precision(unsigned qual_precision, 2643 const glsl_type *type, 2644 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 2645{ 2646 /* Precision qualifiers do not have any meaning in Desktop GLSL. 2647 * In GLES we take the precision from the type qualifier if present, 2648 * otherwise, if the type of the variable allows precision qualifiers at 2649 * all, we look for the default precision qualifier for that type in the 2650 * current scope. 2651 */ 2652 assert(state->es_shader); 2653 2654 unsigned precision = GLSL_PRECISION_NONE; 2655 if (qual_precision) { 2656 precision = qual_precision; 2657 } else if (precision_qualifier_allowed(type)) { 2658 const char *type_name = 2659 get_type_name_for_precision_qualifier(type->without_array()); 2660 assert(type_name != NULL); 2661 2662 precision = 2663 state->symbols->get_default_precision_qualifier(type_name); 2664 if (precision == ast_precision_none) { 2665 _mesa_glsl_error(loc, state, 2666 "No precision specified in this scope for type `%s'", 2667 type->name); 2668 } 2669 } 2670 2671 2672 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says: 2673 * 2674 * "The default precision of all atomic types is highp. It is an error to 2675 * declare an atomic type with a different precision or to specify the 2676 * default precision for an atomic type to be lowp or mediump." 2677 */ 2678 if (type->is_atomic_uint() && precision != ast_precision_high) { 2679 _mesa_glsl_error(loc, state, 2680 "atomic_uint can only have highp precision qualifier"); 2681 } 2682 2683 return precision; 2684} 2685 2686const glsl_type * 2687ast_fully_specified_type::glsl_type(const char **name, 2688 struct _mesa_glsl_parse_state *state) const 2689{ 2690 return this->specifier->glsl_type(name, state); 2691} 2692 2693/** 2694 * Determine whether a toplevel variable declaration declares a varying. This 2695 * function operates by examining the variable's mode and the shader target, 2696 * so it correctly identifies linkage variables regardless of whether they are 2697 * declared using the deprecated "varying" syntax or the new "in/out" syntax. 2698 * 2699 * Passing a non-toplevel variable declaration (e.g. a function parameter) to 2700 * this function will produce undefined results. 2701 */ 2702static bool 2703is_varying_var(ir_variable *var, gl_shader_stage target) 2704{ 2705 switch (target) { 2706 case MESA_SHADER_VERTEX: 2707 return var->data.mode == ir_var_shader_out; 2708 case MESA_SHADER_FRAGMENT: 2709 return var->data.mode == ir_var_shader_in; 2710 default: 2711 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in; 2712 } 2713} 2714 2715static bool 2716is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state) 2717{ 2718 if (is_varying_var(var, state->stage)) 2719 return true; 2720 2721 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec: 2722 * "Only variables output from a vertex shader can be candidates 2723 * for invariance". 2724 */ 2725 if (!state->is_version(130, 0)) 2726 return false; 2727 2728 /* 2729 * Later specs remove this language - so allowed invariant 2730 * on fragment shader outputs as well. 2731 */ 2732 if (state->stage == MESA_SHADER_FRAGMENT && 2733 var->data.mode == ir_var_shader_out) 2734 return true; 2735 return false; 2736} 2737 2738/** 2739 * Matrix layout qualifiers are only allowed on certain types 2740 */ 2741static void 2742validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state, 2743 YYLTYPE *loc, 2744 const glsl_type *type, 2745 ir_variable *var) 2746{ 2747 if (var && !var->is_in_buffer_block()) { 2748 /* Layout qualifiers may only apply to interface blocks and fields in 2749 * them. 2750 */ 2751 _mesa_glsl_error(loc, state, 2752 "uniform block layout qualifiers row_major and " 2753 "column_major may not be applied to variables " 2754 "outside of uniform blocks"); 2755 } else if (!type->without_array()->is_matrix()) { 2756 /* The OpenGL ES 3.0 conformance tests did not originally allow 2757 * matrix layout qualifiers on non-matrices. However, the OpenGL 2758 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were 2759 * amended to specifically allow these layouts on all types. Emit 2760 * a warning so that people know their code may not be portable. 2761 */ 2762 _mesa_glsl_warning(loc, state, 2763 "uniform block layout qualifiers row_major and " 2764 "column_major applied to non-matrix types may " 2765 "be rejected by older compilers"); 2766 } 2767} 2768 2769static bool 2770validate_xfb_buffer_qualifier(YYLTYPE *loc, 2771 struct _mesa_glsl_parse_state *state, 2772 unsigned xfb_buffer) { 2773 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) { 2774 _mesa_glsl_error(loc, state, 2775 "invalid xfb_buffer specified %d is larger than " 2776 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).", 2777 xfb_buffer, 2778 state->Const.MaxTransformFeedbackBuffers - 1); 2779 return false; 2780 } 2781 2782 return true; 2783} 2784 2785/* From the ARB_enhanced_layouts spec: 2786 * 2787 * "Variables and block members qualified with *xfb_offset* can be 2788 * scalars, vectors, matrices, structures, and (sized) arrays of these. 2789 * The offset must be a multiple of the size of the first component of 2790 * the first qualified variable or block member, or a compile-time error 2791 * results. Further, if applied to an aggregate containing a double, 2792 * the offset must also be a multiple of 8, and the space taken in the 2793 * buffer will be a multiple of 8. 2794 */ 2795static bool 2796validate_xfb_offset_qualifier(YYLTYPE *loc, 2797 struct _mesa_glsl_parse_state *state, 2798 int xfb_offset, const glsl_type *type, 2799 unsigned component_size) { 2800 const glsl_type *t_without_array = type->without_array(); 2801 2802 if (xfb_offset != -1 && type->is_unsized_array()) { 2803 _mesa_glsl_error(loc, state, 2804 "xfb_offset can't be used with unsized arrays."); 2805 return false; 2806 } 2807 2808 /* Make sure nested structs don't contain unsized arrays, and validate 2809 * any xfb_offsets on interface members. 2810 */ 2811 if (t_without_array->is_record() || t_without_array->is_interface()) 2812 for (unsigned int i = 0; i < t_without_array->length; i++) { 2813 const glsl_type *member_t = t_without_array->fields.structure[i].type; 2814 2815 /* When the interface block doesn't have an xfb_offset qualifier then 2816 * we apply the component size rules at the member level. 2817 */ 2818 if (xfb_offset == -1) 2819 component_size = member_t->contains_double() ? 8 : 4; 2820 2821 int xfb_offset = t_without_array->fields.structure[i].offset; 2822 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t, 2823 component_size); 2824 } 2825 2826 /* Nested structs or interface block without offset may not have had an 2827 * offset applied yet so return. 2828 */ 2829 if (xfb_offset == -1) { 2830 return true; 2831 } 2832 2833 if (xfb_offset % component_size) { 2834 _mesa_glsl_error(loc, state, 2835 "invalid qualifier xfb_offset=%d must be a multiple " 2836 "of the first component size of the first qualified " 2837 "variable or block member. Or double if an aggregate " 2838 "that contains a double (%d).", 2839 xfb_offset, component_size); 2840 return false; 2841 } 2842 2843 return true; 2844} 2845 2846static bool 2847validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state, 2848 unsigned stream) 2849{ 2850 if (stream >= state->ctx->Const.MaxVertexStreams) { 2851 _mesa_glsl_error(loc, state, 2852 "invalid stream specified %d is larger than " 2853 "MAX_VERTEX_STREAMS - 1 (%d).", 2854 stream, state->ctx->Const.MaxVertexStreams - 1); 2855 return false; 2856 } 2857 2858 return true; 2859} 2860 2861static void 2862apply_explicit_binding(struct _mesa_glsl_parse_state *state, 2863 YYLTYPE *loc, 2864 ir_variable *var, 2865 const glsl_type *type, 2866 const ast_type_qualifier *qual) 2867{ 2868 if (!qual->flags.q.uniform && !qual->flags.q.buffer) { 2869 _mesa_glsl_error(loc, state, 2870 "the \"binding\" qualifier only applies to uniforms and " 2871 "shader storage buffer objects"); 2872 return; 2873 } 2874 2875 unsigned qual_binding; 2876 if (!process_qualifier_constant(state, loc, "binding", qual->binding, 2877 &qual_binding)) { 2878 return; 2879 } 2880 2881 const struct gl_context *const ctx = state->ctx; 2882 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1; 2883 unsigned max_index = qual_binding + elements - 1; 2884 const glsl_type *base_type = type->without_array(); 2885 2886 if (base_type->is_interface()) { 2887 /* UBOs. From page 60 of the GLSL 4.20 specification: 2888 * "If the binding point for any uniform block instance is less than zero, 2889 * or greater than or equal to the implementation-dependent maximum 2890 * number of uniform buffer bindings, a compilation error will occur. 2891 * When the binding identifier is used with a uniform block instanced as 2892 * an array of size N, all elements of the array from binding through 2893 * binding + N – 1 must be within this range." 2894 * 2895 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS. 2896 */ 2897 if (qual->flags.q.uniform && 2898 max_index >= ctx->Const.MaxUniformBufferBindings) { 2899 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds " 2900 "the maximum number of UBO binding points (%d)", 2901 qual_binding, elements, 2902 ctx->Const.MaxUniformBufferBindings); 2903 return; 2904 } 2905 2906 /* SSBOs. From page 67 of the GLSL 4.30 specification: 2907 * "If the binding point for any uniform or shader storage block instance 2908 * is less than zero, or greater than or equal to the 2909 * implementation-dependent maximum number of uniform buffer bindings, a 2910 * compile-time error will occur. When the binding identifier is used 2911 * with a uniform or shader storage block instanced as an array of size 2912 * N, all elements of the array from binding through binding + N – 1 must 2913 * be within this range." 2914 */ 2915 if (qual->flags.q.buffer && 2916 max_index >= ctx->Const.MaxShaderStorageBufferBindings) { 2917 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds " 2918 "the maximum number of SSBO binding points (%d)", 2919 qual_binding, elements, 2920 ctx->Const.MaxShaderStorageBufferBindings); 2921 return; 2922 } 2923 } else if (base_type->is_sampler()) { 2924 /* Samplers. From page 63 of the GLSL 4.20 specification: 2925 * "If the binding is less than zero, or greater than or equal to the 2926 * implementation-dependent maximum supported number of units, a 2927 * compilation error will occur. When the binding identifier is used 2928 * with an array of size N, all elements of the array from binding 2929 * through binding + N - 1 must be within this range." 2930 */ 2931 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits; 2932 2933 if (max_index >= limit) { 2934 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers " 2935 "exceeds the maximum number of texture image units " 2936 "(%u)", qual_binding, elements, limit); 2937 2938 return; 2939 } 2940 } else if (base_type->contains_atomic()) { 2941 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS); 2942 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) { 2943 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the " 2944 "maximum number of atomic counter buffer bindings " 2945 "(%u)", qual_binding, 2946 ctx->Const.MaxAtomicBufferBindings); 2947 2948 return; 2949 } 2950 } else if ((state->is_version(420, 310) || 2951 state->ARB_shading_language_420pack_enable) && 2952 base_type->is_image()) { 2953 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS); 2954 if (max_index >= ctx->Const.MaxImageUnits) { 2955 _mesa_glsl_error(loc, state, "Image binding %d exceeds the " 2956 "maximum number of image units (%d)", max_index, 2957 ctx->Const.MaxImageUnits); 2958 return; 2959 } 2960 2961 } else { 2962 _mesa_glsl_error(loc, state, 2963 "the \"binding\" qualifier only applies to uniform " 2964 "blocks, storage blocks, opaque variables, or arrays " 2965 "thereof"); 2966 return; 2967 } 2968 2969 var->data.explicit_binding = true; 2970 var->data.binding = qual_binding; 2971 2972 return; 2973} 2974 2975static void 2976validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state, 2977 YYLTYPE *loc, 2978 const glsl_interp_mode interpolation, 2979 const struct glsl_type *var_type, 2980 ir_variable_mode mode) 2981{ 2982 if (state->stage != MESA_SHADER_FRAGMENT || 2983 interpolation == INTERP_MODE_FLAT || 2984 mode != ir_var_shader_in) 2985 return; 2986 2987 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES, 2988 * so must integer vertex outputs. 2989 * 2990 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec: 2991 * "Fragment shader inputs that are signed or unsigned integers or 2992 * integer vectors must be qualified with the interpolation qualifier 2993 * flat." 2994 * 2995 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec: 2996 * "Fragment shader inputs that are, or contain, signed or unsigned 2997 * integers or integer vectors must be qualified with the 2998 * interpolation qualifier flat." 2999 * 3000 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec: 3001 * "Vertex shader outputs that are, or contain, signed or unsigned 3002 * integers or integer vectors must be qualified with the 3003 * interpolation qualifier flat." 3004 * 3005 * Note that prior to GLSL 1.50, this requirement applied to vertex 3006 * outputs rather than fragment inputs. That creates problems in the 3007 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all 3008 * desktop GL shaders. For GLSL ES shaders, we follow the spec and 3009 * apply the restriction to both vertex outputs and fragment inputs. 3010 * 3011 * Note also that the desktop GLSL specs are missing the text "or 3012 * contain"; this is presumably an oversight, since there is no 3013 * reasonable way to interpolate a fragment shader input that contains 3014 * an integer. See Khronos bug #15671. 3015 */ 3016 if (state->is_version(130, 300) 3017 && var_type->contains_integer()) { 3018 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3019 "an integer, then it must be qualified with 'flat'"); 3020 } 3021 3022 /* Double fragment inputs must be qualified with 'flat'. 3023 * 3024 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec: 3025 * "This extension does not support interpolation of double-precision 3026 * values; doubles used as fragment shader inputs must be qualified as 3027 * "flat"." 3028 * 3029 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec: 3030 * "Fragment shader inputs that are signed or unsigned integers, integer 3031 * vectors, or any double-precision floating-point type must be 3032 * qualified with the interpolation qualifier flat." 3033 * 3034 * Note that the GLSL specs are missing the text "or contain"; this is 3035 * presumably an oversight. See Khronos bug #15671. 3036 * 3037 * The 'double' type does not exist in GLSL ES so far. 3038 */ 3039 if (state->has_double() 3040 && var_type->contains_double()) { 3041 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3042 "a double, then it must be qualified with 'flat'"); 3043 } 3044 3045 /* Bindless sampler/image fragment inputs must be qualified with 'flat'. 3046 * 3047 * From section 4.3.4 of the ARB_bindless_texture spec: 3048 * 3049 * "(modify last paragraph, p. 35, allowing samplers and images as 3050 * fragment shader inputs) ... Fragment inputs can only be signed and 3051 * unsigned integers and integer vectors, floating point scalars, 3052 * floating-point vectors, matrices, sampler and image types, or arrays 3053 * or structures of these. Fragment shader inputs that are signed or 3054 * unsigned integers, integer vectors, or any double-precision floating- 3055 * point type, or any sampler or image type must be qualified with the 3056 * interpolation qualifier "flat"." 3057 */ 3058 if (state->has_bindless() 3059 && (var_type->contains_sampler() || var_type->contains_image())) { 3060 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3061 "a bindless sampler (or image), then it must be " 3062 "qualified with 'flat'"); 3063 } 3064} 3065 3066static void 3067validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state, 3068 YYLTYPE *loc, 3069 const glsl_interp_mode interpolation, 3070 const struct ast_type_qualifier *qual, 3071 const struct glsl_type *var_type, 3072 ir_variable_mode mode) 3073{ 3074 /* Interpolation qualifiers can only apply to shader inputs or outputs, but 3075 * not to vertex shader inputs nor fragment shader outputs. 3076 * 3077 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: 3078 * "Outputs from a vertex shader (out) and inputs to a fragment 3079 * shader (in) can be further qualified with one or more of these 3080 * interpolation qualifiers" 3081 * ... 3082 * "These interpolation qualifiers may only precede the qualifiers in, 3083 * centroid in, out, or centroid out in a declaration. They do not apply 3084 * to the deprecated storage qualifiers varying or centroid 3085 * varying. They also do not apply to inputs into a vertex shader or 3086 * outputs from a fragment shader." 3087 * 3088 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec: 3089 * "Outputs from a shader (out) and inputs to a shader (in) can be 3090 * further qualified with one of these interpolation qualifiers." 3091 * ... 3092 * "These interpolation qualifiers may only precede the qualifiers 3093 * in, centroid in, out, or centroid out in a declaration. They do 3094 * not apply to inputs into a vertex shader or outputs from a 3095 * fragment shader." 3096 */ 3097 if (state->is_version(130, 300) 3098 && interpolation != INTERP_MODE_NONE) { 3099 const char *i = interpolation_string(interpolation); 3100 if (mode != ir_var_shader_in && mode != ir_var_shader_out) 3101 _mesa_glsl_error(loc, state, 3102 "interpolation qualifier `%s' can only be applied to " 3103 "shader inputs or outputs.", i); 3104 3105 switch (state->stage) { 3106 case MESA_SHADER_VERTEX: 3107 if (mode == ir_var_shader_in) { 3108 _mesa_glsl_error(loc, state, 3109 "interpolation qualifier '%s' cannot be applied to " 3110 "vertex shader inputs", i); 3111 } 3112 break; 3113 case MESA_SHADER_FRAGMENT: 3114 if (mode == ir_var_shader_out) { 3115 _mesa_glsl_error(loc, state, 3116 "interpolation qualifier '%s' cannot be applied to " 3117 "fragment shader outputs", i); 3118 } 3119 break; 3120 default: 3121 break; 3122 } 3123 } 3124 3125 /* Interpolation qualifiers cannot be applied to 'centroid' and 3126 * 'centroid varying'. 3127 * 3128 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: 3129 * "interpolation qualifiers may only precede the qualifiers in, 3130 * centroid in, out, or centroid out in a declaration. They do not apply 3131 * to the deprecated storage qualifiers varying or centroid varying." 3132 * 3133 * These deprecated storage qualifiers do not exist in GLSL ES 3.00. 3134 */ 3135 if (state->is_version(130, 0) 3136 && interpolation != INTERP_MODE_NONE 3137 && qual->flags.q.varying) { 3138 3139 const char *i = interpolation_string(interpolation); 3140 const char *s; 3141 if (qual->flags.q.centroid) 3142 s = "centroid varying"; 3143 else 3144 s = "varying"; 3145 3146 _mesa_glsl_error(loc, state, 3147 "qualifier '%s' cannot be applied to the " 3148 "deprecated storage qualifier '%s'", i, s); 3149 } 3150 3151 validate_fragment_flat_interpolation_input(state, loc, interpolation, 3152 var_type, mode); 3153} 3154 3155static glsl_interp_mode 3156interpret_interpolation_qualifier(const struct ast_type_qualifier *qual, 3157 const struct glsl_type *var_type, 3158 ir_variable_mode mode, 3159 struct _mesa_glsl_parse_state *state, 3160 YYLTYPE *loc) 3161{ 3162 glsl_interp_mode interpolation; 3163 if (qual->flags.q.flat) 3164 interpolation = INTERP_MODE_FLAT; 3165 else if (qual->flags.q.noperspective) 3166 interpolation = INTERP_MODE_NOPERSPECTIVE; 3167 else if (qual->flags.q.smooth) 3168 interpolation = INTERP_MODE_SMOOTH; 3169 else 3170 interpolation = INTERP_MODE_NONE; 3171 3172 validate_interpolation_qualifier(state, loc, 3173 interpolation, 3174 qual, var_type, mode); 3175 3176 return interpolation; 3177} 3178 3179 3180static void 3181apply_explicit_location(const struct ast_type_qualifier *qual, 3182 ir_variable *var, 3183 struct _mesa_glsl_parse_state *state, 3184 YYLTYPE *loc) 3185{ 3186 bool fail = false; 3187 3188 unsigned qual_location; 3189 if (!process_qualifier_constant(state, loc, "location", qual->location, 3190 &qual_location)) { 3191 return; 3192 } 3193 3194 /* Checks for GL_ARB_explicit_uniform_location. */ 3195 if (qual->flags.q.uniform) { 3196 if (!state->check_explicit_uniform_location_allowed(loc, var)) 3197 return; 3198 3199 const struct gl_context *const ctx = state->ctx; 3200 unsigned max_loc = qual_location + var->type->uniform_locations() - 1; 3201 3202 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) { 3203 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s " 3204 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name, 3205 ctx->Const.MaxUserAssignableUniformLocations); 3206 return; 3207 } 3208 3209 var->data.explicit_location = true; 3210 var->data.location = qual_location; 3211 return; 3212 } 3213 3214 /* Between GL_ARB_explicit_attrib_location an 3215 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader 3216 * stage can be assigned explicit locations. The checking here associates 3217 * the correct extension with the correct stage's input / output: 3218 * 3219 * input output 3220 * ----- ------ 3221 * vertex explicit_loc sso 3222 * tess control sso sso 3223 * tess eval sso sso 3224 * geometry sso sso 3225 * fragment sso explicit_loc 3226 */ 3227 switch (state->stage) { 3228 case MESA_SHADER_VERTEX: 3229 if (var->data.mode == ir_var_shader_in) { 3230 if (!state->check_explicit_attrib_location_allowed(loc, var)) 3231 return; 3232 3233 break; 3234 } 3235 3236 if (var->data.mode == ir_var_shader_out) { 3237 if (!state->check_separate_shader_objects_allowed(loc, var)) 3238 return; 3239 3240 break; 3241 } 3242 3243 fail = true; 3244 break; 3245 3246 case MESA_SHADER_TESS_CTRL: 3247 case MESA_SHADER_TESS_EVAL: 3248 case MESA_SHADER_GEOMETRY: 3249 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) { 3250 if (!state->check_separate_shader_objects_allowed(loc, var)) 3251 return; 3252 3253 break; 3254 } 3255 3256 fail = true; 3257 break; 3258 3259 case MESA_SHADER_FRAGMENT: 3260 if (var->data.mode == ir_var_shader_in) { 3261 if (!state->check_separate_shader_objects_allowed(loc, var)) 3262 return; 3263 3264 break; 3265 } 3266 3267 if (var->data.mode == ir_var_shader_out) { 3268 if (!state->check_explicit_attrib_location_allowed(loc, var)) 3269 return; 3270 3271 break; 3272 } 3273 3274 fail = true; 3275 break; 3276 3277 case MESA_SHADER_COMPUTE: 3278 _mesa_glsl_error(loc, state, 3279 "compute shader variables cannot be given " 3280 "explicit locations"); 3281 return; 3282 default: 3283 fail = true; 3284 break; 3285 }; 3286 3287 if (fail) { 3288 _mesa_glsl_error(loc, state, 3289 "%s cannot be given an explicit location in %s shader", 3290 mode_string(var), 3291 _mesa_shader_stage_to_string(state->stage)); 3292 } else { 3293 var->data.explicit_location = true; 3294 3295 switch (state->stage) { 3296 case MESA_SHADER_VERTEX: 3297 var->data.location = (var->data.mode == ir_var_shader_in) 3298 ? (qual_location + VERT_ATTRIB_GENERIC0) 3299 : (qual_location + VARYING_SLOT_VAR0); 3300 break; 3301 3302 case MESA_SHADER_TESS_CTRL: 3303 case MESA_SHADER_TESS_EVAL: 3304 case MESA_SHADER_GEOMETRY: 3305 if (var->data.patch) 3306 var->data.location = qual_location + VARYING_SLOT_PATCH0; 3307 else 3308 var->data.location = qual_location + VARYING_SLOT_VAR0; 3309 break; 3310 3311 case MESA_SHADER_FRAGMENT: 3312 var->data.location = (var->data.mode == ir_var_shader_out) 3313 ? (qual_location + FRAG_RESULT_DATA0) 3314 : (qual_location + VARYING_SLOT_VAR0); 3315 break; 3316 default: 3317 assert(!"Unexpected shader type"); 3318 break; 3319 } 3320 3321 /* Check if index was set for the uniform instead of the function */ 3322 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) { 3323 _mesa_glsl_error(loc, state, "an index qualifier can only be " 3324 "used with subroutine functions"); 3325 return; 3326 } 3327 3328 unsigned qual_index; 3329 if (qual->flags.q.explicit_index && 3330 process_qualifier_constant(state, loc, "index", qual->index, 3331 &qual_index)) { 3332 /* From the GLSL 4.30 specification, section 4.4.2 (Output 3333 * Layout Qualifiers): 3334 * 3335 * "It is also a compile-time error if a fragment shader 3336 * sets a layout index to less than 0 or greater than 1." 3337 * 3338 * Older specifications don't mandate a behavior; we take 3339 * this as a clarification and always generate the error. 3340 */ 3341 if (qual_index > 1) { 3342 _mesa_glsl_error(loc, state, 3343 "explicit index may only be 0 or 1"); 3344 } else { 3345 var->data.explicit_index = true; 3346 var->data.index = qual_index; 3347 } 3348 } 3349 } 3350} 3351 3352static bool 3353validate_storage_for_sampler_image_types(ir_variable *var, 3354 struct _mesa_glsl_parse_state *state, 3355 YYLTYPE *loc) 3356{ 3357 /* From section 4.1.7 of the GLSL 4.40 spec: 3358 * 3359 * "[Opaque types] can only be declared as function 3360 * parameters or uniform-qualified variables." 3361 * 3362 * From section 4.1.7 of the ARB_bindless_texture spec: 3363 * 3364 * "Samplers may be declared as shader inputs and outputs, as uniform 3365 * variables, as temporary variables, and as function parameters." 3366 * 3367 * From section 4.1.X of the ARB_bindless_texture spec: 3368 * 3369 * "Images may be declared as shader inputs and outputs, as uniform 3370 * variables, as temporary variables, and as function parameters." 3371 */ 3372 if (state->has_bindless()) { 3373 if (var->data.mode != ir_var_auto && 3374 var->data.mode != ir_var_uniform && 3375 var->data.mode != ir_var_shader_in && 3376 var->data.mode != ir_var_shader_out && 3377 var->data.mode != ir_var_function_in && 3378 var->data.mode != ir_var_function_out && 3379 var->data.mode != ir_var_function_inout) { 3380 _mesa_glsl_error(loc, state, "bindless image/sampler variables may " 3381 "only be declared as shader inputs and outputs, as " 3382 "uniform variables, as temporary variables and as " 3383 "function parameters"); 3384 return false; 3385 } 3386 } else { 3387 if (var->data.mode != ir_var_uniform && 3388 var->data.mode != ir_var_function_in) { 3389 _mesa_glsl_error(loc, state, "image/sampler variables may only be " 3390 "declared as function parameters or " 3391 "uniform-qualified global variables"); 3392 return false; 3393 } 3394 } 3395 return true; 3396} 3397 3398static bool 3399validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state, 3400 YYLTYPE *loc, 3401 const struct ast_type_qualifier *qual, 3402 const glsl_type *type) 3403{ 3404 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec: 3405 * 3406 * "Memory qualifiers are only supported in the declarations of image 3407 * variables, buffer variables, and shader storage blocks; it is an error 3408 * to use such qualifiers in any other declarations. 3409 */ 3410 if (!type->is_image() && !qual->flags.q.buffer) { 3411 if (qual->flags.q.read_only || 3412 qual->flags.q.write_only || 3413 qual->flags.q.coherent || 3414 qual->flags.q._volatile || 3415 qual->flags.q.restrict_flag) { 3416 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied " 3417 "in the declarations of image variables, buffer " 3418 "variables, and shader storage blocks"); 3419 return false; 3420 } 3421 } 3422 return true; 3423} 3424 3425static bool 3426validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state, 3427 YYLTYPE *loc, 3428 const struct ast_type_qualifier *qual, 3429 const glsl_type *type) 3430{ 3431 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec: 3432 * 3433 * "Format layout qualifiers can be used on image variable declarations 3434 * (those declared with a basic type having “image ” in its keyword)." 3435 */ 3436 if (!type->is_image() && qual->flags.q.explicit_image_format) { 3437 _mesa_glsl_error(loc, state, "format layout qualifiers may only be " 3438 "applied to images"); 3439 return false; 3440 } 3441 return true; 3442} 3443 3444static void 3445apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual, 3446 ir_variable *var, 3447 struct _mesa_glsl_parse_state *state, 3448 YYLTYPE *loc) 3449{ 3450 const glsl_type *base_type = var->type->without_array(); 3451 3452 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) || 3453 !validate_memory_qualifier_for_type(state, loc, qual, base_type)) 3454 return; 3455 3456 if (!base_type->is_image()) 3457 return; 3458 3459 if (!validate_storage_for_sampler_image_types(var, state, loc)) 3460 return; 3461 3462 var->data.memory_read_only |= qual->flags.q.read_only; 3463 var->data.memory_write_only |= qual->flags.q.write_only; 3464 var->data.memory_coherent |= qual->flags.q.coherent; 3465 var->data.memory_volatile |= qual->flags.q._volatile; 3466 var->data.memory_restrict |= qual->flags.q.restrict_flag; 3467 3468 if (qual->flags.q.explicit_image_format) { 3469 if (var->data.mode == ir_var_function_in) { 3470 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on " 3471 "image function parameters"); 3472 } 3473 3474 if (qual->image_base_type != base_type->sampled_type) { 3475 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base " 3476 "data type of the image"); 3477 } 3478 3479 var->data.image_format = qual->image_format; 3480 } else { 3481 if (var->data.mode == ir_var_uniform) { 3482 if (state->es_shader) { 3483 _mesa_glsl_error(loc, state, "all image uniforms must have a " 3484 "format layout qualifier"); 3485 } else if (!qual->flags.q.write_only) { 3486 _mesa_glsl_error(loc, state, "image uniforms not qualified with " 3487 "`writeonly' must have a format layout qualifier"); 3488 } 3489 } 3490 var->data.image_format = GL_NONE; 3491 } 3492 3493 /* From page 70 of the GLSL ES 3.1 specification: 3494 * 3495 * "Except for image variables qualified with the format qualifiers r32f, 3496 * r32i, and r32ui, image variables must specify either memory qualifier 3497 * readonly or the memory qualifier writeonly." 3498 */ 3499 if (state->es_shader && 3500 var->data.image_format != GL_R32F && 3501 var->data.image_format != GL_R32I && 3502 var->data.image_format != GL_R32UI && 3503 !var->data.memory_read_only && 3504 !var->data.memory_write_only) { 3505 _mesa_glsl_error(loc, state, "image variables of format other than r32f, " 3506 "r32i or r32ui must be qualified `readonly' or " 3507 "`writeonly'"); 3508 } 3509} 3510 3511static inline const char* 3512get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer) 3513{ 3514 if (origin_upper_left && pixel_center_integer) 3515 return "origin_upper_left, pixel_center_integer"; 3516 else if (origin_upper_left) 3517 return "origin_upper_left"; 3518 else if (pixel_center_integer) 3519 return "pixel_center_integer"; 3520 else 3521 return " "; 3522} 3523 3524static inline bool 3525is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state, 3526 const struct ast_type_qualifier *qual) 3527{ 3528 /* If gl_FragCoord was previously declared, and the qualifiers were 3529 * different in any way, return true. 3530 */ 3531 if (state->fs_redeclares_gl_fragcoord) { 3532 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer 3533 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left); 3534 } 3535 3536 return false; 3537} 3538 3539static inline void 3540validate_array_dimensions(const glsl_type *t, 3541 struct _mesa_glsl_parse_state *state, 3542 YYLTYPE *loc) { 3543 if (t->is_array()) { 3544 t = t->fields.array; 3545 while (t->is_array()) { 3546 if (t->is_unsized_array()) { 3547 _mesa_glsl_error(loc, state, 3548 "only the outermost array dimension can " 3549 "be unsized", 3550 t->name); 3551 break; 3552 } 3553 t = t->fields.array; 3554 } 3555 } 3556} 3557 3558static void 3559apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual, 3560 ir_variable *var, 3561 struct _mesa_glsl_parse_state *state, 3562 YYLTYPE *loc) 3563{ 3564 bool has_local_qualifiers = qual->flags.q.bindless_sampler || 3565 qual->flags.q.bindless_image || 3566 qual->flags.q.bound_sampler || 3567 qual->flags.q.bound_image; 3568 3569 /* The ARB_bindless_texture spec says: 3570 * 3571 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30 3572 * spec" 3573 * 3574 * "If these layout qualifiers are applied to other types of default block 3575 * uniforms, or variables with non-uniform storage, a compile-time error 3576 * will be generated." 3577 */ 3578 if (has_local_qualifiers && !qual->flags.q.uniform) { 3579 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers " 3580 "can only be applied to default block uniforms or " 3581 "variables with uniform storage"); 3582 return; 3583 } 3584 3585 /* The ARB_bindless_texture spec doesn't state anything in this situation, 3586 * but it makes sense to only allow bindless_sampler/bound_sampler for 3587 * sampler types, and respectively bindless_image/bound_image for image 3588 * types. 3589 */ 3590 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) && 3591 !var->type->contains_sampler()) { 3592 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only " 3593 "be applied to sampler types"); 3594 return; 3595 } 3596 3597 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) && 3598 !var->type->contains_image()) { 3599 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be " 3600 "applied to image types"); 3601 return; 3602 } 3603 3604 /* The bindless_sampler/bindless_image (and respectively 3605 * bound_sampler/bound_image) layout qualifiers can be set at global and at 3606 * local scope. 3607 */ 3608 if (var->type->contains_sampler() || var->type->contains_image()) { 3609 var->data.bindless = qual->flags.q.bindless_sampler || 3610 qual->flags.q.bindless_image || 3611 state->bindless_sampler_specified || 3612 state->bindless_image_specified; 3613 3614 var->data.bound = qual->flags.q.bound_sampler || 3615 qual->flags.q.bound_image || 3616 state->bound_sampler_specified || 3617 state->bound_image_specified; 3618 } 3619} 3620 3621static void 3622apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual, 3623 ir_variable *var, 3624 struct _mesa_glsl_parse_state *state, 3625 YYLTYPE *loc) 3626{ 3627 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) { 3628 3629 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says: 3630 * 3631 * "Within any shader, the first redeclarations of gl_FragCoord 3632 * must appear before any use of gl_FragCoord." 3633 * 3634 * Generate a compiler error if above condition is not met by the 3635 * fragment shader. 3636 */ 3637 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord"); 3638 if (earlier != NULL && 3639 earlier->data.used && 3640 !state->fs_redeclares_gl_fragcoord) { 3641 _mesa_glsl_error(loc, state, 3642 "gl_FragCoord used before its first redeclaration " 3643 "in fragment shader"); 3644 } 3645 3646 /* Make sure all gl_FragCoord redeclarations specify the same layout 3647 * qualifiers. 3648 */ 3649 if (is_conflicting_fragcoord_redeclaration(state, qual)) { 3650 const char *const qual_string = 3651 get_layout_qualifier_string(qual->flags.q.origin_upper_left, 3652 qual->flags.q.pixel_center_integer); 3653 3654 const char *const state_string = 3655 get_layout_qualifier_string(state->fs_origin_upper_left, 3656 state->fs_pixel_center_integer); 3657 3658 _mesa_glsl_error(loc, state, 3659 "gl_FragCoord redeclared with different layout " 3660 "qualifiers (%s) and (%s) ", 3661 state_string, 3662 qual_string); 3663 } 3664 state->fs_origin_upper_left = qual->flags.q.origin_upper_left; 3665 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer; 3666 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = 3667 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer; 3668 state->fs_redeclares_gl_fragcoord = 3669 state->fs_origin_upper_left || 3670 state->fs_pixel_center_integer || 3671 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers; 3672 } 3673 3674 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer; 3675 var->data.origin_upper_left = qual->flags.q.origin_upper_left; 3676 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer) 3677 && (strcmp(var->name, "gl_FragCoord") != 0)) { 3678 const char *const qual_string = (qual->flags.q.origin_upper_left) 3679 ? "origin_upper_left" : "pixel_center_integer"; 3680 3681 _mesa_glsl_error(loc, state, 3682 "layout qualifier `%s' can only be applied to " 3683 "fragment shader input `gl_FragCoord'", 3684 qual_string); 3685 } 3686 3687 if (qual->flags.q.explicit_location) { 3688 apply_explicit_location(qual, var, state, loc); 3689 3690 if (qual->flags.q.explicit_component) { 3691 unsigned qual_component; 3692 if (process_qualifier_constant(state, loc, "component", 3693 qual->component, &qual_component)) { 3694 const glsl_type *type = var->type->without_array(); 3695 unsigned components = type->component_slots(); 3696 3697 if (type->is_matrix() || type->is_record()) { 3698 _mesa_glsl_error(loc, state, "component layout qualifier " 3699 "cannot be applied to a matrix, a structure, " 3700 "a block, or an array containing any of " 3701 "these."); 3702 } else if (qual_component != 0 && 3703 (qual_component + components - 1) > 3) { 3704 _mesa_glsl_error(loc, state, "component overflow (%u > 3)", 3705 (qual_component + components - 1)); 3706 } else if (qual_component == 1 && type->is_64bit()) { 3707 /* We don't bother checking for 3 as it should be caught by the 3708 * overflow check above. 3709 */ 3710 _mesa_glsl_error(loc, state, "doubles cannot begin at " 3711 "component 1 or 3"); 3712 } else { 3713 var->data.explicit_component = true; 3714 var->data.location_frac = qual_component; 3715 } 3716 } 3717 } 3718 } else if (qual->flags.q.explicit_index) { 3719 if (!qual->subroutine_list) 3720 _mesa_glsl_error(loc, state, 3721 "explicit index requires explicit location"); 3722 } else if (qual->flags.q.explicit_component) { 3723 _mesa_glsl_error(loc, state, 3724 "explicit component requires explicit location"); 3725 } 3726 3727 if (qual->flags.q.explicit_binding) { 3728 apply_explicit_binding(state, loc, var, var->type, qual); 3729 } 3730 3731 if (state->stage == MESA_SHADER_GEOMETRY && 3732 qual->flags.q.out && qual->flags.q.stream) { 3733 unsigned qual_stream; 3734 if (process_qualifier_constant(state, loc, "stream", qual->stream, 3735 &qual_stream) && 3736 validate_stream_qualifier(loc, state, qual_stream)) { 3737 var->data.stream = qual_stream; 3738 } 3739 } 3740 3741 if (qual->flags.q.out && qual->flags.q.xfb_buffer) { 3742 unsigned qual_xfb_buffer; 3743 if (process_qualifier_constant(state, loc, "xfb_buffer", 3744 qual->xfb_buffer, &qual_xfb_buffer) && 3745 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) { 3746 var->data.xfb_buffer = qual_xfb_buffer; 3747 if (qual->flags.q.explicit_xfb_buffer) 3748 var->data.explicit_xfb_buffer = true; 3749 } 3750 } 3751 3752 if (qual->flags.q.explicit_xfb_offset) { 3753 unsigned qual_xfb_offset; 3754 unsigned component_size = var->type->contains_double() ? 8 : 4; 3755 3756 if (process_qualifier_constant(state, loc, "xfb_offset", 3757 qual->offset, &qual_xfb_offset) && 3758 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset, 3759 var->type, component_size)) { 3760 var->data.offset = qual_xfb_offset; 3761 var->data.explicit_xfb_offset = true; 3762 } 3763 } 3764 3765 if (qual->flags.q.explicit_xfb_stride) { 3766 unsigned qual_xfb_stride; 3767 if (process_qualifier_constant(state, loc, "xfb_stride", 3768 qual->xfb_stride, &qual_xfb_stride)) { 3769 var->data.xfb_stride = qual_xfb_stride; 3770 var->data.explicit_xfb_stride = true; 3771 } 3772 } 3773 3774 if (var->type->contains_atomic()) { 3775 if (var->data.mode == ir_var_uniform) { 3776 if (var->data.explicit_binding) { 3777 unsigned *offset = 3778 &state->atomic_counter_offsets[var->data.binding]; 3779 3780 if (*offset % ATOMIC_COUNTER_SIZE) 3781 _mesa_glsl_error(loc, state, 3782 "misaligned atomic counter offset"); 3783 3784 var->data.offset = *offset; 3785 *offset += var->type->atomic_size(); 3786 3787 } else { 3788 _mesa_glsl_error(loc, state, 3789 "atomic counters require explicit binding point"); 3790 } 3791 } else if (var->data.mode != ir_var_function_in) { 3792 _mesa_glsl_error(loc, state, "atomic counters may only be declared as " 3793 "function parameters or uniform-qualified " 3794 "global variables"); 3795 } 3796 } 3797 3798 if (var->type->contains_sampler() && 3799 !validate_storage_for_sampler_image_types(var, state, loc)) 3800 return; 3801 3802 /* Is the 'layout' keyword used with parameters that allow relaxed checking. 3803 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some 3804 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable 3805 * allowed the layout qualifier to be used with 'varying' and 'attribute'. 3806 * These extensions and all following extensions that add the 'layout' 3807 * keyword have been modified to require the use of 'in' or 'out'. 3808 * 3809 * The following extension do not allow the deprecated keywords: 3810 * 3811 * GL_AMD_conservative_depth 3812 * GL_ARB_conservative_depth 3813 * GL_ARB_gpu_shader5 3814 * GL_ARB_separate_shader_objects 3815 * GL_ARB_tessellation_shader 3816 * GL_ARB_transform_feedback3 3817 * GL_ARB_uniform_buffer_object 3818 * 3819 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5 3820 * allow layout with the deprecated keywords. 3821 */ 3822 const bool relaxed_layout_qualifier_checking = 3823 state->ARB_fragment_coord_conventions_enable; 3824 3825 const bool uses_deprecated_qualifier = qual->flags.q.attribute 3826 || qual->flags.q.varying; 3827 if (qual->has_layout() && uses_deprecated_qualifier) { 3828 if (relaxed_layout_qualifier_checking) { 3829 _mesa_glsl_warning(loc, state, 3830 "`layout' qualifier may not be used with " 3831 "`attribute' or `varying'"); 3832 } else { 3833 _mesa_glsl_error(loc, state, 3834 "`layout' qualifier may not be used with " 3835 "`attribute' or `varying'"); 3836 } 3837 } 3838 3839 /* Layout qualifiers for gl_FragDepth, which are enabled by extension 3840 * AMD_conservative_depth. 3841 */ 3842 if (qual->flags.q.depth_type 3843 && !state->is_version(420, 0) 3844 && !state->AMD_conservative_depth_enable 3845 && !state->ARB_conservative_depth_enable) { 3846 _mesa_glsl_error(loc, state, 3847 "extension GL_AMD_conservative_depth or " 3848 "GL_ARB_conservative_depth must be enabled " 3849 "to use depth layout qualifiers"); 3850 } else if (qual->flags.q.depth_type 3851 && strcmp(var->name, "gl_FragDepth") != 0) { 3852 _mesa_glsl_error(loc, state, 3853 "depth layout qualifiers can be applied only to " 3854 "gl_FragDepth"); 3855 } 3856 3857 switch (qual->depth_type) { 3858 case ast_depth_any: 3859 var->data.depth_layout = ir_depth_layout_any; 3860 break; 3861 case ast_depth_greater: 3862 var->data.depth_layout = ir_depth_layout_greater; 3863 break; 3864 case ast_depth_less: 3865 var->data.depth_layout = ir_depth_layout_less; 3866 break; 3867 case ast_depth_unchanged: 3868 var->data.depth_layout = ir_depth_layout_unchanged; 3869 break; 3870 default: 3871 var->data.depth_layout = ir_depth_layout_none; 3872 break; 3873 } 3874 3875 if (qual->flags.q.std140 || 3876 qual->flags.q.std430 || 3877 qual->flags.q.packed || 3878 qual->flags.q.shared) { 3879 _mesa_glsl_error(loc, state, 3880 "uniform and shader storage block layout qualifiers " 3881 "std140, std430, packed, and shared can only be " 3882 "applied to uniform or shader storage blocks, not " 3883 "members"); 3884 } 3885 3886 if (qual->flags.q.row_major || qual->flags.q.column_major) { 3887 validate_matrix_layout_for_type(state, loc, var->type, var); 3888 } 3889 3890 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader 3891 * Inputs): 3892 * 3893 * "Fragment shaders also allow the following layout qualifier on in only 3894 * (not with variable declarations) 3895 * layout-qualifier-id 3896 * early_fragment_tests 3897 * [...]" 3898 */ 3899 if (qual->flags.q.early_fragment_tests) { 3900 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only " 3901 "valid in fragment shader input layout declaration."); 3902 } 3903 3904 if (qual->flags.q.inner_coverage) { 3905 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only " 3906 "valid in fragment shader input layout declaration."); 3907 } 3908 3909 if (qual->flags.q.post_depth_coverage) { 3910 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only " 3911 "valid in fragment shader input layout declaration."); 3912 } 3913 3914 if (state->has_bindless()) 3915 apply_bindless_qualifier_to_variable(qual, var, state, loc); 3916 3917 if (qual->flags.q.pixel_interlock_ordered || 3918 qual->flags.q.pixel_interlock_unordered || 3919 qual->flags.q.sample_interlock_ordered || 3920 qual->flags.q.sample_interlock_unordered) { 3921 _mesa_glsl_error(loc, state, "interlock layout qualifiers: " 3922 "pixel_interlock_ordered, pixel_interlock_unordered, " 3923 "sample_interlock_ordered and sample_interlock_unordered, " 3924 "only valid in fragment shader input layout declaration."); 3925 } 3926} 3927 3928static void 3929apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual, 3930 ir_variable *var, 3931 struct _mesa_glsl_parse_state *state, 3932 YYLTYPE *loc, 3933 bool is_parameter) 3934{ 3935 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i)); 3936 3937 if (qual->flags.q.invariant) { 3938 if (var->data.used) { 3939 _mesa_glsl_error(loc, state, 3940 "variable `%s' may not be redeclared " 3941 "`invariant' after being used", 3942 var->name); 3943 } else { 3944 var->data.invariant = 1; 3945 } 3946 } 3947 3948 if (qual->flags.q.precise) { 3949 if (var->data.used) { 3950 _mesa_glsl_error(loc, state, 3951 "variable `%s' may not be redeclared " 3952 "`precise' after being used", 3953 var->name); 3954 } else { 3955 var->data.precise = 1; 3956 } 3957 } 3958 3959 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) { 3960 _mesa_glsl_error(loc, state, 3961 "`subroutine' may only be applied to uniforms, " 3962 "subroutine type declarations, or function definitions"); 3963 } 3964 3965 if (qual->flags.q.constant || qual->flags.q.attribute 3966 || qual->flags.q.uniform 3967 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) 3968 var->data.read_only = 1; 3969 3970 if (qual->flags.q.centroid) 3971 var->data.centroid = 1; 3972 3973 if (qual->flags.q.sample) 3974 var->data.sample = 1; 3975 3976 /* Precision qualifiers do not hold any meaning in Desktop GLSL */ 3977 if (state->es_shader) { 3978 var->data.precision = 3979 select_gles_precision(qual->precision, var->type, state, loc); 3980 } 3981 3982 if (qual->flags.q.patch) 3983 var->data.patch = 1; 3984 3985 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) { 3986 var->type = glsl_type::error_type; 3987 _mesa_glsl_error(loc, state, 3988 "`attribute' variables may not be declared in the " 3989 "%s shader", 3990 _mesa_shader_stage_to_string(state->stage)); 3991 } 3992 3993 /* Disallow layout qualifiers which may only appear on layout declarations. */ 3994 if (qual->flags.q.prim_type) { 3995 _mesa_glsl_error(loc, state, 3996 "Primitive type may only be specified on GS input or output " 3997 "layout declaration, not on variables."); 3998 } 3999 4000 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says: 4001 * 4002 * "However, the const qualifier cannot be used with out or inout." 4003 * 4004 * The same section of the GLSL 4.40 spec further clarifies this saying: 4005 * 4006 * "The const qualifier cannot be used with out or inout, or a 4007 * compile-time error results." 4008 */ 4009 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) { 4010 _mesa_glsl_error(loc, state, 4011 "`const' may not be applied to `out' or `inout' " 4012 "function parameters"); 4013 } 4014 4015 /* If there is no qualifier that changes the mode of the variable, leave 4016 * the setting alone. 4017 */ 4018 assert(var->data.mode != ir_var_temporary); 4019 if (qual->flags.q.in && qual->flags.q.out) 4020 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out; 4021 else if (qual->flags.q.in) 4022 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in; 4023 else if (qual->flags.q.attribute 4024 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) 4025 var->data.mode = ir_var_shader_in; 4026 else if (qual->flags.q.out) 4027 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out; 4028 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX)) 4029 var->data.mode = ir_var_shader_out; 4030 else if (qual->flags.q.uniform) 4031 var->data.mode = ir_var_uniform; 4032 else if (qual->flags.q.buffer) 4033 var->data.mode = ir_var_shader_storage; 4034 else if (qual->flags.q.shared_storage) 4035 var->data.mode = ir_var_shader_shared; 4036 4037 if (!is_parameter && state->has_framebuffer_fetch() && 4038 state->stage == MESA_SHADER_FRAGMENT) { 4039 if (state->is_version(130, 300)) 4040 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out; 4041 else 4042 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0); 4043 } 4044 4045 if (var->data.fb_fetch_output) { 4046 var->data.assigned = true; 4047 var->data.memory_coherent = !qual->flags.q.non_coherent; 4048 4049 /* From the EXT_shader_framebuffer_fetch spec: 4050 * 4051 * "It is an error to declare an inout fragment output not qualified 4052 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch 4053 * extension hasn't been enabled." 4054 */ 4055 if (var->data.memory_coherent && 4056 !state->EXT_shader_framebuffer_fetch_enable) 4057 _mesa_glsl_error(loc, state, 4058 "invalid declaration of framebuffer fetch output not " 4059 "qualified with layout(noncoherent)"); 4060 4061 } else { 4062 /* From the EXT_shader_framebuffer_fetch spec: 4063 * 4064 * "Fragment outputs declared inout may specify the following layout 4065 * qualifier: [...] noncoherent" 4066 */ 4067 if (qual->flags.q.non_coherent) 4068 _mesa_glsl_error(loc, state, 4069 "invalid layout(noncoherent) qualifier not part of " 4070 "framebuffer fetch output declaration"); 4071 } 4072 4073 if (!is_parameter && is_varying_var(var, state->stage)) { 4074 /* User-defined ins/outs are not permitted in compute shaders. */ 4075 if (state->stage == MESA_SHADER_COMPUTE) { 4076 _mesa_glsl_error(loc, state, 4077 "user-defined input and output variables are not " 4078 "permitted in compute shaders"); 4079 } 4080 4081 /* This variable is being used to link data between shader stages (in 4082 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type 4083 * that is allowed for such purposes. 4084 * 4085 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec: 4086 * 4087 * "The varying qualifier can be used only with the data types 4088 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of 4089 * these." 4090 * 4091 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From 4092 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec: 4093 * 4094 * "Fragment inputs can only be signed and unsigned integers and 4095 * integer vectors, float, floating-point vectors, matrices, or 4096 * arrays of these. Structures cannot be input. 4097 * 4098 * Similar text exists in the section on vertex shader outputs. 4099 * 4100 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES 4101 * 3.00 spec allows structs as well. Varying structs are also allowed 4102 * in GLSL 1.50. 4103 * 4104 * From section 4.3.4 of the ARB_bindless_texture spec: 4105 * 4106 * "(modify third paragraph of the section to allow sampler and image 4107 * types) ... Vertex shader inputs can only be float, 4108 * single-precision floating-point scalars, single-precision 4109 * floating-point vectors, matrices, signed and unsigned integers 4110 * and integer vectors, sampler and image types." 4111 * 4112 * From section 4.3.6 of the ARB_bindless_texture spec: 4113 * 4114 * "Output variables can only be floating-point scalars, 4115 * floating-point vectors, matrices, signed or unsigned integers or 4116 * integer vectors, sampler or image types, or arrays or structures 4117 * of any these." 4118 */ 4119 switch (var->type->without_array()->base_type) { 4120 case GLSL_TYPE_FLOAT: 4121 /* Ok in all GLSL versions */ 4122 break; 4123 case GLSL_TYPE_UINT: 4124 case GLSL_TYPE_INT: 4125 if (state->is_version(130, 300)) 4126 break; 4127 _mesa_glsl_error(loc, state, 4128 "varying variables must be of base type float in %s", 4129 state->get_version_string()); 4130 break; 4131 case GLSL_TYPE_STRUCT: 4132 if (state->is_version(150, 300)) 4133 break; 4134 _mesa_glsl_error(loc, state, 4135 "varying variables may not be of type struct"); 4136 break; 4137 case GLSL_TYPE_DOUBLE: 4138 case GLSL_TYPE_UINT64: 4139 case GLSL_TYPE_INT64: 4140 break; 4141 case GLSL_TYPE_SAMPLER: 4142 case GLSL_TYPE_IMAGE: 4143 if (state->has_bindless()) 4144 break; 4145 /* fallthrough */ 4146 default: 4147 _mesa_glsl_error(loc, state, "illegal type for a varying variable"); 4148 break; 4149 } 4150 } 4151 4152 if (state->all_invariant && var->data.mode == ir_var_shader_out) 4153 var->data.invariant = true; 4154 4155 var->data.interpolation = 4156 interpret_interpolation_qualifier(qual, var->type, 4157 (ir_variable_mode) var->data.mode, 4158 state, loc); 4159 4160 /* Does the declaration use the deprecated 'attribute' or 'varying' 4161 * keywords? 4162 */ 4163 const bool uses_deprecated_qualifier = qual->flags.q.attribute 4164 || qual->flags.q.varying; 4165 4166 4167 /* Validate auxiliary storage qualifiers */ 4168 4169 /* From section 4.3.4 of the GLSL 1.30 spec: 4170 * "It is an error to use centroid in in a vertex shader." 4171 * 4172 * From section 4.3.4 of the GLSL ES 3.00 spec: 4173 * "It is an error to use centroid in or interpolation qualifiers in 4174 * a vertex shader input." 4175 */ 4176 4177 /* Section 4.3.6 of the GLSL 1.30 specification states: 4178 * "It is an error to use centroid out in a fragment shader." 4179 * 4180 * The GL_ARB_shading_language_420pack extension specification states: 4181 * "It is an error to use auxiliary storage qualifiers or interpolation 4182 * qualifiers on an output in a fragment shader." 4183 */ 4184 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) { 4185 _mesa_glsl_error(loc, state, 4186 "sample qualifier may only be used on `in` or `out` " 4187 "variables between shader stages"); 4188 } 4189 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) { 4190 _mesa_glsl_error(loc, state, 4191 "centroid qualifier may only be used with `in', " 4192 "`out' or `varying' variables between shader stages"); 4193 } 4194 4195 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) { 4196 _mesa_glsl_error(loc, state, 4197 "the shared storage qualifiers can only be used with " 4198 "compute shaders"); 4199 } 4200 4201 apply_image_qualifier_to_variable(qual, var, state, loc); 4202} 4203 4204/** 4205 * Get the variable that is being redeclared by this declaration or if it 4206 * does not exist, the current declared variable. 4207 * 4208 * Semantic checks to verify the validity of the redeclaration are also 4209 * performed. If semantic checks fail, compilation error will be emitted via 4210 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned. 4211 * 4212 * \returns 4213 * A pointer to an existing variable in the current scope if the declaration 4214 * is a redeclaration, current variable otherwise. \c is_declared boolean 4215 * will return \c true if the declaration is a redeclaration, \c false 4216 * otherwise. 4217 */ 4218static ir_variable * 4219get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc, 4220 struct _mesa_glsl_parse_state *state, 4221 bool allow_all_redeclarations, 4222 bool *is_redeclaration) 4223{ 4224 ir_variable *var = *var_ptr; 4225 4226 /* Check if this declaration is actually a re-declaration, either to 4227 * resize an array or add qualifiers to an existing variable. 4228 * 4229 * This is allowed for variables in the current scope, or when at 4230 * global scope (for built-ins in the implicit outer scope). 4231 */ 4232 ir_variable *earlier = state->symbols->get_variable(var->name); 4233 if (earlier == NULL || 4234 (state->current_function != NULL && 4235 !state->symbols->name_declared_this_scope(var->name))) { 4236 *is_redeclaration = false; 4237 return var; 4238 } 4239 4240 *is_redeclaration = true; 4241 4242 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec, 4243 * 4244 * "It is legal to declare an array without a size and then 4245 * later re-declare the same name as an array of the same 4246 * type and specify a size." 4247 */ 4248 if (earlier->type->is_unsized_array() && var->type->is_array() 4249 && (var->type->fields.array == earlier->type->fields.array)) { 4250 /* FINISHME: This doesn't match the qualifiers on the two 4251 * FINISHME: declarations. It's not 100% clear whether this is 4252 * FINISHME: required or not. 4253 */ 4254 4255 const int size = var->type->array_size(); 4256 check_builtin_array_max_size(var->name, size, loc, state); 4257 if ((size > 0) && (size <= earlier->data.max_array_access)) { 4258 _mesa_glsl_error(& loc, state, "array size must be > %u due to " 4259 "previous access", 4260 earlier->data.max_array_access); 4261 } 4262 4263 earlier->type = var->type; 4264 delete var; 4265 var = NULL; 4266 *var_ptr = NULL; 4267 } else if ((state->ARB_fragment_coord_conventions_enable || 4268 state->is_version(150, 0)) 4269 && strcmp(var->name, "gl_FragCoord") == 0 4270 && earlier->type == var->type 4271 && var->data.mode == ir_var_shader_in) { 4272 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout 4273 * qualifiers. 4274 */ 4275 earlier->data.origin_upper_left = var->data.origin_upper_left; 4276 earlier->data.pixel_center_integer = var->data.pixel_center_integer; 4277 4278 /* According to section 4.3.7 of the GLSL 1.30 spec, 4279 * the following built-in varaibles can be redeclared with an 4280 * interpolation qualifier: 4281 * * gl_FrontColor 4282 * * gl_BackColor 4283 * * gl_FrontSecondaryColor 4284 * * gl_BackSecondaryColor 4285 * * gl_Color 4286 * * gl_SecondaryColor 4287 */ 4288 } else if (state->is_version(130, 0) 4289 && (strcmp(var->name, "gl_FrontColor") == 0 4290 || strcmp(var->name, "gl_BackColor") == 0 4291 || strcmp(var->name, "gl_FrontSecondaryColor") == 0 4292 || strcmp(var->name, "gl_BackSecondaryColor") == 0 4293 || strcmp(var->name, "gl_Color") == 0 4294 || strcmp(var->name, "gl_SecondaryColor") == 0) 4295 && earlier->type == var->type 4296 && earlier->data.mode == var->data.mode) { 4297 earlier->data.interpolation = var->data.interpolation; 4298 4299 /* Layout qualifiers for gl_FragDepth. */ 4300 } else if ((state->is_version(420, 0) || 4301 state->AMD_conservative_depth_enable || 4302 state->ARB_conservative_depth_enable) 4303 && strcmp(var->name, "gl_FragDepth") == 0 4304 && earlier->type == var->type 4305 && earlier->data.mode == var->data.mode) { 4306 4307 /** From the AMD_conservative_depth spec: 4308 * Within any shader, the first redeclarations of gl_FragDepth 4309 * must appear before any use of gl_FragDepth. 4310 */ 4311 if (earlier->data.used) { 4312 _mesa_glsl_error(&loc, state, 4313 "the first redeclaration of gl_FragDepth " 4314 "must appear before any use of gl_FragDepth"); 4315 } 4316 4317 /* Prevent inconsistent redeclaration of depth layout qualifier. */ 4318 if (earlier->data.depth_layout != ir_depth_layout_none 4319 && earlier->data.depth_layout != var->data.depth_layout) { 4320 _mesa_glsl_error(&loc, state, 4321 "gl_FragDepth: depth layout is declared here " 4322 "as '%s, but it was previously declared as " 4323 "'%s'", 4324 depth_layout_string(var->data.depth_layout), 4325 depth_layout_string(earlier->data.depth_layout)); 4326 } 4327 4328 earlier->data.depth_layout = var->data.depth_layout; 4329 4330 } else if (state->has_framebuffer_fetch() && 4331 strcmp(var->name, "gl_LastFragData") == 0 && 4332 var->type == earlier->type && 4333 var->data.mode == ir_var_auto) { 4334 /* According to the EXT_shader_framebuffer_fetch spec: 4335 * 4336 * "By default, gl_LastFragData is declared with the mediump precision 4337 * qualifier. This can be changed by redeclaring the corresponding 4338 * variables with the desired precision qualifier." 4339 * 4340 * "Fragment shaders may specify the following layout qualifier only for 4341 * redeclaring the built-in gl_LastFragData array [...]: noncoherent" 4342 */ 4343 earlier->data.precision = var->data.precision; 4344 earlier->data.memory_coherent = var->data.memory_coherent; 4345 4346 } else if (earlier->data.how_declared == ir_var_declared_implicitly && 4347 state->allow_builtin_variable_redeclaration) { 4348 /* Allow verbatim redeclarations of built-in variables. Not explicitly 4349 * valid, but some applications do it. 4350 */ 4351 if (earlier->data.mode != var->data.mode && 4352 !(earlier->data.mode == ir_var_system_value && 4353 var->data.mode == ir_var_shader_in)) { 4354 _mesa_glsl_error(&loc, state, 4355 "redeclaration of `%s' with incorrect qualifiers", 4356 var->name); 4357 } else if (earlier->type != var->type) { 4358 _mesa_glsl_error(&loc, state, 4359 "redeclaration of `%s' has incorrect type", 4360 var->name); 4361 } 4362 } else if (allow_all_redeclarations) { 4363 if (earlier->data.mode != var->data.mode) { 4364 _mesa_glsl_error(&loc, state, 4365 "redeclaration of `%s' with incorrect qualifiers", 4366 var->name); 4367 } else if (earlier->type != var->type) { 4368 _mesa_glsl_error(&loc, state, 4369 "redeclaration of `%s' has incorrect type", 4370 var->name); 4371 } 4372 } else { 4373 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); 4374 } 4375 4376 return earlier; 4377} 4378 4379/** 4380 * Generate the IR for an initializer in a variable declaration 4381 */ 4382static ir_rvalue * 4383process_initializer(ir_variable *var, ast_declaration *decl, 4384 ast_fully_specified_type *type, 4385 exec_list *initializer_instructions, 4386 struct _mesa_glsl_parse_state *state) 4387{ 4388 void *mem_ctx = state; 4389 ir_rvalue *result = NULL; 4390 4391 YYLTYPE initializer_loc = decl->initializer->get_location(); 4392 4393 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec: 4394 * 4395 * "All uniform variables are read-only and are initialized either 4396 * directly by an application via API commands, or indirectly by 4397 * OpenGL." 4398 */ 4399 if (var->data.mode == ir_var_uniform) { 4400 state->check_version(120, 0, &initializer_loc, 4401 "cannot initialize uniform %s", 4402 var->name); 4403 } 4404 4405 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: 4406 * 4407 * "Buffer variables cannot have initializers." 4408 */ 4409 if (var->data.mode == ir_var_shader_storage) { 4410 _mesa_glsl_error(&initializer_loc, state, 4411 "cannot initialize buffer variable %s", 4412 var->name); 4413 } 4414 4415 /* From section 4.1.7 of the GLSL 4.40 spec: 4416 * 4417 * "Opaque variables [...] are initialized only through the 4418 * OpenGL API; they cannot be declared with an initializer in a 4419 * shader." 4420 * 4421 * From section 4.1.7 of the ARB_bindless_texture spec: 4422 * 4423 * "Samplers may be declared as shader inputs and outputs, as uniform 4424 * variables, as temporary variables, and as function parameters." 4425 * 4426 * From section 4.1.X of the ARB_bindless_texture spec: 4427 * 4428 * "Images may be declared as shader inputs and outputs, as uniform 4429 * variables, as temporary variables, and as function parameters." 4430 */ 4431 if (var->type->contains_atomic() || 4432 (!state->has_bindless() && var->type->contains_opaque())) { 4433 _mesa_glsl_error(&initializer_loc, state, 4434 "cannot initialize %s variable %s", 4435 var->name, state->has_bindless() ? "atomic" : "opaque"); 4436 } 4437 4438 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) { 4439 _mesa_glsl_error(&initializer_loc, state, 4440 "cannot initialize %s shader input / %s %s", 4441 _mesa_shader_stage_to_string(state->stage), 4442 (state->stage == MESA_SHADER_VERTEX) 4443 ? "attribute" : "varying", 4444 var->name); 4445 } 4446 4447 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) { 4448 _mesa_glsl_error(&initializer_loc, state, 4449 "cannot initialize %s shader output %s", 4450 _mesa_shader_stage_to_string(state->stage), 4451 var->name); 4452 } 4453 4454 /* If the initializer is an ast_aggregate_initializer, recursively store 4455 * type information from the LHS into it, so that its hir() function can do 4456 * type checking. 4457 */ 4458 if (decl->initializer->oper == ast_aggregate) 4459 _mesa_ast_set_aggregate_type(var->type, decl->initializer); 4460 4461 ir_dereference *const lhs = new(state) ir_dereference_variable(var); 4462 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state); 4463 4464 /* Calculate the constant value if this is a const or uniform 4465 * declaration. 4466 * 4467 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says: 4468 * 4469 * "Declarations of globals without a storage qualifier, or with 4470 * just the const qualifier, may include initializers, in which case 4471 * they will be initialized before the first line of main() is 4472 * executed. Such initializers must be a constant expression." 4473 * 4474 * The same section of the GLSL ES 3.00.4 spec has similar language. 4475 */ 4476 if (type->qualifier.flags.q.constant 4477 || type->qualifier.flags.q.uniform 4478 || (state->es_shader && state->current_function == NULL)) { 4479 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc, 4480 lhs, rhs, true); 4481 if (new_rhs != NULL) { 4482 rhs = new_rhs; 4483 4484 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec 4485 * says: 4486 * 4487 * "A constant expression is one of 4488 * 4489 * ... 4490 * 4491 * - an expression formed by an operator on operands that are 4492 * all constant expressions, including getting an element of 4493 * a constant array, or a field of a constant structure, or 4494 * components of a constant vector. However, the sequence 4495 * operator ( , ) and the assignment operators ( =, +=, ...) 4496 * are not included in the operators that can create a 4497 * constant expression." 4498 * 4499 * Section 12.43 (Sequence operator and constant expressions) says: 4500 * 4501 * "Should the following construct be allowed? 4502 * 4503 * float a[2,3]; 4504 * 4505 * The expression within the brackets uses the sequence operator 4506 * (',') and returns the integer 3 so the construct is declaring 4507 * a single-dimensional array of size 3. In some languages, the 4508 * construct declares a two-dimensional array. It would be 4509 * preferable to make this construct illegal to avoid confusion. 4510 * 4511 * One possibility is to change the definition of the sequence 4512 * operator so that it does not return a constant-expression and 4513 * hence cannot be used to declare an array size. 4514 * 4515 * RESOLUTION: The result of a sequence operator is not a 4516 * constant-expression." 4517 * 4518 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec 4519 * contains language almost identical to the section 4.3.3 in the 4520 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL 4521 * versions. 4522 */ 4523 ir_constant *constant_value = 4524 rhs->constant_expression_value(mem_ctx); 4525 4526 if (!constant_value || 4527 (state->is_version(430, 300) && 4528 decl->initializer->has_sequence_subexpression())) { 4529 const char *const variable_mode = 4530 (type->qualifier.flags.q.constant) 4531 ? "const" 4532 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global"); 4533 4534 /* If ARB_shading_language_420pack is enabled, initializers of 4535 * const-qualified local variables do not have to be constant 4536 * expressions. Const-qualified global variables must still be 4537 * initialized with constant expressions. 4538 */ 4539 if (!state->has_420pack() 4540 || state->current_function == NULL) { 4541 _mesa_glsl_error(& initializer_loc, state, 4542 "initializer of %s variable `%s' must be a " 4543 "constant expression", 4544 variable_mode, 4545 decl->identifier); 4546 if (var->type->is_numeric()) { 4547 /* Reduce cascading errors. */ 4548 var->constant_value = type->qualifier.flags.q.constant 4549 ? ir_constant::zero(state, var->type) : NULL; 4550 } 4551 } 4552 } else { 4553 rhs = constant_value; 4554 var->constant_value = type->qualifier.flags.q.constant 4555 ? constant_value : NULL; 4556 } 4557 } else { 4558 if (var->type->is_numeric()) { 4559 /* Reduce cascading errors. */ 4560 rhs = var->constant_value = type->qualifier.flags.q.constant 4561 ? ir_constant::zero(state, var->type) : NULL; 4562 } 4563 } 4564 } 4565 4566 if (rhs && !rhs->type->is_error()) { 4567 bool temp = var->data.read_only; 4568 if (type->qualifier.flags.q.constant) 4569 var->data.read_only = false; 4570 4571 /* Never emit code to initialize a uniform. 4572 */ 4573 const glsl_type *initializer_type; 4574 bool error_emitted = false; 4575 if (!type->qualifier.flags.q.uniform) { 4576 error_emitted = 4577 do_assignment(initializer_instructions, state, 4578 NULL, lhs, rhs, 4579 &result, true, true, 4580 type->get_location()); 4581 initializer_type = result->type; 4582 } else 4583 initializer_type = rhs->type; 4584 4585 if (!error_emitted) { 4586 var->constant_initializer = rhs->constant_expression_value(mem_ctx); 4587 var->data.has_initializer = true; 4588 4589 /* If the declared variable is an unsized array, it must inherrit 4590 * its full type from the initializer. A declaration such as 4591 * 4592 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0); 4593 * 4594 * becomes 4595 * 4596 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0); 4597 * 4598 * The assignment generated in the if-statement (below) will also 4599 * automatically handle this case for non-uniforms. 4600 * 4601 * If the declared variable is not an array, the types must 4602 * already match exactly. As a result, the type assignment 4603 * here can be done unconditionally. For non-uniforms the call 4604 * to do_assignment can change the type of the initializer (via 4605 * the implicit conversion rules). For uniforms the initializer 4606 * must be a constant expression, and the type of that expression 4607 * was validated above. 4608 */ 4609 var->type = initializer_type; 4610 } 4611 4612 var->data.read_only = temp; 4613 } 4614 4615 return result; 4616} 4617 4618static void 4619validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state, 4620 YYLTYPE loc, ir_variable *var, 4621 unsigned num_vertices, 4622 unsigned *size, 4623 const char *var_category) 4624{ 4625 if (var->type->is_unsized_array()) { 4626 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says: 4627 * 4628 * All geometry shader input unsized array declarations will be 4629 * sized by an earlier input layout qualifier, when present, as per 4630 * the following table. 4631 * 4632 * Followed by a table mapping each allowed input layout qualifier to 4633 * the corresponding input length. 4634 * 4635 * Similarly for tessellation control shader outputs. 4636 */ 4637 if (num_vertices != 0) 4638 var->type = glsl_type::get_array_instance(var->type->fields.array, 4639 num_vertices); 4640 } else { 4641 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec 4642 * includes the following examples of compile-time errors: 4643 * 4644 * // code sequence within one shader... 4645 * in vec4 Color1[]; // size unknown 4646 * ...Color1.length()...// illegal, length() unknown 4647 * in vec4 Color2[2]; // size is 2 4648 * ...Color1.length()...// illegal, Color1 still has no size 4649 * in vec4 Color3[3]; // illegal, input sizes are inconsistent 4650 * layout(lines) in; // legal, input size is 2, matching 4651 * in vec4 Color4[3]; // illegal, contradicts layout 4652 * ... 4653 * 4654 * To detect the case illustrated by Color3, we verify that the size of 4655 * an explicitly-sized array matches the size of any previously declared 4656 * explicitly-sized array. To detect the case illustrated by Color4, we 4657 * verify that the size of an explicitly-sized array is consistent with 4658 * any previously declared input layout. 4659 */ 4660 if (num_vertices != 0 && var->type->length != num_vertices) { 4661 _mesa_glsl_error(&loc, state, 4662 "%s size contradicts previously declared layout " 4663 "(size is %u, but layout requires a size of %u)", 4664 var_category, var->type->length, num_vertices); 4665 } else if (*size != 0 && var->type->length != *size) { 4666 _mesa_glsl_error(&loc, state, 4667 "%s sizes are inconsistent (size is %u, but a " 4668 "previous declaration has size %u)", 4669 var_category, var->type->length, *size); 4670 } else { 4671 *size = var->type->length; 4672 } 4673 } 4674} 4675 4676static void 4677handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state, 4678 YYLTYPE loc, ir_variable *var) 4679{ 4680 unsigned num_vertices = 0; 4681 4682 if (state->tcs_output_vertices_specified) { 4683 if (!state->out_qualifier->vertices-> 4684 process_qualifier_constant(state, "vertices", 4685 &num_vertices, false)) { 4686 return; 4687 } 4688 4689 if (num_vertices > state->Const.MaxPatchVertices) { 4690 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds " 4691 "GL_MAX_PATCH_VERTICES", num_vertices); 4692 return; 4693 } 4694 } 4695 4696 if (!var->type->is_array() && !var->data.patch) { 4697 _mesa_glsl_error(&loc, state, 4698 "tessellation control shader outputs must be arrays"); 4699 4700 /* To avoid cascading failures, short circuit the checks below. */ 4701 return; 4702 } 4703 4704 if (var->data.patch) 4705 return; 4706 4707 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, 4708 &state->tcs_output_size, 4709 "tessellation control shader output"); 4710} 4711 4712/** 4713 * Do additional processing necessary for tessellation control/evaluation shader 4714 * input declarations. This covers both interface block arrays and bare input 4715 * variables. 4716 */ 4717static void 4718handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state, 4719 YYLTYPE loc, ir_variable *var) 4720{ 4721 if (!var->type->is_array() && !var->data.patch) { 4722 _mesa_glsl_error(&loc, state, 4723 "per-vertex tessellation shader inputs must be arrays"); 4724 /* Avoid cascading failures. */ 4725 return; 4726 } 4727 4728 if (var->data.patch) 4729 return; 4730 4731 /* The ARB_tessellation_shader spec says: 4732 * 4733 * "Declaring an array size is optional. If no size is specified, it 4734 * will be taken from the implementation-dependent maximum patch size 4735 * (gl_MaxPatchVertices). If a size is specified, it must match the 4736 * maximum patch size; otherwise, a compile or link error will occur." 4737 * 4738 * This text appears twice, once for TCS inputs, and again for TES inputs. 4739 */ 4740 if (var->type->is_unsized_array()) { 4741 var->type = glsl_type::get_array_instance(var->type->fields.array, 4742 state->Const.MaxPatchVertices); 4743 } else if (var->type->length != state->Const.MaxPatchVertices) { 4744 _mesa_glsl_error(&loc, state, 4745 "per-vertex tessellation shader input arrays must be " 4746 "sized to gl_MaxPatchVertices (%d).", 4747 state->Const.MaxPatchVertices); 4748 } 4749} 4750 4751 4752/** 4753 * Do additional processing necessary for geometry shader input declarations 4754 * (this covers both interface blocks arrays and bare input variables). 4755 */ 4756static void 4757handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state, 4758 YYLTYPE loc, ir_variable *var) 4759{ 4760 unsigned num_vertices = 0; 4761 4762 if (state->gs_input_prim_type_specified) { 4763 num_vertices = vertices_per_prim(state->in_qualifier->prim_type); 4764 } 4765 4766 /* Geometry shader input variables must be arrays. Caller should have 4767 * reported an error for this. 4768 */ 4769 if (!var->type->is_array()) { 4770 assert(state->error); 4771 4772 /* To avoid cascading failures, short circuit the checks below. */ 4773 return; 4774 } 4775 4776 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, 4777 &state->gs_input_size, 4778 "geometry shader input"); 4779} 4780 4781static void 4782validate_identifier(const char *identifier, YYLTYPE loc, 4783 struct _mesa_glsl_parse_state *state) 4784{ 4785 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, 4786 * 4787 * "Identifiers starting with "gl_" are reserved for use by 4788 * OpenGL, and may not be declared in a shader as either a 4789 * variable or a function." 4790 */ 4791 if (is_gl_identifier(identifier)) { 4792 _mesa_glsl_error(&loc, state, 4793 "identifier `%s' uses reserved `gl_' prefix", 4794 identifier); 4795 } else if (strstr(identifier, "__")) { 4796 /* From page 14 (page 20 of the PDF) of the GLSL 1.10 4797 * spec: 4798 * 4799 * "In addition, all identifiers containing two 4800 * consecutive underscores (__) are reserved as 4801 * possible future keywords." 4802 * 4803 * The intention is that names containing __ are reserved for internal 4804 * use by the implementation, and names prefixed with GL_ are reserved 4805 * for use by Khronos. Names simply containing __ are dangerous to use, 4806 * but should be allowed. 4807 * 4808 * A future version of the GLSL specification will clarify this. 4809 */ 4810 _mesa_glsl_warning(&loc, state, 4811 "identifier `%s' uses reserved `__' string", 4812 identifier); 4813 } 4814} 4815 4816ir_rvalue * 4817ast_declarator_list::hir(exec_list *instructions, 4818 struct _mesa_glsl_parse_state *state) 4819{ 4820 void *ctx = state; 4821 const struct glsl_type *decl_type; 4822 const char *type_name = NULL; 4823 ir_rvalue *result = NULL; 4824 YYLTYPE loc = this->get_location(); 4825 4826 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec: 4827 * 4828 * "To ensure that a particular output variable is invariant, it is 4829 * necessary to use the invariant qualifier. It can either be used to 4830 * qualify a previously declared variable as being invariant 4831 * 4832 * invariant gl_Position; // make existing gl_Position be invariant" 4833 * 4834 * In these cases the parser will set the 'invariant' flag in the declarator 4835 * list, and the type will be NULL. 4836 */ 4837 if (this->invariant) { 4838 assert(this->type == NULL); 4839 4840 if (state->current_function != NULL) { 4841 _mesa_glsl_error(& loc, state, 4842 "all uses of `invariant' keyword must be at global " 4843 "scope"); 4844 } 4845 4846 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 4847 assert(decl->array_specifier == NULL); 4848 assert(decl->initializer == NULL); 4849 4850 ir_variable *const earlier = 4851 state->symbols->get_variable(decl->identifier); 4852 if (earlier == NULL) { 4853 _mesa_glsl_error(& loc, state, 4854 "undeclared variable `%s' cannot be marked " 4855 "invariant", decl->identifier); 4856 } else if (!is_allowed_invariant(earlier, state)) { 4857 _mesa_glsl_error(&loc, state, 4858 "`%s' cannot be marked invariant; interfaces between " 4859 "shader stages only.", decl->identifier); 4860 } else if (earlier->data.used) { 4861 _mesa_glsl_error(& loc, state, 4862 "variable `%s' may not be redeclared " 4863 "`invariant' after being used", 4864 earlier->name); 4865 } else { 4866 earlier->data.invariant = true; 4867 } 4868 } 4869 4870 /* Invariant redeclarations do not have r-values. 4871 */ 4872 return NULL; 4873 } 4874 4875 if (this->precise) { 4876 assert(this->type == NULL); 4877 4878 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 4879 assert(decl->array_specifier == NULL); 4880 assert(decl->initializer == NULL); 4881 4882 ir_variable *const earlier = 4883 state->symbols->get_variable(decl->identifier); 4884 if (earlier == NULL) { 4885 _mesa_glsl_error(& loc, state, 4886 "undeclared variable `%s' cannot be marked " 4887 "precise", decl->identifier); 4888 } else if (state->current_function != NULL && 4889 !state->symbols->name_declared_this_scope(decl->identifier)) { 4890 /* Note: we have to check if we're in a function, since 4891 * builtins are treated as having come from another scope. 4892 */ 4893 _mesa_glsl_error(& loc, state, 4894 "variable `%s' from an outer scope may not be " 4895 "redeclared `precise' in this scope", 4896 earlier->name); 4897 } else if (earlier->data.used) { 4898 _mesa_glsl_error(& loc, state, 4899 "variable `%s' may not be redeclared " 4900 "`precise' after being used", 4901 earlier->name); 4902 } else { 4903 earlier->data.precise = true; 4904 } 4905 } 4906 4907 /* Precise redeclarations do not have r-values either. */ 4908 return NULL; 4909 } 4910 4911 assert(this->type != NULL); 4912 assert(!this->invariant); 4913 assert(!this->precise); 4914 4915 /* The type specifier may contain a structure definition. Process that 4916 * before any of the variable declarations. 4917 */ 4918 (void) this->type->specifier->hir(instructions, state); 4919 4920 decl_type = this->type->glsl_type(& type_name, state); 4921 4922 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: 4923 * "Buffer variables may only be declared inside interface blocks 4924 * (section 4.3.9 “Interface Blocks”), which are then referred to as 4925 * shader storage blocks. It is a compile-time error to declare buffer 4926 * variables at global scope (outside a block)." 4927 */ 4928 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) { 4929 _mesa_glsl_error(&loc, state, 4930 "buffer variables cannot be declared outside " 4931 "interface blocks"); 4932 } 4933 4934 /* An offset-qualified atomic counter declaration sets the default 4935 * offset for the next declaration within the same atomic counter 4936 * buffer. 4937 */ 4938 if (decl_type && decl_type->contains_atomic()) { 4939 if (type->qualifier.flags.q.explicit_binding && 4940 type->qualifier.flags.q.explicit_offset) { 4941 unsigned qual_binding; 4942 unsigned qual_offset; 4943 if (process_qualifier_constant(state, &loc, "binding", 4944 type->qualifier.binding, 4945 &qual_binding) 4946 && process_qualifier_constant(state, &loc, "offset", 4947 type->qualifier.offset, 4948 &qual_offset)) { 4949 state->atomic_counter_offsets[qual_binding] = qual_offset; 4950 } 4951 } 4952 4953 ast_type_qualifier allowed_atomic_qual_mask; 4954 allowed_atomic_qual_mask.flags.i = 0; 4955 allowed_atomic_qual_mask.flags.q.explicit_binding = 1; 4956 allowed_atomic_qual_mask.flags.q.explicit_offset = 1; 4957 allowed_atomic_qual_mask.flags.q.uniform = 1; 4958 4959 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask, 4960 "invalid layout qualifier for", 4961 "atomic_uint"); 4962 } 4963 4964 if (this->declarations.is_empty()) { 4965 /* If there is no structure involved in the program text, there are two 4966 * possible scenarios: 4967 * 4968 * - The program text contained something like 'vec4;'. This is an 4969 * empty declaration. It is valid but weird. Emit a warning. 4970 * 4971 * - The program text contained something like 'S;' and 'S' is not the 4972 * name of a known structure type. This is both invalid and weird. 4973 * Emit an error. 4974 * 4975 * - The program text contained something like 'mediump float;' 4976 * when the programmer probably meant 'precision mediump 4977 * float;' Emit a warning with a description of what they 4978 * probably meant to do. 4979 * 4980 * Note that if decl_type is NULL and there is a structure involved, 4981 * there must have been some sort of error with the structure. In this 4982 * case we assume that an error was already generated on this line of 4983 * code for the structure. There is no need to generate an additional, 4984 * confusing error. 4985 */ 4986 assert(this->type->specifier->structure == NULL || decl_type != NULL 4987 || state->error); 4988 4989 if (decl_type == NULL) { 4990 _mesa_glsl_error(&loc, state, 4991 "invalid type `%s' in empty declaration", 4992 type_name); 4993 } else { 4994 if (decl_type->is_array()) { 4995 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2 4996 * spec: 4997 * 4998 * "... any declaration that leaves the size undefined is 4999 * disallowed as this would add complexity and there are no 5000 * use-cases." 5001 */ 5002 if (state->es_shader && decl_type->is_unsized_array()) { 5003 _mesa_glsl_error(&loc, state, "array size must be explicitly " 5004 "or implicitly defined"); 5005 } 5006 5007 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec: 5008 * 5009 * "The combinations of types and qualifiers that cause 5010 * compile-time or link-time errors are the same whether or not 5011 * the declaration is empty." 5012 */ 5013 validate_array_dimensions(decl_type, state, &loc); 5014 } 5015 5016 if (decl_type->is_atomic_uint()) { 5017 /* Empty atomic counter declarations are allowed and useful 5018 * to set the default offset qualifier. 5019 */ 5020 return NULL; 5021 } else if (this->type->qualifier.precision != ast_precision_none) { 5022 if (this->type->specifier->structure != NULL) { 5023 _mesa_glsl_error(&loc, state, 5024 "precision qualifiers can't be applied " 5025 "to structures"); 5026 } else { 5027 static const char *const precision_names[] = { 5028 "highp", 5029 "highp", 5030 "mediump", 5031 "lowp" 5032 }; 5033 5034 _mesa_glsl_warning(&loc, state, 5035 "empty declaration with precision " 5036 "qualifier, to set the default precision, " 5037 "use `precision %s %s;'", 5038 precision_names[this->type-> 5039 qualifier.precision], 5040 type_name); 5041 } 5042 } else if (this->type->specifier->structure == NULL) { 5043 _mesa_glsl_warning(&loc, state, "empty declaration"); 5044 } 5045 } 5046 } 5047 5048 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 5049 const struct glsl_type *var_type; 5050 ir_variable *var; 5051 const char *identifier = decl->identifier; 5052 /* FINISHME: Emit a warning if a variable declaration shadows a 5053 * FINISHME: declaration at a higher scope. 5054 */ 5055 5056 if ((decl_type == NULL) || decl_type->is_void()) { 5057 if (type_name != NULL) { 5058 _mesa_glsl_error(& loc, state, 5059 "invalid type `%s' in declaration of `%s'", 5060 type_name, decl->identifier); 5061 } else { 5062 _mesa_glsl_error(& loc, state, 5063 "invalid type in declaration of `%s'", 5064 decl->identifier); 5065 } 5066 continue; 5067 } 5068 5069 if (this->type->qualifier.is_subroutine_decl()) { 5070 const glsl_type *t; 5071 const char *name; 5072 5073 t = state->symbols->get_type(this->type->specifier->type_name); 5074 if (!t) 5075 _mesa_glsl_error(& loc, state, 5076 "invalid type in declaration of `%s'", 5077 decl->identifier); 5078 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier); 5079 5080 identifier = name; 5081 5082 } 5083 var_type = process_array_type(&loc, decl_type, decl->array_specifier, 5084 state); 5085 5086 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto); 5087 5088 /* The 'varying in' and 'varying out' qualifiers can only be used with 5089 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support 5090 * yet. 5091 */ 5092 if (this->type->qualifier.flags.q.varying) { 5093 if (this->type->qualifier.flags.q.in) { 5094 _mesa_glsl_error(& loc, state, 5095 "`varying in' qualifier in declaration of " 5096 "`%s' only valid for geometry shaders using " 5097 "ARB_geometry_shader4 or EXT_geometry_shader4", 5098 decl->identifier); 5099 } else if (this->type->qualifier.flags.q.out) { 5100 _mesa_glsl_error(& loc, state, 5101 "`varying out' qualifier in declaration of " 5102 "`%s' only valid for geometry shaders using " 5103 "ARB_geometry_shader4 or EXT_geometry_shader4", 5104 decl->identifier); 5105 } 5106 } 5107 5108 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification; 5109 * 5110 * "Global variables can only use the qualifiers const, 5111 * attribute, uniform, or varying. Only one may be 5112 * specified. 5113 * 5114 * Local variables can only use the qualifier const." 5115 * 5116 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by 5117 * any extension that adds the 'layout' keyword. 5118 */ 5119 if (!state->is_version(130, 300) 5120 && !state->has_explicit_attrib_location() 5121 && !state->has_separate_shader_objects() 5122 && !state->ARB_fragment_coord_conventions_enable) { 5123 if (this->type->qualifier.flags.q.out) { 5124 _mesa_glsl_error(& loc, state, 5125 "`out' qualifier in declaration of `%s' " 5126 "only valid for function parameters in %s", 5127 decl->identifier, state->get_version_string()); 5128 } 5129 if (this->type->qualifier.flags.q.in) { 5130 _mesa_glsl_error(& loc, state, 5131 "`in' qualifier in declaration of `%s' " 5132 "only valid for function parameters in %s", 5133 decl->identifier, state->get_version_string()); 5134 } 5135 /* FINISHME: Test for other invalid qualifiers. */ 5136 } 5137 5138 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, 5139 & loc, false); 5140 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state, 5141 &loc); 5142 5143 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary) 5144 && (var->type->is_numeric() || var->type->is_boolean()) 5145 && state->zero_init) { 5146 const ir_constant_data data = { { 0 } }; 5147 var->data.has_initializer = true; 5148 var->constant_initializer = new(var) ir_constant(var->type, &data); 5149 } 5150 5151 if (this->type->qualifier.flags.q.invariant) { 5152 if (!is_allowed_invariant(var, state)) { 5153 _mesa_glsl_error(&loc, state, 5154 "`%s' cannot be marked invariant; interfaces between " 5155 "shader stages only", var->name); 5156 } 5157 } 5158 5159 if (state->current_function != NULL) { 5160 const char *mode = NULL; 5161 const char *extra = ""; 5162 5163 /* There is no need to check for 'inout' here because the parser will 5164 * only allow that in function parameter lists. 5165 */ 5166 if (this->type->qualifier.flags.q.attribute) { 5167 mode = "attribute"; 5168 } else if (this->type->qualifier.is_subroutine_decl()) { 5169 mode = "subroutine uniform"; 5170 } else if (this->type->qualifier.flags.q.uniform) { 5171 mode = "uniform"; 5172 } else if (this->type->qualifier.flags.q.varying) { 5173 mode = "varying"; 5174 } else if (this->type->qualifier.flags.q.in) { 5175 mode = "in"; 5176 extra = " or in function parameter list"; 5177 } else if (this->type->qualifier.flags.q.out) { 5178 mode = "out"; 5179 extra = " or in function parameter list"; 5180 } 5181 5182 if (mode) { 5183 _mesa_glsl_error(& loc, state, 5184 "%s variable `%s' must be declared at " 5185 "global scope%s", 5186 mode, var->name, extra); 5187 } 5188 } else if (var->data.mode == ir_var_shader_in) { 5189 var->data.read_only = true; 5190 5191 if (state->stage == MESA_SHADER_VERTEX) { 5192 bool error_emitted = false; 5193 5194 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: 5195 * 5196 * "Vertex shader inputs can only be float, floating-point 5197 * vectors, matrices, signed and unsigned integers and integer 5198 * vectors. Vertex shader inputs can also form arrays of these 5199 * types, but not structures." 5200 * 5201 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec: 5202 * 5203 * "Vertex shader inputs can only be float, floating-point 5204 * vectors, matrices, signed and unsigned integers and integer 5205 * vectors. They cannot be arrays or structures." 5206 * 5207 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec: 5208 * 5209 * "The attribute qualifier can be used only with float, 5210 * floating-point vectors, and matrices. Attribute variables 5211 * cannot be declared as arrays or structures." 5212 * 5213 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec: 5214 * 5215 * "Vertex shader inputs can only be float, floating-point 5216 * vectors, matrices, signed and unsigned integers and integer 5217 * vectors. Vertex shader inputs cannot be arrays or 5218 * structures." 5219 * 5220 * From section 4.3.4 of the ARB_bindless_texture spec: 5221 * 5222 * "(modify third paragraph of the section to allow sampler and 5223 * image types) ... Vertex shader inputs can only be float, 5224 * single-precision floating-point scalars, single-precision 5225 * floating-point vectors, matrices, signed and unsigned 5226 * integers and integer vectors, sampler and image types." 5227 */ 5228 const glsl_type *check_type = var->type->without_array(); 5229 5230 switch (check_type->base_type) { 5231 case GLSL_TYPE_FLOAT: 5232 break; 5233 case GLSL_TYPE_UINT64: 5234 case GLSL_TYPE_INT64: 5235 break; 5236 case GLSL_TYPE_UINT: 5237 case GLSL_TYPE_INT: 5238 if (state->is_version(120, 300)) 5239 break; 5240 case GLSL_TYPE_DOUBLE: 5241 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable)) 5242 break; 5243 case GLSL_TYPE_SAMPLER: 5244 if (check_type->is_sampler() && state->has_bindless()) 5245 break; 5246 case GLSL_TYPE_IMAGE: 5247 if (check_type->is_image() && state->has_bindless()) 5248 break; 5249 /* FALLTHROUGH */ 5250 default: 5251 _mesa_glsl_error(& loc, state, 5252 "vertex shader input / attribute cannot have " 5253 "type %s`%s'", 5254 var->type->is_array() ? "array of " : "", 5255 check_type->name); 5256 error_emitted = true; 5257 } 5258 5259 if (!error_emitted && var->type->is_array() && 5260 !state->check_version(150, 0, &loc, 5261 "vertex shader input / attribute " 5262 "cannot have array type")) { 5263 error_emitted = true; 5264 } 5265 } else if (state->stage == MESA_SHADER_GEOMETRY) { 5266 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: 5267 * 5268 * Geometry shader input variables get the per-vertex values 5269 * written out by vertex shader output variables of the same 5270 * names. Since a geometry shader operates on a set of 5271 * vertices, each input varying variable (or input block, see 5272 * interface blocks below) needs to be declared as an array. 5273 */ 5274 if (!var->type->is_array()) { 5275 _mesa_glsl_error(&loc, state, 5276 "geometry shader inputs must be arrays"); 5277 } 5278 5279 handle_geometry_shader_input_decl(state, loc, var); 5280 } else if (state->stage == MESA_SHADER_FRAGMENT) { 5281 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec: 5282 * 5283 * It is a compile-time error to declare a fragment shader 5284 * input with, or that contains, any of the following types: 5285 * 5286 * * A boolean type 5287 * * An opaque type 5288 * * An array of arrays 5289 * * An array of structures 5290 * * A structure containing an array 5291 * * A structure containing a structure 5292 */ 5293 if (state->es_shader) { 5294 const glsl_type *check_type = var->type->without_array(); 5295 if (check_type->is_boolean() || 5296 check_type->contains_opaque()) { 5297 _mesa_glsl_error(&loc, state, 5298 "fragment shader input cannot have type %s", 5299 check_type->name); 5300 } 5301 if (var->type->is_array() && 5302 var->type->fields.array->is_array()) { 5303 _mesa_glsl_error(&loc, state, 5304 "%s shader output " 5305 "cannot have an array of arrays", 5306 _mesa_shader_stage_to_string(state->stage)); 5307 } 5308 if (var->type->is_array() && 5309 var->type->fields.array->is_record()) { 5310 _mesa_glsl_error(&loc, state, 5311 "fragment shader input " 5312 "cannot have an array of structs"); 5313 } 5314 if (var->type->is_record()) { 5315 for (unsigned i = 0; i < var->type->length; i++) { 5316 if (var->type->fields.structure[i].type->is_array() || 5317 var->type->fields.structure[i].type->is_record()) 5318 _mesa_glsl_error(&loc, state, 5319 "fragment shader input cannot have " 5320 "a struct that contains an " 5321 "array or struct"); 5322 } 5323 } 5324 } 5325 } else if (state->stage == MESA_SHADER_TESS_CTRL || 5326 state->stage == MESA_SHADER_TESS_EVAL) { 5327 handle_tess_shader_input_decl(state, loc, var); 5328 } 5329 } else if (var->data.mode == ir_var_shader_out) { 5330 const glsl_type *check_type = var->type->without_array(); 5331 5332 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec: 5333 * 5334 * It is a compile-time error to declare a fragment shader output 5335 * that contains any of the following: 5336 * 5337 * * A Boolean type (bool, bvec2 ...) 5338 * * A double-precision scalar or vector (double, dvec2 ...) 5339 * * An opaque type 5340 * * Any matrix type 5341 * * A structure 5342 */ 5343 if (state->stage == MESA_SHADER_FRAGMENT) { 5344 if (check_type->is_record() || check_type->is_matrix()) 5345 _mesa_glsl_error(&loc, state, 5346 "fragment shader output " 5347 "cannot have struct or matrix type"); 5348 switch (check_type->base_type) { 5349 case GLSL_TYPE_UINT: 5350 case GLSL_TYPE_INT: 5351 case GLSL_TYPE_FLOAT: 5352 break; 5353 default: 5354 _mesa_glsl_error(&loc, state, 5355 "fragment shader output cannot have " 5356 "type %s", check_type->name); 5357 } 5358 } 5359 5360 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec: 5361 * 5362 * It is a compile-time error to declare a vertex shader output 5363 * with, or that contains, any of the following types: 5364 * 5365 * * A boolean type 5366 * * An opaque type 5367 * * An array of arrays 5368 * * An array of structures 5369 * * A structure containing an array 5370 * * A structure containing a structure 5371 * 5372 * It is a compile-time error to declare a fragment shader output 5373 * with, or that contains, any of the following types: 5374 * 5375 * * A boolean type 5376 * * An opaque type 5377 * * A matrix 5378 * * A structure 5379 * * An array of array 5380 * 5381 * ES 3.20 updates this to apply to tessellation and geometry shaders 5382 * as well. Because there are per-vertex arrays in the new stages, 5383 * it strikes the "array of..." rules and replaces them with these: 5384 * 5385 * * For per-vertex-arrayed variables (applies to tessellation 5386 * control, tessellation evaluation and geometry shaders): 5387 * 5388 * * Per-vertex-arrayed arrays of arrays 5389 * * Per-vertex-arrayed arrays of structures 5390 * 5391 * * For non-per-vertex-arrayed variables: 5392 * 5393 * * An array of arrays 5394 * * An array of structures 5395 * 5396 * which basically says to unwrap the per-vertex aspect and apply 5397 * the old rules. 5398 */ 5399 if (state->es_shader) { 5400 if (var->type->is_array() && 5401 var->type->fields.array->is_array()) { 5402 _mesa_glsl_error(&loc, state, 5403 "%s shader output " 5404 "cannot have an array of arrays", 5405 _mesa_shader_stage_to_string(state->stage)); 5406 } 5407 if (state->stage <= MESA_SHADER_GEOMETRY) { 5408 const glsl_type *type = var->type; 5409 5410 if (state->stage == MESA_SHADER_TESS_CTRL && 5411 !var->data.patch && var->type->is_array()) { 5412 type = var->type->fields.array; 5413 } 5414 5415 if (type->is_array() && type->fields.array->is_record()) { 5416 _mesa_glsl_error(&loc, state, 5417 "%s shader output cannot have " 5418 "an array of structs", 5419 _mesa_shader_stage_to_string(state->stage)); 5420 } 5421 if (type->is_record()) { 5422 for (unsigned i = 0; i < type->length; i++) { 5423 if (type->fields.structure[i].type->is_array() || 5424 type->fields.structure[i].type->is_record()) 5425 _mesa_glsl_error(&loc, state, 5426 "%s shader output cannot have a " 5427 "struct that contains an " 5428 "array or struct", 5429 _mesa_shader_stage_to_string(state->stage)); 5430 } 5431 } 5432 } 5433 } 5434 5435 if (state->stage == MESA_SHADER_TESS_CTRL) { 5436 handle_tess_ctrl_shader_output_decl(state, loc, var); 5437 } 5438 } else if (var->type->contains_subroutine()) { 5439 /* declare subroutine uniforms as hidden */ 5440 var->data.how_declared = ir_var_hidden; 5441 } 5442 5443 /* From section 4.3.4 of the GLSL 4.00 spec: 5444 * "Input variables may not be declared using the patch in qualifier 5445 * in tessellation control or geometry shaders." 5446 * 5447 * From section 4.3.6 of the GLSL 4.00 spec: 5448 * "It is an error to use patch out in a vertex, tessellation 5449 * evaluation, or geometry shader." 5450 * 5451 * This doesn't explicitly forbid using them in a fragment shader, but 5452 * that's probably just an oversight. 5453 */ 5454 if (state->stage != MESA_SHADER_TESS_EVAL 5455 && this->type->qualifier.flags.q.patch 5456 && this->type->qualifier.flags.q.in) { 5457 5458 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a " 5459 "tessellation evaluation shader"); 5460 } 5461 5462 if (state->stage != MESA_SHADER_TESS_CTRL 5463 && this->type->qualifier.flags.q.patch 5464 && this->type->qualifier.flags.q.out) { 5465 5466 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a " 5467 "tessellation control shader"); 5468 } 5469 5470 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30. 5471 */ 5472 if (this->type->qualifier.precision != ast_precision_none) { 5473 state->check_precision_qualifiers_allowed(&loc); 5474 } 5475 5476 if (this->type->qualifier.precision != ast_precision_none && 5477 !precision_qualifier_allowed(var->type)) { 5478 _mesa_glsl_error(&loc, state, 5479 "precision qualifiers apply only to floating point" 5480 ", integer and opaque types"); 5481 } 5482 5483 /* From section 4.1.7 of the GLSL 4.40 spec: 5484 * 5485 * "[Opaque types] can only be declared as function 5486 * parameters or uniform-qualified variables." 5487 * 5488 * From section 4.1.7 of the ARB_bindless_texture spec: 5489 * 5490 * "Samplers may be declared as shader inputs and outputs, as uniform 5491 * variables, as temporary variables, and as function parameters." 5492 * 5493 * From section 4.1.X of the ARB_bindless_texture spec: 5494 * 5495 * "Images may be declared as shader inputs and outputs, as uniform 5496 * variables, as temporary variables, and as function parameters." 5497 */ 5498 if (!this->type->qualifier.flags.q.uniform && 5499 (var_type->contains_atomic() || 5500 (!state->has_bindless() && var_type->contains_opaque()))) { 5501 _mesa_glsl_error(&loc, state, 5502 "%s variables must be declared uniform", 5503 state->has_bindless() ? "atomic" : "opaque"); 5504 } 5505 5506 /* Process the initializer and add its instructions to a temporary 5507 * list. This list will be added to the instruction stream (below) after 5508 * the declaration is added. This is done because in some cases (such as 5509 * redeclarations) the declaration may not actually be added to the 5510 * instruction stream. 5511 */ 5512 exec_list initializer_instructions; 5513 5514 /* Examine var name here since var may get deleted in the next call */ 5515 bool var_is_gl_id = is_gl_identifier(var->name); 5516 5517 bool is_redeclaration; 5518 var = get_variable_being_redeclared(&var, decl->get_location(), state, 5519 false /* allow_all_redeclarations */, 5520 &is_redeclaration); 5521 if (is_redeclaration) { 5522 if (var_is_gl_id && 5523 var->data.how_declared == ir_var_declared_in_block) { 5524 _mesa_glsl_error(&loc, state, 5525 "`%s' has already been redeclared using " 5526 "gl_PerVertex", var->name); 5527 } 5528 var->data.how_declared = ir_var_declared_normally; 5529 } 5530 5531 if (decl->initializer != NULL) { 5532 result = process_initializer(var, 5533 decl, this->type, 5534 &initializer_instructions, state); 5535 } else { 5536 validate_array_dimensions(var_type, state, &loc); 5537 } 5538 5539 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec: 5540 * 5541 * "It is an error to write to a const variable outside of 5542 * its declaration, so they must be initialized when 5543 * declared." 5544 */ 5545 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) { 5546 _mesa_glsl_error(& loc, state, 5547 "const declaration of `%s' must be initialized", 5548 decl->identifier); 5549 } 5550 5551 if (state->es_shader) { 5552 const glsl_type *const t = var->type; 5553 5554 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs. 5555 * 5556 * The GL_OES_tessellation_shader spec says about inputs: 5557 * 5558 * "Declaring an array size is optional. If no size is specified, 5559 * it will be taken from the implementation-dependent maximum 5560 * patch size (gl_MaxPatchVertices)." 5561 * 5562 * and about TCS outputs: 5563 * 5564 * "If no size is specified, it will be taken from output patch 5565 * size declared in the shader." 5566 * 5567 * The GL_OES_geometry_shader spec says: 5568 * 5569 * "All geometry shader input unsized array declarations will be 5570 * sized by an earlier input primitive layout qualifier, when 5571 * present, as per the following table." 5572 */ 5573 const bool implicitly_sized = 5574 (var->data.mode == ir_var_shader_in && 5575 state->stage >= MESA_SHADER_TESS_CTRL && 5576 state->stage <= MESA_SHADER_GEOMETRY) || 5577 (var->data.mode == ir_var_shader_out && 5578 state->stage == MESA_SHADER_TESS_CTRL); 5579 5580 if (t->is_unsized_array() && !implicitly_sized) 5581 /* Section 10.17 of the GLSL ES 1.00 specification states that 5582 * unsized array declarations have been removed from the language. 5583 * Arrays that are sized using an initializer are still explicitly 5584 * sized. However, GLSL ES 1.00 does not allow array 5585 * initializers. That is only allowed in GLSL ES 3.00. 5586 * 5587 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says: 5588 * 5589 * "An array type can also be formed without specifying a size 5590 * if the definition includes an initializer: 5591 * 5592 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2 5593 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3 5594 * 5595 * float a[5]; 5596 * float b[] = a;" 5597 */ 5598 _mesa_glsl_error(& loc, state, 5599 "unsized array declarations are not allowed in " 5600 "GLSL ES"); 5601 } 5602 5603 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec: 5604 * 5605 * "It is a compile-time error to declare an unsized array of 5606 * atomic_uint" 5607 */ 5608 if (var->type->is_unsized_array() && 5609 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) { 5610 _mesa_glsl_error(& loc, state, 5611 "Unsized array of atomic_uint is not allowed"); 5612 } 5613 5614 /* If the declaration is not a redeclaration, there are a few additional 5615 * semantic checks that must be applied. In addition, variable that was 5616 * created for the declaration should be added to the IR stream. 5617 */ 5618 if (!is_redeclaration) { 5619 validate_identifier(decl->identifier, loc, state); 5620 5621 /* Add the variable to the symbol table. Note that the initializer's 5622 * IR was already processed earlier (though it hasn't been emitted 5623 * yet), without the variable in scope. 5624 * 5625 * This differs from most C-like languages, but it follows the GLSL 5626 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50 5627 * spec: 5628 * 5629 * "Within a declaration, the scope of a name starts immediately 5630 * after the initializer if present or immediately after the name 5631 * being declared if not." 5632 */ 5633 if (!state->symbols->add_variable(var)) { 5634 YYLTYPE loc = this->get_location(); 5635 _mesa_glsl_error(&loc, state, "name `%s' already taken in the " 5636 "current scope", decl->identifier); 5637 continue; 5638 } 5639 5640 /* Push the variable declaration to the top. It means that all the 5641 * variable declarations will appear in a funny last-to-first order, 5642 * but otherwise we run into trouble if a function is prototyped, a 5643 * global var is decled, then the function is defined with usage of 5644 * the global var. See glslparsertest's CorrectModule.frag. 5645 */ 5646 instructions->push_head(var); 5647 } 5648 5649 instructions->append_list(&initializer_instructions); 5650 } 5651 5652 5653 /* Generally, variable declarations do not have r-values. However, 5654 * one is used for the declaration in 5655 * 5656 * while (bool b = some_condition()) { 5657 * ... 5658 * } 5659 * 5660 * so we return the rvalue from the last seen declaration here. 5661 */ 5662 return result; 5663} 5664 5665 5666ir_rvalue * 5667ast_parameter_declarator::hir(exec_list *instructions, 5668 struct _mesa_glsl_parse_state *state) 5669{ 5670 void *ctx = state; 5671 const struct glsl_type *type; 5672 const char *name = NULL; 5673 YYLTYPE loc = this->get_location(); 5674 5675 type = this->type->glsl_type(& name, state); 5676 5677 if (type == NULL) { 5678 if (name != NULL) { 5679 _mesa_glsl_error(& loc, state, 5680 "invalid type `%s' in declaration of `%s'", 5681 name, this->identifier); 5682 } else { 5683 _mesa_glsl_error(& loc, state, 5684 "invalid type in declaration of `%s'", 5685 this->identifier); 5686 } 5687 5688 type = glsl_type::error_type; 5689 } 5690 5691 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec: 5692 * 5693 * "Functions that accept no input arguments need not use void in the 5694 * argument list because prototypes (or definitions) are required and 5695 * therefore there is no ambiguity when an empty argument list "( )" is 5696 * declared. The idiom "(void)" as a parameter list is provided for 5697 * convenience." 5698 * 5699 * Placing this check here prevents a void parameter being set up 5700 * for a function, which avoids tripping up checks for main taking 5701 * parameters and lookups of an unnamed symbol. 5702 */ 5703 if (type->is_void()) { 5704 if (this->identifier != NULL) 5705 _mesa_glsl_error(& loc, state, 5706 "named parameter cannot have type `void'"); 5707 5708 is_void = true; 5709 return NULL; 5710 } 5711 5712 if (formal_parameter && (this->identifier == NULL)) { 5713 _mesa_glsl_error(& loc, state, "formal parameter lacks a name"); 5714 return NULL; 5715 } 5716 5717 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...) 5718 * call already handled the "vec4[..] foo" case. 5719 */ 5720 type = process_array_type(&loc, type, this->array_specifier, state); 5721 5722 if (!type->is_error() && type->is_unsized_array()) { 5723 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have " 5724 "a declared size"); 5725 type = glsl_type::error_type; 5726 } 5727 5728 is_void = false; 5729 ir_variable *var = new(ctx) 5730 ir_variable(type, this->identifier, ir_var_function_in); 5731 5732 /* Apply any specified qualifiers to the parameter declaration. Note that 5733 * for function parameters the default mode is 'in'. 5734 */ 5735 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc, 5736 true); 5737 5738 /* From section 4.1.7 of the GLSL 4.40 spec: 5739 * 5740 * "Opaque variables cannot be treated as l-values; hence cannot 5741 * be used as out or inout function parameters, nor can they be 5742 * assigned into." 5743 * 5744 * From section 4.1.7 of the ARB_bindless_texture spec: 5745 * 5746 * "Samplers can be used as l-values, so can be assigned into and used 5747 * as "out" and "inout" function parameters." 5748 * 5749 * From section 4.1.X of the ARB_bindless_texture spec: 5750 * 5751 * "Images can be used as l-values, so can be assigned into and used as 5752 * "out" and "inout" function parameters." 5753 */ 5754 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) 5755 && (type->contains_atomic() || 5756 (!state->has_bindless() && type->contains_opaque()))) { 5757 _mesa_glsl_error(&loc, state, "out and inout parameters cannot " 5758 "contain %s variables", 5759 state->has_bindless() ? "atomic" : "opaque"); 5760 type = glsl_type::error_type; 5761 } 5762 5763 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec: 5764 * 5765 * "When calling a function, expressions that do not evaluate to 5766 * l-values cannot be passed to parameters declared as out or inout." 5767 * 5768 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: 5769 * 5770 * "Other binary or unary expressions, non-dereferenced arrays, 5771 * function names, swizzles with repeated fields, and constants 5772 * cannot be l-values." 5773 * 5774 * So for GLSL 1.10, passing an array as an out or inout parameter is not 5775 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES. 5776 */ 5777 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) 5778 && type->is_array() 5779 && !state->check_version(120, 100, &loc, 5780 "arrays cannot be out or inout parameters")) { 5781 type = glsl_type::error_type; 5782 } 5783 5784 instructions->push_tail(var); 5785 5786 /* Parameter declarations do not have r-values. 5787 */ 5788 return NULL; 5789} 5790 5791 5792void 5793ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters, 5794 bool formal, 5795 exec_list *ir_parameters, 5796 _mesa_glsl_parse_state *state) 5797{ 5798 ast_parameter_declarator *void_param = NULL; 5799 unsigned count = 0; 5800 5801 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) { 5802 param->formal_parameter = formal; 5803 param->hir(ir_parameters, state); 5804 5805 if (param->is_void) 5806 void_param = param; 5807 5808 count++; 5809 } 5810 5811 if ((void_param != NULL) && (count > 1)) { 5812 YYLTYPE loc = void_param->get_location(); 5813 5814 _mesa_glsl_error(& loc, state, 5815 "`void' parameter must be only parameter"); 5816 } 5817} 5818 5819 5820void 5821emit_function(_mesa_glsl_parse_state *state, ir_function *f) 5822{ 5823 /* IR invariants disallow function declarations or definitions 5824 * nested within other function definitions. But there is no 5825 * requirement about the relative order of function declarations 5826 * and definitions with respect to one another. So simply insert 5827 * the new ir_function block at the end of the toplevel instruction 5828 * list. 5829 */ 5830 state->toplevel_ir->push_tail(f); 5831} 5832 5833 5834ir_rvalue * 5835ast_function::hir(exec_list *instructions, 5836 struct _mesa_glsl_parse_state *state) 5837{ 5838 void *ctx = state; 5839 ir_function *f = NULL; 5840 ir_function_signature *sig = NULL; 5841 exec_list hir_parameters; 5842 YYLTYPE loc = this->get_location(); 5843 5844 const char *const name = identifier; 5845 5846 /* New functions are always added to the top-level IR instruction stream, 5847 * so this instruction list pointer is ignored. See also emit_function 5848 * (called below). 5849 */ 5850 (void) instructions; 5851 5852 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec, 5853 * 5854 * "Function declarations (prototypes) cannot occur inside of functions; 5855 * they must be at global scope, or for the built-in functions, outside 5856 * the global scope." 5857 * 5858 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec, 5859 * 5860 * "User defined functions may only be defined within the global scope." 5861 * 5862 * Note that this language does not appear in GLSL 1.10. 5863 */ 5864 if ((state->current_function != NULL) && 5865 state->is_version(120, 100)) { 5866 YYLTYPE loc = this->get_location(); 5867 _mesa_glsl_error(&loc, state, 5868 "declaration of function `%s' not allowed within " 5869 "function body", name); 5870 } 5871 5872 validate_identifier(name, this->get_location(), state); 5873 5874 /* Convert the list of function parameters to HIR now so that they can be 5875 * used below to compare this function's signature with previously seen 5876 * signatures for functions with the same name. 5877 */ 5878 ast_parameter_declarator::parameters_to_hir(& this->parameters, 5879 is_definition, 5880 & hir_parameters, state); 5881 5882 const char *return_type_name; 5883 const glsl_type *return_type = 5884 this->return_type->glsl_type(& return_type_name, state); 5885 5886 if (!return_type) { 5887 YYLTYPE loc = this->get_location(); 5888 _mesa_glsl_error(&loc, state, 5889 "function `%s' has undeclared return type `%s'", 5890 name, return_type_name); 5891 return_type = glsl_type::error_type; 5892 } 5893 5894 /* ARB_shader_subroutine states: 5895 * "Subroutine declarations cannot be prototyped. It is an error to prepend 5896 * subroutine(...) to a function declaration." 5897 */ 5898 if (this->return_type->qualifier.subroutine_list && !is_definition) { 5899 YYLTYPE loc = this->get_location(); 5900 _mesa_glsl_error(&loc, state, 5901 "function declaration `%s' cannot have subroutine prepended", 5902 name); 5903 } 5904 5905 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec: 5906 * "No qualifier is allowed on the return type of a function." 5907 */ 5908 if (this->return_type->has_qualifiers(state)) { 5909 YYLTYPE loc = this->get_location(); 5910 _mesa_glsl_error(& loc, state, 5911 "function `%s' return type has qualifiers", name); 5912 } 5913 5914 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says: 5915 * 5916 * "Arrays are allowed as arguments and as the return type. In both 5917 * cases, the array must be explicitly sized." 5918 */ 5919 if (return_type->is_unsized_array()) { 5920 YYLTYPE loc = this->get_location(); 5921 _mesa_glsl_error(& loc, state, 5922 "function `%s' return type array must be explicitly " 5923 "sized", name); 5924 } 5925 5926 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec: 5927 * 5928 * "Arrays are allowed as arguments, but not as the return type. [...] 5929 * The return type can also be a structure if the structure does not 5930 * contain an array." 5931 */ 5932 if (state->language_version == 100 && return_type->contains_array()) { 5933 YYLTYPE loc = this->get_location(); 5934 _mesa_glsl_error(& loc, state, 5935 "function `%s' return type contains an array", name); 5936 } 5937 5938 /* From section 4.1.7 of the GLSL 4.40 spec: 5939 * 5940 * "[Opaque types] can only be declared as function parameters 5941 * or uniform-qualified variables." 5942 * 5943 * The ARB_bindless_texture spec doesn't clearly state this, but as it says 5944 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X, 5945 * (Images)", this should be allowed. 5946 */ 5947 if (return_type->contains_atomic() || 5948 (!state->has_bindless() && return_type->contains_opaque())) { 5949 YYLTYPE loc = this->get_location(); 5950 _mesa_glsl_error(&loc, state, 5951 "function `%s' return type can't contain an %s type", 5952 name, state->has_bindless() ? "atomic" : "opaque"); 5953 } 5954 5955 /**/ 5956 if (return_type->is_subroutine()) { 5957 YYLTYPE loc = this->get_location(); 5958 _mesa_glsl_error(&loc, state, 5959 "function `%s' return type can't be a subroutine type", 5960 name); 5961 } 5962 5963 5964 /* Create an ir_function if one doesn't already exist. */ 5965 f = state->symbols->get_function(name); 5966 if (f == NULL) { 5967 f = new(ctx) ir_function(name); 5968 if (!this->return_type->qualifier.is_subroutine_decl()) { 5969 if (!state->symbols->add_function(f)) { 5970 /* This function name shadows a non-function use of the same name. */ 5971 YYLTYPE loc = this->get_location(); 5972 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with " 5973 "non-function", name); 5974 return NULL; 5975 } 5976 } 5977 emit_function(state, f); 5978 } 5979 5980 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71: 5981 * 5982 * "A shader cannot redefine or overload built-in functions." 5983 * 5984 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions": 5985 * 5986 * "User code can overload the built-in functions but cannot redefine 5987 * them." 5988 */ 5989 if (state->es_shader) { 5990 /* Local shader has no exact candidates; check the built-ins. */ 5991 _mesa_glsl_initialize_builtin_functions(); 5992 if (state->language_version >= 300 && 5993 _mesa_glsl_has_builtin_function(state, name)) { 5994 YYLTYPE loc = this->get_location(); 5995 _mesa_glsl_error(& loc, state, 5996 "A shader cannot redefine or overload built-in " 5997 "function `%s' in GLSL ES 3.00", name); 5998 return NULL; 5999 } 6000 6001 if (state->language_version == 100) { 6002 ir_function_signature *sig = 6003 _mesa_glsl_find_builtin_function(state, name, &hir_parameters); 6004 if (sig && sig->is_builtin()) { 6005 _mesa_glsl_error(& loc, state, 6006 "A shader cannot redefine built-in " 6007 "function `%s' in GLSL ES 1.00", name); 6008 } 6009 } 6010 } 6011 6012 /* Verify that this function's signature either doesn't match a previously 6013 * seen signature for a function with the same name, or, if a match is found, 6014 * that the previously seen signature does not have an associated definition. 6015 */ 6016 if (state->es_shader || f->has_user_signature()) { 6017 sig = f->exact_matching_signature(state, &hir_parameters); 6018 if (sig != NULL) { 6019 const char *badvar = sig->qualifiers_match(&hir_parameters); 6020 if (badvar != NULL) { 6021 YYLTYPE loc = this->get_location(); 6022 6023 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' " 6024 "qualifiers don't match prototype", name, badvar); 6025 } 6026 6027 if (sig->return_type != return_type) { 6028 YYLTYPE loc = this->get_location(); 6029 6030 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't " 6031 "match prototype", name); 6032 } 6033 6034 if (sig->is_defined) { 6035 if (is_definition) { 6036 YYLTYPE loc = this->get_location(); 6037 _mesa_glsl_error(& loc, state, "function `%s' redefined", name); 6038 } else { 6039 /* We just encountered a prototype that exactly matches a 6040 * function that's already been defined. This is redundant, 6041 * and we should ignore it. 6042 */ 6043 return NULL; 6044 } 6045 } else if (state->language_version == 100 && !is_definition) { 6046 /* From the GLSL 1.00 spec, section 4.2.7: 6047 * 6048 * "A particular variable, structure or function declaration 6049 * may occur at most once within a scope with the exception 6050 * that a single function prototype plus the corresponding 6051 * function definition are allowed." 6052 */ 6053 YYLTYPE loc = this->get_location(); 6054 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name); 6055 } 6056 } 6057 } 6058 6059 /* Verify the return type of main() */ 6060 if (strcmp(name, "main") == 0) { 6061 if (! return_type->is_void()) { 6062 YYLTYPE loc = this->get_location(); 6063 6064 _mesa_glsl_error(& loc, state, "main() must return void"); 6065 } 6066 6067 if (!hir_parameters.is_empty()) { 6068 YYLTYPE loc = this->get_location(); 6069 6070 _mesa_glsl_error(& loc, state, "main() must not take any parameters"); 6071 } 6072 } 6073 6074 /* Finish storing the information about this new function in its signature. 6075 */ 6076 if (sig == NULL) { 6077 sig = new(ctx) ir_function_signature(return_type); 6078 f->add_signature(sig); 6079 } 6080 6081 sig->replace_parameters(&hir_parameters); 6082 signature = sig; 6083 6084 if (this->return_type->qualifier.subroutine_list) { 6085 int idx; 6086 6087 if (this->return_type->qualifier.flags.q.explicit_index) { 6088 unsigned qual_index; 6089 if (process_qualifier_constant(state, &loc, "index", 6090 this->return_type->qualifier.index, 6091 &qual_index)) { 6092 if (!state->has_explicit_uniform_location()) { 6093 _mesa_glsl_error(&loc, state, "subroutine index requires " 6094 "GL_ARB_explicit_uniform_location or " 6095 "GLSL 4.30"); 6096 } else if (qual_index >= MAX_SUBROUTINES) { 6097 _mesa_glsl_error(&loc, state, 6098 "invalid subroutine index (%d) index must " 6099 "be a number between 0 and " 6100 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index, 6101 MAX_SUBROUTINES - 1); 6102 } else { 6103 f->subroutine_index = qual_index; 6104 } 6105 } 6106 } 6107 6108 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length(); 6109 f->subroutine_types = ralloc_array(state, const struct glsl_type *, 6110 f->num_subroutine_types); 6111 idx = 0; 6112 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) { 6113 const struct glsl_type *type; 6114 /* the subroutine type must be already declared */ 6115 type = state->symbols->get_type(decl->identifier); 6116 if (!type) { 6117 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier); 6118 } 6119 6120 for (int i = 0; i < state->num_subroutine_types; i++) { 6121 ir_function *fn = state->subroutine_types[i]; 6122 ir_function_signature *tsig = NULL; 6123 6124 if (strcmp(fn->name, decl->identifier)) 6125 continue; 6126 6127 tsig = fn->matching_signature(state, &sig->parameters, 6128 false); 6129 if (!tsig) { 6130 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier); 6131 } else { 6132 if (tsig->return_type != sig->return_type) { 6133 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier); 6134 } 6135 } 6136 } 6137 f->subroutine_types[idx++] = type; 6138 } 6139 state->subroutines = (ir_function **)reralloc(state, state->subroutines, 6140 ir_function *, 6141 state->num_subroutines + 1); 6142 state->subroutines[state->num_subroutines] = f; 6143 state->num_subroutines++; 6144 6145 } 6146 6147 if (this->return_type->qualifier.is_subroutine_decl()) { 6148 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) { 6149 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier); 6150 return NULL; 6151 } 6152 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types, 6153 ir_function *, 6154 state->num_subroutine_types + 1); 6155 state->subroutine_types[state->num_subroutine_types] = f; 6156 state->num_subroutine_types++; 6157 6158 f->is_subroutine = true; 6159 } 6160 6161 /* Function declarations (prototypes) do not have r-values. 6162 */ 6163 return NULL; 6164} 6165 6166 6167ir_rvalue * 6168ast_function_definition::hir(exec_list *instructions, 6169 struct _mesa_glsl_parse_state *state) 6170{ 6171 prototype->is_definition = true; 6172 prototype->hir(instructions, state); 6173 6174 ir_function_signature *signature = prototype->signature; 6175 if (signature == NULL) 6176 return NULL; 6177 6178 assert(state->current_function == NULL); 6179 state->current_function = signature; 6180 state->found_return = false; 6181 6182 /* Duplicate parameters declared in the prototype as concrete variables. 6183 * Add these to the symbol table. 6184 */ 6185 state->symbols->push_scope(); 6186 foreach_in_list(ir_variable, var, &signature->parameters) { 6187 assert(var->as_variable() != NULL); 6188 6189 /* The only way a parameter would "exist" is if two parameters have 6190 * the same name. 6191 */ 6192 if (state->symbols->name_declared_this_scope(var->name)) { 6193 YYLTYPE loc = this->get_location(); 6194 6195 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name); 6196 } else { 6197 state->symbols->add_variable(var); 6198 } 6199 } 6200 6201 /* Convert the body of the function to HIR. */ 6202 this->body->hir(&signature->body, state); 6203 signature->is_defined = true; 6204 6205 state->symbols->pop_scope(); 6206 6207 assert(state->current_function == signature); 6208 state->current_function = NULL; 6209 6210 if (!signature->return_type->is_void() && !state->found_return) { 6211 YYLTYPE loc = this->get_location(); 6212 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type " 6213 "%s, but no return statement", 6214 signature->function_name(), 6215 signature->return_type->name); 6216 } 6217 6218 /* Function definitions do not have r-values. 6219 */ 6220 return NULL; 6221} 6222 6223 6224ir_rvalue * 6225ast_jump_statement::hir(exec_list *instructions, 6226 struct _mesa_glsl_parse_state *state) 6227{ 6228 void *ctx = state; 6229 6230 switch (mode) { 6231 case ast_return: { 6232 ir_return *inst; 6233 assert(state->current_function); 6234 6235 if (opt_return_value) { 6236 ir_rvalue *ret = opt_return_value->hir(instructions, state); 6237 6238 /* The value of the return type can be NULL if the shader says 6239 * 'return foo();' and foo() is a function that returns void. 6240 * 6241 * NOTE: The GLSL spec doesn't say that this is an error. The type 6242 * of the return value is void. If the return type of the function is 6243 * also void, then this should compile without error. Seriously. 6244 */ 6245 const glsl_type *const ret_type = 6246 (ret == NULL) ? glsl_type::void_type : ret->type; 6247 6248 /* Implicit conversions are not allowed for return values prior to 6249 * ARB_shading_language_420pack. 6250 */ 6251 if (state->current_function->return_type != ret_type) { 6252 YYLTYPE loc = this->get_location(); 6253 6254 if (state->has_420pack()) { 6255 if (!apply_implicit_conversion(state->current_function->return_type, 6256 ret, state)) { 6257 _mesa_glsl_error(& loc, state, 6258 "could not implicitly convert return value " 6259 "to %s, in function `%s'", 6260 state->current_function->return_type->name, 6261 state->current_function->function_name()); 6262 } 6263 } else { 6264 _mesa_glsl_error(& loc, state, 6265 "`return' with wrong type %s, in function `%s' " 6266 "returning %s", 6267 ret_type->name, 6268 state->current_function->function_name(), 6269 state->current_function->return_type->name); 6270 } 6271 } else if (state->current_function->return_type->base_type == 6272 GLSL_TYPE_VOID) { 6273 YYLTYPE loc = this->get_location(); 6274 6275 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20 6276 * specs add a clarification: 6277 * 6278 * "A void function can only use return without a return argument, even if 6279 * the return argument has void type. Return statements only accept values: 6280 * 6281 * void func1() { } 6282 * void func2() { return func1(); } // illegal return statement" 6283 */ 6284 _mesa_glsl_error(& loc, state, 6285 "void functions can only use `return' without a " 6286 "return argument"); 6287 } 6288 6289 inst = new(ctx) ir_return(ret); 6290 } else { 6291 if (state->current_function->return_type->base_type != 6292 GLSL_TYPE_VOID) { 6293 YYLTYPE loc = this->get_location(); 6294 6295 _mesa_glsl_error(& loc, state, 6296 "`return' with no value, in function %s returning " 6297 "non-void", 6298 state->current_function->function_name()); 6299 } 6300 inst = new(ctx) ir_return; 6301 } 6302 6303 state->found_return = true; 6304 instructions->push_tail(inst); 6305 break; 6306 } 6307 6308 case ast_discard: 6309 if (state->stage != MESA_SHADER_FRAGMENT) { 6310 YYLTYPE loc = this->get_location(); 6311 6312 _mesa_glsl_error(& loc, state, 6313 "`discard' may only appear in a fragment shader"); 6314 } 6315 instructions->push_tail(new(ctx) ir_discard); 6316 break; 6317 6318 case ast_break: 6319 case ast_continue: 6320 if (mode == ast_continue && 6321 state->loop_nesting_ast == NULL) { 6322 YYLTYPE loc = this->get_location(); 6323 6324 _mesa_glsl_error(& loc, state, "continue may only appear in a loop"); 6325 } else if (mode == ast_break && 6326 state->loop_nesting_ast == NULL && 6327 state->switch_state.switch_nesting_ast == NULL) { 6328 YYLTYPE loc = this->get_location(); 6329 6330 _mesa_glsl_error(& loc, state, 6331 "break may only appear in a loop or a switch"); 6332 } else { 6333 /* For a loop, inline the for loop expression again, since we don't 6334 * know where near the end of the loop body the normal copy of it is 6335 * going to be placed. Same goes for the condition for a do-while 6336 * loop. 6337 */ 6338 if (state->loop_nesting_ast != NULL && 6339 mode == ast_continue && !state->switch_state.is_switch_innermost) { 6340 if (state->loop_nesting_ast->rest_expression) { 6341 state->loop_nesting_ast->rest_expression->hir(instructions, 6342 state); 6343 } 6344 if (state->loop_nesting_ast->mode == 6345 ast_iteration_statement::ast_do_while) { 6346 state->loop_nesting_ast->condition_to_hir(instructions, state); 6347 } 6348 } 6349 6350 if (state->switch_state.is_switch_innermost && 6351 mode == ast_continue) { 6352 /* Set 'continue_inside' to true. */ 6353 ir_rvalue *const true_val = new (ctx) ir_constant(true); 6354 ir_dereference_variable *deref_continue_inside_var = 6355 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6356 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var, 6357 true_val)); 6358 6359 /* Break out from the switch, continue for the loop will 6360 * be called right after switch. */ 6361 ir_loop_jump *const jump = 6362 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6363 instructions->push_tail(jump); 6364 6365 } else if (state->switch_state.is_switch_innermost && 6366 mode == ast_break) { 6367 /* Force break out of switch by inserting a break. */ 6368 ir_loop_jump *const jump = 6369 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6370 instructions->push_tail(jump); 6371 } else { 6372 ir_loop_jump *const jump = 6373 new(ctx) ir_loop_jump((mode == ast_break) 6374 ? ir_loop_jump::jump_break 6375 : ir_loop_jump::jump_continue); 6376 instructions->push_tail(jump); 6377 } 6378 } 6379 6380 break; 6381 } 6382 6383 /* Jump instructions do not have r-values. 6384 */ 6385 return NULL; 6386} 6387 6388 6389ir_rvalue * 6390ast_selection_statement::hir(exec_list *instructions, 6391 struct _mesa_glsl_parse_state *state) 6392{ 6393 void *ctx = state; 6394 6395 ir_rvalue *const condition = this->condition->hir(instructions, state); 6396 6397 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec: 6398 * 6399 * "Any expression whose type evaluates to a Boolean can be used as the 6400 * conditional expression bool-expression. Vector types are not accepted 6401 * as the expression to if." 6402 * 6403 * The checks are separated so that higher quality diagnostics can be 6404 * generated for cases where both rules are violated. 6405 */ 6406 if (!condition->type->is_boolean() || !condition->type->is_scalar()) { 6407 YYLTYPE loc = this->condition->get_location(); 6408 6409 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar " 6410 "boolean"); 6411 } 6412 6413 ir_if *const stmt = new(ctx) ir_if(condition); 6414 6415 if (then_statement != NULL) { 6416 state->symbols->push_scope(); 6417 then_statement->hir(& stmt->then_instructions, state); 6418 state->symbols->pop_scope(); 6419 } 6420 6421 if (else_statement != NULL) { 6422 state->symbols->push_scope(); 6423 else_statement->hir(& stmt->else_instructions, state); 6424 state->symbols->pop_scope(); 6425 } 6426 6427 instructions->push_tail(stmt); 6428 6429 /* if-statements do not have r-values. 6430 */ 6431 return NULL; 6432} 6433 6434 6435struct case_label { 6436 /** Value of the case label. */ 6437 unsigned value; 6438 6439 /** Does this label occur after the default? */ 6440 bool after_default; 6441 6442 /** 6443 * AST for the case label. 6444 * 6445 * This is only used to generate error messages for duplicate labels. 6446 */ 6447 ast_expression *ast; 6448}; 6449 6450/* Used for detection of duplicate case values, compare 6451 * given contents directly. 6452 */ 6453static bool 6454compare_case_value(const void *a, const void *b) 6455{ 6456 return ((struct case_label *) a)->value == ((struct case_label *) b)->value; 6457} 6458 6459 6460/* Used for detection of duplicate case values, just 6461 * returns key contents as is. 6462 */ 6463static unsigned 6464key_contents(const void *key) 6465{ 6466 return ((struct case_label *) key)->value; 6467} 6468 6469 6470ir_rvalue * 6471ast_switch_statement::hir(exec_list *instructions, 6472 struct _mesa_glsl_parse_state *state) 6473{ 6474 void *ctx = state; 6475 6476 ir_rvalue *const test_expression = 6477 this->test_expression->hir(instructions, state); 6478 6479 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec: 6480 * 6481 * "The type of init-expression in a switch statement must be a 6482 * scalar integer." 6483 */ 6484 if (!test_expression->type->is_scalar() || 6485 !test_expression->type->is_integer()) { 6486 YYLTYPE loc = this->test_expression->get_location(); 6487 6488 _mesa_glsl_error(& loc, 6489 state, 6490 "switch-statement expression must be scalar " 6491 "integer"); 6492 return NULL; 6493 } 6494 6495 /* Track the switch-statement nesting in a stack-like manner. 6496 */ 6497 struct glsl_switch_state saved = state->switch_state; 6498 6499 state->switch_state.is_switch_innermost = true; 6500 state->switch_state.switch_nesting_ast = this; 6501 state->switch_state.labels_ht = 6502 _mesa_hash_table_create(NULL, key_contents, 6503 compare_case_value); 6504 state->switch_state.previous_default = NULL; 6505 6506 /* Initalize is_fallthru state to false. 6507 */ 6508 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false); 6509 state->switch_state.is_fallthru_var = 6510 new(ctx) ir_variable(glsl_type::bool_type, 6511 "switch_is_fallthru_tmp", 6512 ir_var_temporary); 6513 instructions->push_tail(state->switch_state.is_fallthru_var); 6514 6515 ir_dereference_variable *deref_is_fallthru_var = 6516 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var); 6517 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var, 6518 is_fallthru_val)); 6519 6520 /* Initialize continue_inside state to false. 6521 */ 6522 state->switch_state.continue_inside = 6523 new(ctx) ir_variable(glsl_type::bool_type, 6524 "continue_inside_tmp", 6525 ir_var_temporary); 6526 instructions->push_tail(state->switch_state.continue_inside); 6527 6528 ir_rvalue *const false_val = new (ctx) ir_constant(false); 6529 ir_dereference_variable *deref_continue_inside_var = 6530 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6531 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var, 6532 false_val)); 6533 6534 state->switch_state.run_default = 6535 new(ctx) ir_variable(glsl_type::bool_type, 6536 "run_default_tmp", 6537 ir_var_temporary); 6538 instructions->push_tail(state->switch_state.run_default); 6539 6540 /* Loop around the switch is used for flow control. */ 6541 ir_loop * loop = new(ctx) ir_loop(); 6542 instructions->push_tail(loop); 6543 6544 /* Cache test expression. 6545 */ 6546 test_to_hir(&loop->body_instructions, state); 6547 6548 /* Emit code for body of switch stmt. 6549 */ 6550 body->hir(&loop->body_instructions, state); 6551 6552 /* Insert a break at the end to exit loop. */ 6553 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6554 loop->body_instructions.push_tail(jump); 6555 6556 /* If we are inside loop, check if continue got called inside switch. */ 6557 if (state->loop_nesting_ast != NULL) { 6558 ir_dereference_variable *deref_continue_inside = 6559 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6560 ir_if *irif = new(ctx) ir_if(deref_continue_inside); 6561 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue); 6562 6563 if (state->loop_nesting_ast != NULL) { 6564 if (state->loop_nesting_ast->rest_expression) { 6565 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions, 6566 state); 6567 } 6568 if (state->loop_nesting_ast->mode == 6569 ast_iteration_statement::ast_do_while) { 6570 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state); 6571 } 6572 } 6573 irif->then_instructions.push_tail(jump); 6574 instructions->push_tail(irif); 6575 } 6576 6577 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL); 6578 6579 state->switch_state = saved; 6580 6581 /* Switch statements do not have r-values. */ 6582 return NULL; 6583} 6584 6585 6586void 6587ast_switch_statement::test_to_hir(exec_list *instructions, 6588 struct _mesa_glsl_parse_state *state) 6589{ 6590 void *ctx = state; 6591 6592 /* set to true to avoid a duplicate "use of uninitialized variable" warning 6593 * on the switch test case. The first one would be already raised when 6594 * getting the test_expression at ast_switch_statement::hir 6595 */ 6596 test_expression->set_is_lhs(true); 6597 /* Cache value of test expression. */ 6598 ir_rvalue *const test_val = test_expression->hir(instructions, state); 6599 6600 state->switch_state.test_var = new(ctx) ir_variable(test_val->type, 6601 "switch_test_tmp", 6602 ir_var_temporary); 6603 ir_dereference_variable *deref_test_var = 6604 new(ctx) ir_dereference_variable(state->switch_state.test_var); 6605 6606 instructions->push_tail(state->switch_state.test_var); 6607 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val)); 6608} 6609 6610 6611ir_rvalue * 6612ast_switch_body::hir(exec_list *instructions, 6613 struct _mesa_glsl_parse_state *state) 6614{ 6615 if (stmts != NULL) 6616 stmts->hir(instructions, state); 6617 6618 /* Switch bodies do not have r-values. */ 6619 return NULL; 6620} 6621 6622ir_rvalue * 6623ast_case_statement_list::hir(exec_list *instructions, 6624 struct _mesa_glsl_parse_state *state) 6625{ 6626 exec_list default_case, after_default, tmp; 6627 6628 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) { 6629 case_stmt->hir(&tmp, state); 6630 6631 /* Default case. */ 6632 if (state->switch_state.previous_default && default_case.is_empty()) { 6633 default_case.append_list(&tmp); 6634 continue; 6635 } 6636 6637 /* If default case found, append 'after_default' list. */ 6638 if (!default_case.is_empty()) 6639 after_default.append_list(&tmp); 6640 else 6641 instructions->append_list(&tmp); 6642 } 6643 6644 /* Handle the default case. This is done here because default might not be 6645 * the last case. We need to add checks against following cases first to see 6646 * if default should be chosen or not. 6647 */ 6648 if (!default_case.is_empty()) { 6649 ir_factory body(instructions, state); 6650 6651 ir_expression *cmp = NULL; 6652 6653 hash_table_foreach(state->switch_state.labels_ht, entry) { 6654 const struct case_label *const l = (struct case_label *) entry->data; 6655 6656 /* If the switch init-value is the value of one of the labels that 6657 * occurs after the default case, disable execution of the default 6658 * case. 6659 */ 6660 if (l->after_default) { 6661 ir_constant *const cnst = 6662 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT 6663 ? body.constant(unsigned(l->value)) 6664 : body.constant(int(l->value)); 6665 6666 cmp = cmp == NULL 6667 ? equal(cnst, state->switch_state.test_var) 6668 : logic_or(cmp, equal(cnst, state->switch_state.test_var)); 6669 } 6670 } 6671 6672 if (cmp != NULL) 6673 body.emit(assign(state->switch_state.run_default, logic_not(cmp))); 6674 else 6675 body.emit(assign(state->switch_state.run_default, body.constant(true))); 6676 6677 /* Append default case and all cases after it. */ 6678 instructions->append_list(&default_case); 6679 instructions->append_list(&after_default); 6680 } 6681 6682 /* Case statements do not have r-values. */ 6683 return NULL; 6684} 6685 6686ir_rvalue * 6687ast_case_statement::hir(exec_list *instructions, 6688 struct _mesa_glsl_parse_state *state) 6689{ 6690 labels->hir(instructions, state); 6691 6692 /* Guard case statements depending on fallthru state. */ 6693 ir_dereference_variable *const deref_fallthru_guard = 6694 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var); 6695 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard); 6696 6697 foreach_list_typed (ast_node, stmt, link, & this->stmts) 6698 stmt->hir(& test_fallthru->then_instructions, state); 6699 6700 instructions->push_tail(test_fallthru); 6701 6702 /* Case statements do not have r-values. */ 6703 return NULL; 6704} 6705 6706 6707ir_rvalue * 6708ast_case_label_list::hir(exec_list *instructions, 6709 struct _mesa_glsl_parse_state *state) 6710{ 6711 foreach_list_typed (ast_case_label, label, link, & this->labels) 6712 label->hir(instructions, state); 6713 6714 /* Case labels do not have r-values. */ 6715 return NULL; 6716} 6717 6718ir_rvalue * 6719ast_case_label::hir(exec_list *instructions, 6720 struct _mesa_glsl_parse_state *state) 6721{ 6722 ir_factory body(instructions, state); 6723 6724 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var; 6725 6726 /* If not default case, ... */ 6727 if (this->test_value != NULL) { 6728 /* Conditionally set fallthru state based on 6729 * comparison of cached test expression value to case label. 6730 */ 6731 ir_rvalue *const label_rval = this->test_value->hir(instructions, state); 6732 ir_constant *label_const = 6733 label_rval->constant_expression_value(body.mem_ctx); 6734 6735 if (!label_const) { 6736 YYLTYPE loc = this->test_value->get_location(); 6737 6738 _mesa_glsl_error(& loc, state, 6739 "switch statement case label must be a " 6740 "constant expression"); 6741 6742 /* Stuff a dummy value in to allow processing to continue. */ 6743 label_const = body.constant(0); 6744 } else { 6745 hash_entry *entry = 6746 _mesa_hash_table_search(state->switch_state.labels_ht, 6747 &label_const->value.u[0]); 6748 6749 if (entry) { 6750 const struct case_label *const l = 6751 (struct case_label *) entry->data; 6752 const ast_expression *const previous_label = l->ast; 6753 YYLTYPE loc = this->test_value->get_location(); 6754 6755 _mesa_glsl_error(& loc, state, "duplicate case value"); 6756 6757 loc = previous_label->get_location(); 6758 _mesa_glsl_error(& loc, state, "this is the previous case label"); 6759 } else { 6760 struct case_label *l = ralloc(state->switch_state.labels_ht, 6761 struct case_label); 6762 6763 l->value = label_const->value.u[0]; 6764 l->after_default = state->switch_state.previous_default != NULL; 6765 l->ast = this->test_value; 6766 6767 _mesa_hash_table_insert(state->switch_state.labels_ht, 6768 &label_const->value.u[0], 6769 l); 6770 } 6771 } 6772 6773 /* Create an r-value version of the ir_constant label here (after we may 6774 * have created a fake one in error cases) that can be passed to 6775 * apply_implicit_conversion below. 6776 */ 6777 ir_rvalue *label = label_const; 6778 6779 ir_rvalue *deref_test_var = 6780 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var); 6781 6782 /* 6783 * From GLSL 4.40 specification section 6.2 ("Selection"): 6784 * 6785 * "The type of the init-expression value in a switch statement must 6786 * be a scalar int or uint. The type of the constant-expression value 6787 * in a case label also must be a scalar int or uint. When any pair 6788 * of these values is tested for "equal value" and the types do not 6789 * match, an implicit conversion will be done to convert the int to a 6790 * uint (see section 4.1.10 “Implicit Conversions”) before the compare 6791 * is done." 6792 */ 6793 if (label->type != state->switch_state.test_var->type) { 6794 YYLTYPE loc = this->test_value->get_location(); 6795 6796 const glsl_type *type_a = label->type; 6797 const glsl_type *type_b = state->switch_state.test_var->type; 6798 6799 /* Check if int->uint implicit conversion is supported. */ 6800 bool integer_conversion_supported = 6801 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type, 6802 state); 6803 6804 if ((!type_a->is_integer() || !type_b->is_integer()) || 6805 !integer_conversion_supported) { 6806 _mesa_glsl_error(&loc, state, "type mismatch with switch " 6807 "init-expression and case label (%s != %s)", 6808 type_a->name, type_b->name); 6809 } else { 6810 /* Conversion of the case label. */ 6811 if (type_a->base_type == GLSL_TYPE_INT) { 6812 if (!apply_implicit_conversion(glsl_type::uint_type, 6813 label, state)) 6814 _mesa_glsl_error(&loc, state, "implicit type conversion error"); 6815 } else { 6816 /* Conversion of the init-expression value. */ 6817 if (!apply_implicit_conversion(glsl_type::uint_type, 6818 deref_test_var, state)) 6819 _mesa_glsl_error(&loc, state, "implicit type conversion error"); 6820 } 6821 } 6822 6823 /* If the implicit conversion was allowed, the types will already be 6824 * the same. If the implicit conversion wasn't allowed, smash the 6825 * type of the label anyway. This will prevent the expression 6826 * constructor (below) from failing an assertion. 6827 */ 6828 label->type = deref_test_var->type; 6829 } 6830 6831 body.emit(assign(fallthru_var, 6832 logic_or(fallthru_var, equal(label, deref_test_var)))); 6833 } else { /* default case */ 6834 if (state->switch_state.previous_default) { 6835 YYLTYPE loc = this->get_location(); 6836 _mesa_glsl_error(& loc, state, 6837 "multiple default labels in one switch"); 6838 6839 loc = state->switch_state.previous_default->get_location(); 6840 _mesa_glsl_error(& loc, state, "this is the first default label"); 6841 } 6842 state->switch_state.previous_default = this; 6843 6844 /* Set fallthru condition on 'run_default' bool. */ 6845 body.emit(assign(fallthru_var, 6846 logic_or(fallthru_var, 6847 state->switch_state.run_default))); 6848 } 6849 6850 /* Case statements do not have r-values. */ 6851 return NULL; 6852} 6853 6854void 6855ast_iteration_statement::condition_to_hir(exec_list *instructions, 6856 struct _mesa_glsl_parse_state *state) 6857{ 6858 void *ctx = state; 6859 6860 if (condition != NULL) { 6861 ir_rvalue *const cond = 6862 condition->hir(instructions, state); 6863 6864 if ((cond == NULL) 6865 || !cond->type->is_boolean() || !cond->type->is_scalar()) { 6866 YYLTYPE loc = condition->get_location(); 6867 6868 _mesa_glsl_error(& loc, state, 6869 "loop condition must be scalar boolean"); 6870 } else { 6871 /* As the first code in the loop body, generate a block that looks 6872 * like 'if (!condition) break;' as the loop termination condition. 6873 */ 6874 ir_rvalue *const not_cond = 6875 new(ctx) ir_expression(ir_unop_logic_not, cond); 6876 6877 ir_if *const if_stmt = new(ctx) ir_if(not_cond); 6878 6879 ir_jump *const break_stmt = 6880 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6881 6882 if_stmt->then_instructions.push_tail(break_stmt); 6883 instructions->push_tail(if_stmt); 6884 } 6885 } 6886} 6887 6888 6889ir_rvalue * 6890ast_iteration_statement::hir(exec_list *instructions, 6891 struct _mesa_glsl_parse_state *state) 6892{ 6893 void *ctx = state; 6894 6895 /* For-loops and while-loops start a new scope, but do-while loops do not. 6896 */ 6897 if (mode != ast_do_while) 6898 state->symbols->push_scope(); 6899 6900 if (init_statement != NULL) 6901 init_statement->hir(instructions, state); 6902 6903 ir_loop *const stmt = new(ctx) ir_loop(); 6904 instructions->push_tail(stmt); 6905 6906 /* Track the current loop nesting. */ 6907 ast_iteration_statement *nesting_ast = state->loop_nesting_ast; 6908 6909 state->loop_nesting_ast = this; 6910 6911 /* Likewise, indicate that following code is closest to a loop, 6912 * NOT closest to a switch. 6913 */ 6914 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost; 6915 state->switch_state.is_switch_innermost = false; 6916 6917 if (mode != ast_do_while) 6918 condition_to_hir(&stmt->body_instructions, state); 6919 6920 if (body != NULL) 6921 body->hir(& stmt->body_instructions, state); 6922 6923 if (rest_expression != NULL) 6924 rest_expression->hir(& stmt->body_instructions, state); 6925 6926 if (mode == ast_do_while) 6927 condition_to_hir(&stmt->body_instructions, state); 6928 6929 if (mode != ast_do_while) 6930 state->symbols->pop_scope(); 6931 6932 /* Restore previous nesting before returning. */ 6933 state->loop_nesting_ast = nesting_ast; 6934 state->switch_state.is_switch_innermost = saved_is_switch_innermost; 6935 6936 /* Loops do not have r-values. 6937 */ 6938 return NULL; 6939} 6940 6941 6942/** 6943 * Determine if the given type is valid for establishing a default precision 6944 * qualifier. 6945 * 6946 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"): 6947 * 6948 * "The precision statement 6949 * 6950 * precision precision-qualifier type; 6951 * 6952 * can be used to establish a default precision qualifier. The type field 6953 * can be either int or float or any of the sampler types, and the 6954 * precision-qualifier can be lowp, mediump, or highp." 6955 * 6956 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision 6957 * qualifiers on sampler types, but this seems like an oversight (since the 6958 * intention of including these in GLSL 1.30 is to allow compatibility with ES 6959 * shaders). So we allow int, float, and all sampler types regardless of GLSL 6960 * version. 6961 */ 6962static bool 6963is_valid_default_precision_type(const struct glsl_type *const type) 6964{ 6965 if (type == NULL) 6966 return false; 6967 6968 switch (type->base_type) { 6969 case GLSL_TYPE_INT: 6970 case GLSL_TYPE_FLOAT: 6971 /* "int" and "float" are valid, but vectors and matrices are not. */ 6972 return type->vector_elements == 1 && type->matrix_columns == 1; 6973 case GLSL_TYPE_SAMPLER: 6974 case GLSL_TYPE_IMAGE: 6975 case GLSL_TYPE_ATOMIC_UINT: 6976 return true; 6977 default: 6978 return false; 6979 } 6980} 6981 6982 6983ir_rvalue * 6984ast_type_specifier::hir(exec_list *instructions, 6985 struct _mesa_glsl_parse_state *state) 6986{ 6987 if (this->default_precision == ast_precision_none && this->structure == NULL) 6988 return NULL; 6989 6990 YYLTYPE loc = this->get_location(); 6991 6992 /* If this is a precision statement, check that the type to which it is 6993 * applied is either float or int. 6994 * 6995 * From section 4.5.3 of the GLSL 1.30 spec: 6996 * "The precision statement 6997 * precision precision-qualifier type; 6998 * can be used to establish a default precision qualifier. The type 6999 * field can be either int or float [...]. Any other types or 7000 * qualifiers will result in an error. 7001 */ 7002 if (this->default_precision != ast_precision_none) { 7003 if (!state->check_precision_qualifiers_allowed(&loc)) 7004 return NULL; 7005 7006 if (this->structure != NULL) { 7007 _mesa_glsl_error(&loc, state, 7008 "precision qualifiers do not apply to structures"); 7009 return NULL; 7010 } 7011 7012 if (this->array_specifier != NULL) { 7013 _mesa_glsl_error(&loc, state, 7014 "default precision statements do not apply to " 7015 "arrays"); 7016 return NULL; 7017 } 7018 7019 const struct glsl_type *const type = 7020 state->symbols->get_type(this->type_name); 7021 if (!is_valid_default_precision_type(type)) { 7022 _mesa_glsl_error(&loc, state, 7023 "default precision statements apply only to " 7024 "float, int, and opaque types"); 7025 return NULL; 7026 } 7027 7028 if (state->es_shader) { 7029 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00 7030 * spec says: 7031 * 7032 * "Non-precision qualified declarations will use the precision 7033 * qualifier specified in the most recent precision statement 7034 * that is still in scope. The precision statement has the same 7035 * scoping rules as variable declarations. If it is declared 7036 * inside a compound statement, its effect stops at the end of 7037 * the innermost statement it was declared in. Precision 7038 * statements in nested scopes override precision statements in 7039 * outer scopes. Multiple precision statements for the same basic 7040 * type can appear inside the same scope, with later statements 7041 * overriding earlier statements within that scope." 7042 * 7043 * Default precision specifications follow the same scope rules as 7044 * variables. So, we can track the state of the default precision 7045 * qualifiers in the symbol table, and the rules will just work. This 7046 * is a slight abuse of the symbol table, but it has the semantics 7047 * that we want. 7048 */ 7049 state->symbols->add_default_precision_qualifier(this->type_name, 7050 this->default_precision); 7051 } 7052 7053 /* FINISHME: Translate precision statements into IR. */ 7054 return NULL; 7055 } 7056 7057 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that 7058 * process_record_constructor() can do type-checking on C-style initializer 7059 * expressions of structs, but ast_struct_specifier should only be translated 7060 * to HIR if it is declaring the type of a structure. 7061 * 7062 * The ->is_declaration field is false for initializers of variables 7063 * declared separately from the struct's type definition. 7064 * 7065 * struct S { ... }; (is_declaration = true) 7066 * struct T { ... } t = { ... }; (is_declaration = true) 7067 * S s = { ... }; (is_declaration = false) 7068 */ 7069 if (this->structure != NULL && this->structure->is_declaration) 7070 return this->structure->hir(instructions, state); 7071 7072 return NULL; 7073} 7074 7075 7076/** 7077 * Process a structure or interface block tree into an array of structure fields 7078 * 7079 * After parsing, where there are some syntax differnces, structures and 7080 * interface blocks are almost identical. They are similar enough that the 7081 * AST for each can be processed the same way into a set of 7082 * \c glsl_struct_field to describe the members. 7083 * 7084 * If we're processing an interface block, var_mode should be the type of the 7085 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or 7086 * ir_var_shader_storage). If we're processing a structure, var_mode should be 7087 * ir_var_auto. 7088 * 7089 * \return 7090 * The number of fields processed. A pointer to the array structure fields is 7091 * stored in \c *fields_ret. 7092 */ 7093static unsigned 7094ast_process_struct_or_iface_block_members(exec_list *instructions, 7095 struct _mesa_glsl_parse_state *state, 7096 exec_list *declarations, 7097 glsl_struct_field **fields_ret, 7098 bool is_interface, 7099 enum glsl_matrix_layout matrix_layout, 7100 bool allow_reserved_names, 7101 ir_variable_mode var_mode, 7102 ast_type_qualifier *layout, 7103 unsigned block_stream, 7104 unsigned block_xfb_buffer, 7105 unsigned block_xfb_offset, 7106 unsigned expl_location, 7107 unsigned expl_align) 7108{ 7109 unsigned decl_count = 0; 7110 unsigned next_offset = 0; 7111 7112 /* Make an initial pass over the list of fields to determine how 7113 * many there are. Each element in this list is an ast_declarator_list. 7114 * This means that we actually need to count the number of elements in the 7115 * 'declarations' list in each of the elements. 7116 */ 7117 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) { 7118 decl_count += decl_list->declarations.length(); 7119 } 7120 7121 /* Allocate storage for the fields and process the field 7122 * declarations. As the declarations are processed, try to also convert 7123 * the types to HIR. This ensures that structure definitions embedded in 7124 * other structure definitions or in interface blocks are processed. 7125 */ 7126 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field, 7127 decl_count); 7128 7129 bool first_member = true; 7130 bool first_member_has_explicit_location = false; 7131 7132 unsigned i = 0; 7133 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) { 7134 const char *type_name; 7135 YYLTYPE loc = decl_list->get_location(); 7136 7137 decl_list->type->specifier->hir(instructions, state); 7138 7139 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says: 7140 * 7141 * "Anonymous structures are not supported; so embedded structures 7142 * must have a declarator. A name given to an embedded struct is 7143 * scoped at the same level as the struct it is embedded in." 7144 * 7145 * The same section of the GLSL 1.20 spec says: 7146 * 7147 * "Anonymous structures are not supported. Embedded structures are 7148 * not supported." 7149 * 7150 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow 7151 * embedded structures in 1.10 only. 7152 */ 7153 if (state->language_version != 110 && 7154 decl_list->type->specifier->structure != NULL) 7155 _mesa_glsl_error(&loc, state, 7156 "embedded structure declarations are not allowed"); 7157 7158 const glsl_type *decl_type = 7159 decl_list->type->glsl_type(& type_name, state); 7160 7161 const struct ast_type_qualifier *const qual = 7162 &decl_list->type->qualifier; 7163 7164 /* From section 4.3.9 of the GLSL 4.40 spec: 7165 * 7166 * "[In interface blocks] opaque types are not allowed." 7167 * 7168 * It should be impossible for decl_type to be NULL here. Cases that 7169 * might naturally lead to decl_type being NULL, especially for the 7170 * is_interface case, will have resulted in compilation having 7171 * already halted due to a syntax error. 7172 */ 7173 assert(decl_type); 7174 7175 if (is_interface) { 7176 /* From section 4.3.7 of the ARB_bindless_texture spec: 7177 * 7178 * "(remove the following bullet from the last list on p. 39, 7179 * thereby permitting sampler types in interface blocks; image 7180 * types are also permitted in blocks by this extension)" 7181 * 7182 * * sampler types are not allowed 7183 */ 7184 if (decl_type->contains_atomic() || 7185 (!state->has_bindless() && decl_type->contains_opaque())) { 7186 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default " 7187 "interface block contains %s variable", 7188 state->has_bindless() ? "atomic" : "opaque"); 7189 } 7190 } else { 7191 if (decl_type->contains_atomic()) { 7192 /* From section 4.1.7.3 of the GLSL 4.40 spec: 7193 * 7194 * "Members of structures cannot be declared as atomic counter 7195 * types." 7196 */ 7197 _mesa_glsl_error(&loc, state, "atomic counter in structure"); 7198 } 7199 7200 if (!state->has_bindless() && decl_type->contains_image()) { 7201 /* FINISHME: Same problem as with atomic counters. 7202 * FINISHME: Request clarification from Khronos and add 7203 * FINISHME: spec quotation here. 7204 */ 7205 _mesa_glsl_error(&loc, state, "image in structure"); 7206 } 7207 } 7208 7209 if (qual->flags.q.explicit_binding) { 7210 _mesa_glsl_error(&loc, state, 7211 "binding layout qualifier cannot be applied " 7212 "to struct or interface block members"); 7213 } 7214 7215 if (is_interface) { 7216 if (!first_member) { 7217 if (!layout->flags.q.explicit_location && 7218 ((first_member_has_explicit_location && 7219 !qual->flags.q.explicit_location) || 7220 (!first_member_has_explicit_location && 7221 qual->flags.q.explicit_location))) { 7222 _mesa_glsl_error(&loc, state, 7223 "when block-level location layout qualifier " 7224 "is not supplied either all members must " 7225 "have a location layout qualifier or all " 7226 "members must not have a location layout " 7227 "qualifier"); 7228 } 7229 } else { 7230 first_member = false; 7231 first_member_has_explicit_location = 7232 qual->flags.q.explicit_location; 7233 } 7234 } 7235 7236 if (qual->flags.q.std140 || 7237 qual->flags.q.std430 || 7238 qual->flags.q.packed || 7239 qual->flags.q.shared) { 7240 _mesa_glsl_error(&loc, state, 7241 "uniform/shader storage block layout qualifiers " 7242 "std140, std430, packed, and shared can only be " 7243 "applied to uniform/shader storage blocks, not " 7244 "members"); 7245 } 7246 7247 if (qual->flags.q.constant) { 7248 _mesa_glsl_error(&loc, state, 7249 "const storage qualifier cannot be applied " 7250 "to struct or interface block members"); 7251 } 7252 7253 validate_memory_qualifier_for_type(state, &loc, qual, decl_type); 7254 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type); 7255 7256 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec: 7257 * 7258 * "A block member may be declared with a stream identifier, but 7259 * the specified stream must match the stream associated with the 7260 * containing block." 7261 */ 7262 if (qual->flags.q.explicit_stream) { 7263 unsigned qual_stream; 7264 if (process_qualifier_constant(state, &loc, "stream", 7265 qual->stream, &qual_stream) && 7266 qual_stream != block_stream) { 7267 _mesa_glsl_error(&loc, state, "stream layout qualifier on " 7268 "interface block member does not match " 7269 "the interface block (%u vs %u)", qual_stream, 7270 block_stream); 7271 } 7272 } 7273 7274 int xfb_buffer; 7275 unsigned explicit_xfb_buffer = 0; 7276 if (qual->flags.q.explicit_xfb_buffer) { 7277 unsigned qual_xfb_buffer; 7278 if (process_qualifier_constant(state, &loc, "xfb_buffer", 7279 qual->xfb_buffer, &qual_xfb_buffer)) { 7280 explicit_xfb_buffer = 1; 7281 if (qual_xfb_buffer != block_xfb_buffer) 7282 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on " 7283 "interface block member does not match " 7284 "the interface block (%u vs %u)", 7285 qual_xfb_buffer, block_xfb_buffer); 7286 } 7287 xfb_buffer = (int) qual_xfb_buffer; 7288 } else { 7289 if (layout) 7290 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer; 7291 xfb_buffer = (int) block_xfb_buffer; 7292 } 7293 7294 int xfb_stride = -1; 7295 if (qual->flags.q.explicit_xfb_stride) { 7296 unsigned qual_xfb_stride; 7297 if (process_qualifier_constant(state, &loc, "xfb_stride", 7298 qual->xfb_stride, &qual_xfb_stride)) { 7299 xfb_stride = (int) qual_xfb_stride; 7300 } 7301 } 7302 7303 if (qual->flags.q.uniform && qual->has_interpolation()) { 7304 _mesa_glsl_error(&loc, state, 7305 "interpolation qualifiers cannot be used " 7306 "with uniform interface blocks"); 7307 } 7308 7309 if ((qual->flags.q.uniform || !is_interface) && 7310 qual->has_auxiliary_storage()) { 7311 _mesa_glsl_error(&loc, state, 7312 "auxiliary storage qualifiers cannot be used " 7313 "in uniform blocks or structures."); 7314 } 7315 7316 if (qual->flags.q.row_major || qual->flags.q.column_major) { 7317 if (!qual->flags.q.uniform && !qual->flags.q.buffer) { 7318 _mesa_glsl_error(&loc, state, 7319 "row_major and column_major can only be " 7320 "applied to interface blocks"); 7321 } else 7322 validate_matrix_layout_for_type(state, &loc, decl_type, NULL); 7323 } 7324 7325 foreach_list_typed (ast_declaration, decl, link, 7326 &decl_list->declarations) { 7327 YYLTYPE loc = decl->get_location(); 7328 7329 if (!allow_reserved_names) 7330 validate_identifier(decl->identifier, loc, state); 7331 7332 const struct glsl_type *field_type = 7333 process_array_type(&loc, decl_type, decl->array_specifier, state); 7334 validate_array_dimensions(field_type, state, &loc); 7335 fields[i].type = field_type; 7336 fields[i].name = decl->identifier; 7337 fields[i].interpolation = 7338 interpret_interpolation_qualifier(qual, field_type, 7339 var_mode, state, &loc); 7340 fields[i].centroid = qual->flags.q.centroid ? 1 : 0; 7341 fields[i].sample = qual->flags.q.sample ? 1 : 0; 7342 fields[i].patch = qual->flags.q.patch ? 1 : 0; 7343 fields[i].precision = qual->precision; 7344 fields[i].offset = -1; 7345 fields[i].explicit_xfb_buffer = explicit_xfb_buffer; 7346 fields[i].xfb_buffer = xfb_buffer; 7347 fields[i].xfb_stride = xfb_stride; 7348 7349 if (qual->flags.q.explicit_location) { 7350 unsigned qual_location; 7351 if (process_qualifier_constant(state, &loc, "location", 7352 qual->location, &qual_location)) { 7353 fields[i].location = qual_location + 7354 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0); 7355 expl_location = fields[i].location + 7356 fields[i].type->count_attribute_slots(false); 7357 } 7358 } else { 7359 if (layout && layout->flags.q.explicit_location) { 7360 fields[i].location = expl_location; 7361 expl_location += fields[i].type->count_attribute_slots(false); 7362 } else { 7363 fields[i].location = -1; 7364 } 7365 } 7366 7367 /* Offset can only be used with std430 and std140 layouts an initial 7368 * value of 0 is used for error detection. 7369 */ 7370 unsigned align = 0; 7371 unsigned size = 0; 7372 if (layout) { 7373 bool row_major; 7374 if (qual->flags.q.row_major || 7375 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) { 7376 row_major = true; 7377 } else { 7378 row_major = false; 7379 } 7380 7381 if(layout->flags.q.std140) { 7382 align = field_type->std140_base_alignment(row_major); 7383 size = field_type->std140_size(row_major); 7384 } else if (layout->flags.q.std430) { 7385 align = field_type->std430_base_alignment(row_major); 7386 size = field_type->std430_size(row_major); 7387 } 7388 } 7389 7390 if (qual->flags.q.explicit_offset) { 7391 unsigned qual_offset; 7392 if (process_qualifier_constant(state, &loc, "offset", 7393 qual->offset, &qual_offset)) { 7394 if (align != 0 && size != 0) { 7395 if (next_offset > qual_offset) 7396 _mesa_glsl_error(&loc, state, "layout qualifier " 7397 "offset overlaps previous member"); 7398 7399 if (qual_offset % align) { 7400 _mesa_glsl_error(&loc, state, "layout qualifier offset " 7401 "must be a multiple of the base " 7402 "alignment of %s", field_type->name); 7403 } 7404 fields[i].offset = qual_offset; 7405 next_offset = glsl_align(qual_offset + size, align); 7406 } else { 7407 _mesa_glsl_error(&loc, state, "offset can only be used " 7408 "with std430 and std140 layouts"); 7409 } 7410 } 7411 } 7412 7413 if (qual->flags.q.explicit_align || expl_align != 0) { 7414 unsigned offset = fields[i].offset != -1 ? fields[i].offset : 7415 next_offset; 7416 if (align == 0 || size == 0) { 7417 _mesa_glsl_error(&loc, state, "align can only be used with " 7418 "std430 and std140 layouts"); 7419 } else if (qual->flags.q.explicit_align) { 7420 unsigned member_align; 7421 if (process_qualifier_constant(state, &loc, "align", 7422 qual->align, &member_align)) { 7423 if (member_align == 0 || 7424 member_align & (member_align - 1)) { 7425 _mesa_glsl_error(&loc, state, "align layout qualifier " 7426 "is not a power of 2"); 7427 } else { 7428 fields[i].offset = glsl_align(offset, member_align); 7429 next_offset = glsl_align(fields[i].offset + size, align); 7430 } 7431 } 7432 } else { 7433 fields[i].offset = glsl_align(offset, expl_align); 7434 next_offset = glsl_align(fields[i].offset + size, align); 7435 } 7436 } else if (!qual->flags.q.explicit_offset) { 7437 if (align != 0 && size != 0) 7438 next_offset = glsl_align(next_offset + size, align); 7439 } 7440 7441 /* From the ARB_enhanced_layouts spec: 7442 * 7443 * "The given offset applies to the first component of the first 7444 * member of the qualified entity. Then, within the qualified 7445 * entity, subsequent components are each assigned, in order, to 7446 * the next available offset aligned to a multiple of that 7447 * component's size. Aggregate types are flattened down to the 7448 * component level to get this sequence of components." 7449 */ 7450 if (qual->flags.q.explicit_xfb_offset) { 7451 unsigned xfb_offset; 7452 if (process_qualifier_constant(state, &loc, "xfb_offset", 7453 qual->offset, &xfb_offset)) { 7454 fields[i].offset = xfb_offset; 7455 block_xfb_offset = fields[i].offset + 7456 4 * field_type->component_slots(); 7457 } 7458 } else { 7459 if (layout && layout->flags.q.explicit_xfb_offset) { 7460 unsigned align = field_type->is_64bit() ? 8 : 4; 7461 fields[i].offset = glsl_align(block_xfb_offset, align); 7462 block_xfb_offset += 4 * field_type->component_slots(); 7463 } 7464 } 7465 7466 /* Propogate row- / column-major information down the fields of the 7467 * structure or interface block. Structures need this data because 7468 * the structure may contain a structure that contains ... a matrix 7469 * that need the proper layout. 7470 */ 7471 if (is_interface && layout && 7472 (layout->flags.q.uniform || layout->flags.q.buffer) && 7473 (field_type->without_array()->is_matrix() 7474 || field_type->without_array()->is_record())) { 7475 /* If no layout is specified for the field, inherit the layout 7476 * from the block. 7477 */ 7478 fields[i].matrix_layout = matrix_layout; 7479 7480 if (qual->flags.q.row_major) 7481 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; 7482 else if (qual->flags.q.column_major) 7483 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; 7484 7485 /* If we're processing an uniform or buffer block, the matrix 7486 * layout must be decided by this point. 7487 */ 7488 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR 7489 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR); 7490 } 7491 7492 /* Memory qualifiers are allowed on buffer and image variables, while 7493 * the format qualifier is only accepted for images. 7494 */ 7495 if (var_mode == ir_var_shader_storage || 7496 field_type->without_array()->is_image()) { 7497 /* For readonly and writeonly qualifiers the field definition, 7498 * if set, overwrites the layout qualifier. 7499 */ 7500 if (qual->flags.q.read_only || qual->flags.q.write_only) { 7501 fields[i].memory_read_only = qual->flags.q.read_only; 7502 fields[i].memory_write_only = qual->flags.q.write_only; 7503 } else { 7504 fields[i].memory_read_only = 7505 layout ? layout->flags.q.read_only : 0; 7506 fields[i].memory_write_only = 7507 layout ? layout->flags.q.write_only : 0; 7508 } 7509 7510 /* For other qualifiers, we set the flag if either the layout 7511 * qualifier or the field qualifier are set 7512 */ 7513 fields[i].memory_coherent = qual->flags.q.coherent || 7514 (layout && layout->flags.q.coherent); 7515 fields[i].memory_volatile = qual->flags.q._volatile || 7516 (layout && layout->flags.q._volatile); 7517 fields[i].memory_restrict = qual->flags.q.restrict_flag || 7518 (layout && layout->flags.q.restrict_flag); 7519 7520 if (field_type->without_array()->is_image()) { 7521 if (qual->flags.q.explicit_image_format) { 7522 if (qual->image_base_type != 7523 field_type->without_array()->sampled_type) { 7524 _mesa_glsl_error(&loc, state, "format qualifier doesn't " 7525 "match the base data type of the image"); 7526 } 7527 7528 fields[i].image_format = qual->image_format; 7529 } else { 7530 if (!qual->flags.q.write_only) { 7531 _mesa_glsl_error(&loc, state, "image not qualified with " 7532 "`writeonly' must have a format layout " 7533 "qualifier"); 7534 } 7535 7536 fields[i].image_format = GL_NONE; 7537 } 7538 } 7539 } 7540 7541 i++; 7542 } 7543 } 7544 7545 assert(i == decl_count); 7546 7547 *fields_ret = fields; 7548 return decl_count; 7549} 7550 7551 7552ir_rvalue * 7553ast_struct_specifier::hir(exec_list *instructions, 7554 struct _mesa_glsl_parse_state *state) 7555{ 7556 YYLTYPE loc = this->get_location(); 7557 7558 unsigned expl_location = 0; 7559 if (layout && layout->flags.q.explicit_location) { 7560 if (!process_qualifier_constant(state, &loc, "location", 7561 layout->location, &expl_location)) { 7562 return NULL; 7563 } else { 7564 expl_location = VARYING_SLOT_VAR0 + expl_location; 7565 } 7566 } 7567 7568 glsl_struct_field *fields; 7569 unsigned decl_count = 7570 ast_process_struct_or_iface_block_members(instructions, 7571 state, 7572 &this->declarations, 7573 &fields, 7574 false, 7575 GLSL_MATRIX_LAYOUT_INHERITED, 7576 false /* allow_reserved_names */, 7577 ir_var_auto, 7578 layout, 7579 0, /* for interface only */ 7580 0, /* for interface only */ 7581 0, /* for interface only */ 7582 expl_location, 7583 0 /* for interface only */); 7584 7585 validate_identifier(this->name, loc, state); 7586 7587 type = glsl_type::get_record_instance(fields, decl_count, this->name); 7588 7589 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) { 7590 const glsl_type *match = state->symbols->get_type(name); 7591 /* allow struct matching for desktop GL - older UE4 does this */ 7592 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false)) 7593 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name); 7594 else 7595 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name); 7596 } else { 7597 const glsl_type **s = reralloc(state, state->user_structures, 7598 const glsl_type *, 7599 state->num_user_structures + 1); 7600 if (s != NULL) { 7601 s[state->num_user_structures] = type; 7602 state->user_structures = s; 7603 state->num_user_structures++; 7604 } 7605 } 7606 7607 /* Structure type definitions do not have r-values. 7608 */ 7609 return NULL; 7610} 7611 7612 7613/** 7614 * Visitor class which detects whether a given interface block has been used. 7615 */ 7616class interface_block_usage_visitor : public ir_hierarchical_visitor 7617{ 7618public: 7619 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block) 7620 : mode(mode), block(block), found(false) 7621 { 7622 } 7623 7624 virtual ir_visitor_status visit(ir_dereference_variable *ir) 7625 { 7626 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) { 7627 found = true; 7628 return visit_stop; 7629 } 7630 return visit_continue; 7631 } 7632 7633 bool usage_found() const 7634 { 7635 return this->found; 7636 } 7637 7638private: 7639 ir_variable_mode mode; 7640 const glsl_type *block; 7641 bool found; 7642}; 7643 7644static bool 7645is_unsized_array_last_element(ir_variable *v) 7646{ 7647 const glsl_type *interface_type = v->get_interface_type(); 7648 int length = interface_type->length; 7649 7650 assert(v->type->is_unsized_array()); 7651 7652 /* Check if it is the last element of the interface */ 7653 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0) 7654 return true; 7655 return false; 7656} 7657 7658static void 7659apply_memory_qualifiers(ir_variable *var, glsl_struct_field field) 7660{ 7661 var->data.memory_read_only = field.memory_read_only; 7662 var->data.memory_write_only = field.memory_write_only; 7663 var->data.memory_coherent = field.memory_coherent; 7664 var->data.memory_volatile = field.memory_volatile; 7665 var->data.memory_restrict = field.memory_restrict; 7666} 7667 7668ir_rvalue * 7669ast_interface_block::hir(exec_list *instructions, 7670 struct _mesa_glsl_parse_state *state) 7671{ 7672 YYLTYPE loc = this->get_location(); 7673 7674 /* Interface blocks must be declared at global scope */ 7675 if (state->current_function != NULL) { 7676 _mesa_glsl_error(&loc, state, 7677 "Interface block `%s' must be declared " 7678 "at global scope", 7679 this->block_name); 7680 } 7681 7682 /* Validate qualifiers: 7683 * 7684 * - Layout Qualifiers as per the table in Section 4.4 7685 * ("Layout Qualifiers") of the GLSL 4.50 spec. 7686 * 7687 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the 7688 * GLSL 4.50 spec: 7689 * 7690 * "Additionally, memory qualifiers may also be used in the declaration 7691 * of shader storage blocks" 7692 * 7693 * Note the table in Section 4.4 says std430 is allowed on both uniform and 7694 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block 7695 * Layout Qualifiers) of the GLSL 4.50 spec says: 7696 * 7697 * "The std430 qualifier is supported only for shader storage blocks; 7698 * using std430 on a uniform block will result in a compile-time error." 7699 */ 7700 ast_type_qualifier allowed_blk_qualifiers; 7701 allowed_blk_qualifiers.flags.i = 0; 7702 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) { 7703 allowed_blk_qualifiers.flags.q.shared = 1; 7704 allowed_blk_qualifiers.flags.q.packed = 1; 7705 allowed_blk_qualifiers.flags.q.std140 = 1; 7706 allowed_blk_qualifiers.flags.q.row_major = 1; 7707 allowed_blk_qualifiers.flags.q.column_major = 1; 7708 allowed_blk_qualifiers.flags.q.explicit_align = 1; 7709 allowed_blk_qualifiers.flags.q.explicit_binding = 1; 7710 if (this->layout.flags.q.buffer) { 7711 allowed_blk_qualifiers.flags.q.buffer = 1; 7712 allowed_blk_qualifiers.flags.q.std430 = 1; 7713 allowed_blk_qualifiers.flags.q.coherent = 1; 7714 allowed_blk_qualifiers.flags.q._volatile = 1; 7715 allowed_blk_qualifiers.flags.q.restrict_flag = 1; 7716 allowed_blk_qualifiers.flags.q.read_only = 1; 7717 allowed_blk_qualifiers.flags.q.write_only = 1; 7718 } else { 7719 allowed_blk_qualifiers.flags.q.uniform = 1; 7720 } 7721 } else { 7722 /* Interface block */ 7723 assert(this->layout.flags.q.in || this->layout.flags.q.out); 7724 7725 allowed_blk_qualifiers.flags.q.explicit_location = 1; 7726 if (this->layout.flags.q.out) { 7727 allowed_blk_qualifiers.flags.q.out = 1; 7728 if (state->stage == MESA_SHADER_GEOMETRY || 7729 state->stage == MESA_SHADER_TESS_CTRL || 7730 state->stage == MESA_SHADER_TESS_EVAL || 7731 state->stage == MESA_SHADER_VERTEX ) { 7732 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1; 7733 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1; 7734 allowed_blk_qualifiers.flags.q.xfb_buffer = 1; 7735 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1; 7736 allowed_blk_qualifiers.flags.q.xfb_stride = 1; 7737 if (state->stage == MESA_SHADER_GEOMETRY) { 7738 allowed_blk_qualifiers.flags.q.stream = 1; 7739 allowed_blk_qualifiers.flags.q.explicit_stream = 1; 7740 } 7741 if (state->stage == MESA_SHADER_TESS_CTRL) { 7742 allowed_blk_qualifiers.flags.q.patch = 1; 7743 } 7744 } 7745 } else { 7746 allowed_blk_qualifiers.flags.q.in = 1; 7747 if (state->stage == MESA_SHADER_TESS_EVAL) { 7748 allowed_blk_qualifiers.flags.q.patch = 1; 7749 } 7750 } 7751 } 7752 7753 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers, 7754 "invalid qualifier for block", 7755 this->block_name); 7756 7757 enum glsl_interface_packing packing; 7758 if (this->layout.flags.q.std140) { 7759 packing = GLSL_INTERFACE_PACKING_STD140; 7760 } else if (this->layout.flags.q.packed) { 7761 packing = GLSL_INTERFACE_PACKING_PACKED; 7762 } else if (this->layout.flags.q.std430) { 7763 packing = GLSL_INTERFACE_PACKING_STD430; 7764 } else { 7765 /* The default layout is shared. 7766 */ 7767 packing = GLSL_INTERFACE_PACKING_SHARED; 7768 } 7769 7770 ir_variable_mode var_mode; 7771 const char *iface_type_name; 7772 if (this->layout.flags.q.in) { 7773 var_mode = ir_var_shader_in; 7774 iface_type_name = "in"; 7775 } else if (this->layout.flags.q.out) { 7776 var_mode = ir_var_shader_out; 7777 iface_type_name = "out"; 7778 } else if (this->layout.flags.q.uniform) { 7779 var_mode = ir_var_uniform; 7780 iface_type_name = "uniform"; 7781 } else if (this->layout.flags.q.buffer) { 7782 var_mode = ir_var_shader_storage; 7783 iface_type_name = "buffer"; 7784 } else { 7785 var_mode = ir_var_auto; 7786 iface_type_name = "UNKNOWN"; 7787 assert(!"interface block layout qualifier not found!"); 7788 } 7789 7790 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED; 7791 if (this->layout.flags.q.row_major) 7792 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; 7793 else if (this->layout.flags.q.column_major) 7794 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; 7795 7796 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0; 7797 exec_list declared_variables; 7798 glsl_struct_field *fields; 7799 7800 /* For blocks that accept memory qualifiers (i.e. shader storage), verify 7801 * that we don't have incompatible qualifiers 7802 */ 7803 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) { 7804 _mesa_glsl_error(&loc, state, 7805 "Interface block sets both readonly and writeonly"); 7806 } 7807 7808 unsigned qual_stream; 7809 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream, 7810 &qual_stream) || 7811 !validate_stream_qualifier(&loc, state, qual_stream)) { 7812 /* If the stream qualifier is invalid it doesn't make sense to continue 7813 * on and try to compare stream layouts on member variables against it 7814 * so just return early. 7815 */ 7816 return NULL; 7817 } 7818 7819 unsigned qual_xfb_buffer; 7820 if (!process_qualifier_constant(state, &loc, "xfb_buffer", 7821 layout.xfb_buffer, &qual_xfb_buffer) || 7822 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) { 7823 return NULL; 7824 } 7825 7826 unsigned qual_xfb_offset; 7827 if (layout.flags.q.explicit_xfb_offset) { 7828 if (!process_qualifier_constant(state, &loc, "xfb_offset", 7829 layout.offset, &qual_xfb_offset)) { 7830 return NULL; 7831 } 7832 } 7833 7834 unsigned qual_xfb_stride; 7835 if (layout.flags.q.explicit_xfb_stride) { 7836 if (!process_qualifier_constant(state, &loc, "xfb_stride", 7837 layout.xfb_stride, &qual_xfb_stride)) { 7838 return NULL; 7839 } 7840 } 7841 7842 unsigned expl_location = 0; 7843 if (layout.flags.q.explicit_location) { 7844 if (!process_qualifier_constant(state, &loc, "location", 7845 layout.location, &expl_location)) { 7846 return NULL; 7847 } else { 7848 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0 7849 : VARYING_SLOT_VAR0; 7850 } 7851 } 7852 7853 unsigned expl_align = 0; 7854 if (layout.flags.q.explicit_align) { 7855 if (!process_qualifier_constant(state, &loc, "align", 7856 layout.align, &expl_align)) { 7857 return NULL; 7858 } else { 7859 if (expl_align == 0 || expl_align & (expl_align - 1)) { 7860 _mesa_glsl_error(&loc, state, "align layout qualifier is not a " 7861 "power of 2."); 7862 return NULL; 7863 } 7864 } 7865 } 7866 7867 unsigned int num_variables = 7868 ast_process_struct_or_iface_block_members(&declared_variables, 7869 state, 7870 &this->declarations, 7871 &fields, 7872 true, 7873 matrix_layout, 7874 redeclaring_per_vertex, 7875 var_mode, 7876 &this->layout, 7877 qual_stream, 7878 qual_xfb_buffer, 7879 qual_xfb_offset, 7880 expl_location, 7881 expl_align); 7882 7883 if (!redeclaring_per_vertex) { 7884 validate_identifier(this->block_name, loc, state); 7885 7886 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec: 7887 * 7888 * "Block names have no other use within a shader beyond interface 7889 * matching; it is a compile-time error to use a block name at global 7890 * scope for anything other than as a block name." 7891 */ 7892 ir_variable *var = state->symbols->get_variable(this->block_name); 7893 if (var && !var->type->is_interface()) { 7894 _mesa_glsl_error(&loc, state, "Block name `%s' is " 7895 "already used in the scope.", 7896 this->block_name); 7897 } 7898 } 7899 7900 const glsl_type *earlier_per_vertex = NULL; 7901 if (redeclaring_per_vertex) { 7902 /* Find the previous declaration of gl_PerVertex. If we're redeclaring 7903 * the named interface block gl_in, we can find it by looking at the 7904 * previous declaration of gl_in. Otherwise we can find it by looking 7905 * at the previous decalartion of any of the built-in outputs, 7906 * e.g. gl_Position. 7907 * 7908 * Also check that the instance name and array-ness of the redeclaration 7909 * are correct. 7910 */ 7911 switch (var_mode) { 7912 case ir_var_shader_in: 7913 if (ir_variable *earlier_gl_in = 7914 state->symbols->get_variable("gl_in")) { 7915 earlier_per_vertex = earlier_gl_in->get_interface_type(); 7916 } else { 7917 _mesa_glsl_error(&loc, state, 7918 "redeclaration of gl_PerVertex input not allowed " 7919 "in the %s shader", 7920 _mesa_shader_stage_to_string(state->stage)); 7921 } 7922 if (this->instance_name == NULL || 7923 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL || 7924 !this->array_specifier->is_single_dimension()) { 7925 _mesa_glsl_error(&loc, state, 7926 "gl_PerVertex input must be redeclared as " 7927 "gl_in[]"); 7928 } 7929 break; 7930 case ir_var_shader_out: 7931 if (ir_variable *earlier_gl_Position = 7932 state->symbols->get_variable("gl_Position")) { 7933 earlier_per_vertex = earlier_gl_Position->get_interface_type(); 7934 } else if (ir_variable *earlier_gl_out = 7935 state->symbols->get_variable("gl_out")) { 7936 earlier_per_vertex = earlier_gl_out->get_interface_type(); 7937 } else { 7938 _mesa_glsl_error(&loc, state, 7939 "redeclaration of gl_PerVertex output not " 7940 "allowed in the %s shader", 7941 _mesa_shader_stage_to_string(state->stage)); 7942 } 7943 if (state->stage == MESA_SHADER_TESS_CTRL) { 7944 if (this->instance_name == NULL || 7945 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) { 7946 _mesa_glsl_error(&loc, state, 7947 "gl_PerVertex output must be redeclared as " 7948 "gl_out[]"); 7949 } 7950 } else { 7951 if (this->instance_name != NULL) { 7952 _mesa_glsl_error(&loc, state, 7953 "gl_PerVertex output may not be redeclared with " 7954 "an instance name"); 7955 } 7956 } 7957 break; 7958 default: 7959 _mesa_glsl_error(&loc, state, 7960 "gl_PerVertex must be declared as an input or an " 7961 "output"); 7962 break; 7963 } 7964 7965 if (earlier_per_vertex == NULL) { 7966 /* An error has already been reported. Bail out to avoid null 7967 * dereferences later in this function. 7968 */ 7969 return NULL; 7970 } 7971 7972 /* Copy locations from the old gl_PerVertex interface block. */ 7973 for (unsigned i = 0; i < num_variables; i++) { 7974 int j = earlier_per_vertex->field_index(fields[i].name); 7975 if (j == -1) { 7976 _mesa_glsl_error(&loc, state, 7977 "redeclaration of gl_PerVertex must be a subset " 7978 "of the built-in members of gl_PerVertex"); 7979 } else { 7980 fields[i].location = 7981 earlier_per_vertex->fields.structure[j].location; 7982 fields[i].offset = 7983 earlier_per_vertex->fields.structure[j].offset; 7984 fields[i].interpolation = 7985 earlier_per_vertex->fields.structure[j].interpolation; 7986 fields[i].centroid = 7987 earlier_per_vertex->fields.structure[j].centroid; 7988 fields[i].sample = 7989 earlier_per_vertex->fields.structure[j].sample; 7990 fields[i].patch = 7991 earlier_per_vertex->fields.structure[j].patch; 7992 fields[i].precision = 7993 earlier_per_vertex->fields.structure[j].precision; 7994 fields[i].explicit_xfb_buffer = 7995 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer; 7996 fields[i].xfb_buffer = 7997 earlier_per_vertex->fields.structure[j].xfb_buffer; 7998 fields[i].xfb_stride = 7999 earlier_per_vertex->fields.structure[j].xfb_stride; 8000 } 8001 } 8002 8003 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 8004 * spec: 8005 * 8006 * If a built-in interface block is redeclared, it must appear in 8007 * the shader before any use of any member included in the built-in 8008 * declaration, or a compilation error will result. 8009 * 8010 * This appears to be a clarification to the behaviour established for 8011 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour 8012 * regardless of GLSL version. 8013 */ 8014 interface_block_usage_visitor v(var_mode, earlier_per_vertex); 8015 v.run(instructions); 8016 if (v.usage_found()) { 8017 _mesa_glsl_error(&loc, state, 8018 "redeclaration of a built-in interface block must " 8019 "appear before any use of any member of the " 8020 "interface block"); 8021 } 8022 } 8023 8024 const glsl_type *block_type = 8025 glsl_type::get_interface_instance(fields, 8026 num_variables, 8027 packing, 8028 matrix_layout == 8029 GLSL_MATRIX_LAYOUT_ROW_MAJOR, 8030 this->block_name); 8031 8032 unsigned component_size = block_type->contains_double() ? 8 : 4; 8033 int xfb_offset = 8034 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1; 8035 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type, 8036 component_size); 8037 8038 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) { 8039 YYLTYPE loc = this->get_location(); 8040 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' " 8041 "already taken in the current scope", 8042 this->block_name, iface_type_name); 8043 } 8044 8045 /* Since interface blocks cannot contain statements, it should be 8046 * impossible for the block to generate any instructions. 8047 */ 8048 assert(declared_variables.is_empty()); 8049 8050 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: 8051 * 8052 * Geometry shader input variables get the per-vertex values written 8053 * out by vertex shader output variables of the same names. Since a 8054 * geometry shader operates on a set of vertices, each input varying 8055 * variable (or input block, see interface blocks below) needs to be 8056 * declared as an array. 8057 */ 8058 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL && 8059 var_mode == ir_var_shader_in) { 8060 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays"); 8061 } else if ((state->stage == MESA_SHADER_TESS_CTRL || 8062 state->stage == MESA_SHADER_TESS_EVAL) && 8063 !this->layout.flags.q.patch && 8064 this->array_specifier == NULL && 8065 var_mode == ir_var_shader_in) { 8066 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays"); 8067 } else if (state->stage == MESA_SHADER_TESS_CTRL && 8068 !this->layout.flags.q.patch && 8069 this->array_specifier == NULL && 8070 var_mode == ir_var_shader_out) { 8071 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays"); 8072 } 8073 8074 8075 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec 8076 * says: 8077 * 8078 * "If an instance name (instance-name) is used, then it puts all the 8079 * members inside a scope within its own name space, accessed with the 8080 * field selector ( . ) operator (analogously to structures)." 8081 */ 8082 if (this->instance_name) { 8083 if (redeclaring_per_vertex) { 8084 /* When a built-in in an unnamed interface block is redeclared, 8085 * get_variable_being_redeclared() calls 8086 * check_builtin_array_max_size() to make sure that built-in array 8087 * variables aren't redeclared to illegal sizes. But we're looking 8088 * at a redeclaration of a named built-in interface block. So we 8089 * have to manually call check_builtin_array_max_size() for all parts 8090 * of the interface that are arrays. 8091 */ 8092 for (unsigned i = 0; i < num_variables; i++) { 8093 if (fields[i].type->is_array()) { 8094 const unsigned size = fields[i].type->array_size(); 8095 check_builtin_array_max_size(fields[i].name, size, loc, state); 8096 } 8097 } 8098 } else { 8099 validate_identifier(this->instance_name, loc, state); 8100 } 8101 8102 ir_variable *var; 8103 8104 if (this->array_specifier != NULL) { 8105 const glsl_type *block_array_type = 8106 process_array_type(&loc, block_type, this->array_specifier, state); 8107 8108 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says: 8109 * 8110 * For uniform blocks declared an array, each individual array 8111 * element corresponds to a separate buffer object backing one 8112 * instance of the block. As the array size indicates the number 8113 * of buffer objects needed, uniform block array declarations 8114 * must specify an array size. 8115 * 8116 * And a few paragraphs later: 8117 * 8118 * Geometry shader input blocks must be declared as arrays and 8119 * follow the array declaration and linking rules for all 8120 * geometry shader inputs. All other input and output block 8121 * arrays must specify an array size. 8122 * 8123 * The same applies to tessellation shaders. 8124 * 8125 * The upshot of this is that the only circumstance where an 8126 * interface array size *doesn't* need to be specified is on a 8127 * geometry shader input, tessellation control shader input, 8128 * tessellation control shader output, and tessellation evaluation 8129 * shader input. 8130 */ 8131 if (block_array_type->is_unsized_array()) { 8132 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY || 8133 state->stage == MESA_SHADER_TESS_CTRL || 8134 state->stage == MESA_SHADER_TESS_EVAL; 8135 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL; 8136 8137 if (this->layout.flags.q.in) { 8138 if (!allow_inputs) 8139 _mesa_glsl_error(&loc, state, 8140 "unsized input block arrays not allowed in " 8141 "%s shader", 8142 _mesa_shader_stage_to_string(state->stage)); 8143 } else if (this->layout.flags.q.out) { 8144 if (!allow_outputs) 8145 _mesa_glsl_error(&loc, state, 8146 "unsized output block arrays not allowed in " 8147 "%s shader", 8148 _mesa_shader_stage_to_string(state->stage)); 8149 } else { 8150 /* by elimination, this is a uniform block array */ 8151 _mesa_glsl_error(&loc, state, 8152 "unsized uniform block arrays not allowed in " 8153 "%s shader", 8154 _mesa_shader_stage_to_string(state->stage)); 8155 } 8156 } 8157 8158 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec: 8159 * 8160 * * Arrays of arrays of blocks are not allowed 8161 */ 8162 if (state->es_shader && block_array_type->is_array() && 8163 block_array_type->fields.array->is_array()) { 8164 _mesa_glsl_error(&loc, state, 8165 "arrays of arrays interface blocks are " 8166 "not allowed"); 8167 } 8168 8169 var = new(state) ir_variable(block_array_type, 8170 this->instance_name, 8171 var_mode); 8172 } else { 8173 var = new(state) ir_variable(block_type, 8174 this->instance_name, 8175 var_mode); 8176 } 8177 8178 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED 8179 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; 8180 8181 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) 8182 var->data.read_only = true; 8183 8184 var->data.patch = this->layout.flags.q.patch; 8185 8186 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in) 8187 handle_geometry_shader_input_decl(state, loc, var); 8188 else if ((state->stage == MESA_SHADER_TESS_CTRL || 8189 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in) 8190 handle_tess_shader_input_decl(state, loc, var); 8191 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out) 8192 handle_tess_ctrl_shader_output_decl(state, loc, var); 8193 8194 for (unsigned i = 0; i < num_variables; i++) { 8195 if (var->data.mode == ir_var_shader_storage) 8196 apply_memory_qualifiers(var, fields[i]); 8197 } 8198 8199 if (ir_variable *earlier = 8200 state->symbols->get_variable(this->instance_name)) { 8201 if (!redeclaring_per_vertex) { 8202 _mesa_glsl_error(&loc, state, "`%s' redeclared", 8203 this->instance_name); 8204 } 8205 earlier->data.how_declared = ir_var_declared_normally; 8206 earlier->type = var->type; 8207 earlier->reinit_interface_type(block_type); 8208 delete var; 8209 } else { 8210 if (this->layout.flags.q.explicit_binding) { 8211 apply_explicit_binding(state, &loc, var, var->type, 8212 &this->layout); 8213 } 8214 8215 var->data.stream = qual_stream; 8216 if (layout.flags.q.explicit_location) { 8217 var->data.location = expl_location; 8218 var->data.explicit_location = true; 8219 } 8220 8221 state->symbols->add_variable(var); 8222 instructions->push_tail(var); 8223 } 8224 } else { 8225 /* In order to have an array size, the block must also be declared with 8226 * an instance name. 8227 */ 8228 assert(this->array_specifier == NULL); 8229 8230 for (unsigned i = 0; i < num_variables; i++) { 8231 ir_variable *var = 8232 new(state) ir_variable(fields[i].type, 8233 ralloc_strdup(state, fields[i].name), 8234 var_mode); 8235 var->data.interpolation = fields[i].interpolation; 8236 var->data.centroid = fields[i].centroid; 8237 var->data.sample = fields[i].sample; 8238 var->data.patch = fields[i].patch; 8239 var->data.stream = qual_stream; 8240 var->data.location = fields[i].location; 8241 8242 if (fields[i].location != -1) 8243 var->data.explicit_location = true; 8244 8245 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer; 8246 var->data.xfb_buffer = fields[i].xfb_buffer; 8247 8248 if (fields[i].offset != -1) 8249 var->data.explicit_xfb_offset = true; 8250 var->data.offset = fields[i].offset; 8251 8252 var->init_interface_type(block_type); 8253 8254 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) 8255 var->data.read_only = true; 8256 8257 /* Precision qualifiers do not have any meaning in Desktop GLSL */ 8258 if (state->es_shader) { 8259 var->data.precision = 8260 select_gles_precision(fields[i].precision, fields[i].type, 8261 state, &loc); 8262 } 8263 8264 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) { 8265 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED 8266 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; 8267 } else { 8268 var->data.matrix_layout = fields[i].matrix_layout; 8269 } 8270 8271 if (var->data.mode == ir_var_shader_storage) 8272 apply_memory_qualifiers(var, fields[i]); 8273 8274 /* Examine var name here since var may get deleted in the next call */ 8275 bool var_is_gl_id = is_gl_identifier(var->name); 8276 8277 if (redeclaring_per_vertex) { 8278 bool is_redeclaration; 8279 var = 8280 get_variable_being_redeclared(&var, loc, state, 8281 true /* allow_all_redeclarations */, 8282 &is_redeclaration); 8283 if (!var_is_gl_id || !is_redeclaration) { 8284 _mesa_glsl_error(&loc, state, 8285 "redeclaration of gl_PerVertex can only " 8286 "include built-in variables"); 8287 } else if (var->data.how_declared == ir_var_declared_normally) { 8288 _mesa_glsl_error(&loc, state, 8289 "`%s' has already been redeclared", 8290 var->name); 8291 } else { 8292 var->data.how_declared = ir_var_declared_in_block; 8293 var->reinit_interface_type(block_type); 8294 } 8295 continue; 8296 } 8297 8298 if (state->symbols->get_variable(var->name) != NULL) 8299 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); 8300 8301 /* Propagate the "binding" keyword into this UBO/SSBO's fields. 8302 * The UBO declaration itself doesn't get an ir_variable unless it 8303 * has an instance name. This is ugly. 8304 */ 8305 if (this->layout.flags.q.explicit_binding) { 8306 apply_explicit_binding(state, &loc, var, 8307 var->get_interface_type(), &this->layout); 8308 } 8309 8310 if (var->type->is_unsized_array()) { 8311 if (var->is_in_shader_storage_block() && 8312 is_unsized_array_last_element(var)) { 8313 var->data.from_ssbo_unsized_array = true; 8314 } else { 8315 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays": 8316 * 8317 * "If an array is declared as the last member of a shader storage 8318 * block and the size is not specified at compile-time, it is 8319 * sized at run-time. In all other cases, arrays are sized only 8320 * at compile-time." 8321 * 8322 * In desktop GLSL it is allowed to have unsized-arrays that are 8323 * not last, as long as we can determine that they are implicitly 8324 * sized. 8325 */ 8326 if (state->es_shader) { 8327 _mesa_glsl_error(&loc, state, "unsized array `%s' " 8328 "definition: only last member of a shader " 8329 "storage block can be defined as unsized " 8330 "array", fields[i].name); 8331 } 8332 } 8333 } 8334 8335 state->symbols->add_variable(var); 8336 instructions->push_tail(var); 8337 } 8338 8339 if (redeclaring_per_vertex && block_type != earlier_per_vertex) { 8340 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec: 8341 * 8342 * It is also a compilation error ... to redeclare a built-in 8343 * block and then use a member from that built-in block that was 8344 * not included in the redeclaration. 8345 * 8346 * This appears to be a clarification to the behaviour established 8347 * for gl_PerVertex by GLSL 1.50, therefore we implement this 8348 * behaviour regardless of GLSL version. 8349 * 8350 * To prevent the shader from using a member that was not included in 8351 * the redeclaration, we disable any ir_variables that are still 8352 * associated with the old declaration of gl_PerVertex (since we've 8353 * already updated all of the variables contained in the new 8354 * gl_PerVertex to point to it). 8355 * 8356 * As a side effect this will prevent 8357 * validate_intrastage_interface_blocks() from getting confused and 8358 * thinking there are conflicting definitions of gl_PerVertex in the 8359 * shader. 8360 */ 8361 foreach_in_list_safe(ir_instruction, node, instructions) { 8362 ir_variable *const var = node->as_variable(); 8363 if (var != NULL && 8364 var->get_interface_type() == earlier_per_vertex && 8365 var->data.mode == var_mode) { 8366 if (var->data.how_declared == ir_var_declared_normally) { 8367 _mesa_glsl_error(&loc, state, 8368 "redeclaration of gl_PerVertex cannot " 8369 "follow a redeclaration of `%s'", 8370 var->name); 8371 } 8372 state->symbols->disable_variable(var->name); 8373 var->remove(); 8374 } 8375 } 8376 } 8377 } 8378 8379 return NULL; 8380} 8381 8382 8383ir_rvalue * 8384ast_tcs_output_layout::hir(exec_list *instructions, 8385 struct _mesa_glsl_parse_state *state) 8386{ 8387 YYLTYPE loc = this->get_location(); 8388 8389 unsigned num_vertices; 8390 if (!state->out_qualifier->vertices-> 8391 process_qualifier_constant(state, "vertices", &num_vertices, 8392 false)) { 8393 /* return here to stop cascading incorrect error messages */ 8394 return NULL; 8395 } 8396 8397 /* If any shader outputs occurred before this declaration and specified an 8398 * array size, make sure the size they specified is consistent with the 8399 * primitive type. 8400 */ 8401 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) { 8402 _mesa_glsl_error(&loc, state, 8403 "this tessellation control shader output layout " 8404 "specifies %u vertices, but a previous output " 8405 "is declared with size %u", 8406 num_vertices, state->tcs_output_size); 8407 return NULL; 8408 } 8409 8410 state->tcs_output_vertices_specified = true; 8411 8412 /* If any shader outputs occurred before this declaration and did not 8413 * specify an array size, their size is determined now. 8414 */ 8415 foreach_in_list (ir_instruction, node, instructions) { 8416 ir_variable *var = node->as_variable(); 8417 if (var == NULL || var->data.mode != ir_var_shader_out) 8418 continue; 8419 8420 /* Note: Not all tessellation control shader output are arrays. */ 8421 if (!var->type->is_unsized_array() || var->data.patch) 8422 continue; 8423 8424 if (var->data.max_array_access >= (int)num_vertices) { 8425 _mesa_glsl_error(&loc, state, 8426 "this tessellation control shader output layout " 8427 "specifies %u vertices, but an access to element " 8428 "%u of output `%s' already exists", num_vertices, 8429 var->data.max_array_access, var->name); 8430 } else { 8431 var->type = glsl_type::get_array_instance(var->type->fields.array, 8432 num_vertices); 8433 } 8434 } 8435 8436 return NULL; 8437} 8438 8439 8440ir_rvalue * 8441ast_gs_input_layout::hir(exec_list *instructions, 8442 struct _mesa_glsl_parse_state *state) 8443{ 8444 YYLTYPE loc = this->get_location(); 8445 8446 /* Should have been prevented by the parser. */ 8447 assert(!state->gs_input_prim_type_specified 8448 || state->in_qualifier->prim_type == this->prim_type); 8449 8450 /* If any shader inputs occurred before this declaration and specified an 8451 * array size, make sure the size they specified is consistent with the 8452 * primitive type. 8453 */ 8454 unsigned num_vertices = vertices_per_prim(this->prim_type); 8455 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) { 8456 _mesa_glsl_error(&loc, state, 8457 "this geometry shader input layout implies %u vertices" 8458 " per primitive, but a previous input is declared" 8459 " with size %u", num_vertices, state->gs_input_size); 8460 return NULL; 8461 } 8462 8463 state->gs_input_prim_type_specified = true; 8464 8465 /* If any shader inputs occurred before this declaration and did not 8466 * specify an array size, their size is determined now. 8467 */ 8468 foreach_in_list(ir_instruction, node, instructions) { 8469 ir_variable *var = node->as_variable(); 8470 if (var == NULL || var->data.mode != ir_var_shader_in) 8471 continue; 8472 8473 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an 8474 * array; skip it. 8475 */ 8476 8477 if (var->type->is_unsized_array()) { 8478 if (var->data.max_array_access >= (int)num_vertices) { 8479 _mesa_glsl_error(&loc, state, 8480 "this geometry shader input layout implies %u" 8481 " vertices, but an access to element %u of input" 8482 " `%s' already exists", num_vertices, 8483 var->data.max_array_access, var->name); 8484 } else { 8485 var->type = glsl_type::get_array_instance(var->type->fields.array, 8486 num_vertices); 8487 } 8488 } 8489 } 8490 8491 return NULL; 8492} 8493 8494 8495ir_rvalue * 8496ast_cs_input_layout::hir(exec_list *instructions, 8497 struct _mesa_glsl_parse_state *state) 8498{ 8499 YYLTYPE loc = this->get_location(); 8500 8501 /* From the ARB_compute_shader specification: 8502 * 8503 * If the local size of the shader in any dimension is greater 8504 * than the maximum size supported by the implementation for that 8505 * dimension, a compile-time error results. 8506 * 8507 * It is not clear from the spec how the error should be reported if 8508 * the total size of the work group exceeds 8509 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to 8510 * report it at compile time as well. 8511 */ 8512 GLuint64 total_invocations = 1; 8513 unsigned qual_local_size[3]; 8514 for (int i = 0; i < 3; i++) { 8515 8516 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c", 8517 'x' + i); 8518 /* Infer a local_size of 1 for unspecified dimensions */ 8519 if (this->local_size[i] == NULL) { 8520 qual_local_size[i] = 1; 8521 } else if (!this->local_size[i]-> 8522 process_qualifier_constant(state, local_size_str, 8523 &qual_local_size[i], false)) { 8524 ralloc_free(local_size_str); 8525 return NULL; 8526 } 8527 ralloc_free(local_size_str); 8528 8529 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) { 8530 _mesa_glsl_error(&loc, state, 8531 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE" 8532 " (%d)", 'x' + i, 8533 state->ctx->Const.MaxComputeWorkGroupSize[i]); 8534 break; 8535 } 8536 total_invocations *= qual_local_size[i]; 8537 if (total_invocations > 8538 state->ctx->Const.MaxComputeWorkGroupInvocations) { 8539 _mesa_glsl_error(&loc, state, 8540 "product of local_sizes exceeds " 8541 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)", 8542 state->ctx->Const.MaxComputeWorkGroupInvocations); 8543 break; 8544 } 8545 } 8546 8547 /* If any compute input layout declaration preceded this one, make sure it 8548 * was consistent with this one. 8549 */ 8550 if (state->cs_input_local_size_specified) { 8551 for (int i = 0; i < 3; i++) { 8552 if (state->cs_input_local_size[i] != qual_local_size[i]) { 8553 _mesa_glsl_error(&loc, state, 8554 "compute shader input layout does not match" 8555 " previous declaration"); 8556 return NULL; 8557 } 8558 } 8559 } 8560 8561 /* The ARB_compute_variable_group_size spec says: 8562 * 8563 * If a compute shader including a *local_size_variable* qualifier also 8564 * declares a fixed local group size using the *local_size_x*, 8565 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error 8566 * results 8567 */ 8568 if (state->cs_input_local_size_variable_specified) { 8569 _mesa_glsl_error(&loc, state, 8570 "compute shader can't include both a variable and a " 8571 "fixed local group size"); 8572 return NULL; 8573 } 8574 8575 state->cs_input_local_size_specified = true; 8576 for (int i = 0; i < 3; i++) 8577 state->cs_input_local_size[i] = qual_local_size[i]; 8578 8579 /* We may now declare the built-in constant gl_WorkGroupSize (see 8580 * builtin_variable_generator::generate_constants() for why we didn't 8581 * declare it earlier). 8582 */ 8583 ir_variable *var = new(state->symbols) 8584 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto); 8585 var->data.how_declared = ir_var_declared_implicitly; 8586 var->data.read_only = true; 8587 instructions->push_tail(var); 8588 state->symbols->add_variable(var); 8589 ir_constant_data data; 8590 memset(&data, 0, sizeof(data)); 8591 for (int i = 0; i < 3; i++) 8592 data.u[i] = qual_local_size[i]; 8593 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data); 8594 var->constant_initializer = 8595 new(var) ir_constant(glsl_type::uvec3_type, &data); 8596 var->data.has_initializer = true; 8597 8598 return NULL; 8599} 8600 8601 8602static void 8603detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, 8604 exec_list *instructions) 8605{ 8606 bool gl_FragColor_assigned = false; 8607 bool gl_FragData_assigned = false; 8608 bool gl_FragSecondaryColor_assigned = false; 8609 bool gl_FragSecondaryData_assigned = false; 8610 bool user_defined_fs_output_assigned = false; 8611 ir_variable *user_defined_fs_output = NULL; 8612 8613 /* It would be nice to have proper location information. */ 8614 YYLTYPE loc; 8615 memset(&loc, 0, sizeof(loc)); 8616 8617 foreach_in_list(ir_instruction, node, instructions) { 8618 ir_variable *var = node->as_variable(); 8619 8620 if (!var || !var->data.assigned) 8621 continue; 8622 8623 if (strcmp(var->name, "gl_FragColor") == 0) 8624 gl_FragColor_assigned = true; 8625 else if (strcmp(var->name, "gl_FragData") == 0) 8626 gl_FragData_assigned = true; 8627 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0) 8628 gl_FragSecondaryColor_assigned = true; 8629 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0) 8630 gl_FragSecondaryData_assigned = true; 8631 else if (!is_gl_identifier(var->name)) { 8632 if (state->stage == MESA_SHADER_FRAGMENT && 8633 var->data.mode == ir_var_shader_out) { 8634 user_defined_fs_output_assigned = true; 8635 user_defined_fs_output = var; 8636 } 8637 } 8638 } 8639 8640 /* From the GLSL 1.30 spec: 8641 * 8642 * "If a shader statically assigns a value to gl_FragColor, it 8643 * may not assign a value to any element of gl_FragData. If a 8644 * shader statically writes a value to any element of 8645 * gl_FragData, it may not assign a value to 8646 * gl_FragColor. That is, a shader may assign values to either 8647 * gl_FragColor or gl_FragData, but not both. Multiple shaders 8648 * linked together must also consistently write just one of 8649 * these variables. Similarly, if user declared output 8650 * variables are in use (statically assigned to), then the 8651 * built-in variables gl_FragColor and gl_FragData may not be 8652 * assigned to. These incorrect usages all generate compile 8653 * time errors." 8654 */ 8655 if (gl_FragColor_assigned && gl_FragData_assigned) { 8656 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8657 "`gl_FragColor' and `gl_FragData'"); 8658 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) { 8659 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8660 "`gl_FragColor' and `%s'", 8661 user_defined_fs_output->name); 8662 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) { 8663 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8664 "`gl_FragSecondaryColorEXT' and" 8665 " `gl_FragSecondaryDataEXT'"); 8666 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) { 8667 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8668 "`gl_FragColor' and" 8669 " `gl_FragSecondaryDataEXT'"); 8670 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) { 8671 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8672 "`gl_FragData' and" 8673 " `gl_FragSecondaryColorEXT'"); 8674 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) { 8675 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8676 "`gl_FragData' and `%s'", 8677 user_defined_fs_output->name); 8678 } 8679 8680 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) && 8681 !state->EXT_blend_func_extended_enable) { 8682 _mesa_glsl_error(&loc, state, 8683 "Dual source blending requires EXT_blend_func_extended"); 8684 } 8685} 8686 8687static void 8688verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state) 8689{ 8690 YYLTYPE loc; 8691 memset(&loc, 0, sizeof(loc)); 8692 8693 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: 8694 * 8695 * "A program will fail to compile or link if any shader 8696 * or stage contains two or more functions with the same 8697 * name if the name is associated with a subroutine type." 8698 */ 8699 8700 for (int i = 0; i < state->num_subroutines; i++) { 8701 unsigned definitions = 0; 8702 ir_function *fn = state->subroutines[i]; 8703 /* Calculate number of function definitions with the same name */ 8704 foreach_in_list(ir_function_signature, sig, &fn->signatures) { 8705 if (sig->is_defined) { 8706 if (++definitions > 1) { 8707 _mesa_glsl_error(&loc, state, 8708 "%s shader contains two or more function " 8709 "definitions with name `%s', which is " 8710 "associated with a subroutine type.\n", 8711 _mesa_shader_stage_to_string(state->stage), 8712 fn->name); 8713 return; 8714 } 8715 } 8716 } 8717 } 8718} 8719 8720static void 8721remove_per_vertex_blocks(exec_list *instructions, 8722 _mesa_glsl_parse_state *state, ir_variable_mode mode) 8723{ 8724 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode, 8725 * if it exists in this shader type. 8726 */ 8727 const glsl_type *per_vertex = NULL; 8728 switch (mode) { 8729 case ir_var_shader_in: 8730 if (ir_variable *gl_in = state->symbols->get_variable("gl_in")) 8731 per_vertex = gl_in->get_interface_type(); 8732 break; 8733 case ir_var_shader_out: 8734 if (ir_variable *gl_Position = 8735 state->symbols->get_variable("gl_Position")) { 8736 per_vertex = gl_Position->get_interface_type(); 8737 } 8738 break; 8739 default: 8740 assert(!"Unexpected mode"); 8741 break; 8742 } 8743 8744 /* If we didn't find a built-in gl_PerVertex interface block, then we don't 8745 * need to do anything. 8746 */ 8747 if (per_vertex == NULL) 8748 return; 8749 8750 /* If the interface block is used by the shader, then we don't need to do 8751 * anything. 8752 */ 8753 interface_block_usage_visitor v(mode, per_vertex); 8754 v.run(instructions); 8755 if (v.usage_found()) 8756 return; 8757 8758 /* Remove any ir_variable declarations that refer to the interface block 8759 * we're removing. 8760 */ 8761 foreach_in_list_safe(ir_instruction, node, instructions) { 8762 ir_variable *const var = node->as_variable(); 8763 if (var != NULL && var->get_interface_type() == per_vertex && 8764 var->data.mode == mode) { 8765 state->symbols->disable_variable(var->name); 8766 var->remove(); 8767 } 8768 } 8769} 8770