ast_to_hir.cpp revision 01e04c3f
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "glsl_symbol_table.h"
53#include "glsl_parser_extras.h"
54#include "ast.h"
55#include "compiler/glsl_types.h"
56#include "util/hash_table.h"
57#include "main/mtypes.h"
58#include "main/macros.h"
59#include "main/shaderobj.h"
60#include "ir.h"
61#include "ir_builder.h"
62#include "builtin_functions.h"
63
64using namespace ir_builder;
65
66static void
67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68                               exec_list *instructions);
69static void
70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72static void
73remove_per_vertex_blocks(exec_list *instructions,
74                         _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76/**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81{
82public:
83   read_from_write_only_variable_visitor() : found(NULL)
84   {
85   }
86
87   virtual ir_visitor_status visit(ir_dereference_variable *ir)
88   {
89      if (this->in_assignee)
90         return visit_continue;
91
92      ir_variable *var = ir->variable_referenced();
93      /* We can have memory_write_only set on both images and buffer variables,
94       * but in the former there is a distinction between reads from
95       * the variable itself (write_only) and from the memory they point to
96       * (memory_write_only), while in the case of buffer variables there is
97       * no such distinction, that is why this check here is limited to
98       * buffer variables alone.
99       */
100      if (!var || var->data.mode != ir_var_shader_storage)
101         return visit_continue;
102
103      if (var->data.memory_write_only) {
104         found = var;
105         return visit_stop;
106      }
107
108      return visit_continue;
109   }
110
111   ir_variable *get_variable() {
112      return found;
113   }
114
115   virtual ir_visitor_status visit_enter(ir_expression *ir)
116   {
117      /* .length() doesn't actually read anything */
118      if (ir->operation == ir_unop_ssbo_unsized_array_length)
119         return visit_continue_with_parent;
120
121      return visit_continue;
122   }
123
124private:
125   ir_variable *found;
126};
127
128void
129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130{
131   _mesa_glsl_initialize_variables(instructions, state);
132
133   state->symbols->separate_function_namespace = state->language_version == 110;
134
135   state->current_function = NULL;
136
137   state->toplevel_ir = instructions;
138
139   state->gs_input_prim_type_specified = false;
140   state->tcs_output_vertices_specified = false;
141   state->cs_input_local_size_specified = false;
142
143   /* Section 4.2 of the GLSL 1.20 specification states:
144    * "The built-in functions are scoped in a scope outside the global scope
145    *  users declare global variables in.  That is, a shader's global scope,
146    *  available for user-defined functions and global variables, is nested
147    *  inside the scope containing the built-in functions."
148    *
149    * Since built-in functions like ftransform() access built-in variables,
150    * it follows that those must be in the outer scope as well.
151    *
152    * We push scope here to create this nesting effect...but don't pop.
153    * This way, a shader's globals are still in the symbol table for use
154    * by the linker.
155    */
156   state->symbols->push_scope();
157
158   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159      ast->hir(instructions, state);
160
161   verify_subroutine_associated_funcs(state);
162   detect_recursion_unlinked(state, instructions);
163   detect_conflicting_assignments(state, instructions);
164
165   state->toplevel_ir = NULL;
166
167   /* Move all of the variable declarations to the front of the IR list, and
168    * reverse the order.  This has the (intended!) side effect that vertex
169    * shader inputs and fragment shader outputs will appear in the IR in the
170    * same order that they appeared in the shader code.  This results in the
171    * locations being assigned in the declared order.  Many (arguably buggy)
172    * applications depend on this behavior, and it matches what nearly all
173    * other drivers do.
174    */
175   foreach_in_list_safe(ir_instruction, node, instructions) {
176      ir_variable *const var = node->as_variable();
177
178      if (var == NULL)
179         continue;
180
181      var->remove();
182      instructions->push_head(var);
183   }
184
185   /* Figure out if gl_FragCoord is actually used in fragment shader */
186   ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187   if (var != NULL)
188      state->fs_uses_gl_fragcoord = var->data.used;
189
190   /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191    *
192    *     If multiple shaders using members of a built-in block belonging to
193    *     the same interface are linked together in the same program, they
194    *     must all redeclare the built-in block in the same way, as described
195    *     in section 4.3.7 "Interface Blocks" for interface block matching, or
196    *     a link error will result.
197    *
198    * The phrase "using members of a built-in block" implies that if two
199    * shaders are linked together and one of them *does not use* any members
200    * of the built-in block, then that shader does not need to have a matching
201    * redeclaration of the built-in block.
202    *
203    * This appears to be a clarification to the behaviour established for
204    * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205    * version.
206    *
207    * The definition of "interface" in section 4.3.7 that applies here is as
208    * follows:
209    *
210    *     The boundary between adjacent programmable pipeline stages: This
211    *     spans all the outputs in all compilation units of the first stage
212    *     and all the inputs in all compilation units of the second stage.
213    *
214    * Therefore this rule applies to both inter- and intra-stage linking.
215    *
216    * The easiest way to implement this is to check whether the shader uses
217    * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218    * remove all the relevant variable declaration from the IR, so that the
219    * linker won't see them and complain about mismatches.
220    */
221   remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222   remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224   /* Check that we don't have reads from write-only variables */
225   read_from_write_only_variable_visitor v;
226   v.run(instructions);
227   ir_variable *error_var = v.get_variable();
228   if (error_var) {
229      /* It would be nice to have proper location information, but for that
230       * we would need to check this as we process each kind of AST node
231       */
232      YYLTYPE loc;
233      memset(&loc, 0, sizeof(loc));
234      _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235                       error_var->name);
236   }
237}
238
239
240static ir_expression_operation
241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242                                  struct _mesa_glsl_parse_state *state)
243{
244   switch (to->base_type) {
245   case GLSL_TYPE_FLOAT:
246      switch (from->base_type) {
247      case GLSL_TYPE_INT: return ir_unop_i2f;
248      case GLSL_TYPE_UINT: return ir_unop_u2f;
249      default: return (ir_expression_operation)0;
250      }
251
252   case GLSL_TYPE_UINT:
253      if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
254          && !state->MESA_shader_integer_functions_enable)
255         return (ir_expression_operation)0;
256      switch (from->base_type) {
257         case GLSL_TYPE_INT: return ir_unop_i2u;
258         default: return (ir_expression_operation)0;
259      }
260
261   case GLSL_TYPE_DOUBLE:
262      if (!state->has_double())
263         return (ir_expression_operation)0;
264      switch (from->base_type) {
265      case GLSL_TYPE_INT: return ir_unop_i2d;
266      case GLSL_TYPE_UINT: return ir_unop_u2d;
267      case GLSL_TYPE_FLOAT: return ir_unop_f2d;
268      case GLSL_TYPE_INT64: return ir_unop_i642d;
269      case GLSL_TYPE_UINT64: return ir_unop_u642d;
270      default: return (ir_expression_operation)0;
271      }
272
273   case GLSL_TYPE_UINT64:
274      if (!state->has_int64())
275         return (ir_expression_operation)0;
276      switch (from->base_type) {
277      case GLSL_TYPE_INT: return ir_unop_i2u64;
278      case GLSL_TYPE_UINT: return ir_unop_u2u64;
279      case GLSL_TYPE_INT64: return ir_unop_i642u64;
280      default: return (ir_expression_operation)0;
281      }
282
283   case GLSL_TYPE_INT64:
284      if (!state->has_int64())
285         return (ir_expression_operation)0;
286      switch (from->base_type) {
287      case GLSL_TYPE_INT: return ir_unop_i2i64;
288      default: return (ir_expression_operation)0;
289      }
290
291   default: return (ir_expression_operation)0;
292   }
293}
294
295
296/**
297 * If a conversion is available, convert one operand to a different type
298 *
299 * The \c from \c ir_rvalue is converted "in place".
300 *
301 * \param to     Type that the operand it to be converted to
302 * \param from   Operand that is being converted
303 * \param state  GLSL compiler state
304 *
305 * \return
306 * If a conversion is possible (or unnecessary), \c true is returned.
307 * Otherwise \c false is returned.
308 */
309static bool
310apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
311                          struct _mesa_glsl_parse_state *state)
312{
313   void *ctx = state;
314   if (to->base_type == from->type->base_type)
315      return true;
316
317   /* Prior to GLSL 1.20, there are no implicit conversions */
318   if (!state->is_version(120, 0))
319      return false;
320
321   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
322    *
323    *    "There are no implicit array or structure conversions. For
324    *    example, an array of int cannot be implicitly converted to an
325    *    array of float.
326    */
327   if (!to->is_numeric() || !from->type->is_numeric())
328      return false;
329
330   /* We don't actually want the specific type `to`, we want a type
331    * with the same base type as `to`, but the same vector width as
332    * `from`.
333    */
334   to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
335                                from->type->matrix_columns);
336
337   ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
338   if (op) {
339      from = new(ctx) ir_expression(op, to, from, NULL);
340      return true;
341   } else {
342      return false;
343   }
344}
345
346
347static const struct glsl_type *
348arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
349                       bool multiply,
350                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
351{
352   const glsl_type *type_a = value_a->type;
353   const glsl_type *type_b = value_b->type;
354
355   /* From GLSL 1.50 spec, page 56:
356    *
357    *    "The arithmetic binary operators add (+), subtract (-),
358    *    multiply (*), and divide (/) operate on integer and
359    *    floating-point scalars, vectors, and matrices."
360    */
361   if (!type_a->is_numeric() || !type_b->is_numeric()) {
362      _mesa_glsl_error(loc, state,
363                       "operands to arithmetic operators must be numeric");
364      return glsl_type::error_type;
365   }
366
367
368   /*    "If one operand is floating-point based and the other is
369    *    not, then the conversions from Section 4.1.10 "Implicit
370    *    Conversions" are applied to the non-floating-point-based operand."
371    */
372   if (!apply_implicit_conversion(type_a, value_b, state)
373       && !apply_implicit_conversion(type_b, value_a, state)) {
374      _mesa_glsl_error(loc, state,
375                       "could not implicitly convert operands to "
376                       "arithmetic operator");
377      return glsl_type::error_type;
378   }
379   type_a = value_a->type;
380   type_b = value_b->type;
381
382   /*    "If the operands are integer types, they must both be signed or
383    *    both be unsigned."
384    *
385    * From this rule and the preceeding conversion it can be inferred that
386    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
387    * The is_numeric check above already filtered out the case where either
388    * type is not one of these, so now the base types need only be tested for
389    * equality.
390    */
391   if (type_a->base_type != type_b->base_type) {
392      _mesa_glsl_error(loc, state,
393                       "base type mismatch for arithmetic operator");
394      return glsl_type::error_type;
395   }
396
397   /*    "All arithmetic binary operators result in the same fundamental type
398    *    (signed integer, unsigned integer, or floating-point) as the
399    *    operands they operate on, after operand type conversion. After
400    *    conversion, the following cases are valid
401    *
402    *    * The two operands are scalars. In this case the operation is
403    *      applied, resulting in a scalar."
404    */
405   if (type_a->is_scalar() && type_b->is_scalar())
406      return type_a;
407
408   /*   "* One operand is a scalar, and the other is a vector or matrix.
409    *      In this case, the scalar operation is applied independently to each
410    *      component of the vector or matrix, resulting in the same size
411    *      vector or matrix."
412    */
413   if (type_a->is_scalar()) {
414      if (!type_b->is_scalar())
415         return type_b;
416   } else if (type_b->is_scalar()) {
417      return type_a;
418   }
419
420   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
421    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
422    * handled.
423    */
424   assert(!type_a->is_scalar());
425   assert(!type_b->is_scalar());
426
427   /*   "* The two operands are vectors of the same size. In this case, the
428    *      operation is done component-wise resulting in the same size
429    *      vector."
430    */
431   if (type_a->is_vector() && type_b->is_vector()) {
432      if (type_a == type_b) {
433         return type_a;
434      } else {
435         _mesa_glsl_error(loc, state,
436                          "vector size mismatch for arithmetic operator");
437         return glsl_type::error_type;
438      }
439   }
440
441   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
442    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
443    * <vector, vector> have been handled.  At least one of the operands must
444    * be matrix.  Further, since there are no integer matrix types, the base
445    * type of both operands must be float.
446    */
447   assert(type_a->is_matrix() || type_b->is_matrix());
448   assert(type_a->is_float() || type_a->is_double());
449   assert(type_b->is_float() || type_b->is_double());
450
451   /*   "* The operator is add (+), subtract (-), or divide (/), and the
452    *      operands are matrices with the same number of rows and the same
453    *      number of columns. In this case, the operation is done component-
454    *      wise resulting in the same size matrix."
455    *    * The operator is multiply (*), where both operands are matrices or
456    *      one operand is a vector and the other a matrix. A right vector
457    *      operand is treated as a column vector and a left vector operand as a
458    *      row vector. In all these cases, it is required that the number of
459    *      columns of the left operand is equal to the number of rows of the
460    *      right operand. Then, the multiply (*) operation does a linear
461    *      algebraic multiply, yielding an object that has the same number of
462    *      rows as the left operand and the same number of columns as the right
463    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
464    *      more detail how vectors and matrices are operated on."
465    */
466   if (! multiply) {
467      if (type_a == type_b)
468         return type_a;
469   } else {
470      const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
471
472      if (type == glsl_type::error_type) {
473         _mesa_glsl_error(loc, state,
474                          "size mismatch for matrix multiplication");
475      }
476
477      return type;
478   }
479
480
481   /*    "All other cases are illegal."
482    */
483   _mesa_glsl_error(loc, state, "type mismatch");
484   return glsl_type::error_type;
485}
486
487
488static const struct glsl_type *
489unary_arithmetic_result_type(const struct glsl_type *type,
490                             struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
491{
492   /* From GLSL 1.50 spec, page 57:
493    *
494    *    "The arithmetic unary operators negate (-), post- and pre-increment
495    *     and decrement (-- and ++) operate on integer or floating-point
496    *     values (including vectors and matrices). All unary operators work
497    *     component-wise on their operands. These result with the same type
498    *     they operated on."
499    */
500   if (!type->is_numeric()) {
501      _mesa_glsl_error(loc, state,
502                       "operands to arithmetic operators must be numeric");
503      return glsl_type::error_type;
504   }
505
506   return type;
507}
508
509/**
510 * \brief Return the result type of a bit-logic operation.
511 *
512 * If the given types to the bit-logic operator are invalid, return
513 * glsl_type::error_type.
514 *
515 * \param value_a LHS of bit-logic op
516 * \param value_b RHS of bit-logic op
517 */
518static const struct glsl_type *
519bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
520                      ast_operators op,
521                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
522{
523   const glsl_type *type_a = value_a->type;
524   const glsl_type *type_b = value_b->type;
525
526   if (!state->check_bitwise_operations_allowed(loc)) {
527      return glsl_type::error_type;
528   }
529
530   /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
531    *
532    *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
533    *     (|). The operands must be of type signed or unsigned integers or
534    *     integer vectors."
535    */
536   if (!type_a->is_integer_32_64()) {
537      _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
538                        ast_expression::operator_string(op));
539      return glsl_type::error_type;
540   }
541   if (!type_b->is_integer_32_64()) {
542      _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
543                       ast_expression::operator_string(op));
544      return glsl_type::error_type;
545   }
546
547   /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
548    * make sense for bitwise operations, as they don't operate on floats.
549    *
550    * GLSL 4.0 added implicit int -> uint conversions, which are relevant
551    * here.  It wasn't clear whether or not we should apply them to bitwise
552    * operations.  However, Khronos has decided that they should in future
553    * language revisions.  Applications also rely on this behavior.  We opt
554    * to apply them in general, but issue a portability warning.
555    *
556    * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
557    */
558   if (type_a->base_type != type_b->base_type) {
559      if (!apply_implicit_conversion(type_a, value_b, state)
560          && !apply_implicit_conversion(type_b, value_a, state)) {
561         _mesa_glsl_error(loc, state,
562                          "could not implicitly convert operands to "
563                          "`%s` operator",
564                          ast_expression::operator_string(op));
565         return glsl_type::error_type;
566      } else {
567         _mesa_glsl_warning(loc, state,
568                            "some implementations may not support implicit "
569                            "int -> uint conversions for `%s' operators; "
570                            "consider casting explicitly for portability",
571                            ast_expression::operator_string(op));
572      }
573      type_a = value_a->type;
574      type_b = value_b->type;
575   }
576
577   /*     "The fundamental types of the operands (signed or unsigned) must
578    *     match,"
579    */
580   if (type_a->base_type != type_b->base_type) {
581      _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
582                       "base type", ast_expression::operator_string(op));
583      return glsl_type::error_type;
584   }
585
586   /*     "The operands cannot be vectors of differing size." */
587   if (type_a->is_vector() &&
588       type_b->is_vector() &&
589       type_a->vector_elements != type_b->vector_elements) {
590      _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
591                       "different sizes", ast_expression::operator_string(op));
592      return glsl_type::error_type;
593   }
594
595   /*     "If one operand is a scalar and the other a vector, the scalar is
596    *     applied component-wise to the vector, resulting in the same type as
597    *     the vector. The fundamental types of the operands [...] will be the
598    *     resulting fundamental type."
599    */
600   if (type_a->is_scalar())
601       return type_b;
602   else
603       return type_a;
604}
605
606static const struct glsl_type *
607modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
608                    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
609{
610   const glsl_type *type_a = value_a->type;
611   const glsl_type *type_b = value_b->type;
612
613   if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614      return glsl_type::error_type;
615   }
616
617   /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618    *
619    *    "The operator modulus (%) operates on signed or unsigned integers or
620    *    integer vectors."
621    */
622   if (!type_a->is_integer_32_64()) {
623      _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624      return glsl_type::error_type;
625   }
626   if (!type_b->is_integer_32_64()) {
627      _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628      return glsl_type::error_type;
629   }
630
631   /*    "If the fundamental types in the operands do not match, then the
632    *    conversions from section 4.1.10 "Implicit Conversions" are applied
633    *    to create matching types."
634    *
635    * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636    * int -> uint conversion rules.  Prior to that, there were no implicit
637    * conversions.  So it's harmless to apply them universally - no implicit
638    * conversions will exist.  If the types don't match, we'll receive false,
639    * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640    *
641    *    "The operand types must both be signed or unsigned."
642    */
643   if (!apply_implicit_conversion(type_a, value_b, state) &&
644       !apply_implicit_conversion(type_b, value_a, state)) {
645      _mesa_glsl_error(loc, state,
646                       "could not implicitly convert operands to "
647                       "modulus (%%) operator");
648      return glsl_type::error_type;
649   }
650   type_a = value_a->type;
651   type_b = value_b->type;
652
653   /*    "The operands cannot be vectors of differing size. If one operand is
654    *    a scalar and the other vector, then the scalar is applied component-
655    *    wise to the vector, resulting in the same type as the vector. If both
656    *    are vectors of the same size, the result is computed component-wise."
657    */
658   if (type_a->is_vector()) {
659      if (!type_b->is_vector()
660          || (type_a->vector_elements == type_b->vector_elements))
661      return type_a;
662   } else
663      return type_b;
664
665   /*    "The operator modulus (%) is not defined for any other data types
666    *    (non-integer types)."
667    */
668   _mesa_glsl_error(loc, state, "type mismatch");
669   return glsl_type::error_type;
670}
671
672
673static const struct glsl_type *
674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676{
677   const glsl_type *type_a = value_a->type;
678   const glsl_type *type_b = value_b->type;
679
680   /* From GLSL 1.50 spec, page 56:
681    *    "The relational operators greater than (>), less than (<), greater
682    *    than or equal (>=), and less than or equal (<=) operate only on
683    *    scalar integer and scalar floating-point expressions."
684    */
685   if (!type_a->is_numeric()
686       || !type_b->is_numeric()
687       || !type_a->is_scalar()
688       || !type_b->is_scalar()) {
689      _mesa_glsl_error(loc, state,
690                       "operands to relational operators must be scalar and "
691                       "numeric");
692      return glsl_type::error_type;
693   }
694
695   /*    "Either the operands' types must match, or the conversions from
696    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
697    *    operand, after which the types must match."
698    */
699   if (!apply_implicit_conversion(type_a, value_b, state)
700       && !apply_implicit_conversion(type_b, value_a, state)) {
701      _mesa_glsl_error(loc, state,
702                       "could not implicitly convert operands to "
703                       "relational operator");
704      return glsl_type::error_type;
705   }
706   type_a = value_a->type;
707   type_b = value_b->type;
708
709   if (type_a->base_type != type_b->base_type) {
710      _mesa_glsl_error(loc, state, "base type mismatch");
711      return glsl_type::error_type;
712   }
713
714   /*    "The result is scalar Boolean."
715    */
716   return glsl_type::bool_type;
717}
718
719/**
720 * \brief Return the result type of a bit-shift operation.
721 *
722 * If the given types to the bit-shift operator are invalid, return
723 * glsl_type::error_type.
724 *
725 * \param type_a Type of LHS of bit-shift op
726 * \param type_b Type of RHS of bit-shift op
727 */
728static const struct glsl_type *
729shift_result_type(const struct glsl_type *type_a,
730                  const struct glsl_type *type_b,
731                  ast_operators op,
732                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733{
734   if (!state->check_bitwise_operations_allowed(loc)) {
735      return glsl_type::error_type;
736   }
737
738   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739    *
740    *     "The shift operators (<<) and (>>). For both operators, the operands
741    *     must be signed or unsigned integers or integer vectors. One operand
742    *     can be signed while the other is unsigned."
743    */
744   if (!type_a->is_integer_32_64()) {
745      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746                       "integer vector", ast_expression::operator_string(op));
747     return glsl_type::error_type;
748
749   }
750   if (!type_b->is_integer()) {
751      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752                       "integer vector", ast_expression::operator_string(op));
753     return glsl_type::error_type;
754   }
755
756   /*     "If the first operand is a scalar, the second operand has to be
757    *     a scalar as well."
758    */
759   if (type_a->is_scalar() && !type_b->is_scalar()) {
760      _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761                       "second must be scalar as well",
762                       ast_expression::operator_string(op));
763     return glsl_type::error_type;
764   }
765
766   /* If both operands are vectors, check that they have same number of
767    * elements.
768    */
769   if (type_a->is_vector() &&
770      type_b->is_vector() &&
771      type_a->vector_elements != type_b->vector_elements) {
772      _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773                       "have same number of elements",
774                       ast_expression::operator_string(op));
775     return glsl_type::error_type;
776   }
777
778   /*     "In all cases, the resulting type will be the same type as the left
779    *     operand."
780    */
781   return type_a;
782}
783
784/**
785 * Returns the innermost array index expression in an rvalue tree.
786 * This is the largest indexing level -- if an array of blocks, then
787 * it is the block index rather than an indexing expression for an
788 * array-typed member of an array of blocks.
789 */
790static ir_rvalue *
791find_innermost_array_index(ir_rvalue *rv)
792{
793   ir_dereference_array *last = NULL;
794   while (rv) {
795      if (rv->as_dereference_array()) {
796         last = rv->as_dereference_array();
797         rv = last->array;
798      } else if (rv->as_dereference_record())
799         rv = rv->as_dereference_record()->record;
800      else if (rv->as_swizzle())
801         rv = rv->as_swizzle()->val;
802      else
803         rv = NULL;
804   }
805
806   if (last)
807      return last->array_index;
808
809   return NULL;
810}
811
812/**
813 * Validates that a value can be assigned to a location with a specified type
814 *
815 * Validates that \c rhs can be assigned to some location.  If the types are
816 * not an exact match but an automatic conversion is possible, \c rhs will be
817 * converted.
818 *
819 * \return
820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821 * Otherwise the actual RHS to be assigned will be returned.  This may be
822 * \c rhs, or it may be \c rhs after some type conversion.
823 *
824 * \note
825 * In addition to being used for assignments, this function is used to
826 * type-check return values.
827 */
828static ir_rvalue *
829validate_assignment(struct _mesa_glsl_parse_state *state,
830                    YYLTYPE loc, ir_rvalue *lhs,
831                    ir_rvalue *rhs, bool is_initializer)
832{
833   /* If there is already some error in the RHS, just return it.  Anything
834    * else will lead to an avalanche of error message back to the user.
835    */
836   if (rhs->type->is_error())
837      return rhs;
838
839   /* In the Tessellation Control Shader:
840    * If a per-vertex output variable is used as an l-value, it is an error
841    * if the expression indicating the vertex number is not the identifier
842    * `gl_InvocationID`.
843    */
844   if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845      ir_variable *var = lhs->variable_referenced();
846      if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847         ir_rvalue *index = find_innermost_array_index(lhs);
848         ir_variable *index_var = index ? index->variable_referenced() : NULL;
849         if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850            _mesa_glsl_error(&loc, state,
851                             "Tessellation control shader outputs can only "
852                             "be indexed by gl_InvocationID");
853            return NULL;
854         }
855      }
856   }
857
858   /* If the types are identical, the assignment can trivially proceed.
859    */
860   if (rhs->type == lhs->type)
861      return rhs;
862
863   /* If the array element types are the same and the LHS is unsized,
864    * the assignment is okay for initializers embedded in variable
865    * declarations.
866    *
867    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868    * is handled by ir_dereference::is_lvalue.
869    */
870   const glsl_type *lhs_t = lhs->type;
871   const glsl_type *rhs_t = rhs->type;
872   bool unsized_array = false;
873   while(lhs_t->is_array()) {
874      if (rhs_t == lhs_t)
875         break; /* the rest of the inner arrays match so break out early */
876      if (!rhs_t->is_array()) {
877         unsized_array = false;
878         break; /* number of dimensions mismatch */
879      }
880      if (lhs_t->length == rhs_t->length) {
881         lhs_t = lhs_t->fields.array;
882         rhs_t = rhs_t->fields.array;
883         continue;
884      } else if (lhs_t->is_unsized_array()) {
885         unsized_array = true;
886      } else {
887         unsized_array = false;
888         break; /* sized array mismatch */
889      }
890      lhs_t = lhs_t->fields.array;
891      rhs_t = rhs_t->fields.array;
892   }
893   if (unsized_array) {
894      if (is_initializer) {
895         if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896            return rhs;
897      } else {
898         _mesa_glsl_error(&loc, state,
899                          "implicitly sized arrays cannot be assigned");
900         return NULL;
901      }
902   }
903
904   /* Check for implicit conversion in GLSL 1.20 */
905   if (apply_implicit_conversion(lhs->type, rhs, state)) {
906      if (rhs->type == lhs->type)
907         return rhs;
908   }
909
910   _mesa_glsl_error(&loc, state,
911                    "%s of type %s cannot be assigned to "
912                    "variable of type %s",
913                    is_initializer ? "initializer" : "value",
914                    rhs->type->name, lhs->type->name);
915
916   return NULL;
917}
918
919static void
920mark_whole_array_access(ir_rvalue *access)
921{
922   ir_dereference_variable *deref = access->as_dereference_variable();
923
924   if (deref && deref->var) {
925      deref->var->data.max_array_access = deref->type->length - 1;
926   }
927}
928
929static bool
930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931              const char *non_lvalue_description,
932              ir_rvalue *lhs, ir_rvalue *rhs,
933              ir_rvalue **out_rvalue, bool needs_rvalue,
934              bool is_initializer,
935              YYLTYPE lhs_loc)
936{
937   void *ctx = state;
938   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940   ir_variable *lhs_var = lhs->variable_referenced();
941   if (lhs_var)
942      lhs_var->data.assigned = true;
943
944   if (!error_emitted) {
945      if (non_lvalue_description != NULL) {
946         _mesa_glsl_error(&lhs_loc, state,
947                          "assignment to %s",
948                          non_lvalue_description);
949         error_emitted = true;
950      } else if (lhs_var != NULL && (lhs_var->data.read_only ||
951                 (lhs_var->data.mode == ir_var_shader_storage &&
952                  lhs_var->data.memory_read_only))) {
953         /* We can have memory_read_only set on both images and buffer variables,
954          * but in the former there is a distinction between assignments to
955          * the variable itself (read_only) and to the memory they point to
956          * (memory_read_only), while in the case of buffer variables there is
957          * no such distinction, that is why this check here is limited to
958          * buffer variables alone.
959          */
960         _mesa_glsl_error(&lhs_loc, state,
961                          "assignment to read-only variable '%s'",
962                          lhs_var->name);
963         error_emitted = true;
964      } else if (lhs->type->is_array() &&
965                 !state->check_version(120, 300, &lhs_loc,
966                                       "whole array assignment forbidden")) {
967         /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
968          *
969          *    "Other binary or unary expressions, non-dereferenced
970          *     arrays, function names, swizzles with repeated fields,
971          *     and constants cannot be l-values."
972          *
973          * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
974          */
975         error_emitted = true;
976      } else if (!lhs->is_lvalue(state)) {
977         _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
978         error_emitted = true;
979      }
980   }
981
982   ir_rvalue *new_rhs =
983      validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
984   if (new_rhs != NULL) {
985      rhs = new_rhs;
986
987      /* If the LHS array was not declared with a size, it takes it size from
988       * the RHS.  If the LHS is an l-value and a whole array, it must be a
989       * dereference of a variable.  Any other case would require that the LHS
990       * is either not an l-value or not a whole array.
991       */
992      if (lhs->type->is_unsized_array()) {
993         ir_dereference *const d = lhs->as_dereference();
994
995         assert(d != NULL);
996
997         ir_variable *const var = d->variable_referenced();
998
999         assert(var != NULL);
1000
1001         if (var->data.max_array_access >= rhs->type->array_size()) {
1002            /* FINISHME: This should actually log the location of the RHS. */
1003            _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1004                             "previous access",
1005                             var->data.max_array_access);
1006         }
1007
1008         var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1009                                                   rhs->type->array_size());
1010         d->type = var->type;
1011      }
1012      if (lhs->type->is_array()) {
1013         mark_whole_array_access(rhs);
1014         mark_whole_array_access(lhs);
1015      }
1016   } else {
1017     error_emitted = true;
1018   }
1019
1020   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1021    * but not post_inc) need the converted assigned value as an rvalue
1022    * to handle things like:
1023    *
1024    * i = j += 1;
1025    */
1026   if (needs_rvalue) {
1027      ir_rvalue *rvalue;
1028      if (!error_emitted) {
1029         ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1030                                                 ir_var_temporary);
1031         instructions->push_tail(var);
1032         instructions->push_tail(assign(var, rhs));
1033
1034         ir_dereference_variable *deref_var =
1035            new(ctx) ir_dereference_variable(var);
1036         instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1037         rvalue = new(ctx) ir_dereference_variable(var);
1038      } else {
1039         rvalue = ir_rvalue::error_value(ctx);
1040      }
1041      *out_rvalue = rvalue;
1042   } else {
1043      if (!error_emitted)
1044         instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1045      *out_rvalue = NULL;
1046   }
1047
1048   return error_emitted;
1049}
1050
1051static ir_rvalue *
1052get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1053{
1054   void *ctx = ralloc_parent(lvalue);
1055   ir_variable *var;
1056
1057   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1058                              ir_var_temporary);
1059   instructions->push_tail(var);
1060
1061   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1062                                                  lvalue));
1063
1064   return new(ctx) ir_dereference_variable(var);
1065}
1066
1067
1068ir_rvalue *
1069ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1070{
1071   (void) instructions;
1072   (void) state;
1073
1074   return NULL;
1075}
1076
1077bool
1078ast_node::has_sequence_subexpression() const
1079{
1080   return false;
1081}
1082
1083void
1084ast_node::set_is_lhs(bool /* new_value */)
1085{
1086}
1087
1088void
1089ast_function_expression::hir_no_rvalue(exec_list *instructions,
1090                                       struct _mesa_glsl_parse_state *state)
1091{
1092   (void)hir(instructions, state);
1093}
1094
1095void
1096ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1097                                         struct _mesa_glsl_parse_state *state)
1098{
1099   (void)hir(instructions, state);
1100}
1101
1102static ir_rvalue *
1103do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1104{
1105   int join_op;
1106   ir_rvalue *cmp = NULL;
1107
1108   if (operation == ir_binop_all_equal)
1109      join_op = ir_binop_logic_and;
1110   else
1111      join_op = ir_binop_logic_or;
1112
1113   switch (op0->type->base_type) {
1114   case GLSL_TYPE_FLOAT:
1115   case GLSL_TYPE_FLOAT16:
1116   case GLSL_TYPE_UINT:
1117   case GLSL_TYPE_INT:
1118   case GLSL_TYPE_BOOL:
1119   case GLSL_TYPE_DOUBLE:
1120   case GLSL_TYPE_UINT64:
1121   case GLSL_TYPE_INT64:
1122   case GLSL_TYPE_UINT16:
1123   case GLSL_TYPE_INT16:
1124   case GLSL_TYPE_UINT8:
1125   case GLSL_TYPE_INT8:
1126      return new(mem_ctx) ir_expression(operation, op0, op1);
1127
1128   case GLSL_TYPE_ARRAY: {
1129      for (unsigned int i = 0; i < op0->type->length; i++) {
1130         ir_rvalue *e0, *e1, *result;
1131
1132         e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1133                                                new(mem_ctx) ir_constant(i));
1134         e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1135                                                new(mem_ctx) ir_constant(i));
1136         result = do_comparison(mem_ctx, operation, e0, e1);
1137
1138         if (cmp) {
1139            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1140         } else {
1141            cmp = result;
1142         }
1143      }
1144
1145      mark_whole_array_access(op0);
1146      mark_whole_array_access(op1);
1147      break;
1148   }
1149
1150   case GLSL_TYPE_STRUCT: {
1151      for (unsigned int i = 0; i < op0->type->length; i++) {
1152         ir_rvalue *e0, *e1, *result;
1153         const char *field_name = op0->type->fields.structure[i].name;
1154
1155         e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1156                                                 field_name);
1157         e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1158                                                 field_name);
1159         result = do_comparison(mem_ctx, operation, e0, e1);
1160
1161         if (cmp) {
1162            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1163         } else {
1164            cmp = result;
1165         }
1166      }
1167      break;
1168   }
1169
1170   case GLSL_TYPE_ERROR:
1171   case GLSL_TYPE_VOID:
1172   case GLSL_TYPE_SAMPLER:
1173   case GLSL_TYPE_IMAGE:
1174   case GLSL_TYPE_INTERFACE:
1175   case GLSL_TYPE_ATOMIC_UINT:
1176   case GLSL_TYPE_SUBROUTINE:
1177   case GLSL_TYPE_FUNCTION:
1178      /* I assume a comparison of a struct containing a sampler just
1179       * ignores the sampler present in the type.
1180       */
1181      break;
1182   }
1183
1184   if (cmp == NULL)
1185      cmp = new(mem_ctx) ir_constant(true);
1186
1187   return cmp;
1188}
1189
1190/* For logical operations, we want to ensure that the operands are
1191 * scalar booleans.  If it isn't, emit an error and return a constant
1192 * boolean to avoid triggering cascading error messages.
1193 */
1194static ir_rvalue *
1195get_scalar_boolean_operand(exec_list *instructions,
1196                           struct _mesa_glsl_parse_state *state,
1197                           ast_expression *parent_expr,
1198                           int operand,
1199                           const char *operand_name,
1200                           bool *error_emitted)
1201{
1202   ast_expression *expr = parent_expr->subexpressions[operand];
1203   void *ctx = state;
1204   ir_rvalue *val = expr->hir(instructions, state);
1205
1206   if (val->type->is_boolean() && val->type->is_scalar())
1207      return val;
1208
1209   if (!*error_emitted) {
1210      YYLTYPE loc = expr->get_location();
1211      _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1212                       operand_name,
1213                       parent_expr->operator_string(parent_expr->oper));
1214      *error_emitted = true;
1215   }
1216
1217   return new(ctx) ir_constant(true);
1218}
1219
1220/**
1221 * If name refers to a builtin array whose maximum allowed size is less than
1222 * size, report an error and return true.  Otherwise return false.
1223 */
1224void
1225check_builtin_array_max_size(const char *name, unsigned size,
1226                             YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1227{
1228   if ((strcmp("gl_TexCoord", name) == 0)
1229       && (size > state->Const.MaxTextureCoords)) {
1230      /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1231       *
1232       *     "The size [of gl_TexCoord] can be at most
1233       *     gl_MaxTextureCoords."
1234       */
1235      _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1236                       "be larger than gl_MaxTextureCoords (%u)",
1237                       state->Const.MaxTextureCoords);
1238   } else if (strcmp("gl_ClipDistance", name) == 0) {
1239      state->clip_dist_size = size;
1240      if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1241         /* From section 7.1 (Vertex Shader Special Variables) of the
1242          * GLSL 1.30 spec:
1243          *
1244          *   "The gl_ClipDistance array is predeclared as unsized and
1245          *   must be sized by the shader either redeclaring it with a
1246          *   size or indexing it only with integral constant
1247          *   expressions. ... The size can be at most
1248          *   gl_MaxClipDistances."
1249          */
1250         _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1251                          "be larger than gl_MaxClipDistances (%u)",
1252                          state->Const.MaxClipPlanes);
1253      }
1254   } else if (strcmp("gl_CullDistance", name) == 0) {
1255      state->cull_dist_size = size;
1256      if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1257         /* From the ARB_cull_distance spec:
1258          *
1259          *   "The gl_CullDistance array is predeclared as unsized and
1260          *    must be sized by the shader either redeclaring it with
1261          *    a size or indexing it only with integral constant
1262          *    expressions. The size determines the number and set of
1263          *    enabled cull distances and can be at most
1264          *    gl_MaxCullDistances."
1265          */
1266         _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1267                          "be larger than gl_MaxCullDistances (%u)",
1268                          state->Const.MaxClipPlanes);
1269      }
1270   }
1271}
1272
1273/**
1274 * Create the constant 1, of a which is appropriate for incrementing and
1275 * decrementing values of the given GLSL type.  For example, if type is vec4,
1276 * this creates a constant value of 1.0 having type float.
1277 *
1278 * If the given type is invalid for increment and decrement operators, return
1279 * a floating point 1--the error will be detected later.
1280 */
1281static ir_rvalue *
1282constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1283{
1284   switch (type->base_type) {
1285   case GLSL_TYPE_UINT:
1286      return new(ctx) ir_constant((unsigned) 1);
1287   case GLSL_TYPE_INT:
1288      return new(ctx) ir_constant(1);
1289   case GLSL_TYPE_UINT64:
1290      return new(ctx) ir_constant((uint64_t) 1);
1291   case GLSL_TYPE_INT64:
1292      return new(ctx) ir_constant((int64_t) 1);
1293   default:
1294   case GLSL_TYPE_FLOAT:
1295      return new(ctx) ir_constant(1.0f);
1296   }
1297}
1298
1299ir_rvalue *
1300ast_expression::hir(exec_list *instructions,
1301                    struct _mesa_glsl_parse_state *state)
1302{
1303   return do_hir(instructions, state, true);
1304}
1305
1306void
1307ast_expression::hir_no_rvalue(exec_list *instructions,
1308                              struct _mesa_glsl_parse_state *state)
1309{
1310   do_hir(instructions, state, false);
1311}
1312
1313void
1314ast_expression::set_is_lhs(bool new_value)
1315{
1316   /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1317    * if we lack an identifier we can just skip it.
1318    */
1319   if (this->primary_expression.identifier == NULL)
1320      return;
1321
1322   this->is_lhs = new_value;
1323
1324   /* We need to go through the subexpressions tree to cover cases like
1325    * ast_field_selection
1326    */
1327   if (this->subexpressions[0] != NULL)
1328      this->subexpressions[0]->set_is_lhs(new_value);
1329}
1330
1331ir_rvalue *
1332ast_expression::do_hir(exec_list *instructions,
1333                       struct _mesa_glsl_parse_state *state,
1334                       bool needs_rvalue)
1335{
1336   void *ctx = state;
1337   static const int operations[AST_NUM_OPERATORS] = {
1338      -1,               /* ast_assign doesn't convert to ir_expression. */
1339      -1,               /* ast_plus doesn't convert to ir_expression. */
1340      ir_unop_neg,
1341      ir_binop_add,
1342      ir_binop_sub,
1343      ir_binop_mul,
1344      ir_binop_div,
1345      ir_binop_mod,
1346      ir_binop_lshift,
1347      ir_binop_rshift,
1348      ir_binop_less,
1349      ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1350      ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1351      ir_binop_gequal,
1352      ir_binop_all_equal,
1353      ir_binop_any_nequal,
1354      ir_binop_bit_and,
1355      ir_binop_bit_xor,
1356      ir_binop_bit_or,
1357      ir_unop_bit_not,
1358      ir_binop_logic_and,
1359      ir_binop_logic_xor,
1360      ir_binop_logic_or,
1361      ir_unop_logic_not,
1362
1363      /* Note: The following block of expression types actually convert
1364       * to multiple IR instructions.
1365       */
1366      ir_binop_mul,     /* ast_mul_assign */
1367      ir_binop_div,     /* ast_div_assign */
1368      ir_binop_mod,     /* ast_mod_assign */
1369      ir_binop_add,     /* ast_add_assign */
1370      ir_binop_sub,     /* ast_sub_assign */
1371      ir_binop_lshift,  /* ast_ls_assign */
1372      ir_binop_rshift,  /* ast_rs_assign */
1373      ir_binop_bit_and, /* ast_and_assign */
1374      ir_binop_bit_xor, /* ast_xor_assign */
1375      ir_binop_bit_or,  /* ast_or_assign */
1376
1377      -1,               /* ast_conditional doesn't convert to ir_expression. */
1378      ir_binop_add,     /* ast_pre_inc. */
1379      ir_binop_sub,     /* ast_pre_dec. */
1380      ir_binop_add,     /* ast_post_inc. */
1381      ir_binop_sub,     /* ast_post_dec. */
1382      -1,               /* ast_field_selection doesn't conv to ir_expression. */
1383      -1,               /* ast_array_index doesn't convert to ir_expression. */
1384      -1,               /* ast_function_call doesn't conv to ir_expression. */
1385      -1,               /* ast_identifier doesn't convert to ir_expression. */
1386      -1,               /* ast_int_constant doesn't convert to ir_expression. */
1387      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1388      -1,               /* ast_float_constant doesn't conv to ir_expression. */
1389      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1390      -1,               /* ast_sequence doesn't convert to ir_expression. */
1391      -1,               /* ast_aggregate shouldn't ever even get here. */
1392   };
1393   ir_rvalue *result = NULL;
1394   ir_rvalue *op[3];
1395   const struct glsl_type *type, *orig_type;
1396   bool error_emitted = false;
1397   YYLTYPE loc;
1398
1399   loc = this->get_location();
1400
1401   switch (this->oper) {
1402   case ast_aggregate:
1403      unreachable("ast_aggregate: Should never get here.");
1404
1405   case ast_assign: {
1406      this->subexpressions[0]->set_is_lhs(true);
1407      op[0] = this->subexpressions[0]->hir(instructions, state);
1408      op[1] = this->subexpressions[1]->hir(instructions, state);
1409
1410      error_emitted =
1411         do_assignment(instructions, state,
1412                       this->subexpressions[0]->non_lvalue_description,
1413                       op[0], op[1], &result, needs_rvalue, false,
1414                       this->subexpressions[0]->get_location());
1415      break;
1416   }
1417
1418   case ast_plus:
1419      op[0] = this->subexpressions[0]->hir(instructions, state);
1420
1421      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1422
1423      error_emitted = type->is_error();
1424
1425      result = op[0];
1426      break;
1427
1428   case ast_neg:
1429      op[0] = this->subexpressions[0]->hir(instructions, state);
1430
1431      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1432
1433      error_emitted = type->is_error();
1434
1435      result = new(ctx) ir_expression(operations[this->oper], type,
1436                                      op[0], NULL);
1437      break;
1438
1439   case ast_add:
1440   case ast_sub:
1441   case ast_mul:
1442   case ast_div:
1443      op[0] = this->subexpressions[0]->hir(instructions, state);
1444      op[1] = this->subexpressions[1]->hir(instructions, state);
1445
1446      type = arithmetic_result_type(op[0], op[1],
1447                                    (this->oper == ast_mul),
1448                                    state, & loc);
1449      error_emitted = type->is_error();
1450
1451      result = new(ctx) ir_expression(operations[this->oper], type,
1452                                      op[0], op[1]);
1453      break;
1454
1455   case ast_mod:
1456      op[0] = this->subexpressions[0]->hir(instructions, state);
1457      op[1] = this->subexpressions[1]->hir(instructions, state);
1458
1459      type = modulus_result_type(op[0], op[1], state, &loc);
1460
1461      assert(operations[this->oper] == ir_binop_mod);
1462
1463      result = new(ctx) ir_expression(operations[this->oper], type,
1464                                      op[0], op[1]);
1465      error_emitted = type->is_error();
1466      break;
1467
1468   case ast_lshift:
1469   case ast_rshift:
1470       if (!state->check_bitwise_operations_allowed(&loc)) {
1471          error_emitted = true;
1472       }
1473
1474       op[0] = this->subexpressions[0]->hir(instructions, state);
1475       op[1] = this->subexpressions[1]->hir(instructions, state);
1476       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1477                                &loc);
1478       result = new(ctx) ir_expression(operations[this->oper], type,
1479                                       op[0], op[1]);
1480       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1481       break;
1482
1483   case ast_less:
1484   case ast_greater:
1485   case ast_lequal:
1486   case ast_gequal:
1487      op[0] = this->subexpressions[0]->hir(instructions, state);
1488      op[1] = this->subexpressions[1]->hir(instructions, state);
1489
1490      type = relational_result_type(op[0], op[1], state, & loc);
1491
1492      /* The relational operators must either generate an error or result
1493       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1494       */
1495      assert(type->is_error()
1496             || (type->is_boolean() && type->is_scalar()));
1497
1498      /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1499       * the arguments and use < or >=.
1500       */
1501      if (this->oper == ast_greater || this->oper == ast_lequal) {
1502         ir_rvalue *const tmp = op[0];
1503         op[0] = op[1];
1504         op[1] = tmp;
1505      }
1506
1507      result = new(ctx) ir_expression(operations[this->oper], type,
1508                                      op[0], op[1]);
1509      error_emitted = type->is_error();
1510      break;
1511
1512   case ast_nequal:
1513   case ast_equal:
1514      op[0] = this->subexpressions[0]->hir(instructions, state);
1515      op[1] = this->subexpressions[1]->hir(instructions, state);
1516
1517      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1518       *
1519       *    "The equality operators equal (==), and not equal (!=)
1520       *    operate on all types. They result in a scalar Boolean. If
1521       *    the operand types do not match, then there must be a
1522       *    conversion from Section 4.1.10 "Implicit Conversions"
1523       *    applied to one operand that can make them match, in which
1524       *    case this conversion is done."
1525       */
1526
1527      if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1528         _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
1529                         "no operation `%1$s' exists that takes a left-hand "
1530                         "operand of type 'void' or a right operand of type "
1531                         "'void'", (this->oper == ast_equal) ? "==" : "!=");
1532         error_emitted = true;
1533      } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1534           && !apply_implicit_conversion(op[1]->type, op[0], state))
1535          || (op[0]->type != op[1]->type)) {
1536         _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1537                          "type", (this->oper == ast_equal) ? "==" : "!=");
1538         error_emitted = true;
1539      } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1540                 !state->check_version(120, 300, &loc,
1541                                       "array comparisons forbidden")) {
1542         error_emitted = true;
1543      } else if ((op[0]->type->contains_subroutine() ||
1544                  op[1]->type->contains_subroutine())) {
1545         _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1546         error_emitted = true;
1547      } else if ((op[0]->type->contains_opaque() ||
1548                  op[1]->type->contains_opaque())) {
1549         _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1550         error_emitted = true;
1551      }
1552
1553      if (error_emitted) {
1554         result = new(ctx) ir_constant(false);
1555      } else {
1556         result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1557         assert(result->type == glsl_type::bool_type);
1558      }
1559      break;
1560
1561   case ast_bit_and:
1562   case ast_bit_xor:
1563   case ast_bit_or:
1564      op[0] = this->subexpressions[0]->hir(instructions, state);
1565      op[1] = this->subexpressions[1]->hir(instructions, state);
1566      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1567      result = new(ctx) ir_expression(operations[this->oper], type,
1568                                      op[0], op[1]);
1569      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1570      break;
1571
1572   case ast_bit_not:
1573      op[0] = this->subexpressions[0]->hir(instructions, state);
1574
1575      if (!state->check_bitwise_operations_allowed(&loc)) {
1576         error_emitted = true;
1577      }
1578
1579      if (!op[0]->type->is_integer_32_64()) {
1580         _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1581         error_emitted = true;
1582      }
1583
1584      type = error_emitted ? glsl_type::error_type : op[0]->type;
1585      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1586      break;
1587
1588   case ast_logic_and: {
1589      exec_list rhs_instructions;
1590      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1591                                         "LHS", &error_emitted);
1592      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1593                                         "RHS", &error_emitted);
1594
1595      if (rhs_instructions.is_empty()) {
1596         result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1597      } else {
1598         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1599                                                       "and_tmp",
1600                                                       ir_var_temporary);
1601         instructions->push_tail(tmp);
1602
1603         ir_if *const stmt = new(ctx) ir_if(op[0]);
1604         instructions->push_tail(stmt);
1605
1606         stmt->then_instructions.append_list(&rhs_instructions);
1607         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1608         ir_assignment *const then_assign =
1609            new(ctx) ir_assignment(then_deref, op[1]);
1610         stmt->then_instructions.push_tail(then_assign);
1611
1612         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1613         ir_assignment *const else_assign =
1614            new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1615         stmt->else_instructions.push_tail(else_assign);
1616
1617         result = new(ctx) ir_dereference_variable(tmp);
1618      }
1619      break;
1620   }
1621
1622   case ast_logic_or: {
1623      exec_list rhs_instructions;
1624      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1625                                         "LHS", &error_emitted);
1626      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1627                                         "RHS", &error_emitted);
1628
1629      if (rhs_instructions.is_empty()) {
1630         result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1631      } else {
1632         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1633                                                       "or_tmp",
1634                                                       ir_var_temporary);
1635         instructions->push_tail(tmp);
1636
1637         ir_if *const stmt = new(ctx) ir_if(op[0]);
1638         instructions->push_tail(stmt);
1639
1640         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1641         ir_assignment *const then_assign =
1642            new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1643         stmt->then_instructions.push_tail(then_assign);
1644
1645         stmt->else_instructions.append_list(&rhs_instructions);
1646         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1647         ir_assignment *const else_assign =
1648            new(ctx) ir_assignment(else_deref, op[1]);
1649         stmt->else_instructions.push_tail(else_assign);
1650
1651         result = new(ctx) ir_dereference_variable(tmp);
1652      }
1653      break;
1654   }
1655
1656   case ast_logic_xor:
1657      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1658       *
1659       *    "The logical binary operators and (&&), or ( | | ), and
1660       *     exclusive or (^^). They operate only on two Boolean
1661       *     expressions and result in a Boolean expression."
1662       */
1663      op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1664                                         &error_emitted);
1665      op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1666                                         &error_emitted);
1667
1668      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1669                                      op[0], op[1]);
1670      break;
1671
1672   case ast_logic_not:
1673      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1674                                         "operand", &error_emitted);
1675
1676      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1677                                      op[0], NULL);
1678      break;
1679
1680   case ast_mul_assign:
1681   case ast_div_assign:
1682   case ast_add_assign:
1683   case ast_sub_assign: {
1684      this->subexpressions[0]->set_is_lhs(true);
1685      op[0] = this->subexpressions[0]->hir(instructions, state);
1686      op[1] = this->subexpressions[1]->hir(instructions, state);
1687
1688      orig_type = op[0]->type;
1689
1690      /* Break out if operand types were not parsed successfully. */
1691      if ((op[0]->type == glsl_type::error_type ||
1692           op[1]->type == glsl_type::error_type))
1693         break;
1694
1695      type = arithmetic_result_type(op[0], op[1],
1696                                    (this->oper == ast_mul_assign),
1697                                    state, & loc);
1698
1699      if (type != orig_type) {
1700         _mesa_glsl_error(& loc, state,
1701                          "could not implicitly convert "
1702                          "%s to %s", type->name, orig_type->name);
1703         type = glsl_type::error_type;
1704      }
1705
1706      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1707                                                   op[0], op[1]);
1708
1709      error_emitted =
1710         do_assignment(instructions, state,
1711                       this->subexpressions[0]->non_lvalue_description,
1712                       op[0]->clone(ctx, NULL), temp_rhs,
1713                       &result, needs_rvalue, false,
1714                       this->subexpressions[0]->get_location());
1715
1716      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1717       * explicitly test for this because none of the binary expression
1718       * operators allow array operands either.
1719       */
1720
1721      break;
1722   }
1723
1724   case ast_mod_assign: {
1725      this->subexpressions[0]->set_is_lhs(true);
1726      op[0] = this->subexpressions[0]->hir(instructions, state);
1727      op[1] = this->subexpressions[1]->hir(instructions, state);
1728
1729      orig_type = op[0]->type;
1730      type = modulus_result_type(op[0], op[1], state, &loc);
1731
1732      if (type != orig_type) {
1733         _mesa_glsl_error(& loc, state,
1734                          "could not implicitly convert "
1735                          "%s to %s", type->name, orig_type->name);
1736         type = glsl_type::error_type;
1737      }
1738
1739      assert(operations[this->oper] == ir_binop_mod);
1740
1741      ir_rvalue *temp_rhs;
1742      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1743                                        op[0], op[1]);
1744
1745      error_emitted =
1746         do_assignment(instructions, state,
1747                       this->subexpressions[0]->non_lvalue_description,
1748                       op[0]->clone(ctx, NULL), temp_rhs,
1749                       &result, needs_rvalue, false,
1750                       this->subexpressions[0]->get_location());
1751      break;
1752   }
1753
1754   case ast_ls_assign:
1755   case ast_rs_assign: {
1756      this->subexpressions[0]->set_is_lhs(true);
1757      op[0] = this->subexpressions[0]->hir(instructions, state);
1758      op[1] = this->subexpressions[1]->hir(instructions, state);
1759      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1760                               &loc);
1761      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1762                                                   type, op[0], op[1]);
1763      error_emitted =
1764         do_assignment(instructions, state,
1765                       this->subexpressions[0]->non_lvalue_description,
1766                       op[0]->clone(ctx, NULL), temp_rhs,
1767                       &result, needs_rvalue, false,
1768                       this->subexpressions[0]->get_location());
1769      break;
1770   }
1771
1772   case ast_and_assign:
1773   case ast_xor_assign:
1774   case ast_or_assign: {
1775      this->subexpressions[0]->set_is_lhs(true);
1776      op[0] = this->subexpressions[0]->hir(instructions, state);
1777      op[1] = this->subexpressions[1]->hir(instructions, state);
1778
1779      orig_type = op[0]->type;
1780      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1781
1782      if (type != orig_type) {
1783         _mesa_glsl_error(& loc, state,
1784                          "could not implicitly convert "
1785                          "%s to %s", type->name, orig_type->name);
1786         type = glsl_type::error_type;
1787      }
1788
1789      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1790                                                   type, op[0], op[1]);
1791      error_emitted =
1792         do_assignment(instructions, state,
1793                       this->subexpressions[0]->non_lvalue_description,
1794                       op[0]->clone(ctx, NULL), temp_rhs,
1795                       &result, needs_rvalue, false,
1796                       this->subexpressions[0]->get_location());
1797      break;
1798   }
1799
1800   case ast_conditional: {
1801      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1802       *
1803       *    "The ternary selection operator (?:). It operates on three
1804       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1805       *    first expression, which must result in a scalar Boolean."
1806       */
1807      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1808                                         "condition", &error_emitted);
1809
1810      /* The :? operator is implemented by generating an anonymous temporary
1811       * followed by an if-statement.  The last instruction in each branch of
1812       * the if-statement assigns a value to the anonymous temporary.  This
1813       * temporary is the r-value of the expression.
1814       */
1815      exec_list then_instructions;
1816      exec_list else_instructions;
1817
1818      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1819      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1820
1821      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1822       *
1823       *     "The second and third expressions can be any type, as
1824       *     long their types match, or there is a conversion in
1825       *     Section 4.1.10 "Implicit Conversions" that can be applied
1826       *     to one of the expressions to make their types match. This
1827       *     resulting matching type is the type of the entire
1828       *     expression."
1829       */
1830      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1831          && !apply_implicit_conversion(op[2]->type, op[1], state))
1832          || (op[1]->type != op[2]->type)) {
1833         YYLTYPE loc = this->subexpressions[1]->get_location();
1834
1835         _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1836                          "operator must have matching types");
1837         error_emitted = true;
1838         type = glsl_type::error_type;
1839      } else {
1840         type = op[1]->type;
1841      }
1842
1843      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1844       *
1845       *    "The second and third expressions must be the same type, but can
1846       *    be of any type other than an array."
1847       */
1848      if (type->is_array() &&
1849          !state->check_version(120, 300, &loc,
1850                                "second and third operands of ?: operator "
1851                                "cannot be arrays")) {
1852         error_emitted = true;
1853      }
1854
1855      /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1856       *
1857       *  "Except for array indexing, structure member selection, and
1858       *   parentheses, opaque variables are not allowed to be operands in
1859       *   expressions; such use results in a compile-time error."
1860       */
1861      if (type->contains_opaque()) {
1862         if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1863            _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1864                             "operands of the ?: operator", type->name);
1865            error_emitted = true;
1866         }
1867      }
1868
1869      ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1870
1871      if (then_instructions.is_empty()
1872          && else_instructions.is_empty()
1873          && cond_val != NULL) {
1874         result = cond_val->value.b[0] ? op[1] : op[2];
1875      } else {
1876         /* The copy to conditional_tmp reads the whole array. */
1877         if (type->is_array()) {
1878            mark_whole_array_access(op[1]);
1879            mark_whole_array_access(op[2]);
1880         }
1881
1882         ir_variable *const tmp =
1883            new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1884         instructions->push_tail(tmp);
1885
1886         ir_if *const stmt = new(ctx) ir_if(op[0]);
1887         instructions->push_tail(stmt);
1888
1889         then_instructions.move_nodes_to(& stmt->then_instructions);
1890         ir_dereference *const then_deref =
1891            new(ctx) ir_dereference_variable(tmp);
1892         ir_assignment *const then_assign =
1893            new(ctx) ir_assignment(then_deref, op[1]);
1894         stmt->then_instructions.push_tail(then_assign);
1895
1896         else_instructions.move_nodes_to(& stmt->else_instructions);
1897         ir_dereference *const else_deref =
1898            new(ctx) ir_dereference_variable(tmp);
1899         ir_assignment *const else_assign =
1900            new(ctx) ir_assignment(else_deref, op[2]);
1901         stmt->else_instructions.push_tail(else_assign);
1902
1903         result = new(ctx) ir_dereference_variable(tmp);
1904      }
1905      break;
1906   }
1907
1908   case ast_pre_inc:
1909   case ast_pre_dec: {
1910      this->non_lvalue_description = (this->oper == ast_pre_inc)
1911         ? "pre-increment operation" : "pre-decrement operation";
1912
1913      op[0] = this->subexpressions[0]->hir(instructions, state);
1914      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1915
1916      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1917
1918      ir_rvalue *temp_rhs;
1919      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1920                                        op[0], op[1]);
1921
1922      error_emitted =
1923         do_assignment(instructions, state,
1924                       this->subexpressions[0]->non_lvalue_description,
1925                       op[0]->clone(ctx, NULL), temp_rhs,
1926                       &result, needs_rvalue, false,
1927                       this->subexpressions[0]->get_location());
1928      break;
1929   }
1930
1931   case ast_post_inc:
1932   case ast_post_dec: {
1933      this->non_lvalue_description = (this->oper == ast_post_inc)
1934         ? "post-increment operation" : "post-decrement operation";
1935      op[0] = this->subexpressions[0]->hir(instructions, state);
1936      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1937
1938      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1939
1940      if (error_emitted) {
1941         result = ir_rvalue::error_value(ctx);
1942         break;
1943      }
1944
1945      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1946
1947      ir_rvalue *temp_rhs;
1948      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1949                                        op[0], op[1]);
1950
1951      /* Get a temporary of a copy of the lvalue before it's modified.
1952       * This may get thrown away later.
1953       */
1954      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1955
1956      ir_rvalue *junk_rvalue;
1957      error_emitted =
1958         do_assignment(instructions, state,
1959                       this->subexpressions[0]->non_lvalue_description,
1960                       op[0]->clone(ctx, NULL), temp_rhs,
1961                       &junk_rvalue, false, false,
1962                       this->subexpressions[0]->get_location());
1963
1964      break;
1965   }
1966
1967   case ast_field_selection:
1968      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1969      break;
1970
1971   case ast_array_index: {
1972      YYLTYPE index_loc = subexpressions[1]->get_location();
1973
1974      /* Getting if an array is being used uninitialized is beyond what we get
1975       * from ir_value.data.assigned. Setting is_lhs as true would force to
1976       * not raise a uninitialized warning when using an array
1977       */
1978      subexpressions[0]->set_is_lhs(true);
1979      op[0] = subexpressions[0]->hir(instructions, state);
1980      op[1] = subexpressions[1]->hir(instructions, state);
1981
1982      result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1983                                            loc, index_loc);
1984
1985      if (result->type->is_error())
1986         error_emitted = true;
1987
1988      break;
1989   }
1990
1991   case ast_unsized_array_dim:
1992      unreachable("ast_unsized_array_dim: Should never get here.");
1993
1994   case ast_function_call:
1995      /* Should *NEVER* get here.  ast_function_call should always be handled
1996       * by ast_function_expression::hir.
1997       */
1998      unreachable("ast_function_call: handled elsewhere ");
1999
2000   case ast_identifier: {
2001      /* ast_identifier can appear several places in a full abstract syntax
2002       * tree.  This particular use must be at location specified in the grammar
2003       * as 'variable_identifier'.
2004       */
2005      ir_variable *var =
2006         state->symbols->get_variable(this->primary_expression.identifier);
2007
2008      if (var == NULL) {
2009         /* the identifier might be a subroutine name */
2010         char *sub_name;
2011         sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2012         var = state->symbols->get_variable(sub_name);
2013         ralloc_free(sub_name);
2014      }
2015
2016      if (var != NULL) {
2017         var->data.used = true;
2018         result = new(ctx) ir_dereference_variable(var);
2019
2020         if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2021             && !this->is_lhs
2022             && result->variable_referenced()->data.assigned != true
2023             && !is_gl_identifier(var->name)) {
2024            _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2025                               this->primary_expression.identifier);
2026         }
2027
2028         /* From the EXT_shader_framebuffer_fetch spec:
2029          *
2030          *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2031          *    enabled in addition, it's an error to use gl_LastFragData if it
2032          *    hasn't been explicitly redeclared with layout(noncoherent)."
2033          */
2034         if (var->data.fb_fetch_output && var->data.memory_coherent &&
2035             !state->EXT_shader_framebuffer_fetch_enable) {
2036            _mesa_glsl_error(&loc, state,
2037                             "invalid use of framebuffer fetch output not "
2038                             "qualified with layout(noncoherent)");
2039         }
2040
2041      } else {
2042         _mesa_glsl_error(& loc, state, "`%s' undeclared",
2043                          this->primary_expression.identifier);
2044
2045         result = ir_rvalue::error_value(ctx);
2046         error_emitted = true;
2047      }
2048      break;
2049   }
2050
2051   case ast_int_constant:
2052      result = new(ctx) ir_constant(this->primary_expression.int_constant);
2053      break;
2054
2055   case ast_uint_constant:
2056      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2057      break;
2058
2059   case ast_float_constant:
2060      result = new(ctx) ir_constant(this->primary_expression.float_constant);
2061      break;
2062
2063   case ast_bool_constant:
2064      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2065      break;
2066
2067   case ast_double_constant:
2068      result = new(ctx) ir_constant(this->primary_expression.double_constant);
2069      break;
2070
2071   case ast_uint64_constant:
2072      result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2073      break;
2074
2075   case ast_int64_constant:
2076      result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2077      break;
2078
2079   case ast_sequence: {
2080      /* It should not be possible to generate a sequence in the AST without
2081       * any expressions in it.
2082       */
2083      assert(!this->expressions.is_empty());
2084
2085      /* The r-value of a sequence is the last expression in the sequence.  If
2086       * the other expressions in the sequence do not have side-effects (and
2087       * therefore add instructions to the instruction list), they get dropped
2088       * on the floor.
2089       */
2090      exec_node *previous_tail = NULL;
2091      YYLTYPE previous_operand_loc = loc;
2092
2093      foreach_list_typed (ast_node, ast, link, &this->expressions) {
2094         /* If one of the operands of comma operator does not generate any
2095          * code, we want to emit a warning.  At each pass through the loop
2096          * previous_tail will point to the last instruction in the stream
2097          * *before* processing the previous operand.  Naturally,
2098          * instructions->get_tail_raw() will point to the last instruction in
2099          * the stream *after* processing the previous operand.  If the two
2100          * pointers match, then the previous operand had no effect.
2101          *
2102          * The warning behavior here differs slightly from GCC.  GCC will
2103          * only emit a warning if none of the left-hand operands have an
2104          * effect.  However, it will emit a warning for each.  I believe that
2105          * there are some cases in C (especially with GCC extensions) where
2106          * it is useful to have an intermediate step in a sequence have no
2107          * effect, but I don't think these cases exist in GLSL.  Either way,
2108          * it would be a giant hassle to replicate that behavior.
2109          */
2110         if (previous_tail == instructions->get_tail_raw()) {
2111            _mesa_glsl_warning(&previous_operand_loc, state,
2112                               "left-hand operand of comma expression has "
2113                               "no effect");
2114         }
2115
2116         /* The tail is directly accessed instead of using the get_tail()
2117          * method for performance reasons.  get_tail() has extra code to
2118          * return NULL when the list is empty.  We don't care about that
2119          * here, so using get_tail_raw() is fine.
2120          */
2121         previous_tail = instructions->get_tail_raw();
2122         previous_operand_loc = ast->get_location();
2123
2124         result = ast->hir(instructions, state);
2125      }
2126
2127      /* Any errors should have already been emitted in the loop above.
2128       */
2129      error_emitted = true;
2130      break;
2131   }
2132   }
2133   type = NULL; /* use result->type, not type. */
2134   assert(result != NULL || !needs_rvalue);
2135
2136   if (result && result->type->is_error() && !error_emitted)
2137      _mesa_glsl_error(& loc, state, "type mismatch");
2138
2139   return result;
2140}
2141
2142bool
2143ast_expression::has_sequence_subexpression() const
2144{
2145   switch (this->oper) {
2146   case ast_plus:
2147   case ast_neg:
2148   case ast_bit_not:
2149   case ast_logic_not:
2150   case ast_pre_inc:
2151   case ast_pre_dec:
2152   case ast_post_inc:
2153   case ast_post_dec:
2154      return this->subexpressions[0]->has_sequence_subexpression();
2155
2156   case ast_assign:
2157   case ast_add:
2158   case ast_sub:
2159   case ast_mul:
2160   case ast_div:
2161   case ast_mod:
2162   case ast_lshift:
2163   case ast_rshift:
2164   case ast_less:
2165   case ast_greater:
2166   case ast_lequal:
2167   case ast_gequal:
2168   case ast_nequal:
2169   case ast_equal:
2170   case ast_bit_and:
2171   case ast_bit_xor:
2172   case ast_bit_or:
2173   case ast_logic_and:
2174   case ast_logic_or:
2175   case ast_logic_xor:
2176   case ast_array_index:
2177   case ast_mul_assign:
2178   case ast_div_assign:
2179   case ast_add_assign:
2180   case ast_sub_assign:
2181   case ast_mod_assign:
2182   case ast_ls_assign:
2183   case ast_rs_assign:
2184   case ast_and_assign:
2185   case ast_xor_assign:
2186   case ast_or_assign:
2187      return this->subexpressions[0]->has_sequence_subexpression() ||
2188             this->subexpressions[1]->has_sequence_subexpression();
2189
2190   case ast_conditional:
2191      return this->subexpressions[0]->has_sequence_subexpression() ||
2192             this->subexpressions[1]->has_sequence_subexpression() ||
2193             this->subexpressions[2]->has_sequence_subexpression();
2194
2195   case ast_sequence:
2196      return true;
2197
2198   case ast_field_selection:
2199   case ast_identifier:
2200   case ast_int_constant:
2201   case ast_uint_constant:
2202   case ast_float_constant:
2203   case ast_bool_constant:
2204   case ast_double_constant:
2205   case ast_int64_constant:
2206   case ast_uint64_constant:
2207      return false;
2208
2209   case ast_aggregate:
2210      return false;
2211
2212   case ast_function_call:
2213      unreachable("should be handled by ast_function_expression::hir");
2214
2215   case ast_unsized_array_dim:
2216      unreachable("ast_unsized_array_dim: Should never get here.");
2217   }
2218
2219   return false;
2220}
2221
2222ir_rvalue *
2223ast_expression_statement::hir(exec_list *instructions,
2224                              struct _mesa_glsl_parse_state *state)
2225{
2226   /* It is possible to have expression statements that don't have an
2227    * expression.  This is the solitary semicolon:
2228    *
2229    * for (i = 0; i < 5; i++)
2230    *     ;
2231    *
2232    * In this case the expression will be NULL.  Test for NULL and don't do
2233    * anything in that case.
2234    */
2235   if (expression != NULL)
2236      expression->hir_no_rvalue(instructions, state);
2237
2238   /* Statements do not have r-values.
2239    */
2240   return NULL;
2241}
2242
2243
2244ir_rvalue *
2245ast_compound_statement::hir(exec_list *instructions,
2246                            struct _mesa_glsl_parse_state *state)
2247{
2248   if (new_scope)
2249      state->symbols->push_scope();
2250
2251   foreach_list_typed (ast_node, ast, link, &this->statements)
2252      ast->hir(instructions, state);
2253
2254   if (new_scope)
2255      state->symbols->pop_scope();
2256
2257   /* Compound statements do not have r-values.
2258    */
2259   return NULL;
2260}
2261
2262/**
2263 * Evaluate the given exec_node (which should be an ast_node representing
2264 * a single array dimension) and return its integer value.
2265 */
2266static unsigned
2267process_array_size(exec_node *node,
2268                   struct _mesa_glsl_parse_state *state)
2269{
2270   void *mem_ctx = state;
2271
2272   exec_list dummy_instructions;
2273
2274   ast_node *array_size = exec_node_data(ast_node, node, link);
2275
2276   /**
2277    * Dimensions other than the outermost dimension can by unsized if they
2278    * are immediately sized by a constructor or initializer.
2279    */
2280   if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2281      return 0;
2282
2283   ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2284   YYLTYPE loc = array_size->get_location();
2285
2286   if (ir == NULL) {
2287      _mesa_glsl_error(& loc, state,
2288                       "array size could not be resolved");
2289      return 0;
2290   }
2291
2292   if (!ir->type->is_integer()) {
2293      _mesa_glsl_error(& loc, state,
2294                       "array size must be integer type");
2295      return 0;
2296   }
2297
2298   if (!ir->type->is_scalar()) {
2299      _mesa_glsl_error(& loc, state,
2300                       "array size must be scalar type");
2301      return 0;
2302   }
2303
2304   ir_constant *const size = ir->constant_expression_value(mem_ctx);
2305   if (size == NULL ||
2306       (state->is_version(120, 300) &&
2307        array_size->has_sequence_subexpression())) {
2308      _mesa_glsl_error(& loc, state, "array size must be a "
2309                       "constant valued expression");
2310      return 0;
2311   }
2312
2313   if (size->value.i[0] <= 0) {
2314      _mesa_glsl_error(& loc, state, "array size must be > 0");
2315      return 0;
2316   }
2317
2318   assert(size->type == ir->type);
2319
2320   /* If the array size is const (and we've verified that
2321    * it is) then no instructions should have been emitted
2322    * when we converted it to HIR. If they were emitted,
2323    * then either the array size isn't const after all, or
2324    * we are emitting unnecessary instructions.
2325    */
2326   assert(dummy_instructions.is_empty());
2327
2328   return size->value.u[0];
2329}
2330
2331static const glsl_type *
2332process_array_type(YYLTYPE *loc, const glsl_type *base,
2333                   ast_array_specifier *array_specifier,
2334                   struct _mesa_glsl_parse_state *state)
2335{
2336   const glsl_type *array_type = base;
2337
2338   if (array_specifier != NULL) {
2339      if (base->is_array()) {
2340
2341         /* From page 19 (page 25) of the GLSL 1.20 spec:
2342          *
2343          * "Only one-dimensional arrays may be declared."
2344          */
2345         if (!state->check_arrays_of_arrays_allowed(loc)) {
2346            return glsl_type::error_type;
2347         }
2348      }
2349
2350      for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2351           !node->is_head_sentinel(); node = node->prev) {
2352         unsigned array_size = process_array_size(node, state);
2353         array_type = glsl_type::get_array_instance(array_type, array_size);
2354      }
2355   }
2356
2357   return array_type;
2358}
2359
2360static bool
2361precision_qualifier_allowed(const glsl_type *type)
2362{
2363   /* Precision qualifiers apply to floating point, integer and opaque
2364    * types.
2365    *
2366    * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2367    *    "Any floating point or any integer declaration can have the type
2368    *    preceded by one of these precision qualifiers [...] Literal
2369    *    constants do not have precision qualifiers. Neither do Boolean
2370    *    variables.
2371    *
2372    * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2373    * spec also says:
2374    *
2375    *     "Precision qualifiers are added for code portability with OpenGL
2376    *     ES, not for functionality. They have the same syntax as in OpenGL
2377    *     ES."
2378    *
2379    * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2380    *
2381    *     "uniform lowp sampler2D sampler;
2382    *     highp vec2 coord;
2383    *     ...
2384    *     lowp vec4 col = texture2D (sampler, coord);
2385    *                                            // texture2D returns lowp"
2386    *
2387    * From this, we infer that GLSL 1.30 (and later) should allow precision
2388    * qualifiers on sampler types just like float and integer types.
2389    */
2390   const glsl_type *const t = type->without_array();
2391
2392   return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2393          !t->is_record();
2394}
2395
2396const glsl_type *
2397ast_type_specifier::glsl_type(const char **name,
2398                              struct _mesa_glsl_parse_state *state) const
2399{
2400   const struct glsl_type *type;
2401
2402   if (this->type != NULL)
2403      type = this->type;
2404   else if (structure)
2405      type = structure->type;
2406   else
2407      type = state->symbols->get_type(this->type_name);
2408   *name = this->type_name;
2409
2410   YYLTYPE loc = this->get_location();
2411   type = process_array_type(&loc, type, this->array_specifier, state);
2412
2413   return type;
2414}
2415
2416/**
2417 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2418 *
2419 * "The precision statement
2420 *
2421 *    precision precision-qualifier type;
2422 *
2423 *  can be used to establish a default precision qualifier. The type field can
2424 *  be either int or float or any of the sampler types, (...) If type is float,
2425 *  the directive applies to non-precision-qualified floating point type
2426 *  (scalar, vector, and matrix) declarations. If type is int, the directive
2427 *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2428 *  and unsigned) declarations."
2429 *
2430 * We use the symbol table to keep the values of the default precisions for
2431 * each 'type' in each scope and we use the 'type' string from the precision
2432 * statement as key in the symbol table. When we want to retrieve the default
2433 * precision associated with a given glsl_type we need to know the type string
2434 * associated with it. This is what this function returns.
2435 */
2436static const char *
2437get_type_name_for_precision_qualifier(const glsl_type *type)
2438{
2439   switch (type->base_type) {
2440   case GLSL_TYPE_FLOAT:
2441      return "float";
2442   case GLSL_TYPE_UINT:
2443   case GLSL_TYPE_INT:
2444      return "int";
2445   case GLSL_TYPE_ATOMIC_UINT:
2446      return "atomic_uint";
2447   case GLSL_TYPE_IMAGE:
2448   /* fallthrough */
2449   case GLSL_TYPE_SAMPLER: {
2450      const unsigned type_idx =
2451         type->sampler_array + 2 * type->sampler_shadow;
2452      const unsigned offset = type->is_sampler() ? 0 : 4;
2453      assert(type_idx < 4);
2454      switch (type->sampled_type) {
2455      case GLSL_TYPE_FLOAT:
2456         switch (type->sampler_dimensionality) {
2457         case GLSL_SAMPLER_DIM_1D: {
2458            assert(type->is_sampler());
2459            static const char *const names[4] = {
2460              "sampler1D", "sampler1DArray",
2461              "sampler1DShadow", "sampler1DArrayShadow"
2462            };
2463            return names[type_idx];
2464         }
2465         case GLSL_SAMPLER_DIM_2D: {
2466            static const char *const names[8] = {
2467              "sampler2D", "sampler2DArray",
2468              "sampler2DShadow", "sampler2DArrayShadow",
2469              "image2D", "image2DArray", NULL, NULL
2470            };
2471            return names[offset + type_idx];
2472         }
2473         case GLSL_SAMPLER_DIM_3D: {
2474            static const char *const names[8] = {
2475              "sampler3D", NULL, NULL, NULL,
2476              "image3D", NULL, NULL, NULL
2477            };
2478            return names[offset + type_idx];
2479         }
2480         case GLSL_SAMPLER_DIM_CUBE: {
2481            static const char *const names[8] = {
2482              "samplerCube", "samplerCubeArray",
2483              "samplerCubeShadow", "samplerCubeArrayShadow",
2484              "imageCube", NULL, NULL, NULL
2485            };
2486            return names[offset + type_idx];
2487         }
2488         case GLSL_SAMPLER_DIM_MS: {
2489            assert(type->is_sampler());
2490            static const char *const names[4] = {
2491              "sampler2DMS", "sampler2DMSArray", NULL, NULL
2492            };
2493            return names[type_idx];
2494         }
2495         case GLSL_SAMPLER_DIM_RECT: {
2496            assert(type->is_sampler());
2497            static const char *const names[4] = {
2498              "samplerRect", NULL, "samplerRectShadow", NULL
2499            };
2500            return names[type_idx];
2501         }
2502         case GLSL_SAMPLER_DIM_BUF: {
2503            static const char *const names[8] = {
2504              "samplerBuffer", NULL, NULL, NULL,
2505              "imageBuffer", NULL, NULL, NULL
2506            };
2507            return names[offset + type_idx];
2508         }
2509         case GLSL_SAMPLER_DIM_EXTERNAL: {
2510            assert(type->is_sampler());
2511            static const char *const names[4] = {
2512              "samplerExternalOES", NULL, NULL, NULL
2513            };
2514            return names[type_idx];
2515         }
2516         default:
2517            unreachable("Unsupported sampler/image dimensionality");
2518         } /* sampler/image float dimensionality */
2519         break;
2520      case GLSL_TYPE_INT:
2521         switch (type->sampler_dimensionality) {
2522         case GLSL_SAMPLER_DIM_1D: {
2523            assert(type->is_sampler());
2524            static const char *const names[4] = {
2525              "isampler1D", "isampler1DArray", NULL, NULL
2526            };
2527            return names[type_idx];
2528         }
2529         case GLSL_SAMPLER_DIM_2D: {
2530            static const char *const names[8] = {
2531              "isampler2D", "isampler2DArray", NULL, NULL,
2532              "iimage2D", "iimage2DArray", NULL, NULL
2533            };
2534            return names[offset + type_idx];
2535         }
2536         case GLSL_SAMPLER_DIM_3D: {
2537            static const char *const names[8] = {
2538              "isampler3D", NULL, NULL, NULL,
2539              "iimage3D", NULL, NULL, NULL
2540            };
2541            return names[offset + type_idx];
2542         }
2543         case GLSL_SAMPLER_DIM_CUBE: {
2544            static const char *const names[8] = {
2545              "isamplerCube", "isamplerCubeArray", NULL, NULL,
2546              "iimageCube", NULL, NULL, NULL
2547            };
2548            return names[offset + type_idx];
2549         }
2550         case GLSL_SAMPLER_DIM_MS: {
2551            assert(type->is_sampler());
2552            static const char *const names[4] = {
2553              "isampler2DMS", "isampler2DMSArray", NULL, NULL
2554            };
2555            return names[type_idx];
2556         }
2557         case GLSL_SAMPLER_DIM_RECT: {
2558            assert(type->is_sampler());
2559            static const char *const names[4] = {
2560              "isamplerRect", NULL, "isamplerRectShadow", NULL
2561            };
2562            return names[type_idx];
2563         }
2564         case GLSL_SAMPLER_DIM_BUF: {
2565            static const char *const names[8] = {
2566              "isamplerBuffer", NULL, NULL, NULL,
2567              "iimageBuffer", NULL, NULL, NULL
2568            };
2569            return names[offset + type_idx];
2570         }
2571         default:
2572            unreachable("Unsupported isampler/iimage dimensionality");
2573         } /* sampler/image int dimensionality */
2574         break;
2575      case GLSL_TYPE_UINT:
2576         switch (type->sampler_dimensionality) {
2577         case GLSL_SAMPLER_DIM_1D: {
2578            assert(type->is_sampler());
2579            static const char *const names[4] = {
2580              "usampler1D", "usampler1DArray", NULL, NULL
2581            };
2582            return names[type_idx];
2583         }
2584         case GLSL_SAMPLER_DIM_2D: {
2585            static const char *const names[8] = {
2586              "usampler2D", "usampler2DArray", NULL, NULL,
2587              "uimage2D", "uimage2DArray", NULL, NULL
2588            };
2589            return names[offset + type_idx];
2590         }
2591         case GLSL_SAMPLER_DIM_3D: {
2592            static const char *const names[8] = {
2593              "usampler3D", NULL, NULL, NULL,
2594              "uimage3D", NULL, NULL, NULL
2595            };
2596            return names[offset + type_idx];
2597         }
2598         case GLSL_SAMPLER_DIM_CUBE: {
2599            static const char *const names[8] = {
2600              "usamplerCube", "usamplerCubeArray", NULL, NULL,
2601              "uimageCube", NULL, NULL, NULL
2602            };
2603            return names[offset + type_idx];
2604         }
2605         case GLSL_SAMPLER_DIM_MS: {
2606            assert(type->is_sampler());
2607            static const char *const names[4] = {
2608              "usampler2DMS", "usampler2DMSArray", NULL, NULL
2609            };
2610            return names[type_idx];
2611         }
2612         case GLSL_SAMPLER_DIM_RECT: {
2613            assert(type->is_sampler());
2614            static const char *const names[4] = {
2615              "usamplerRect", NULL, "usamplerRectShadow", NULL
2616            };
2617            return names[type_idx];
2618         }
2619         case GLSL_SAMPLER_DIM_BUF: {
2620            static const char *const names[8] = {
2621              "usamplerBuffer", NULL, NULL, NULL,
2622              "uimageBuffer", NULL, NULL, NULL
2623            };
2624            return names[offset + type_idx];
2625         }
2626         default:
2627            unreachable("Unsupported usampler/uimage dimensionality");
2628         } /* sampler/image uint dimensionality */
2629         break;
2630      default:
2631         unreachable("Unsupported sampler/image type");
2632      } /* sampler/image type */
2633      break;
2634   } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2635   break;
2636   default:
2637      unreachable("Unsupported type");
2638   } /* base type */
2639}
2640
2641static unsigned
2642select_gles_precision(unsigned qual_precision,
2643                      const glsl_type *type,
2644                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2645{
2646   /* Precision qualifiers do not have any meaning in Desktop GLSL.
2647    * In GLES we take the precision from the type qualifier if present,
2648    * otherwise, if the type of the variable allows precision qualifiers at
2649    * all, we look for the default precision qualifier for that type in the
2650    * current scope.
2651    */
2652   assert(state->es_shader);
2653
2654   unsigned precision = GLSL_PRECISION_NONE;
2655   if (qual_precision) {
2656      precision = qual_precision;
2657   } else if (precision_qualifier_allowed(type)) {
2658      const char *type_name =
2659         get_type_name_for_precision_qualifier(type->without_array());
2660      assert(type_name != NULL);
2661
2662      precision =
2663         state->symbols->get_default_precision_qualifier(type_name);
2664      if (precision == ast_precision_none) {
2665         _mesa_glsl_error(loc, state,
2666                          "No precision specified in this scope for type `%s'",
2667                          type->name);
2668      }
2669   }
2670
2671
2672   /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2673    *
2674    *    "The default precision of all atomic types is highp. It is an error to
2675    *    declare an atomic type with a different precision or to specify the
2676    *    default precision for an atomic type to be lowp or mediump."
2677    */
2678   if (type->is_atomic_uint() && precision != ast_precision_high) {
2679      _mesa_glsl_error(loc, state,
2680                       "atomic_uint can only have highp precision qualifier");
2681   }
2682
2683   return precision;
2684}
2685
2686const glsl_type *
2687ast_fully_specified_type::glsl_type(const char **name,
2688                                    struct _mesa_glsl_parse_state *state) const
2689{
2690   return this->specifier->glsl_type(name, state);
2691}
2692
2693/**
2694 * Determine whether a toplevel variable declaration declares a varying.  This
2695 * function operates by examining the variable's mode and the shader target,
2696 * so it correctly identifies linkage variables regardless of whether they are
2697 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2698 *
2699 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2700 * this function will produce undefined results.
2701 */
2702static bool
2703is_varying_var(ir_variable *var, gl_shader_stage target)
2704{
2705   switch (target) {
2706   case MESA_SHADER_VERTEX:
2707      return var->data.mode == ir_var_shader_out;
2708   case MESA_SHADER_FRAGMENT:
2709      return var->data.mode == ir_var_shader_in;
2710   default:
2711      return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2712   }
2713}
2714
2715static bool
2716is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2717{
2718   if (is_varying_var(var, state->stage))
2719      return true;
2720
2721   /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2722    * "Only variables output from a vertex shader can be candidates
2723    * for invariance".
2724    */
2725   if (!state->is_version(130, 0))
2726      return false;
2727
2728   /*
2729    * Later specs remove this language - so allowed invariant
2730    * on fragment shader outputs as well.
2731    */
2732   if (state->stage == MESA_SHADER_FRAGMENT &&
2733       var->data.mode == ir_var_shader_out)
2734      return true;
2735   return false;
2736}
2737
2738/**
2739 * Matrix layout qualifiers are only allowed on certain types
2740 */
2741static void
2742validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2743                                YYLTYPE *loc,
2744                                const glsl_type *type,
2745                                ir_variable *var)
2746{
2747   if (var && !var->is_in_buffer_block()) {
2748      /* Layout qualifiers may only apply to interface blocks and fields in
2749       * them.
2750       */
2751      _mesa_glsl_error(loc, state,
2752                       "uniform block layout qualifiers row_major and "
2753                       "column_major may not be applied to variables "
2754                       "outside of uniform blocks");
2755   } else if (!type->without_array()->is_matrix()) {
2756      /* The OpenGL ES 3.0 conformance tests did not originally allow
2757       * matrix layout qualifiers on non-matrices.  However, the OpenGL
2758       * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2759       * amended to specifically allow these layouts on all types.  Emit
2760       * a warning so that people know their code may not be portable.
2761       */
2762      _mesa_glsl_warning(loc, state,
2763                         "uniform block layout qualifiers row_major and "
2764                         "column_major applied to non-matrix types may "
2765                         "be rejected by older compilers");
2766   }
2767}
2768
2769static bool
2770validate_xfb_buffer_qualifier(YYLTYPE *loc,
2771                              struct _mesa_glsl_parse_state *state,
2772                              unsigned xfb_buffer) {
2773   if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2774      _mesa_glsl_error(loc, state,
2775                       "invalid xfb_buffer specified %d is larger than "
2776                       "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2777                       xfb_buffer,
2778                       state->Const.MaxTransformFeedbackBuffers - 1);
2779      return false;
2780   }
2781
2782   return true;
2783}
2784
2785/* From the ARB_enhanced_layouts spec:
2786 *
2787 *    "Variables and block members qualified with *xfb_offset* can be
2788 *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2789 *    The offset must be a multiple of the size of the first component of
2790 *    the first qualified variable or block member, or a compile-time error
2791 *    results.  Further, if applied to an aggregate containing a double,
2792 *    the offset must also be a multiple of 8, and the space taken in the
2793 *    buffer will be a multiple of 8.
2794 */
2795static bool
2796validate_xfb_offset_qualifier(YYLTYPE *loc,
2797                              struct _mesa_glsl_parse_state *state,
2798                              int xfb_offset, const glsl_type *type,
2799                              unsigned component_size) {
2800  const glsl_type *t_without_array = type->without_array();
2801
2802   if (xfb_offset != -1 && type->is_unsized_array()) {
2803      _mesa_glsl_error(loc, state,
2804                       "xfb_offset can't be used with unsized arrays.");
2805      return false;
2806   }
2807
2808   /* Make sure nested structs don't contain unsized arrays, and validate
2809    * any xfb_offsets on interface members.
2810    */
2811   if (t_without_array->is_record() || t_without_array->is_interface())
2812      for (unsigned int i = 0; i < t_without_array->length; i++) {
2813         const glsl_type *member_t = t_without_array->fields.structure[i].type;
2814
2815         /* When the interface block doesn't have an xfb_offset qualifier then
2816          * we apply the component size rules at the member level.
2817          */
2818         if (xfb_offset == -1)
2819            component_size = member_t->contains_double() ? 8 : 4;
2820
2821         int xfb_offset = t_without_array->fields.structure[i].offset;
2822         validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2823                                       component_size);
2824      }
2825
2826  /* Nested structs or interface block without offset may not have had an
2827   * offset applied yet so return.
2828   */
2829   if (xfb_offset == -1) {
2830     return true;
2831   }
2832
2833   if (xfb_offset % component_size) {
2834      _mesa_glsl_error(loc, state,
2835                       "invalid qualifier xfb_offset=%d must be a multiple "
2836                       "of the first component size of the first qualified "
2837                       "variable or block member. Or double if an aggregate "
2838                       "that contains a double (%d).",
2839                       xfb_offset, component_size);
2840      return false;
2841   }
2842
2843   return true;
2844}
2845
2846static bool
2847validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2848                          unsigned stream)
2849{
2850   if (stream >= state->ctx->Const.MaxVertexStreams) {
2851      _mesa_glsl_error(loc, state,
2852                       "invalid stream specified %d is larger than "
2853                       "MAX_VERTEX_STREAMS - 1 (%d).",
2854                       stream, state->ctx->Const.MaxVertexStreams - 1);
2855      return false;
2856   }
2857
2858   return true;
2859}
2860
2861static void
2862apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2863                       YYLTYPE *loc,
2864                       ir_variable *var,
2865                       const glsl_type *type,
2866                       const ast_type_qualifier *qual)
2867{
2868   if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2869      _mesa_glsl_error(loc, state,
2870                       "the \"binding\" qualifier only applies to uniforms and "
2871                       "shader storage buffer objects");
2872      return;
2873   }
2874
2875   unsigned qual_binding;
2876   if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2877                                   &qual_binding)) {
2878      return;
2879   }
2880
2881   const struct gl_context *const ctx = state->ctx;
2882   unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2883   unsigned max_index = qual_binding + elements - 1;
2884   const glsl_type *base_type = type->without_array();
2885
2886   if (base_type->is_interface()) {
2887      /* UBOs.  From page 60 of the GLSL 4.20 specification:
2888       * "If the binding point for any uniform block instance is less than zero,
2889       *  or greater than or equal to the implementation-dependent maximum
2890       *  number of uniform buffer bindings, a compilation error will occur.
2891       *  When the binding identifier is used with a uniform block instanced as
2892       *  an array of size N, all elements of the array from binding through
2893       *  binding + N – 1 must be within this range."
2894       *
2895       * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2896       */
2897      if (qual->flags.q.uniform &&
2898         max_index >= ctx->Const.MaxUniformBufferBindings) {
2899         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2900                          "the maximum number of UBO binding points (%d)",
2901                          qual_binding, elements,
2902                          ctx->Const.MaxUniformBufferBindings);
2903         return;
2904      }
2905
2906      /* SSBOs. From page 67 of the GLSL 4.30 specification:
2907       * "If the binding point for any uniform or shader storage block instance
2908       *  is less than zero, or greater than or equal to the
2909       *  implementation-dependent maximum number of uniform buffer bindings, a
2910       *  compile-time error will occur. When the binding identifier is used
2911       *  with a uniform or shader storage block instanced as an array of size
2912       *  N, all elements of the array from binding through binding + N – 1 must
2913       *  be within this range."
2914       */
2915      if (qual->flags.q.buffer &&
2916         max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2917         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2918                          "the maximum number of SSBO binding points (%d)",
2919                          qual_binding, elements,
2920                          ctx->Const.MaxShaderStorageBufferBindings);
2921         return;
2922      }
2923   } else if (base_type->is_sampler()) {
2924      /* Samplers.  From page 63 of the GLSL 4.20 specification:
2925       * "If the binding is less than zero, or greater than or equal to the
2926       *  implementation-dependent maximum supported number of units, a
2927       *  compilation error will occur. When the binding identifier is used
2928       *  with an array of size N, all elements of the array from binding
2929       *  through binding + N - 1 must be within this range."
2930       */
2931      unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2932
2933      if (max_index >= limit) {
2934         _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2935                          "exceeds the maximum number of texture image units "
2936                          "(%u)", qual_binding, elements, limit);
2937
2938         return;
2939      }
2940   } else if (base_type->contains_atomic()) {
2941      assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2942      if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2943         _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2944                          "maximum number of atomic counter buffer bindings "
2945                          "(%u)", qual_binding,
2946                          ctx->Const.MaxAtomicBufferBindings);
2947
2948         return;
2949      }
2950   } else if ((state->is_version(420, 310) ||
2951               state->ARB_shading_language_420pack_enable) &&
2952              base_type->is_image()) {
2953      assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2954      if (max_index >= ctx->Const.MaxImageUnits) {
2955         _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2956                          "maximum number of image units (%d)", max_index,
2957                          ctx->Const.MaxImageUnits);
2958         return;
2959      }
2960
2961   } else {
2962      _mesa_glsl_error(loc, state,
2963                       "the \"binding\" qualifier only applies to uniform "
2964                       "blocks, storage blocks, opaque variables, or arrays "
2965                       "thereof");
2966      return;
2967   }
2968
2969   var->data.explicit_binding = true;
2970   var->data.binding = qual_binding;
2971
2972   return;
2973}
2974
2975static void
2976validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2977                                           YYLTYPE *loc,
2978                                           const glsl_interp_mode interpolation,
2979                                           const struct glsl_type *var_type,
2980                                           ir_variable_mode mode)
2981{
2982   if (state->stage != MESA_SHADER_FRAGMENT ||
2983       interpolation == INTERP_MODE_FLAT ||
2984       mode != ir_var_shader_in)
2985      return;
2986
2987   /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
2988    * so must integer vertex outputs.
2989    *
2990    * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2991    *    "Fragment shader inputs that are signed or unsigned integers or
2992    *    integer vectors must be qualified with the interpolation qualifier
2993    *    flat."
2994    *
2995    * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2996    *    "Fragment shader inputs that are, or contain, signed or unsigned
2997    *    integers or integer vectors must be qualified with the
2998    *    interpolation qualifier flat."
2999    *
3000    * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3001    *    "Vertex shader outputs that are, or contain, signed or unsigned
3002    *    integers or integer vectors must be qualified with the
3003    *    interpolation qualifier flat."
3004    *
3005    * Note that prior to GLSL 1.50, this requirement applied to vertex
3006    * outputs rather than fragment inputs.  That creates problems in the
3007    * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3008    * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3009    * apply the restriction to both vertex outputs and fragment inputs.
3010    *
3011    * Note also that the desktop GLSL specs are missing the text "or
3012    * contain"; this is presumably an oversight, since there is no
3013    * reasonable way to interpolate a fragment shader input that contains
3014    * an integer. See Khronos bug #15671.
3015    */
3016   if (state->is_version(130, 300)
3017       && var_type->contains_integer()) {
3018      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3019                       "an integer, then it must be qualified with 'flat'");
3020   }
3021
3022   /* Double fragment inputs must be qualified with 'flat'.
3023    *
3024    * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3025    *    "This extension does not support interpolation of double-precision
3026    *    values; doubles used as fragment shader inputs must be qualified as
3027    *    "flat"."
3028    *
3029    * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3030    *    "Fragment shader inputs that are signed or unsigned integers, integer
3031    *    vectors, or any double-precision floating-point type must be
3032    *    qualified with the interpolation qualifier flat."
3033    *
3034    * Note that the GLSL specs are missing the text "or contain"; this is
3035    * presumably an oversight. See Khronos bug #15671.
3036    *
3037    * The 'double' type does not exist in GLSL ES so far.
3038    */
3039   if (state->has_double()
3040       && var_type->contains_double()) {
3041      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3042                       "a double, then it must be qualified with 'flat'");
3043   }
3044
3045   /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3046    *
3047    * From section 4.3.4 of the ARB_bindless_texture spec:
3048    *
3049    *    "(modify last paragraph, p. 35, allowing samplers and images as
3050    *     fragment shader inputs) ... Fragment inputs can only be signed and
3051    *     unsigned integers and integer vectors, floating point scalars,
3052    *     floating-point vectors, matrices, sampler and image types, or arrays
3053    *     or structures of these.  Fragment shader inputs that are signed or
3054    *     unsigned integers, integer vectors, or any double-precision floating-
3055    *     point type, or any sampler or image type must be qualified with the
3056    *     interpolation qualifier "flat"."
3057    */
3058   if (state->has_bindless()
3059       && (var_type->contains_sampler() || var_type->contains_image())) {
3060      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3061                       "a bindless sampler (or image), then it must be "
3062                       "qualified with 'flat'");
3063   }
3064}
3065
3066static void
3067validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3068                                 YYLTYPE *loc,
3069                                 const glsl_interp_mode interpolation,
3070                                 const struct ast_type_qualifier *qual,
3071                                 const struct glsl_type *var_type,
3072                                 ir_variable_mode mode)
3073{
3074   /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3075    * not to vertex shader inputs nor fragment shader outputs.
3076    *
3077    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3078    *    "Outputs from a vertex shader (out) and inputs to a fragment
3079    *    shader (in) can be further qualified with one or more of these
3080    *    interpolation qualifiers"
3081    *    ...
3082    *    "These interpolation qualifiers may only precede the qualifiers in,
3083    *    centroid in, out, or centroid out in a declaration. They do not apply
3084    *    to the deprecated storage qualifiers varying or centroid
3085    *    varying. They also do not apply to inputs into a vertex shader or
3086    *    outputs from a fragment shader."
3087    *
3088    * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3089    *    "Outputs from a shader (out) and inputs to a shader (in) can be
3090    *    further qualified with one of these interpolation qualifiers."
3091    *    ...
3092    *    "These interpolation qualifiers may only precede the qualifiers
3093    *    in, centroid in, out, or centroid out in a declaration. They do
3094    *    not apply to inputs into a vertex shader or outputs from a
3095    *    fragment shader."
3096    */
3097   if (state->is_version(130, 300)
3098       && interpolation != INTERP_MODE_NONE) {
3099      const char *i = interpolation_string(interpolation);
3100      if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3101         _mesa_glsl_error(loc, state,
3102                          "interpolation qualifier `%s' can only be applied to "
3103                          "shader inputs or outputs.", i);
3104
3105      switch (state->stage) {
3106      case MESA_SHADER_VERTEX:
3107         if (mode == ir_var_shader_in) {
3108            _mesa_glsl_error(loc, state,
3109                             "interpolation qualifier '%s' cannot be applied to "
3110                             "vertex shader inputs", i);
3111         }
3112         break;
3113      case MESA_SHADER_FRAGMENT:
3114         if (mode == ir_var_shader_out) {
3115            _mesa_glsl_error(loc, state,
3116                             "interpolation qualifier '%s' cannot be applied to "
3117                             "fragment shader outputs", i);
3118         }
3119         break;
3120      default:
3121         break;
3122      }
3123   }
3124
3125   /* Interpolation qualifiers cannot be applied to 'centroid' and
3126    * 'centroid varying'.
3127    *
3128    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3129    *    "interpolation qualifiers may only precede the qualifiers in,
3130    *    centroid in, out, or centroid out in a declaration. They do not apply
3131    *    to the deprecated storage qualifiers varying or centroid varying."
3132    *
3133    * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3134    */
3135   if (state->is_version(130, 0)
3136       && interpolation != INTERP_MODE_NONE
3137       && qual->flags.q.varying) {
3138
3139      const char *i = interpolation_string(interpolation);
3140      const char *s;
3141      if (qual->flags.q.centroid)
3142         s = "centroid varying";
3143      else
3144         s = "varying";
3145
3146      _mesa_glsl_error(loc, state,
3147                       "qualifier '%s' cannot be applied to the "
3148                       "deprecated storage qualifier '%s'", i, s);
3149   }
3150
3151   validate_fragment_flat_interpolation_input(state, loc, interpolation,
3152                                              var_type, mode);
3153}
3154
3155static glsl_interp_mode
3156interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3157                                  const struct glsl_type *var_type,
3158                                  ir_variable_mode mode,
3159                                  struct _mesa_glsl_parse_state *state,
3160                                  YYLTYPE *loc)
3161{
3162   glsl_interp_mode interpolation;
3163   if (qual->flags.q.flat)
3164      interpolation = INTERP_MODE_FLAT;
3165   else if (qual->flags.q.noperspective)
3166      interpolation = INTERP_MODE_NOPERSPECTIVE;
3167   else if (qual->flags.q.smooth)
3168      interpolation = INTERP_MODE_SMOOTH;
3169   else
3170      interpolation = INTERP_MODE_NONE;
3171
3172   validate_interpolation_qualifier(state, loc,
3173                                    interpolation,
3174                                    qual, var_type, mode);
3175
3176   return interpolation;
3177}
3178
3179
3180static void
3181apply_explicit_location(const struct ast_type_qualifier *qual,
3182                        ir_variable *var,
3183                        struct _mesa_glsl_parse_state *state,
3184                        YYLTYPE *loc)
3185{
3186   bool fail = false;
3187
3188   unsigned qual_location;
3189   if (!process_qualifier_constant(state, loc, "location", qual->location,
3190                                   &qual_location)) {
3191      return;
3192   }
3193
3194   /* Checks for GL_ARB_explicit_uniform_location. */
3195   if (qual->flags.q.uniform) {
3196      if (!state->check_explicit_uniform_location_allowed(loc, var))
3197         return;
3198
3199      const struct gl_context *const ctx = state->ctx;
3200      unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3201
3202      if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3203         _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3204                          ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3205                          ctx->Const.MaxUserAssignableUniformLocations);
3206         return;
3207      }
3208
3209      var->data.explicit_location = true;
3210      var->data.location = qual_location;
3211      return;
3212   }
3213
3214   /* Between GL_ARB_explicit_attrib_location an
3215    * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3216    * stage can be assigned explicit locations.  The checking here associates
3217    * the correct extension with the correct stage's input / output:
3218    *
3219    *                     input            output
3220    *                     -----            ------
3221    * vertex              explicit_loc     sso
3222    * tess control        sso              sso
3223    * tess eval           sso              sso
3224    * geometry            sso              sso
3225    * fragment            sso              explicit_loc
3226    */
3227   switch (state->stage) {
3228   case MESA_SHADER_VERTEX:
3229      if (var->data.mode == ir_var_shader_in) {
3230         if (!state->check_explicit_attrib_location_allowed(loc, var))
3231            return;
3232
3233         break;
3234      }
3235
3236      if (var->data.mode == ir_var_shader_out) {
3237         if (!state->check_separate_shader_objects_allowed(loc, var))
3238            return;
3239
3240         break;
3241      }
3242
3243      fail = true;
3244      break;
3245
3246   case MESA_SHADER_TESS_CTRL:
3247   case MESA_SHADER_TESS_EVAL:
3248   case MESA_SHADER_GEOMETRY:
3249      if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3250         if (!state->check_separate_shader_objects_allowed(loc, var))
3251            return;
3252
3253         break;
3254      }
3255
3256      fail = true;
3257      break;
3258
3259   case MESA_SHADER_FRAGMENT:
3260      if (var->data.mode == ir_var_shader_in) {
3261         if (!state->check_separate_shader_objects_allowed(loc, var))
3262            return;
3263
3264         break;
3265      }
3266
3267      if (var->data.mode == ir_var_shader_out) {
3268         if (!state->check_explicit_attrib_location_allowed(loc, var))
3269            return;
3270
3271         break;
3272      }
3273
3274      fail = true;
3275      break;
3276
3277   case MESA_SHADER_COMPUTE:
3278      _mesa_glsl_error(loc, state,
3279                       "compute shader variables cannot be given "
3280                       "explicit locations");
3281      return;
3282   default:
3283      fail = true;
3284      break;
3285   };
3286
3287   if (fail) {
3288      _mesa_glsl_error(loc, state,
3289                       "%s cannot be given an explicit location in %s shader",
3290                       mode_string(var),
3291      _mesa_shader_stage_to_string(state->stage));
3292   } else {
3293      var->data.explicit_location = true;
3294
3295      switch (state->stage) {
3296      case MESA_SHADER_VERTEX:
3297         var->data.location = (var->data.mode == ir_var_shader_in)
3298            ? (qual_location + VERT_ATTRIB_GENERIC0)
3299            : (qual_location + VARYING_SLOT_VAR0);
3300         break;
3301
3302      case MESA_SHADER_TESS_CTRL:
3303      case MESA_SHADER_TESS_EVAL:
3304      case MESA_SHADER_GEOMETRY:
3305         if (var->data.patch)
3306            var->data.location = qual_location + VARYING_SLOT_PATCH0;
3307         else
3308            var->data.location = qual_location + VARYING_SLOT_VAR0;
3309         break;
3310
3311      case MESA_SHADER_FRAGMENT:
3312         var->data.location = (var->data.mode == ir_var_shader_out)
3313            ? (qual_location + FRAG_RESULT_DATA0)
3314            : (qual_location + VARYING_SLOT_VAR0);
3315         break;
3316      default:
3317         assert(!"Unexpected shader type");
3318         break;
3319      }
3320
3321      /* Check if index was set for the uniform instead of the function */
3322      if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3323         _mesa_glsl_error(loc, state, "an index qualifier can only be "
3324                          "used with subroutine functions");
3325         return;
3326      }
3327
3328      unsigned qual_index;
3329      if (qual->flags.q.explicit_index &&
3330          process_qualifier_constant(state, loc, "index", qual->index,
3331                                     &qual_index)) {
3332         /* From the GLSL 4.30 specification, section 4.4.2 (Output
3333          * Layout Qualifiers):
3334          *
3335          * "It is also a compile-time error if a fragment shader
3336          *  sets a layout index to less than 0 or greater than 1."
3337          *
3338          * Older specifications don't mandate a behavior; we take
3339          * this as a clarification and always generate the error.
3340          */
3341         if (qual_index > 1) {
3342            _mesa_glsl_error(loc, state,
3343                             "explicit index may only be 0 or 1");
3344         } else {
3345            var->data.explicit_index = true;
3346            var->data.index = qual_index;
3347         }
3348      }
3349   }
3350}
3351
3352static bool
3353validate_storage_for_sampler_image_types(ir_variable *var,
3354                                         struct _mesa_glsl_parse_state *state,
3355                                         YYLTYPE *loc)
3356{
3357   /* From section 4.1.7 of the GLSL 4.40 spec:
3358    *
3359    *    "[Opaque types] can only be declared as function
3360    *     parameters or uniform-qualified variables."
3361    *
3362    * From section 4.1.7 of the ARB_bindless_texture spec:
3363    *
3364    *    "Samplers may be declared as shader inputs and outputs, as uniform
3365    *     variables, as temporary variables, and as function parameters."
3366    *
3367    * From section 4.1.X of the ARB_bindless_texture spec:
3368    *
3369    *    "Images may be declared as shader inputs and outputs, as uniform
3370    *     variables, as temporary variables, and as function parameters."
3371    */
3372   if (state->has_bindless()) {
3373      if (var->data.mode != ir_var_auto &&
3374          var->data.mode != ir_var_uniform &&
3375          var->data.mode != ir_var_shader_in &&
3376          var->data.mode != ir_var_shader_out &&
3377          var->data.mode != ir_var_function_in &&
3378          var->data.mode != ir_var_function_out &&
3379          var->data.mode != ir_var_function_inout) {
3380         _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3381                         "only be declared as shader inputs and outputs, as "
3382                         "uniform variables, as temporary variables and as "
3383                         "function parameters");
3384         return false;
3385      }
3386   } else {
3387      if (var->data.mode != ir_var_uniform &&
3388          var->data.mode != ir_var_function_in) {
3389         _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3390                          "declared as function parameters or "
3391                          "uniform-qualified global variables");
3392         return false;
3393      }
3394   }
3395   return true;
3396}
3397
3398static bool
3399validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3400                                   YYLTYPE *loc,
3401                                   const struct ast_type_qualifier *qual,
3402                                   const glsl_type *type)
3403{
3404   /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3405    *
3406    * "Memory qualifiers are only supported in the declarations of image
3407    *  variables, buffer variables, and shader storage blocks; it is an error
3408    *  to use such qualifiers in any other declarations.
3409    */
3410   if (!type->is_image() && !qual->flags.q.buffer) {
3411      if (qual->flags.q.read_only ||
3412          qual->flags.q.write_only ||
3413          qual->flags.q.coherent ||
3414          qual->flags.q._volatile ||
3415          qual->flags.q.restrict_flag) {
3416         _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3417                          "in the declarations of image variables, buffer "
3418                          "variables, and shader storage blocks");
3419         return false;
3420      }
3421   }
3422   return true;
3423}
3424
3425static bool
3426validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3427                                         YYLTYPE *loc,
3428                                         const struct ast_type_qualifier *qual,
3429                                         const glsl_type *type)
3430{
3431   /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3432    *
3433    * "Format layout qualifiers can be used on image variable declarations
3434    *  (those declared with a basic type  having “image ” in its keyword)."
3435    */
3436   if (!type->is_image() && qual->flags.q.explicit_image_format) {
3437      _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3438                       "applied to images");
3439      return false;
3440   }
3441   return true;
3442}
3443
3444static void
3445apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3446                                  ir_variable *var,
3447                                  struct _mesa_glsl_parse_state *state,
3448                                  YYLTYPE *loc)
3449{
3450   const glsl_type *base_type = var->type->without_array();
3451
3452   if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3453       !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3454      return;
3455
3456   if (!base_type->is_image())
3457      return;
3458
3459   if (!validate_storage_for_sampler_image_types(var, state, loc))
3460      return;
3461
3462   var->data.memory_read_only |= qual->flags.q.read_only;
3463   var->data.memory_write_only |= qual->flags.q.write_only;
3464   var->data.memory_coherent |= qual->flags.q.coherent;
3465   var->data.memory_volatile |= qual->flags.q._volatile;
3466   var->data.memory_restrict |= qual->flags.q.restrict_flag;
3467
3468   if (qual->flags.q.explicit_image_format) {
3469      if (var->data.mode == ir_var_function_in) {
3470         _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3471                          "image function parameters");
3472      }
3473
3474      if (qual->image_base_type != base_type->sampled_type) {
3475         _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3476                          "data type of the image");
3477      }
3478
3479      var->data.image_format = qual->image_format;
3480   } else {
3481      if (var->data.mode == ir_var_uniform) {
3482         if (state->es_shader) {
3483            _mesa_glsl_error(loc, state, "all image uniforms must have a "
3484                             "format layout qualifier");
3485         } else if (!qual->flags.q.write_only) {
3486            _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3487                             "`writeonly' must have a format layout qualifier");
3488         }
3489      }
3490      var->data.image_format = GL_NONE;
3491   }
3492
3493   /* From page 70 of the GLSL ES 3.1 specification:
3494    *
3495    * "Except for image variables qualified with the format qualifiers r32f,
3496    *  r32i, and r32ui, image variables must specify either memory qualifier
3497    *  readonly or the memory qualifier writeonly."
3498    */
3499   if (state->es_shader &&
3500       var->data.image_format != GL_R32F &&
3501       var->data.image_format != GL_R32I &&
3502       var->data.image_format != GL_R32UI &&
3503       !var->data.memory_read_only &&
3504       !var->data.memory_write_only) {
3505      _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3506                       "r32i or r32ui must be qualified `readonly' or "
3507                       "`writeonly'");
3508   }
3509}
3510
3511static inline const char*
3512get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3513{
3514   if (origin_upper_left && pixel_center_integer)
3515      return "origin_upper_left, pixel_center_integer";
3516   else if (origin_upper_left)
3517      return "origin_upper_left";
3518   else if (pixel_center_integer)
3519      return "pixel_center_integer";
3520   else
3521      return " ";
3522}
3523
3524static inline bool
3525is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3526                                       const struct ast_type_qualifier *qual)
3527{
3528   /* If gl_FragCoord was previously declared, and the qualifiers were
3529    * different in any way, return true.
3530    */
3531   if (state->fs_redeclares_gl_fragcoord) {
3532      return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3533         || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3534   }
3535
3536   return false;
3537}
3538
3539static inline void
3540validate_array_dimensions(const glsl_type *t,
3541                          struct _mesa_glsl_parse_state *state,
3542                          YYLTYPE *loc) {
3543   if (t->is_array()) {
3544      t = t->fields.array;
3545      while (t->is_array()) {
3546         if (t->is_unsized_array()) {
3547            _mesa_glsl_error(loc, state,
3548                             "only the outermost array dimension can "
3549                             "be unsized",
3550                             t->name);
3551            break;
3552         }
3553         t = t->fields.array;
3554      }
3555   }
3556}
3557
3558static void
3559apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3560                                     ir_variable *var,
3561                                     struct _mesa_glsl_parse_state *state,
3562                                     YYLTYPE *loc)
3563{
3564   bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3565                               qual->flags.q.bindless_image ||
3566                               qual->flags.q.bound_sampler ||
3567                               qual->flags.q.bound_image;
3568
3569   /* The ARB_bindless_texture spec says:
3570    *
3571    * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3572    *  spec"
3573    *
3574    * "If these layout qualifiers are applied to other types of default block
3575    *  uniforms, or variables with non-uniform storage, a compile-time error
3576    *  will be generated."
3577    */
3578   if (has_local_qualifiers && !qual->flags.q.uniform) {
3579      _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3580                       "can only be applied to default block uniforms or "
3581                       "variables with uniform storage");
3582      return;
3583   }
3584
3585   /* The ARB_bindless_texture spec doesn't state anything in this situation,
3586    * but it makes sense to only allow bindless_sampler/bound_sampler for
3587    * sampler types, and respectively bindless_image/bound_image for image
3588    * types.
3589    */
3590   if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3591       !var->type->contains_sampler()) {
3592      _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3593                       "be applied to sampler types");
3594      return;
3595   }
3596
3597   if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3598       !var->type->contains_image()) {
3599      _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3600                       "applied to image types");
3601      return;
3602   }
3603
3604   /* The bindless_sampler/bindless_image (and respectively
3605    * bound_sampler/bound_image) layout qualifiers can be set at global and at
3606    * local scope.
3607    */
3608   if (var->type->contains_sampler() || var->type->contains_image()) {
3609      var->data.bindless = qual->flags.q.bindless_sampler ||
3610                           qual->flags.q.bindless_image ||
3611                           state->bindless_sampler_specified ||
3612                           state->bindless_image_specified;
3613
3614      var->data.bound = qual->flags.q.bound_sampler ||
3615                        qual->flags.q.bound_image ||
3616                        state->bound_sampler_specified ||
3617                        state->bound_image_specified;
3618   }
3619}
3620
3621static void
3622apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3623                                   ir_variable *var,
3624                                   struct _mesa_glsl_parse_state *state,
3625                                   YYLTYPE *loc)
3626{
3627   if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3628
3629      /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3630       *
3631       *    "Within any shader, the first redeclarations of gl_FragCoord
3632       *     must appear before any use of gl_FragCoord."
3633       *
3634       * Generate a compiler error if above condition is not met by the
3635       * fragment shader.
3636       */
3637      ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3638      if (earlier != NULL &&
3639          earlier->data.used &&
3640          !state->fs_redeclares_gl_fragcoord) {
3641         _mesa_glsl_error(loc, state,
3642                          "gl_FragCoord used before its first redeclaration "
3643                          "in fragment shader");
3644      }
3645
3646      /* Make sure all gl_FragCoord redeclarations specify the same layout
3647       * qualifiers.
3648       */
3649      if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3650         const char *const qual_string =
3651            get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3652                                        qual->flags.q.pixel_center_integer);
3653
3654         const char *const state_string =
3655            get_layout_qualifier_string(state->fs_origin_upper_left,
3656                                        state->fs_pixel_center_integer);
3657
3658         _mesa_glsl_error(loc, state,
3659                          "gl_FragCoord redeclared with different layout "
3660                          "qualifiers (%s) and (%s) ",
3661                          state_string,
3662                          qual_string);
3663      }
3664      state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3665      state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3666      state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3667         !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3668      state->fs_redeclares_gl_fragcoord =
3669         state->fs_origin_upper_left ||
3670         state->fs_pixel_center_integer ||
3671         state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3672   }
3673
3674   var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3675   var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3676   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3677       && (strcmp(var->name, "gl_FragCoord") != 0)) {
3678      const char *const qual_string = (qual->flags.q.origin_upper_left)
3679         ? "origin_upper_left" : "pixel_center_integer";
3680
3681      _mesa_glsl_error(loc, state,
3682                       "layout qualifier `%s' can only be applied to "
3683                       "fragment shader input `gl_FragCoord'",
3684                       qual_string);
3685   }
3686
3687   if (qual->flags.q.explicit_location) {
3688      apply_explicit_location(qual, var, state, loc);
3689
3690      if (qual->flags.q.explicit_component) {
3691         unsigned qual_component;
3692         if (process_qualifier_constant(state, loc, "component",
3693                                        qual->component, &qual_component)) {
3694            const glsl_type *type = var->type->without_array();
3695            unsigned components = type->component_slots();
3696
3697            if (type->is_matrix() || type->is_record()) {
3698               _mesa_glsl_error(loc, state, "component layout qualifier "
3699                                "cannot be applied to a matrix, a structure, "
3700                                "a block, or an array containing any of "
3701                                "these.");
3702            } else if (qual_component != 0 &&
3703                (qual_component + components - 1) > 3) {
3704               _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3705                                (qual_component + components - 1));
3706            } else if (qual_component == 1 && type->is_64bit()) {
3707               /* We don't bother checking for 3 as it should be caught by the
3708                * overflow check above.
3709                */
3710               _mesa_glsl_error(loc, state, "doubles cannot begin at "
3711                                "component 1 or 3");
3712            } else {
3713               var->data.explicit_component = true;
3714               var->data.location_frac = qual_component;
3715            }
3716         }
3717      }
3718   } else if (qual->flags.q.explicit_index) {
3719      if (!qual->subroutine_list)
3720         _mesa_glsl_error(loc, state,
3721                          "explicit index requires explicit location");
3722   } else if (qual->flags.q.explicit_component) {
3723      _mesa_glsl_error(loc, state,
3724                       "explicit component requires explicit location");
3725   }
3726
3727   if (qual->flags.q.explicit_binding) {
3728      apply_explicit_binding(state, loc, var, var->type, qual);
3729   }
3730
3731   if (state->stage == MESA_SHADER_GEOMETRY &&
3732       qual->flags.q.out && qual->flags.q.stream) {
3733      unsigned qual_stream;
3734      if (process_qualifier_constant(state, loc, "stream", qual->stream,
3735                                     &qual_stream) &&
3736          validate_stream_qualifier(loc, state, qual_stream)) {
3737         var->data.stream = qual_stream;
3738      }
3739   }
3740
3741   if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3742      unsigned qual_xfb_buffer;
3743      if (process_qualifier_constant(state, loc, "xfb_buffer",
3744                                     qual->xfb_buffer, &qual_xfb_buffer) &&
3745          validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3746         var->data.xfb_buffer = qual_xfb_buffer;
3747         if (qual->flags.q.explicit_xfb_buffer)
3748            var->data.explicit_xfb_buffer = true;
3749      }
3750   }
3751
3752   if (qual->flags.q.explicit_xfb_offset) {
3753      unsigned qual_xfb_offset;
3754      unsigned component_size = var->type->contains_double() ? 8 : 4;
3755
3756      if (process_qualifier_constant(state, loc, "xfb_offset",
3757                                     qual->offset, &qual_xfb_offset) &&
3758          validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3759                                        var->type, component_size)) {
3760         var->data.offset = qual_xfb_offset;
3761         var->data.explicit_xfb_offset = true;
3762      }
3763   }
3764
3765   if (qual->flags.q.explicit_xfb_stride) {
3766      unsigned qual_xfb_stride;
3767      if (process_qualifier_constant(state, loc, "xfb_stride",
3768                                     qual->xfb_stride, &qual_xfb_stride)) {
3769         var->data.xfb_stride = qual_xfb_stride;
3770         var->data.explicit_xfb_stride = true;
3771      }
3772   }
3773
3774   if (var->type->contains_atomic()) {
3775      if (var->data.mode == ir_var_uniform) {
3776         if (var->data.explicit_binding) {
3777            unsigned *offset =
3778               &state->atomic_counter_offsets[var->data.binding];
3779
3780            if (*offset % ATOMIC_COUNTER_SIZE)
3781               _mesa_glsl_error(loc, state,
3782                                "misaligned atomic counter offset");
3783
3784            var->data.offset = *offset;
3785            *offset += var->type->atomic_size();
3786
3787         } else {
3788            _mesa_glsl_error(loc, state,
3789                             "atomic counters require explicit binding point");
3790         }
3791      } else if (var->data.mode != ir_var_function_in) {
3792         _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3793                          "function parameters or uniform-qualified "
3794                          "global variables");
3795      }
3796   }
3797
3798   if (var->type->contains_sampler() &&
3799       !validate_storage_for_sampler_image_types(var, state, loc))
3800      return;
3801
3802   /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3803    * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3804    * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3805    * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3806    * These extensions and all following extensions that add the 'layout'
3807    * keyword have been modified to require the use of 'in' or 'out'.
3808    *
3809    * The following extension do not allow the deprecated keywords:
3810    *
3811    *    GL_AMD_conservative_depth
3812    *    GL_ARB_conservative_depth
3813    *    GL_ARB_gpu_shader5
3814    *    GL_ARB_separate_shader_objects
3815    *    GL_ARB_tessellation_shader
3816    *    GL_ARB_transform_feedback3
3817    *    GL_ARB_uniform_buffer_object
3818    *
3819    * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3820    * allow layout with the deprecated keywords.
3821    */
3822   const bool relaxed_layout_qualifier_checking =
3823      state->ARB_fragment_coord_conventions_enable;
3824
3825   const bool uses_deprecated_qualifier = qual->flags.q.attribute
3826      || qual->flags.q.varying;
3827   if (qual->has_layout() && uses_deprecated_qualifier) {
3828      if (relaxed_layout_qualifier_checking) {
3829         _mesa_glsl_warning(loc, state,
3830                            "`layout' qualifier may not be used with "
3831                            "`attribute' or `varying'");
3832      } else {
3833         _mesa_glsl_error(loc, state,
3834                          "`layout' qualifier may not be used with "
3835                          "`attribute' or `varying'");
3836      }
3837   }
3838
3839   /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3840    * AMD_conservative_depth.
3841    */
3842   if (qual->flags.q.depth_type
3843       && !state->is_version(420, 0)
3844       && !state->AMD_conservative_depth_enable
3845       && !state->ARB_conservative_depth_enable) {
3846       _mesa_glsl_error(loc, state,
3847                        "extension GL_AMD_conservative_depth or "
3848                        "GL_ARB_conservative_depth must be enabled "
3849                        "to use depth layout qualifiers");
3850   } else if (qual->flags.q.depth_type
3851              && strcmp(var->name, "gl_FragDepth") != 0) {
3852       _mesa_glsl_error(loc, state,
3853                        "depth layout qualifiers can be applied only to "
3854                        "gl_FragDepth");
3855   }
3856
3857   switch (qual->depth_type) {
3858   case ast_depth_any:
3859      var->data.depth_layout = ir_depth_layout_any;
3860      break;
3861   case ast_depth_greater:
3862      var->data.depth_layout = ir_depth_layout_greater;
3863      break;
3864   case ast_depth_less:
3865      var->data.depth_layout = ir_depth_layout_less;
3866      break;
3867   case ast_depth_unchanged:
3868      var->data.depth_layout = ir_depth_layout_unchanged;
3869      break;
3870   default:
3871      var->data.depth_layout = ir_depth_layout_none;
3872      break;
3873   }
3874
3875   if (qual->flags.q.std140 ||
3876       qual->flags.q.std430 ||
3877       qual->flags.q.packed ||
3878       qual->flags.q.shared) {
3879      _mesa_glsl_error(loc, state,
3880                       "uniform and shader storage block layout qualifiers "
3881                       "std140, std430, packed, and shared can only be "
3882                       "applied to uniform or shader storage blocks, not "
3883                       "members");
3884   }
3885
3886   if (qual->flags.q.row_major || qual->flags.q.column_major) {
3887      validate_matrix_layout_for_type(state, loc, var->type, var);
3888   }
3889
3890   /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3891    * Inputs):
3892    *
3893    *  "Fragment shaders also allow the following layout qualifier on in only
3894    *   (not with variable declarations)
3895    *     layout-qualifier-id
3896    *        early_fragment_tests
3897    *   [...]"
3898    */
3899   if (qual->flags.q.early_fragment_tests) {
3900      _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3901                       "valid in fragment shader input layout declaration.");
3902   }
3903
3904   if (qual->flags.q.inner_coverage) {
3905      _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3906                       "valid in fragment shader input layout declaration.");
3907   }
3908
3909   if (qual->flags.q.post_depth_coverage) {
3910      _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3911                       "valid in fragment shader input layout declaration.");
3912   }
3913
3914   if (state->has_bindless())
3915      apply_bindless_qualifier_to_variable(qual, var, state, loc);
3916
3917   if (qual->flags.q.pixel_interlock_ordered ||
3918       qual->flags.q.pixel_interlock_unordered ||
3919       qual->flags.q.sample_interlock_ordered ||
3920       qual->flags.q.sample_interlock_unordered) {
3921      _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3922                       "pixel_interlock_ordered, pixel_interlock_unordered, "
3923                       "sample_interlock_ordered and sample_interlock_unordered, "
3924                       "only valid in fragment shader input layout declaration.");
3925   }
3926}
3927
3928static void
3929apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3930                                 ir_variable *var,
3931                                 struct _mesa_glsl_parse_state *state,
3932                                 YYLTYPE *loc,
3933                                 bool is_parameter)
3934{
3935   STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3936
3937   if (qual->flags.q.invariant) {
3938      if (var->data.used) {
3939         _mesa_glsl_error(loc, state,
3940                          "variable `%s' may not be redeclared "
3941                          "`invariant' after being used",
3942                          var->name);
3943      } else {
3944         var->data.invariant = 1;
3945      }
3946   }
3947
3948   if (qual->flags.q.precise) {
3949      if (var->data.used) {
3950         _mesa_glsl_error(loc, state,
3951                          "variable `%s' may not be redeclared "
3952                          "`precise' after being used",
3953                          var->name);
3954      } else {
3955         var->data.precise = 1;
3956      }
3957   }
3958
3959   if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3960      _mesa_glsl_error(loc, state,
3961                       "`subroutine' may only be applied to uniforms, "
3962                       "subroutine type declarations, or function definitions");
3963   }
3964
3965   if (qual->flags.q.constant || qual->flags.q.attribute
3966       || qual->flags.q.uniform
3967       || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3968      var->data.read_only = 1;
3969
3970   if (qual->flags.q.centroid)
3971      var->data.centroid = 1;
3972
3973   if (qual->flags.q.sample)
3974      var->data.sample = 1;
3975
3976   /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3977   if (state->es_shader) {
3978      var->data.precision =
3979         select_gles_precision(qual->precision, var->type, state, loc);
3980   }
3981
3982   if (qual->flags.q.patch)
3983      var->data.patch = 1;
3984
3985   if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3986      var->type = glsl_type::error_type;
3987      _mesa_glsl_error(loc, state,
3988                       "`attribute' variables may not be declared in the "
3989                       "%s shader",
3990                       _mesa_shader_stage_to_string(state->stage));
3991   }
3992
3993   /* Disallow layout qualifiers which may only appear on layout declarations. */
3994   if (qual->flags.q.prim_type) {
3995      _mesa_glsl_error(loc, state,
3996                       "Primitive type may only be specified on GS input or output "
3997                       "layout declaration, not on variables.");
3998   }
3999
4000   /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4001    *
4002    *     "However, the const qualifier cannot be used with out or inout."
4003    *
4004    * The same section of the GLSL 4.40 spec further clarifies this saying:
4005    *
4006    *     "The const qualifier cannot be used with out or inout, or a
4007    *     compile-time error results."
4008    */
4009   if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4010      _mesa_glsl_error(loc, state,
4011                       "`const' may not be applied to `out' or `inout' "
4012                       "function parameters");
4013   }
4014
4015   /* If there is no qualifier that changes the mode of the variable, leave
4016    * the setting alone.
4017    */
4018   assert(var->data.mode != ir_var_temporary);
4019   if (qual->flags.q.in && qual->flags.q.out)
4020      var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4021   else if (qual->flags.q.in)
4022      var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4023   else if (qual->flags.q.attribute
4024            || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4025      var->data.mode = ir_var_shader_in;
4026   else if (qual->flags.q.out)
4027      var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4028   else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4029      var->data.mode = ir_var_shader_out;
4030   else if (qual->flags.q.uniform)
4031      var->data.mode = ir_var_uniform;
4032   else if (qual->flags.q.buffer)
4033      var->data.mode = ir_var_shader_storage;
4034   else if (qual->flags.q.shared_storage)
4035      var->data.mode = ir_var_shader_shared;
4036
4037   if (!is_parameter && state->has_framebuffer_fetch() &&
4038       state->stage == MESA_SHADER_FRAGMENT) {
4039      if (state->is_version(130, 300))
4040         var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4041      else
4042         var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4043   }
4044
4045   if (var->data.fb_fetch_output) {
4046      var->data.assigned = true;
4047      var->data.memory_coherent = !qual->flags.q.non_coherent;
4048
4049      /* From the EXT_shader_framebuffer_fetch spec:
4050       *
4051       *   "It is an error to declare an inout fragment output not qualified
4052       *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4053       *    extension hasn't been enabled."
4054       */
4055      if (var->data.memory_coherent &&
4056          !state->EXT_shader_framebuffer_fetch_enable)
4057         _mesa_glsl_error(loc, state,
4058                          "invalid declaration of framebuffer fetch output not "
4059                          "qualified with layout(noncoherent)");
4060
4061   } else {
4062      /* From the EXT_shader_framebuffer_fetch spec:
4063       *
4064       *   "Fragment outputs declared inout may specify the following layout
4065       *    qualifier: [...] noncoherent"
4066       */
4067      if (qual->flags.q.non_coherent)
4068         _mesa_glsl_error(loc, state,
4069                          "invalid layout(noncoherent) qualifier not part of "
4070                          "framebuffer fetch output declaration");
4071   }
4072
4073   if (!is_parameter && is_varying_var(var, state->stage)) {
4074      /* User-defined ins/outs are not permitted in compute shaders. */
4075      if (state->stage == MESA_SHADER_COMPUTE) {
4076         _mesa_glsl_error(loc, state,
4077                          "user-defined input and output variables are not "
4078                          "permitted in compute shaders");
4079      }
4080
4081      /* This variable is being used to link data between shader stages (in
4082       * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4083       * that is allowed for such purposes.
4084       *
4085       * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4086       *
4087       *     "The varying qualifier can be used only with the data types
4088       *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4089       *     these."
4090       *
4091       * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4092       * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4093       *
4094       *     "Fragment inputs can only be signed and unsigned integers and
4095       *     integer vectors, float, floating-point vectors, matrices, or
4096       *     arrays of these. Structures cannot be input.
4097       *
4098       * Similar text exists in the section on vertex shader outputs.
4099       *
4100       * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4101       * 3.00 spec allows structs as well.  Varying structs are also allowed
4102       * in GLSL 1.50.
4103       *
4104       * From section 4.3.4 of the ARB_bindless_texture spec:
4105       *
4106       *     "(modify third paragraph of the section to allow sampler and image
4107       *     types) ...  Vertex shader inputs can only be float,
4108       *     single-precision floating-point scalars, single-precision
4109       *     floating-point vectors, matrices, signed and unsigned integers
4110       *     and integer vectors, sampler and image types."
4111       *
4112       * From section 4.3.6 of the ARB_bindless_texture spec:
4113       *
4114       *     "Output variables can only be floating-point scalars,
4115       *     floating-point vectors, matrices, signed or unsigned integers or
4116       *     integer vectors, sampler or image types, or arrays or structures
4117       *     of any these."
4118       */
4119      switch (var->type->without_array()->base_type) {
4120      case GLSL_TYPE_FLOAT:
4121         /* Ok in all GLSL versions */
4122         break;
4123      case GLSL_TYPE_UINT:
4124      case GLSL_TYPE_INT:
4125         if (state->is_version(130, 300))
4126            break;
4127         _mesa_glsl_error(loc, state,
4128                          "varying variables must be of base type float in %s",
4129                          state->get_version_string());
4130         break;
4131      case GLSL_TYPE_STRUCT:
4132         if (state->is_version(150, 300))
4133            break;
4134         _mesa_glsl_error(loc, state,
4135                          "varying variables may not be of type struct");
4136         break;
4137      case GLSL_TYPE_DOUBLE:
4138      case GLSL_TYPE_UINT64:
4139      case GLSL_TYPE_INT64:
4140         break;
4141      case GLSL_TYPE_SAMPLER:
4142      case GLSL_TYPE_IMAGE:
4143         if (state->has_bindless())
4144            break;
4145         /* fallthrough */
4146      default:
4147         _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4148         break;
4149      }
4150   }
4151
4152   if (state->all_invariant && var->data.mode == ir_var_shader_out)
4153      var->data.invariant = true;
4154
4155   var->data.interpolation =
4156      interpret_interpolation_qualifier(qual, var->type,
4157                                        (ir_variable_mode) var->data.mode,
4158                                        state, loc);
4159
4160   /* Does the declaration use the deprecated 'attribute' or 'varying'
4161    * keywords?
4162    */
4163   const bool uses_deprecated_qualifier = qual->flags.q.attribute
4164      || qual->flags.q.varying;
4165
4166
4167   /* Validate auxiliary storage qualifiers */
4168
4169   /* From section 4.3.4 of the GLSL 1.30 spec:
4170    *    "It is an error to use centroid in in a vertex shader."
4171    *
4172    * From section 4.3.4 of the GLSL ES 3.00 spec:
4173    *    "It is an error to use centroid in or interpolation qualifiers in
4174    *    a vertex shader input."
4175    */
4176
4177   /* Section 4.3.6 of the GLSL 1.30 specification states:
4178    * "It is an error to use centroid out in a fragment shader."
4179    *
4180    * The GL_ARB_shading_language_420pack extension specification states:
4181    * "It is an error to use auxiliary storage qualifiers or interpolation
4182    *  qualifiers on an output in a fragment shader."
4183    */
4184   if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4185      _mesa_glsl_error(loc, state,
4186                       "sample qualifier may only be used on `in` or `out` "
4187                       "variables between shader stages");
4188   }
4189   if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4190      _mesa_glsl_error(loc, state,
4191                       "centroid qualifier may only be used with `in', "
4192                       "`out' or `varying' variables between shader stages");
4193   }
4194
4195   if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4196      _mesa_glsl_error(loc, state,
4197                       "the shared storage qualifiers can only be used with "
4198                       "compute shaders");
4199   }
4200
4201   apply_image_qualifier_to_variable(qual, var, state, loc);
4202}
4203
4204/**
4205 * Get the variable that is being redeclared by this declaration or if it
4206 * does not exist, the current declared variable.
4207 *
4208 * Semantic checks to verify the validity of the redeclaration are also
4209 * performed.  If semantic checks fail, compilation error will be emitted via
4210 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4211 *
4212 * \returns
4213 * A pointer to an existing variable in the current scope if the declaration
4214 * is a redeclaration, current variable otherwise. \c is_declared boolean
4215 * will return \c true if the declaration is a redeclaration, \c false
4216 * otherwise.
4217 */
4218static ir_variable *
4219get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4220                              struct _mesa_glsl_parse_state *state,
4221                              bool allow_all_redeclarations,
4222                              bool *is_redeclaration)
4223{
4224   ir_variable *var = *var_ptr;
4225
4226   /* Check if this declaration is actually a re-declaration, either to
4227    * resize an array or add qualifiers to an existing variable.
4228    *
4229    * This is allowed for variables in the current scope, or when at
4230    * global scope (for built-ins in the implicit outer scope).
4231    */
4232   ir_variable *earlier = state->symbols->get_variable(var->name);
4233   if (earlier == NULL ||
4234       (state->current_function != NULL &&
4235       !state->symbols->name_declared_this_scope(var->name))) {
4236      *is_redeclaration = false;
4237      return var;
4238   }
4239
4240   *is_redeclaration = true;
4241
4242   /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4243    *
4244    * "It is legal to declare an array without a size and then
4245    *  later re-declare the same name as an array of the same
4246    *  type and specify a size."
4247    */
4248   if (earlier->type->is_unsized_array() && var->type->is_array()
4249       && (var->type->fields.array == earlier->type->fields.array)) {
4250      /* FINISHME: This doesn't match the qualifiers on the two
4251       * FINISHME: declarations.  It's not 100% clear whether this is
4252       * FINISHME: required or not.
4253       */
4254
4255      const int size = var->type->array_size();
4256      check_builtin_array_max_size(var->name, size, loc, state);
4257      if ((size > 0) && (size <= earlier->data.max_array_access)) {
4258         _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4259                          "previous access",
4260                          earlier->data.max_array_access);
4261      }
4262
4263      earlier->type = var->type;
4264      delete var;
4265      var = NULL;
4266      *var_ptr = NULL;
4267   } else if ((state->ARB_fragment_coord_conventions_enable ||
4268              state->is_version(150, 0))
4269              && strcmp(var->name, "gl_FragCoord") == 0
4270              && earlier->type == var->type
4271              && var->data.mode == ir_var_shader_in) {
4272      /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4273       * qualifiers.
4274       */
4275      earlier->data.origin_upper_left = var->data.origin_upper_left;
4276      earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4277
4278      /* According to section 4.3.7 of the GLSL 1.30 spec,
4279       * the following built-in varaibles can be redeclared with an
4280       * interpolation qualifier:
4281       *    * gl_FrontColor
4282       *    * gl_BackColor
4283       *    * gl_FrontSecondaryColor
4284       *    * gl_BackSecondaryColor
4285       *    * gl_Color
4286       *    * gl_SecondaryColor
4287       */
4288   } else if (state->is_version(130, 0)
4289              && (strcmp(var->name, "gl_FrontColor") == 0
4290                  || strcmp(var->name, "gl_BackColor") == 0
4291                  || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4292                  || strcmp(var->name, "gl_BackSecondaryColor") == 0
4293                  || strcmp(var->name, "gl_Color") == 0
4294                  || strcmp(var->name, "gl_SecondaryColor") == 0)
4295              && earlier->type == var->type
4296              && earlier->data.mode == var->data.mode) {
4297      earlier->data.interpolation = var->data.interpolation;
4298
4299      /* Layout qualifiers for gl_FragDepth. */
4300   } else if ((state->is_version(420, 0) ||
4301               state->AMD_conservative_depth_enable ||
4302               state->ARB_conservative_depth_enable)
4303              && strcmp(var->name, "gl_FragDepth") == 0
4304              && earlier->type == var->type
4305              && earlier->data.mode == var->data.mode) {
4306
4307      /** From the AMD_conservative_depth spec:
4308       *     Within any shader, the first redeclarations of gl_FragDepth
4309       *     must appear before any use of gl_FragDepth.
4310       */
4311      if (earlier->data.used) {
4312         _mesa_glsl_error(&loc, state,
4313                          "the first redeclaration of gl_FragDepth "
4314                          "must appear before any use of gl_FragDepth");
4315      }
4316
4317      /* Prevent inconsistent redeclaration of depth layout qualifier. */
4318      if (earlier->data.depth_layout != ir_depth_layout_none
4319          && earlier->data.depth_layout != var->data.depth_layout) {
4320            _mesa_glsl_error(&loc, state,
4321                             "gl_FragDepth: depth layout is declared here "
4322                             "as '%s, but it was previously declared as "
4323                             "'%s'",
4324                             depth_layout_string(var->data.depth_layout),
4325                             depth_layout_string(earlier->data.depth_layout));
4326      }
4327
4328      earlier->data.depth_layout = var->data.depth_layout;
4329
4330   } else if (state->has_framebuffer_fetch() &&
4331              strcmp(var->name, "gl_LastFragData") == 0 &&
4332              var->type == earlier->type &&
4333              var->data.mode == ir_var_auto) {
4334      /* According to the EXT_shader_framebuffer_fetch spec:
4335       *
4336       *   "By default, gl_LastFragData is declared with the mediump precision
4337       *    qualifier. This can be changed by redeclaring the corresponding
4338       *    variables with the desired precision qualifier."
4339       *
4340       *   "Fragment shaders may specify the following layout qualifier only for
4341       *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4342       */
4343      earlier->data.precision = var->data.precision;
4344      earlier->data.memory_coherent = var->data.memory_coherent;
4345
4346   } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4347              state->allow_builtin_variable_redeclaration) {
4348      /* Allow verbatim redeclarations of built-in variables. Not explicitly
4349       * valid, but some applications do it.
4350       */
4351      if (earlier->data.mode != var->data.mode &&
4352          !(earlier->data.mode == ir_var_system_value &&
4353            var->data.mode == ir_var_shader_in)) {
4354         _mesa_glsl_error(&loc, state,
4355                          "redeclaration of `%s' with incorrect qualifiers",
4356                          var->name);
4357      } else if (earlier->type != var->type) {
4358         _mesa_glsl_error(&loc, state,
4359                          "redeclaration of `%s' has incorrect type",
4360                          var->name);
4361      }
4362   } else if (allow_all_redeclarations) {
4363      if (earlier->data.mode != var->data.mode) {
4364         _mesa_glsl_error(&loc, state,
4365                          "redeclaration of `%s' with incorrect qualifiers",
4366                          var->name);
4367      } else if (earlier->type != var->type) {
4368         _mesa_glsl_error(&loc, state,
4369                          "redeclaration of `%s' has incorrect type",
4370                          var->name);
4371      }
4372   } else {
4373      _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4374   }
4375
4376   return earlier;
4377}
4378
4379/**
4380 * Generate the IR for an initializer in a variable declaration
4381 */
4382static ir_rvalue *
4383process_initializer(ir_variable *var, ast_declaration *decl,
4384                    ast_fully_specified_type *type,
4385                    exec_list *initializer_instructions,
4386                    struct _mesa_glsl_parse_state *state)
4387{
4388   void *mem_ctx = state;
4389   ir_rvalue *result = NULL;
4390
4391   YYLTYPE initializer_loc = decl->initializer->get_location();
4392
4393   /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4394    *
4395    *    "All uniform variables are read-only and are initialized either
4396    *    directly by an application via API commands, or indirectly by
4397    *    OpenGL."
4398    */
4399   if (var->data.mode == ir_var_uniform) {
4400      state->check_version(120, 0, &initializer_loc,
4401                           "cannot initialize uniform %s",
4402                           var->name);
4403   }
4404
4405   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4406    *
4407    *    "Buffer variables cannot have initializers."
4408    */
4409   if (var->data.mode == ir_var_shader_storage) {
4410      _mesa_glsl_error(&initializer_loc, state,
4411                       "cannot initialize buffer variable %s",
4412                       var->name);
4413   }
4414
4415   /* From section 4.1.7 of the GLSL 4.40 spec:
4416    *
4417    *    "Opaque variables [...] are initialized only through the
4418    *     OpenGL API; they cannot be declared with an initializer in a
4419    *     shader."
4420    *
4421    * From section 4.1.7 of the ARB_bindless_texture spec:
4422    *
4423    *    "Samplers may be declared as shader inputs and outputs, as uniform
4424    *     variables, as temporary variables, and as function parameters."
4425    *
4426    * From section 4.1.X of the ARB_bindless_texture spec:
4427    *
4428    *    "Images may be declared as shader inputs and outputs, as uniform
4429    *     variables, as temporary variables, and as function parameters."
4430    */
4431   if (var->type->contains_atomic() ||
4432       (!state->has_bindless() && var->type->contains_opaque())) {
4433      _mesa_glsl_error(&initializer_loc, state,
4434                       "cannot initialize %s variable %s",
4435                       var->name, state->has_bindless() ? "atomic" : "opaque");
4436   }
4437
4438   if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4439      _mesa_glsl_error(&initializer_loc, state,
4440                       "cannot initialize %s shader input / %s %s",
4441                       _mesa_shader_stage_to_string(state->stage),
4442                       (state->stage == MESA_SHADER_VERTEX)
4443                       ? "attribute" : "varying",
4444                       var->name);
4445   }
4446
4447   if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4448      _mesa_glsl_error(&initializer_loc, state,
4449                       "cannot initialize %s shader output %s",
4450                       _mesa_shader_stage_to_string(state->stage),
4451                       var->name);
4452   }
4453
4454   /* If the initializer is an ast_aggregate_initializer, recursively store
4455    * type information from the LHS into it, so that its hir() function can do
4456    * type checking.
4457    */
4458   if (decl->initializer->oper == ast_aggregate)
4459      _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4460
4461   ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4462   ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4463
4464   /* Calculate the constant value if this is a const or uniform
4465    * declaration.
4466    *
4467    * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4468    *
4469    *     "Declarations of globals without a storage qualifier, or with
4470    *     just the const qualifier, may include initializers, in which case
4471    *     they will be initialized before the first line of main() is
4472    *     executed.  Such initializers must be a constant expression."
4473    *
4474    * The same section of the GLSL ES 3.00.4 spec has similar language.
4475    */
4476   if (type->qualifier.flags.q.constant
4477       || type->qualifier.flags.q.uniform
4478       || (state->es_shader && state->current_function == NULL)) {
4479      ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4480                                               lhs, rhs, true);
4481      if (new_rhs != NULL) {
4482         rhs = new_rhs;
4483
4484         /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4485          * says:
4486          *
4487          *     "A constant expression is one of
4488          *
4489          *        ...
4490          *
4491          *        - an expression formed by an operator on operands that are
4492          *          all constant expressions, including getting an element of
4493          *          a constant array, or a field of a constant structure, or
4494          *          components of a constant vector.  However, the sequence
4495          *          operator ( , ) and the assignment operators ( =, +=, ...)
4496          *          are not included in the operators that can create a
4497          *          constant expression."
4498          *
4499          * Section 12.43 (Sequence operator and constant expressions) says:
4500          *
4501          *     "Should the following construct be allowed?
4502          *
4503          *         float a[2,3];
4504          *
4505          *     The expression within the brackets uses the sequence operator
4506          *     (',') and returns the integer 3 so the construct is declaring
4507          *     a single-dimensional array of size 3.  In some languages, the
4508          *     construct declares a two-dimensional array.  It would be
4509          *     preferable to make this construct illegal to avoid confusion.
4510          *
4511          *     One possibility is to change the definition of the sequence
4512          *     operator so that it does not return a constant-expression and
4513          *     hence cannot be used to declare an array size.
4514          *
4515          *     RESOLUTION: The result of a sequence operator is not a
4516          *     constant-expression."
4517          *
4518          * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4519          * contains language almost identical to the section 4.3.3 in the
4520          * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4521          * versions.
4522          */
4523         ir_constant *constant_value =
4524            rhs->constant_expression_value(mem_ctx);
4525
4526         if (!constant_value ||
4527             (state->is_version(430, 300) &&
4528              decl->initializer->has_sequence_subexpression())) {
4529            const char *const variable_mode =
4530               (type->qualifier.flags.q.constant)
4531               ? "const"
4532               : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4533
4534            /* If ARB_shading_language_420pack is enabled, initializers of
4535             * const-qualified local variables do not have to be constant
4536             * expressions. Const-qualified global variables must still be
4537             * initialized with constant expressions.
4538             */
4539            if (!state->has_420pack()
4540                || state->current_function == NULL) {
4541               _mesa_glsl_error(& initializer_loc, state,
4542                                "initializer of %s variable `%s' must be a "
4543                                "constant expression",
4544                                variable_mode,
4545                                decl->identifier);
4546               if (var->type->is_numeric()) {
4547                  /* Reduce cascading errors. */
4548                  var->constant_value = type->qualifier.flags.q.constant
4549                     ? ir_constant::zero(state, var->type) : NULL;
4550               }
4551            }
4552         } else {
4553            rhs = constant_value;
4554            var->constant_value = type->qualifier.flags.q.constant
4555               ? constant_value : NULL;
4556         }
4557      } else {
4558         if (var->type->is_numeric()) {
4559            /* Reduce cascading errors. */
4560            rhs = var->constant_value = type->qualifier.flags.q.constant
4561               ? ir_constant::zero(state, var->type) : NULL;
4562         }
4563      }
4564   }
4565
4566   if (rhs && !rhs->type->is_error()) {
4567      bool temp = var->data.read_only;
4568      if (type->qualifier.flags.q.constant)
4569         var->data.read_only = false;
4570
4571      /* Never emit code to initialize a uniform.
4572       */
4573      const glsl_type *initializer_type;
4574      bool error_emitted = false;
4575      if (!type->qualifier.flags.q.uniform) {
4576         error_emitted =
4577            do_assignment(initializer_instructions, state,
4578                          NULL, lhs, rhs,
4579                          &result, true, true,
4580                          type->get_location());
4581         initializer_type = result->type;
4582      } else
4583         initializer_type = rhs->type;
4584
4585      if (!error_emitted) {
4586         var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4587         var->data.has_initializer = true;
4588
4589         /* If the declared variable is an unsized array, it must inherrit
4590         * its full type from the initializer.  A declaration such as
4591         *
4592         *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4593         *
4594         * becomes
4595         *
4596         *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4597         *
4598         * The assignment generated in the if-statement (below) will also
4599         * automatically handle this case for non-uniforms.
4600         *
4601         * If the declared variable is not an array, the types must
4602         * already match exactly.  As a result, the type assignment
4603         * here can be done unconditionally.  For non-uniforms the call
4604         * to do_assignment can change the type of the initializer (via
4605         * the implicit conversion rules).  For uniforms the initializer
4606         * must be a constant expression, and the type of that expression
4607         * was validated above.
4608         */
4609         var->type = initializer_type;
4610      }
4611
4612      var->data.read_only = temp;
4613   }
4614
4615   return result;
4616}
4617
4618static void
4619validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4620                                       YYLTYPE loc, ir_variable *var,
4621                                       unsigned num_vertices,
4622                                       unsigned *size,
4623                                       const char *var_category)
4624{
4625   if (var->type->is_unsized_array()) {
4626      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4627       *
4628       *   All geometry shader input unsized array declarations will be
4629       *   sized by an earlier input layout qualifier, when present, as per
4630       *   the following table.
4631       *
4632       * Followed by a table mapping each allowed input layout qualifier to
4633       * the corresponding input length.
4634       *
4635       * Similarly for tessellation control shader outputs.
4636       */
4637      if (num_vertices != 0)
4638         var->type = glsl_type::get_array_instance(var->type->fields.array,
4639                                                   num_vertices);
4640   } else {
4641      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4642       * includes the following examples of compile-time errors:
4643       *
4644       *   // code sequence within one shader...
4645       *   in vec4 Color1[];    // size unknown
4646       *   ...Color1.length()...// illegal, length() unknown
4647       *   in vec4 Color2[2];   // size is 2
4648       *   ...Color1.length()...// illegal, Color1 still has no size
4649       *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4650       *   layout(lines) in;    // legal, input size is 2, matching
4651       *   in vec4 Color4[3];   // illegal, contradicts layout
4652       *   ...
4653       *
4654       * To detect the case illustrated by Color3, we verify that the size of
4655       * an explicitly-sized array matches the size of any previously declared
4656       * explicitly-sized array.  To detect the case illustrated by Color4, we
4657       * verify that the size of an explicitly-sized array is consistent with
4658       * any previously declared input layout.
4659       */
4660      if (num_vertices != 0 && var->type->length != num_vertices) {
4661         _mesa_glsl_error(&loc, state,
4662                          "%s size contradicts previously declared layout "
4663                          "(size is %u, but layout requires a size of %u)",
4664                          var_category, var->type->length, num_vertices);
4665      } else if (*size != 0 && var->type->length != *size) {
4666         _mesa_glsl_error(&loc, state,
4667                          "%s sizes are inconsistent (size is %u, but a "
4668                          "previous declaration has size %u)",
4669                          var_category, var->type->length, *size);
4670      } else {
4671         *size = var->type->length;
4672      }
4673   }
4674}
4675
4676static void
4677handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4678                                    YYLTYPE loc, ir_variable *var)
4679{
4680   unsigned num_vertices = 0;
4681
4682   if (state->tcs_output_vertices_specified) {
4683      if (!state->out_qualifier->vertices->
4684             process_qualifier_constant(state, "vertices",
4685                                        &num_vertices, false)) {
4686         return;
4687      }
4688
4689      if (num_vertices > state->Const.MaxPatchVertices) {
4690         _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4691                          "GL_MAX_PATCH_VERTICES", num_vertices);
4692         return;
4693      }
4694   }
4695
4696   if (!var->type->is_array() && !var->data.patch) {
4697      _mesa_glsl_error(&loc, state,
4698                       "tessellation control shader outputs must be arrays");
4699
4700      /* To avoid cascading failures, short circuit the checks below. */
4701      return;
4702   }
4703
4704   if (var->data.patch)
4705      return;
4706
4707   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4708                                          &state->tcs_output_size,
4709                                          "tessellation control shader output");
4710}
4711
4712/**
4713 * Do additional processing necessary for tessellation control/evaluation shader
4714 * input declarations. This covers both interface block arrays and bare input
4715 * variables.
4716 */
4717static void
4718handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4719                              YYLTYPE loc, ir_variable *var)
4720{
4721   if (!var->type->is_array() && !var->data.patch) {
4722      _mesa_glsl_error(&loc, state,
4723                       "per-vertex tessellation shader inputs must be arrays");
4724      /* Avoid cascading failures. */
4725      return;
4726   }
4727
4728   if (var->data.patch)
4729      return;
4730
4731   /* The ARB_tessellation_shader spec says:
4732    *
4733    *    "Declaring an array size is optional.  If no size is specified, it
4734    *     will be taken from the implementation-dependent maximum patch size
4735    *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4736    *     maximum patch size; otherwise, a compile or link error will occur."
4737    *
4738    * This text appears twice, once for TCS inputs, and again for TES inputs.
4739    */
4740   if (var->type->is_unsized_array()) {
4741      var->type = glsl_type::get_array_instance(var->type->fields.array,
4742            state->Const.MaxPatchVertices);
4743   } else if (var->type->length != state->Const.MaxPatchVertices) {
4744      _mesa_glsl_error(&loc, state,
4745                       "per-vertex tessellation shader input arrays must be "
4746                       "sized to gl_MaxPatchVertices (%d).",
4747                       state->Const.MaxPatchVertices);
4748   }
4749}
4750
4751
4752/**
4753 * Do additional processing necessary for geometry shader input declarations
4754 * (this covers both interface blocks arrays and bare input variables).
4755 */
4756static void
4757handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4758                                  YYLTYPE loc, ir_variable *var)
4759{
4760   unsigned num_vertices = 0;
4761
4762   if (state->gs_input_prim_type_specified) {
4763      num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4764   }
4765
4766   /* Geometry shader input variables must be arrays.  Caller should have
4767    * reported an error for this.
4768    */
4769   if (!var->type->is_array()) {
4770      assert(state->error);
4771
4772      /* To avoid cascading failures, short circuit the checks below. */
4773      return;
4774   }
4775
4776   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4777                                          &state->gs_input_size,
4778                                          "geometry shader input");
4779}
4780
4781static void
4782validate_identifier(const char *identifier, YYLTYPE loc,
4783                    struct _mesa_glsl_parse_state *state)
4784{
4785   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4786    *
4787    *   "Identifiers starting with "gl_" are reserved for use by
4788    *   OpenGL, and may not be declared in a shader as either a
4789    *   variable or a function."
4790    */
4791   if (is_gl_identifier(identifier)) {
4792      _mesa_glsl_error(&loc, state,
4793                       "identifier `%s' uses reserved `gl_' prefix",
4794                       identifier);
4795   } else if (strstr(identifier, "__")) {
4796      /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4797       * spec:
4798       *
4799       *     "In addition, all identifiers containing two
4800       *      consecutive underscores (__) are reserved as
4801       *      possible future keywords."
4802       *
4803       * The intention is that names containing __ are reserved for internal
4804       * use by the implementation, and names prefixed with GL_ are reserved
4805       * for use by Khronos.  Names simply containing __ are dangerous to use,
4806       * but should be allowed.
4807       *
4808       * A future version of the GLSL specification will clarify this.
4809       */
4810      _mesa_glsl_warning(&loc, state,
4811                         "identifier `%s' uses reserved `__' string",
4812                         identifier);
4813   }
4814}
4815
4816ir_rvalue *
4817ast_declarator_list::hir(exec_list *instructions,
4818                         struct _mesa_glsl_parse_state *state)
4819{
4820   void *ctx = state;
4821   const struct glsl_type *decl_type;
4822   const char *type_name = NULL;
4823   ir_rvalue *result = NULL;
4824   YYLTYPE loc = this->get_location();
4825
4826   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4827    *
4828    *     "To ensure that a particular output variable is invariant, it is
4829    *     necessary to use the invariant qualifier. It can either be used to
4830    *     qualify a previously declared variable as being invariant
4831    *
4832    *         invariant gl_Position; // make existing gl_Position be invariant"
4833    *
4834    * In these cases the parser will set the 'invariant' flag in the declarator
4835    * list, and the type will be NULL.
4836    */
4837   if (this->invariant) {
4838      assert(this->type == NULL);
4839
4840      if (state->current_function != NULL) {
4841         _mesa_glsl_error(& loc, state,
4842                          "all uses of `invariant' keyword must be at global "
4843                          "scope");
4844      }
4845
4846      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4847         assert(decl->array_specifier == NULL);
4848         assert(decl->initializer == NULL);
4849
4850         ir_variable *const earlier =
4851            state->symbols->get_variable(decl->identifier);
4852         if (earlier == NULL) {
4853            _mesa_glsl_error(& loc, state,
4854                             "undeclared variable `%s' cannot be marked "
4855                             "invariant", decl->identifier);
4856         } else if (!is_allowed_invariant(earlier, state)) {
4857            _mesa_glsl_error(&loc, state,
4858                             "`%s' cannot be marked invariant; interfaces between "
4859                             "shader stages only.", decl->identifier);
4860         } else if (earlier->data.used) {
4861            _mesa_glsl_error(& loc, state,
4862                            "variable `%s' may not be redeclared "
4863                            "`invariant' after being used",
4864                            earlier->name);
4865         } else {
4866            earlier->data.invariant = true;
4867         }
4868      }
4869
4870      /* Invariant redeclarations do not have r-values.
4871       */
4872      return NULL;
4873   }
4874
4875   if (this->precise) {
4876      assert(this->type == NULL);
4877
4878      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4879         assert(decl->array_specifier == NULL);
4880         assert(decl->initializer == NULL);
4881
4882         ir_variable *const earlier =
4883            state->symbols->get_variable(decl->identifier);
4884         if (earlier == NULL) {
4885            _mesa_glsl_error(& loc, state,
4886                             "undeclared variable `%s' cannot be marked "
4887                             "precise", decl->identifier);
4888         } else if (state->current_function != NULL &&
4889                    !state->symbols->name_declared_this_scope(decl->identifier)) {
4890            /* Note: we have to check if we're in a function, since
4891             * builtins are treated as having come from another scope.
4892             */
4893            _mesa_glsl_error(& loc, state,
4894                             "variable `%s' from an outer scope may not be "
4895                             "redeclared `precise' in this scope",
4896                             earlier->name);
4897         } else if (earlier->data.used) {
4898            _mesa_glsl_error(& loc, state,
4899                             "variable `%s' may not be redeclared "
4900                             "`precise' after being used",
4901                             earlier->name);
4902         } else {
4903            earlier->data.precise = true;
4904         }
4905      }
4906
4907      /* Precise redeclarations do not have r-values either. */
4908      return NULL;
4909   }
4910
4911   assert(this->type != NULL);
4912   assert(!this->invariant);
4913   assert(!this->precise);
4914
4915   /* The type specifier may contain a structure definition.  Process that
4916    * before any of the variable declarations.
4917    */
4918   (void) this->type->specifier->hir(instructions, state);
4919
4920   decl_type = this->type->glsl_type(& type_name, state);
4921
4922   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4923    *    "Buffer variables may only be declared inside interface blocks
4924    *    (section 4.3.9 “Interface Blocks”), which are then referred to as
4925    *    shader storage blocks. It is a compile-time error to declare buffer
4926    *    variables at global scope (outside a block)."
4927    */
4928   if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4929      _mesa_glsl_error(&loc, state,
4930                       "buffer variables cannot be declared outside "
4931                       "interface blocks");
4932   }
4933
4934   /* An offset-qualified atomic counter declaration sets the default
4935    * offset for the next declaration within the same atomic counter
4936    * buffer.
4937    */
4938   if (decl_type && decl_type->contains_atomic()) {
4939      if (type->qualifier.flags.q.explicit_binding &&
4940          type->qualifier.flags.q.explicit_offset) {
4941         unsigned qual_binding;
4942         unsigned qual_offset;
4943         if (process_qualifier_constant(state, &loc, "binding",
4944                                        type->qualifier.binding,
4945                                        &qual_binding)
4946             && process_qualifier_constant(state, &loc, "offset",
4947                                        type->qualifier.offset,
4948                                        &qual_offset)) {
4949            state->atomic_counter_offsets[qual_binding] = qual_offset;
4950         }
4951      }
4952
4953      ast_type_qualifier allowed_atomic_qual_mask;
4954      allowed_atomic_qual_mask.flags.i = 0;
4955      allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4956      allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4957      allowed_atomic_qual_mask.flags.q.uniform = 1;
4958
4959      type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4960                                     "invalid layout qualifier for",
4961                                     "atomic_uint");
4962   }
4963
4964   if (this->declarations.is_empty()) {
4965      /* If there is no structure involved in the program text, there are two
4966       * possible scenarios:
4967       *
4968       * - The program text contained something like 'vec4;'.  This is an
4969       *   empty declaration.  It is valid but weird.  Emit a warning.
4970       *
4971       * - The program text contained something like 'S;' and 'S' is not the
4972       *   name of a known structure type.  This is both invalid and weird.
4973       *   Emit an error.
4974       *
4975       * - The program text contained something like 'mediump float;'
4976       *   when the programmer probably meant 'precision mediump
4977       *   float;' Emit a warning with a description of what they
4978       *   probably meant to do.
4979       *
4980       * Note that if decl_type is NULL and there is a structure involved,
4981       * there must have been some sort of error with the structure.  In this
4982       * case we assume that an error was already generated on this line of
4983       * code for the structure.  There is no need to generate an additional,
4984       * confusing error.
4985       */
4986      assert(this->type->specifier->structure == NULL || decl_type != NULL
4987             || state->error);
4988
4989      if (decl_type == NULL) {
4990         _mesa_glsl_error(&loc, state,
4991                          "invalid type `%s' in empty declaration",
4992                          type_name);
4993      } else {
4994         if (decl_type->is_array()) {
4995            /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4996             * spec:
4997             *
4998             *    "... any declaration that leaves the size undefined is
4999             *    disallowed as this would add complexity and there are no
5000             *    use-cases."
5001             */
5002            if (state->es_shader && decl_type->is_unsized_array()) {
5003               _mesa_glsl_error(&loc, state, "array size must be explicitly "
5004                                "or implicitly defined");
5005            }
5006
5007            /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5008             *
5009             *    "The combinations of types and qualifiers that cause
5010             *    compile-time or link-time errors are the same whether or not
5011             *    the declaration is empty."
5012             */
5013            validate_array_dimensions(decl_type, state, &loc);
5014         }
5015
5016         if (decl_type->is_atomic_uint()) {
5017            /* Empty atomic counter declarations are allowed and useful
5018             * to set the default offset qualifier.
5019             */
5020            return NULL;
5021         } else if (this->type->qualifier.precision != ast_precision_none) {
5022            if (this->type->specifier->structure != NULL) {
5023               _mesa_glsl_error(&loc, state,
5024                                "precision qualifiers can't be applied "
5025                                "to structures");
5026            } else {
5027               static const char *const precision_names[] = {
5028                  "highp",
5029                  "highp",
5030                  "mediump",
5031                  "lowp"
5032               };
5033
5034               _mesa_glsl_warning(&loc, state,
5035                                  "empty declaration with precision "
5036                                  "qualifier, to set the default precision, "
5037                                  "use `precision %s %s;'",
5038                                  precision_names[this->type->
5039                                     qualifier.precision],
5040                                  type_name);
5041            }
5042         } else if (this->type->specifier->structure == NULL) {
5043            _mesa_glsl_warning(&loc, state, "empty declaration");
5044         }
5045      }
5046   }
5047
5048   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5049      const struct glsl_type *var_type;
5050      ir_variable *var;
5051      const char *identifier = decl->identifier;
5052      /* FINISHME: Emit a warning if a variable declaration shadows a
5053       * FINISHME: declaration at a higher scope.
5054       */
5055
5056      if ((decl_type == NULL) || decl_type->is_void()) {
5057         if (type_name != NULL) {
5058            _mesa_glsl_error(& loc, state,
5059                             "invalid type `%s' in declaration of `%s'",
5060                             type_name, decl->identifier);
5061         } else {
5062            _mesa_glsl_error(& loc, state,
5063                             "invalid type in declaration of `%s'",
5064                             decl->identifier);
5065         }
5066         continue;
5067      }
5068
5069      if (this->type->qualifier.is_subroutine_decl()) {
5070         const glsl_type *t;
5071         const char *name;
5072
5073         t = state->symbols->get_type(this->type->specifier->type_name);
5074         if (!t)
5075            _mesa_glsl_error(& loc, state,
5076                             "invalid type in declaration of `%s'",
5077                             decl->identifier);
5078         name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5079
5080         identifier = name;
5081
5082      }
5083      var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5084                                    state);
5085
5086      var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5087
5088      /* The 'varying in' and 'varying out' qualifiers can only be used with
5089       * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5090       * yet.
5091       */
5092      if (this->type->qualifier.flags.q.varying) {
5093         if (this->type->qualifier.flags.q.in) {
5094            _mesa_glsl_error(& loc, state,
5095                             "`varying in' qualifier in declaration of "
5096                             "`%s' only valid for geometry shaders using "
5097                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5098                             decl->identifier);
5099         } else if (this->type->qualifier.flags.q.out) {
5100            _mesa_glsl_error(& loc, state,
5101                             "`varying out' qualifier in declaration of "
5102                             "`%s' only valid for geometry shaders using "
5103                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5104                             decl->identifier);
5105         }
5106      }
5107
5108      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5109       *
5110       *     "Global variables can only use the qualifiers const,
5111       *     attribute, uniform, or varying. Only one may be
5112       *     specified.
5113       *
5114       *     Local variables can only use the qualifier const."
5115       *
5116       * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5117       * any extension that adds the 'layout' keyword.
5118       */
5119      if (!state->is_version(130, 300)
5120          && !state->has_explicit_attrib_location()
5121          && !state->has_separate_shader_objects()
5122          && !state->ARB_fragment_coord_conventions_enable) {
5123         if (this->type->qualifier.flags.q.out) {
5124            _mesa_glsl_error(& loc, state,
5125                             "`out' qualifier in declaration of `%s' "
5126                             "only valid for function parameters in %s",
5127                             decl->identifier, state->get_version_string());
5128         }
5129         if (this->type->qualifier.flags.q.in) {
5130            _mesa_glsl_error(& loc, state,
5131                             "`in' qualifier in declaration of `%s' "
5132                             "only valid for function parameters in %s",
5133                             decl->identifier, state->get_version_string());
5134         }
5135         /* FINISHME: Test for other invalid qualifiers. */
5136      }
5137
5138      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5139                                       & loc, false);
5140      apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5141                                         &loc);
5142
5143      if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5144          && (var->type->is_numeric() || var->type->is_boolean())
5145          && state->zero_init) {
5146         const ir_constant_data data = { { 0 } };
5147         var->data.has_initializer = true;
5148         var->constant_initializer = new(var) ir_constant(var->type, &data);
5149      }
5150
5151      if (this->type->qualifier.flags.q.invariant) {
5152         if (!is_allowed_invariant(var, state)) {
5153            _mesa_glsl_error(&loc, state,
5154                             "`%s' cannot be marked invariant; interfaces between "
5155                             "shader stages only", var->name);
5156         }
5157      }
5158
5159      if (state->current_function != NULL) {
5160         const char *mode = NULL;
5161         const char *extra = "";
5162
5163         /* There is no need to check for 'inout' here because the parser will
5164          * only allow that in function parameter lists.
5165          */
5166         if (this->type->qualifier.flags.q.attribute) {
5167            mode = "attribute";
5168         } else if (this->type->qualifier.is_subroutine_decl()) {
5169            mode = "subroutine uniform";
5170         } else if (this->type->qualifier.flags.q.uniform) {
5171            mode = "uniform";
5172         } else if (this->type->qualifier.flags.q.varying) {
5173            mode = "varying";
5174         } else if (this->type->qualifier.flags.q.in) {
5175            mode = "in";
5176            extra = " or in function parameter list";
5177         } else if (this->type->qualifier.flags.q.out) {
5178            mode = "out";
5179            extra = " or in function parameter list";
5180         }
5181
5182         if (mode) {
5183            _mesa_glsl_error(& loc, state,
5184                             "%s variable `%s' must be declared at "
5185                             "global scope%s",
5186                             mode, var->name, extra);
5187         }
5188      } else if (var->data.mode == ir_var_shader_in) {
5189         var->data.read_only = true;
5190
5191         if (state->stage == MESA_SHADER_VERTEX) {
5192            bool error_emitted = false;
5193
5194            /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5195             *
5196             *    "Vertex shader inputs can only be float, floating-point
5197             *    vectors, matrices, signed and unsigned integers and integer
5198             *    vectors. Vertex shader inputs can also form arrays of these
5199             *    types, but not structures."
5200             *
5201             * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5202             *
5203             *    "Vertex shader inputs can only be float, floating-point
5204             *    vectors, matrices, signed and unsigned integers and integer
5205             *    vectors. They cannot be arrays or structures."
5206             *
5207             * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5208             *
5209             *    "The attribute qualifier can be used only with float,
5210             *    floating-point vectors, and matrices. Attribute variables
5211             *    cannot be declared as arrays or structures."
5212             *
5213             * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5214             *
5215             *    "Vertex shader inputs can only be float, floating-point
5216             *    vectors, matrices, signed and unsigned integers and integer
5217             *    vectors. Vertex shader inputs cannot be arrays or
5218             *    structures."
5219             *
5220             * From section 4.3.4 of the ARB_bindless_texture spec:
5221             *
5222             *    "(modify third paragraph of the section to allow sampler and
5223             *    image types) ...  Vertex shader inputs can only be float,
5224             *    single-precision floating-point scalars, single-precision
5225             *    floating-point vectors, matrices, signed and unsigned
5226             *    integers and integer vectors, sampler and image types."
5227             */
5228            const glsl_type *check_type = var->type->without_array();
5229
5230            switch (check_type->base_type) {
5231            case GLSL_TYPE_FLOAT:
5232            break;
5233            case GLSL_TYPE_UINT64:
5234            case GLSL_TYPE_INT64:
5235               break;
5236            case GLSL_TYPE_UINT:
5237            case GLSL_TYPE_INT:
5238               if (state->is_version(120, 300))
5239                  break;
5240            case GLSL_TYPE_DOUBLE:
5241               if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5242                  break;
5243            case GLSL_TYPE_SAMPLER:
5244               if (check_type->is_sampler() && state->has_bindless())
5245                  break;
5246            case GLSL_TYPE_IMAGE:
5247               if (check_type->is_image() && state->has_bindless())
5248                  break;
5249            /* FALLTHROUGH */
5250            default:
5251               _mesa_glsl_error(& loc, state,
5252                                "vertex shader input / attribute cannot have "
5253                                "type %s`%s'",
5254                                var->type->is_array() ? "array of " : "",
5255                                check_type->name);
5256               error_emitted = true;
5257            }
5258
5259            if (!error_emitted && var->type->is_array() &&
5260                !state->check_version(150, 0, &loc,
5261                                      "vertex shader input / attribute "
5262                                      "cannot have array type")) {
5263               error_emitted = true;
5264            }
5265         } else if (state->stage == MESA_SHADER_GEOMETRY) {
5266            /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5267             *
5268             *     Geometry shader input variables get the per-vertex values
5269             *     written out by vertex shader output variables of the same
5270             *     names. Since a geometry shader operates on a set of
5271             *     vertices, each input varying variable (or input block, see
5272             *     interface blocks below) needs to be declared as an array.
5273             */
5274            if (!var->type->is_array()) {
5275               _mesa_glsl_error(&loc, state,
5276                                "geometry shader inputs must be arrays");
5277            }
5278
5279            handle_geometry_shader_input_decl(state, loc, var);
5280         } else if (state->stage == MESA_SHADER_FRAGMENT) {
5281            /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5282             *
5283             *     It is a compile-time error to declare a fragment shader
5284             *     input with, or that contains, any of the following types:
5285             *
5286             *     * A boolean type
5287             *     * An opaque type
5288             *     * An array of arrays
5289             *     * An array of structures
5290             *     * A structure containing an array
5291             *     * A structure containing a structure
5292             */
5293            if (state->es_shader) {
5294               const glsl_type *check_type = var->type->without_array();
5295               if (check_type->is_boolean() ||
5296                   check_type->contains_opaque()) {
5297                  _mesa_glsl_error(&loc, state,
5298                                   "fragment shader input cannot have type %s",
5299                                   check_type->name);
5300               }
5301               if (var->type->is_array() &&
5302                   var->type->fields.array->is_array()) {
5303                  _mesa_glsl_error(&loc, state,
5304                                   "%s shader output "
5305                                   "cannot have an array of arrays",
5306                                   _mesa_shader_stage_to_string(state->stage));
5307               }
5308               if (var->type->is_array() &&
5309                   var->type->fields.array->is_record()) {
5310                  _mesa_glsl_error(&loc, state,
5311                                   "fragment shader input "
5312                                   "cannot have an array of structs");
5313               }
5314               if (var->type->is_record()) {
5315                  for (unsigned i = 0; i < var->type->length; i++) {
5316                     if (var->type->fields.structure[i].type->is_array() ||
5317                         var->type->fields.structure[i].type->is_record())
5318                        _mesa_glsl_error(&loc, state,
5319                                         "fragment shader input cannot have "
5320                                         "a struct that contains an "
5321                                         "array or struct");
5322                  }
5323               }
5324            }
5325         } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5326                    state->stage == MESA_SHADER_TESS_EVAL) {
5327            handle_tess_shader_input_decl(state, loc, var);
5328         }
5329      } else if (var->data.mode == ir_var_shader_out) {
5330         const glsl_type *check_type = var->type->without_array();
5331
5332         /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5333          *
5334          *     It is a compile-time error to declare a fragment shader output
5335          *     that contains any of the following:
5336          *
5337          *     * A Boolean type (bool, bvec2 ...)
5338          *     * A double-precision scalar or vector (double, dvec2 ...)
5339          *     * An opaque type
5340          *     * Any matrix type
5341          *     * A structure
5342          */
5343         if (state->stage == MESA_SHADER_FRAGMENT) {
5344            if (check_type->is_record() || check_type->is_matrix())
5345               _mesa_glsl_error(&loc, state,
5346                                "fragment shader output "
5347                                "cannot have struct or matrix type");
5348            switch (check_type->base_type) {
5349            case GLSL_TYPE_UINT:
5350            case GLSL_TYPE_INT:
5351            case GLSL_TYPE_FLOAT:
5352               break;
5353            default:
5354               _mesa_glsl_error(&loc, state,
5355                                "fragment shader output cannot have "
5356                                "type %s", check_type->name);
5357            }
5358         }
5359
5360         /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5361          *
5362          *     It is a compile-time error to declare a vertex shader output
5363          *     with, or that contains, any of the following types:
5364          *
5365          *     * A boolean type
5366          *     * An opaque type
5367          *     * An array of arrays
5368          *     * An array of structures
5369          *     * A structure containing an array
5370          *     * A structure containing a structure
5371          *
5372          *     It is a compile-time error to declare a fragment shader output
5373          *     with, or that contains, any of the following types:
5374          *
5375          *     * A boolean type
5376          *     * An opaque type
5377          *     * A matrix
5378          *     * A structure
5379          *     * An array of array
5380          *
5381          * ES 3.20 updates this to apply to tessellation and geometry shaders
5382          * as well.  Because there are per-vertex arrays in the new stages,
5383          * it strikes the "array of..." rules and replaces them with these:
5384          *
5385          *     * For per-vertex-arrayed variables (applies to tessellation
5386          *       control, tessellation evaluation and geometry shaders):
5387          *
5388          *       * Per-vertex-arrayed arrays of arrays
5389          *       * Per-vertex-arrayed arrays of structures
5390          *
5391          *     * For non-per-vertex-arrayed variables:
5392          *
5393          *       * An array of arrays
5394          *       * An array of structures
5395          *
5396          * which basically says to unwrap the per-vertex aspect and apply
5397          * the old rules.
5398          */
5399         if (state->es_shader) {
5400            if (var->type->is_array() &&
5401                var->type->fields.array->is_array()) {
5402               _mesa_glsl_error(&loc, state,
5403                                "%s shader output "
5404                                "cannot have an array of arrays",
5405                                _mesa_shader_stage_to_string(state->stage));
5406            }
5407            if (state->stage <= MESA_SHADER_GEOMETRY) {
5408               const glsl_type *type = var->type;
5409
5410               if (state->stage == MESA_SHADER_TESS_CTRL &&
5411                   !var->data.patch && var->type->is_array()) {
5412                  type = var->type->fields.array;
5413               }
5414
5415               if (type->is_array() && type->fields.array->is_record()) {
5416                  _mesa_glsl_error(&loc, state,
5417                                   "%s shader output cannot have "
5418                                   "an array of structs",
5419                                   _mesa_shader_stage_to_string(state->stage));
5420               }
5421               if (type->is_record()) {
5422                  for (unsigned i = 0; i < type->length; i++) {
5423                     if (type->fields.structure[i].type->is_array() ||
5424                         type->fields.structure[i].type->is_record())
5425                        _mesa_glsl_error(&loc, state,
5426                                         "%s shader output cannot have a "
5427                                         "struct that contains an "
5428                                         "array or struct",
5429                                         _mesa_shader_stage_to_string(state->stage));
5430                  }
5431               }
5432            }
5433         }
5434
5435         if (state->stage == MESA_SHADER_TESS_CTRL) {
5436            handle_tess_ctrl_shader_output_decl(state, loc, var);
5437         }
5438      } else if (var->type->contains_subroutine()) {
5439         /* declare subroutine uniforms as hidden */
5440         var->data.how_declared = ir_var_hidden;
5441      }
5442
5443      /* From section 4.3.4 of the GLSL 4.00 spec:
5444       *    "Input variables may not be declared using the patch in qualifier
5445       *    in tessellation control or geometry shaders."
5446       *
5447       * From section 4.3.6 of the GLSL 4.00 spec:
5448       *    "It is an error to use patch out in a vertex, tessellation
5449       *    evaluation, or geometry shader."
5450       *
5451       * This doesn't explicitly forbid using them in a fragment shader, but
5452       * that's probably just an oversight.
5453       */
5454      if (state->stage != MESA_SHADER_TESS_EVAL
5455          && this->type->qualifier.flags.q.patch
5456          && this->type->qualifier.flags.q.in) {
5457
5458         _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5459                          "tessellation evaluation shader");
5460      }
5461
5462      if (state->stage != MESA_SHADER_TESS_CTRL
5463          && this->type->qualifier.flags.q.patch
5464          && this->type->qualifier.flags.q.out) {
5465
5466         _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5467                          "tessellation control shader");
5468      }
5469
5470      /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5471       */
5472      if (this->type->qualifier.precision != ast_precision_none) {
5473         state->check_precision_qualifiers_allowed(&loc);
5474      }
5475
5476      if (this->type->qualifier.precision != ast_precision_none &&
5477          !precision_qualifier_allowed(var->type)) {
5478         _mesa_glsl_error(&loc, state,
5479                          "precision qualifiers apply only to floating point"
5480                          ", integer and opaque types");
5481      }
5482
5483      /* From section 4.1.7 of the GLSL 4.40 spec:
5484       *
5485       *    "[Opaque types] can only be declared as function
5486       *     parameters or uniform-qualified variables."
5487       *
5488       * From section 4.1.7 of the ARB_bindless_texture spec:
5489       *
5490       *    "Samplers may be declared as shader inputs and outputs, as uniform
5491       *     variables, as temporary variables, and as function parameters."
5492       *
5493       * From section 4.1.X of the ARB_bindless_texture spec:
5494       *
5495       *    "Images may be declared as shader inputs and outputs, as uniform
5496       *     variables, as temporary variables, and as function parameters."
5497       */
5498      if (!this->type->qualifier.flags.q.uniform &&
5499          (var_type->contains_atomic() ||
5500           (!state->has_bindless() && var_type->contains_opaque()))) {
5501         _mesa_glsl_error(&loc, state,
5502                          "%s variables must be declared uniform",
5503                          state->has_bindless() ? "atomic" : "opaque");
5504      }
5505
5506      /* Process the initializer and add its instructions to a temporary
5507       * list.  This list will be added to the instruction stream (below) after
5508       * the declaration is added.  This is done because in some cases (such as
5509       * redeclarations) the declaration may not actually be added to the
5510       * instruction stream.
5511       */
5512      exec_list initializer_instructions;
5513
5514      /* Examine var name here since var may get deleted in the next call */
5515      bool var_is_gl_id = is_gl_identifier(var->name);
5516
5517      bool is_redeclaration;
5518      var = get_variable_being_redeclared(&var, decl->get_location(), state,
5519                                          false /* allow_all_redeclarations */,
5520                                          &is_redeclaration);
5521      if (is_redeclaration) {
5522         if (var_is_gl_id &&
5523             var->data.how_declared == ir_var_declared_in_block) {
5524            _mesa_glsl_error(&loc, state,
5525                             "`%s' has already been redeclared using "
5526                             "gl_PerVertex", var->name);
5527         }
5528         var->data.how_declared = ir_var_declared_normally;
5529      }
5530
5531      if (decl->initializer != NULL) {
5532         result = process_initializer(var,
5533                                      decl, this->type,
5534                                      &initializer_instructions, state);
5535      } else {
5536         validate_array_dimensions(var_type, state, &loc);
5537      }
5538
5539      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5540       *
5541       *     "It is an error to write to a const variable outside of
5542       *      its declaration, so they must be initialized when
5543       *      declared."
5544       */
5545      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5546         _mesa_glsl_error(& loc, state,
5547                          "const declaration of `%s' must be initialized",
5548                          decl->identifier);
5549      }
5550
5551      if (state->es_shader) {
5552         const glsl_type *const t = var->type;
5553
5554         /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5555          *
5556          * The GL_OES_tessellation_shader spec says about inputs:
5557          *
5558          *    "Declaring an array size is optional. If no size is specified,
5559          *     it will be taken from the implementation-dependent maximum
5560          *     patch size (gl_MaxPatchVertices)."
5561          *
5562          * and about TCS outputs:
5563          *
5564          *    "If no size is specified, it will be taken from output patch
5565          *     size declared in the shader."
5566          *
5567          * The GL_OES_geometry_shader spec says:
5568          *
5569          *    "All geometry shader input unsized array declarations will be
5570          *     sized by an earlier input primitive layout qualifier, when
5571          *     present, as per the following table."
5572          */
5573         const bool implicitly_sized =
5574            (var->data.mode == ir_var_shader_in &&
5575             state->stage >= MESA_SHADER_TESS_CTRL &&
5576             state->stage <= MESA_SHADER_GEOMETRY) ||
5577            (var->data.mode == ir_var_shader_out &&
5578             state->stage == MESA_SHADER_TESS_CTRL);
5579
5580         if (t->is_unsized_array() && !implicitly_sized)
5581            /* Section 10.17 of the GLSL ES 1.00 specification states that
5582             * unsized array declarations have been removed from the language.
5583             * Arrays that are sized using an initializer are still explicitly
5584             * sized.  However, GLSL ES 1.00 does not allow array
5585             * initializers.  That is only allowed in GLSL ES 3.00.
5586             *
5587             * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5588             *
5589             *     "An array type can also be formed without specifying a size
5590             *     if the definition includes an initializer:
5591             *
5592             *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5593             *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5594             *
5595             *         float a[5];
5596             *         float b[] = a;"
5597             */
5598            _mesa_glsl_error(& loc, state,
5599                             "unsized array declarations are not allowed in "
5600                             "GLSL ES");
5601      }
5602
5603      /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5604       *
5605       *    "It is a compile-time error to declare an unsized array of
5606       *     atomic_uint"
5607       */
5608      if (var->type->is_unsized_array() &&
5609          var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5610         _mesa_glsl_error(& loc, state,
5611                          "Unsized array of atomic_uint is not allowed");
5612      }
5613
5614      /* If the declaration is not a redeclaration, there are a few additional
5615       * semantic checks that must be applied.  In addition, variable that was
5616       * created for the declaration should be added to the IR stream.
5617       */
5618      if (!is_redeclaration) {
5619         validate_identifier(decl->identifier, loc, state);
5620
5621         /* Add the variable to the symbol table.  Note that the initializer's
5622          * IR was already processed earlier (though it hasn't been emitted
5623          * yet), without the variable in scope.
5624          *
5625          * This differs from most C-like languages, but it follows the GLSL
5626          * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5627          * spec:
5628          *
5629          *     "Within a declaration, the scope of a name starts immediately
5630          *     after the initializer if present or immediately after the name
5631          *     being declared if not."
5632          */
5633         if (!state->symbols->add_variable(var)) {
5634            YYLTYPE loc = this->get_location();
5635            _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5636                             "current scope", decl->identifier);
5637            continue;
5638         }
5639
5640         /* Push the variable declaration to the top.  It means that all the
5641          * variable declarations will appear in a funny last-to-first order,
5642          * but otherwise we run into trouble if a function is prototyped, a
5643          * global var is decled, then the function is defined with usage of
5644          * the global var.  See glslparsertest's CorrectModule.frag.
5645          */
5646         instructions->push_head(var);
5647      }
5648
5649      instructions->append_list(&initializer_instructions);
5650   }
5651
5652
5653   /* Generally, variable declarations do not have r-values.  However,
5654    * one is used for the declaration in
5655    *
5656    * while (bool b = some_condition()) {
5657    *   ...
5658    * }
5659    *
5660    * so we return the rvalue from the last seen declaration here.
5661    */
5662   return result;
5663}
5664
5665
5666ir_rvalue *
5667ast_parameter_declarator::hir(exec_list *instructions,
5668                              struct _mesa_glsl_parse_state *state)
5669{
5670   void *ctx = state;
5671   const struct glsl_type *type;
5672   const char *name = NULL;
5673   YYLTYPE loc = this->get_location();
5674
5675   type = this->type->glsl_type(& name, state);
5676
5677   if (type == NULL) {
5678      if (name != NULL) {
5679         _mesa_glsl_error(& loc, state,
5680                          "invalid type `%s' in declaration of `%s'",
5681                          name, this->identifier);
5682      } else {
5683         _mesa_glsl_error(& loc, state,
5684                          "invalid type in declaration of `%s'",
5685                          this->identifier);
5686      }
5687
5688      type = glsl_type::error_type;
5689   }
5690
5691   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5692    *
5693    *    "Functions that accept no input arguments need not use void in the
5694    *    argument list because prototypes (or definitions) are required and
5695    *    therefore there is no ambiguity when an empty argument list "( )" is
5696    *    declared. The idiom "(void)" as a parameter list is provided for
5697    *    convenience."
5698    *
5699    * Placing this check here prevents a void parameter being set up
5700    * for a function, which avoids tripping up checks for main taking
5701    * parameters and lookups of an unnamed symbol.
5702    */
5703   if (type->is_void()) {
5704      if (this->identifier != NULL)
5705         _mesa_glsl_error(& loc, state,
5706                          "named parameter cannot have type `void'");
5707
5708      is_void = true;
5709      return NULL;
5710   }
5711
5712   if (formal_parameter && (this->identifier == NULL)) {
5713      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5714      return NULL;
5715   }
5716
5717   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
5718    * call already handled the "vec4[..] foo" case.
5719    */
5720   type = process_array_type(&loc, type, this->array_specifier, state);
5721
5722   if (!type->is_error() && type->is_unsized_array()) {
5723      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5724                       "a declared size");
5725      type = glsl_type::error_type;
5726   }
5727
5728   is_void = false;
5729   ir_variable *var = new(ctx)
5730      ir_variable(type, this->identifier, ir_var_function_in);
5731
5732   /* Apply any specified qualifiers to the parameter declaration.  Note that
5733    * for function parameters the default mode is 'in'.
5734    */
5735   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5736                                    true);
5737
5738   /* From section 4.1.7 of the GLSL 4.40 spec:
5739    *
5740    *   "Opaque variables cannot be treated as l-values; hence cannot
5741    *    be used as out or inout function parameters, nor can they be
5742    *    assigned into."
5743    *
5744    * From section 4.1.7 of the ARB_bindless_texture spec:
5745    *
5746    *   "Samplers can be used as l-values, so can be assigned into and used
5747    *    as "out" and "inout" function parameters."
5748    *
5749    * From section 4.1.X of the ARB_bindless_texture spec:
5750    *
5751    *   "Images can be used as l-values, so can be assigned into and used as
5752    *    "out" and "inout" function parameters."
5753    */
5754   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5755       && (type->contains_atomic() ||
5756           (!state->has_bindless() && type->contains_opaque()))) {
5757      _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5758                       "contain %s variables",
5759                       state->has_bindless() ? "atomic" : "opaque");
5760      type = glsl_type::error_type;
5761   }
5762
5763   /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5764    *
5765    *    "When calling a function, expressions that do not evaluate to
5766    *     l-values cannot be passed to parameters declared as out or inout."
5767    *
5768    * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5769    *
5770    *    "Other binary or unary expressions, non-dereferenced arrays,
5771    *     function names, swizzles with repeated fields, and constants
5772    *     cannot be l-values."
5773    *
5774    * So for GLSL 1.10, passing an array as an out or inout parameter is not
5775    * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
5776    */
5777   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5778       && type->is_array()
5779       && !state->check_version(120, 100, &loc,
5780                                "arrays cannot be out or inout parameters")) {
5781      type = glsl_type::error_type;
5782   }
5783
5784   instructions->push_tail(var);
5785
5786   /* Parameter declarations do not have r-values.
5787    */
5788   return NULL;
5789}
5790
5791
5792void
5793ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5794                                            bool formal,
5795                                            exec_list *ir_parameters,
5796                                            _mesa_glsl_parse_state *state)
5797{
5798   ast_parameter_declarator *void_param = NULL;
5799   unsigned count = 0;
5800
5801   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5802      param->formal_parameter = formal;
5803      param->hir(ir_parameters, state);
5804
5805      if (param->is_void)
5806         void_param = param;
5807
5808      count++;
5809   }
5810
5811   if ((void_param != NULL) && (count > 1)) {
5812      YYLTYPE loc = void_param->get_location();
5813
5814      _mesa_glsl_error(& loc, state,
5815                       "`void' parameter must be only parameter");
5816   }
5817}
5818
5819
5820void
5821emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5822{
5823   /* IR invariants disallow function declarations or definitions
5824    * nested within other function definitions.  But there is no
5825    * requirement about the relative order of function declarations
5826    * and definitions with respect to one another.  So simply insert
5827    * the new ir_function block at the end of the toplevel instruction
5828    * list.
5829    */
5830   state->toplevel_ir->push_tail(f);
5831}
5832
5833
5834ir_rvalue *
5835ast_function::hir(exec_list *instructions,
5836                  struct _mesa_glsl_parse_state *state)
5837{
5838   void *ctx = state;
5839   ir_function *f = NULL;
5840   ir_function_signature *sig = NULL;
5841   exec_list hir_parameters;
5842   YYLTYPE loc = this->get_location();
5843
5844   const char *const name = identifier;
5845
5846   /* New functions are always added to the top-level IR instruction stream,
5847    * so this instruction list pointer is ignored.  See also emit_function
5848    * (called below).
5849    */
5850   (void) instructions;
5851
5852   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5853    *
5854    *   "Function declarations (prototypes) cannot occur inside of functions;
5855    *   they must be at global scope, or for the built-in functions, outside
5856    *   the global scope."
5857    *
5858    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5859    *
5860    *   "User defined functions may only be defined within the global scope."
5861    *
5862    * Note that this language does not appear in GLSL 1.10.
5863    */
5864   if ((state->current_function != NULL) &&
5865       state->is_version(120, 100)) {
5866      YYLTYPE loc = this->get_location();
5867      _mesa_glsl_error(&loc, state,
5868                       "declaration of function `%s' not allowed within "
5869                       "function body", name);
5870   }
5871
5872   validate_identifier(name, this->get_location(), state);
5873
5874   /* Convert the list of function parameters to HIR now so that they can be
5875    * used below to compare this function's signature with previously seen
5876    * signatures for functions with the same name.
5877    */
5878   ast_parameter_declarator::parameters_to_hir(& this->parameters,
5879                                               is_definition,
5880                                               & hir_parameters, state);
5881
5882   const char *return_type_name;
5883   const glsl_type *return_type =
5884      this->return_type->glsl_type(& return_type_name, state);
5885
5886   if (!return_type) {
5887      YYLTYPE loc = this->get_location();
5888      _mesa_glsl_error(&loc, state,
5889                       "function `%s' has undeclared return type `%s'",
5890                       name, return_type_name);
5891      return_type = glsl_type::error_type;
5892   }
5893
5894   /* ARB_shader_subroutine states:
5895    *  "Subroutine declarations cannot be prototyped. It is an error to prepend
5896    *   subroutine(...) to a function declaration."
5897    */
5898   if (this->return_type->qualifier.subroutine_list && !is_definition) {
5899      YYLTYPE loc = this->get_location();
5900      _mesa_glsl_error(&loc, state,
5901                       "function declaration `%s' cannot have subroutine prepended",
5902                       name);
5903   }
5904
5905   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5906    * "No qualifier is allowed on the return type of a function."
5907    */
5908   if (this->return_type->has_qualifiers(state)) {
5909      YYLTYPE loc = this->get_location();
5910      _mesa_glsl_error(& loc, state,
5911                       "function `%s' return type has qualifiers", name);
5912   }
5913
5914   /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5915    *
5916    *     "Arrays are allowed as arguments and as the return type. In both
5917    *     cases, the array must be explicitly sized."
5918    */
5919   if (return_type->is_unsized_array()) {
5920      YYLTYPE loc = this->get_location();
5921      _mesa_glsl_error(& loc, state,
5922                       "function `%s' return type array must be explicitly "
5923                       "sized", name);
5924   }
5925
5926   /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5927    *
5928    *     "Arrays are allowed as arguments, but not as the return type. [...]
5929    *      The return type can also be a structure if the structure does not
5930    *      contain an array."
5931    */
5932   if (state->language_version == 100 && return_type->contains_array()) {
5933      YYLTYPE loc = this->get_location();
5934      _mesa_glsl_error(& loc, state,
5935                       "function `%s' return type contains an array", name);
5936   }
5937
5938   /* From section 4.1.7 of the GLSL 4.40 spec:
5939    *
5940    *    "[Opaque types] can only be declared as function parameters
5941    *     or uniform-qualified variables."
5942    *
5943    * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5944    * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5945    * (Images)", this should be allowed.
5946    */
5947   if (return_type->contains_atomic() ||
5948       (!state->has_bindless() && return_type->contains_opaque())) {
5949      YYLTYPE loc = this->get_location();
5950      _mesa_glsl_error(&loc, state,
5951                       "function `%s' return type can't contain an %s type",
5952                       name, state->has_bindless() ? "atomic" : "opaque");
5953   }
5954
5955   /**/
5956   if (return_type->is_subroutine()) {
5957      YYLTYPE loc = this->get_location();
5958      _mesa_glsl_error(&loc, state,
5959                       "function `%s' return type can't be a subroutine type",
5960                       name);
5961   }
5962
5963
5964   /* Create an ir_function if one doesn't already exist. */
5965   f = state->symbols->get_function(name);
5966   if (f == NULL) {
5967      f = new(ctx) ir_function(name);
5968      if (!this->return_type->qualifier.is_subroutine_decl()) {
5969         if (!state->symbols->add_function(f)) {
5970            /* This function name shadows a non-function use of the same name. */
5971            YYLTYPE loc = this->get_location();
5972            _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5973                             "non-function", name);
5974            return NULL;
5975         }
5976      }
5977      emit_function(state, f);
5978   }
5979
5980   /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5981    *
5982    * "A shader cannot redefine or overload built-in functions."
5983    *
5984    * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5985    *
5986    * "User code can overload the built-in functions but cannot redefine
5987    * them."
5988    */
5989   if (state->es_shader) {
5990      /* Local shader has no exact candidates; check the built-ins. */
5991      _mesa_glsl_initialize_builtin_functions();
5992      if (state->language_version >= 300 &&
5993          _mesa_glsl_has_builtin_function(state, name)) {
5994         YYLTYPE loc = this->get_location();
5995         _mesa_glsl_error(& loc, state,
5996                          "A shader cannot redefine or overload built-in "
5997                          "function `%s' in GLSL ES 3.00", name);
5998         return NULL;
5999      }
6000
6001      if (state->language_version == 100) {
6002         ir_function_signature *sig =
6003            _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6004         if (sig && sig->is_builtin()) {
6005            _mesa_glsl_error(& loc, state,
6006                             "A shader cannot redefine built-in "
6007                             "function `%s' in GLSL ES 1.00", name);
6008         }
6009      }
6010   }
6011
6012   /* Verify that this function's signature either doesn't match a previously
6013    * seen signature for a function with the same name, or, if a match is found,
6014    * that the previously seen signature does not have an associated definition.
6015    */
6016   if (state->es_shader || f->has_user_signature()) {
6017      sig = f->exact_matching_signature(state, &hir_parameters);
6018      if (sig != NULL) {
6019         const char *badvar = sig->qualifiers_match(&hir_parameters);
6020         if (badvar != NULL) {
6021            YYLTYPE loc = this->get_location();
6022
6023            _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6024                             "qualifiers don't match prototype", name, badvar);
6025         }
6026
6027         if (sig->return_type != return_type) {
6028            YYLTYPE loc = this->get_location();
6029
6030            _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6031                             "match prototype", name);
6032         }
6033
6034         if (sig->is_defined) {
6035            if (is_definition) {
6036               YYLTYPE loc = this->get_location();
6037               _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6038            } else {
6039               /* We just encountered a prototype that exactly matches a
6040                * function that's already been defined.  This is redundant,
6041                * and we should ignore it.
6042                */
6043               return NULL;
6044            }
6045         } else if (state->language_version == 100 && !is_definition) {
6046            /* From the GLSL 1.00 spec, section 4.2.7:
6047             *
6048             *     "A particular variable, structure or function declaration
6049             *      may occur at most once within a scope with the exception
6050             *      that a single function prototype plus the corresponding
6051             *      function definition are allowed."
6052             */
6053            YYLTYPE loc = this->get_location();
6054            _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6055         }
6056      }
6057   }
6058
6059   /* Verify the return type of main() */
6060   if (strcmp(name, "main") == 0) {
6061      if (! return_type->is_void()) {
6062         YYLTYPE loc = this->get_location();
6063
6064         _mesa_glsl_error(& loc, state, "main() must return void");
6065      }
6066
6067      if (!hir_parameters.is_empty()) {
6068         YYLTYPE loc = this->get_location();
6069
6070         _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6071      }
6072   }
6073
6074   /* Finish storing the information about this new function in its signature.
6075    */
6076   if (sig == NULL) {
6077      sig = new(ctx) ir_function_signature(return_type);
6078      f->add_signature(sig);
6079   }
6080
6081   sig->replace_parameters(&hir_parameters);
6082   signature = sig;
6083
6084   if (this->return_type->qualifier.subroutine_list) {
6085      int idx;
6086
6087      if (this->return_type->qualifier.flags.q.explicit_index) {
6088         unsigned qual_index;
6089         if (process_qualifier_constant(state, &loc, "index",
6090                                        this->return_type->qualifier.index,
6091                                        &qual_index)) {
6092            if (!state->has_explicit_uniform_location()) {
6093               _mesa_glsl_error(&loc, state, "subroutine index requires "
6094                                "GL_ARB_explicit_uniform_location or "
6095                                "GLSL 4.30");
6096            } else if (qual_index >= MAX_SUBROUTINES) {
6097               _mesa_glsl_error(&loc, state,
6098                                "invalid subroutine index (%d) index must "
6099                                "be a number between 0 and "
6100                                "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6101                                MAX_SUBROUTINES - 1);
6102            } else {
6103               f->subroutine_index = qual_index;
6104            }
6105         }
6106      }
6107
6108      f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6109      f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6110                                         f->num_subroutine_types);
6111      idx = 0;
6112      foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6113         const struct glsl_type *type;
6114         /* the subroutine type must be already declared */
6115         type = state->symbols->get_type(decl->identifier);
6116         if (!type) {
6117            _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6118         }
6119
6120         for (int i = 0; i < state->num_subroutine_types; i++) {
6121            ir_function *fn = state->subroutine_types[i];
6122            ir_function_signature *tsig = NULL;
6123
6124            if (strcmp(fn->name, decl->identifier))
6125               continue;
6126
6127            tsig = fn->matching_signature(state, &sig->parameters,
6128                                          false);
6129            if (!tsig) {
6130               _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6131            } else {
6132               if (tsig->return_type != sig->return_type) {
6133                  _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6134               }
6135            }
6136         }
6137         f->subroutine_types[idx++] = type;
6138      }
6139      state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6140                                                    ir_function *,
6141                                                    state->num_subroutines + 1);
6142      state->subroutines[state->num_subroutines] = f;
6143      state->num_subroutines++;
6144
6145   }
6146
6147   if (this->return_type->qualifier.is_subroutine_decl()) {
6148      if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6149         _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6150         return NULL;
6151      }
6152      state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6153                                                         ir_function *,
6154                                                         state->num_subroutine_types + 1);
6155      state->subroutine_types[state->num_subroutine_types] = f;
6156      state->num_subroutine_types++;
6157
6158      f->is_subroutine = true;
6159   }
6160
6161   /* Function declarations (prototypes) do not have r-values.
6162    */
6163   return NULL;
6164}
6165
6166
6167ir_rvalue *
6168ast_function_definition::hir(exec_list *instructions,
6169                             struct _mesa_glsl_parse_state *state)
6170{
6171   prototype->is_definition = true;
6172   prototype->hir(instructions, state);
6173
6174   ir_function_signature *signature = prototype->signature;
6175   if (signature == NULL)
6176      return NULL;
6177
6178   assert(state->current_function == NULL);
6179   state->current_function = signature;
6180   state->found_return = false;
6181
6182   /* Duplicate parameters declared in the prototype as concrete variables.
6183    * Add these to the symbol table.
6184    */
6185   state->symbols->push_scope();
6186   foreach_in_list(ir_variable, var, &signature->parameters) {
6187      assert(var->as_variable() != NULL);
6188
6189      /* The only way a parameter would "exist" is if two parameters have
6190       * the same name.
6191       */
6192      if (state->symbols->name_declared_this_scope(var->name)) {
6193         YYLTYPE loc = this->get_location();
6194
6195         _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6196      } else {
6197         state->symbols->add_variable(var);
6198      }
6199   }
6200
6201   /* Convert the body of the function to HIR. */
6202   this->body->hir(&signature->body, state);
6203   signature->is_defined = true;
6204
6205   state->symbols->pop_scope();
6206
6207   assert(state->current_function == signature);
6208   state->current_function = NULL;
6209
6210   if (!signature->return_type->is_void() && !state->found_return) {
6211      YYLTYPE loc = this->get_location();
6212      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6213                       "%s, but no return statement",
6214                       signature->function_name(),
6215                       signature->return_type->name);
6216   }
6217
6218   /* Function definitions do not have r-values.
6219    */
6220   return NULL;
6221}
6222
6223
6224ir_rvalue *
6225ast_jump_statement::hir(exec_list *instructions,
6226                        struct _mesa_glsl_parse_state *state)
6227{
6228   void *ctx = state;
6229
6230   switch (mode) {
6231   case ast_return: {
6232      ir_return *inst;
6233      assert(state->current_function);
6234
6235      if (opt_return_value) {
6236         ir_rvalue *ret = opt_return_value->hir(instructions, state);
6237
6238         /* The value of the return type can be NULL if the shader says
6239          * 'return foo();' and foo() is a function that returns void.
6240          *
6241          * NOTE: The GLSL spec doesn't say that this is an error.  The type
6242          * of the return value is void.  If the return type of the function is
6243          * also void, then this should compile without error.  Seriously.
6244          */
6245         const glsl_type *const ret_type =
6246            (ret == NULL) ? glsl_type::void_type : ret->type;
6247
6248         /* Implicit conversions are not allowed for return values prior to
6249          * ARB_shading_language_420pack.
6250          */
6251         if (state->current_function->return_type != ret_type) {
6252            YYLTYPE loc = this->get_location();
6253
6254            if (state->has_420pack()) {
6255               if (!apply_implicit_conversion(state->current_function->return_type,
6256                                              ret, state)) {
6257                  _mesa_glsl_error(& loc, state,
6258                                   "could not implicitly convert return value "
6259                                   "to %s, in function `%s'",
6260                                   state->current_function->return_type->name,
6261                                   state->current_function->function_name());
6262               }
6263            } else {
6264               _mesa_glsl_error(& loc, state,
6265                                "`return' with wrong type %s, in function `%s' "
6266                                "returning %s",
6267                                ret_type->name,
6268                                state->current_function->function_name(),
6269                                state->current_function->return_type->name);
6270            }
6271         } else if (state->current_function->return_type->base_type ==
6272                    GLSL_TYPE_VOID) {
6273            YYLTYPE loc = this->get_location();
6274
6275            /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6276             * specs add a clarification:
6277             *
6278             *    "A void function can only use return without a return argument, even if
6279             *     the return argument has void type. Return statements only accept values:
6280             *
6281             *         void func1() { }
6282             *         void func2() { return func1(); } // illegal return statement"
6283             */
6284            _mesa_glsl_error(& loc, state,
6285                             "void functions can only use `return' without a "
6286                             "return argument");
6287         }
6288
6289         inst = new(ctx) ir_return(ret);
6290      } else {
6291         if (state->current_function->return_type->base_type !=
6292             GLSL_TYPE_VOID) {
6293            YYLTYPE loc = this->get_location();
6294
6295            _mesa_glsl_error(& loc, state,
6296                             "`return' with no value, in function %s returning "
6297                             "non-void",
6298            state->current_function->function_name());
6299         }
6300         inst = new(ctx) ir_return;
6301      }
6302
6303      state->found_return = true;
6304      instructions->push_tail(inst);
6305      break;
6306   }
6307
6308   case ast_discard:
6309      if (state->stage != MESA_SHADER_FRAGMENT) {
6310         YYLTYPE loc = this->get_location();
6311
6312         _mesa_glsl_error(& loc, state,
6313                          "`discard' may only appear in a fragment shader");
6314      }
6315      instructions->push_tail(new(ctx) ir_discard);
6316      break;
6317
6318   case ast_break:
6319   case ast_continue:
6320      if (mode == ast_continue &&
6321          state->loop_nesting_ast == NULL) {
6322         YYLTYPE loc = this->get_location();
6323
6324         _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6325      } else if (mode == ast_break &&
6326         state->loop_nesting_ast == NULL &&
6327         state->switch_state.switch_nesting_ast == NULL) {
6328         YYLTYPE loc = this->get_location();
6329
6330         _mesa_glsl_error(& loc, state,
6331                          "break may only appear in a loop or a switch");
6332      } else {
6333         /* For a loop, inline the for loop expression again, since we don't
6334          * know where near the end of the loop body the normal copy of it is
6335          * going to be placed.  Same goes for the condition for a do-while
6336          * loop.
6337          */
6338         if (state->loop_nesting_ast != NULL &&
6339             mode == ast_continue && !state->switch_state.is_switch_innermost) {
6340            if (state->loop_nesting_ast->rest_expression) {
6341               state->loop_nesting_ast->rest_expression->hir(instructions,
6342                                                             state);
6343            }
6344            if (state->loop_nesting_ast->mode ==
6345                ast_iteration_statement::ast_do_while) {
6346               state->loop_nesting_ast->condition_to_hir(instructions, state);
6347            }
6348         }
6349
6350         if (state->switch_state.is_switch_innermost &&
6351             mode == ast_continue) {
6352            /* Set 'continue_inside' to true. */
6353            ir_rvalue *const true_val = new (ctx) ir_constant(true);
6354            ir_dereference_variable *deref_continue_inside_var =
6355               new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6356            instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6357                                                           true_val));
6358
6359            /* Break out from the switch, continue for the loop will
6360             * be called right after switch. */
6361            ir_loop_jump *const jump =
6362               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6363            instructions->push_tail(jump);
6364
6365         } else if (state->switch_state.is_switch_innermost &&
6366             mode == ast_break) {
6367            /* Force break out of switch by inserting a break. */
6368            ir_loop_jump *const jump =
6369               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6370            instructions->push_tail(jump);
6371         } else {
6372            ir_loop_jump *const jump =
6373               new(ctx) ir_loop_jump((mode == ast_break)
6374                  ? ir_loop_jump::jump_break
6375                  : ir_loop_jump::jump_continue);
6376            instructions->push_tail(jump);
6377         }
6378      }
6379
6380      break;
6381   }
6382
6383   /* Jump instructions do not have r-values.
6384    */
6385   return NULL;
6386}
6387
6388
6389ir_rvalue *
6390ast_selection_statement::hir(exec_list *instructions,
6391                             struct _mesa_glsl_parse_state *state)
6392{
6393   void *ctx = state;
6394
6395   ir_rvalue *const condition = this->condition->hir(instructions, state);
6396
6397   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6398    *
6399    *    "Any expression whose type evaluates to a Boolean can be used as the
6400    *    conditional expression bool-expression. Vector types are not accepted
6401    *    as the expression to if."
6402    *
6403    * The checks are separated so that higher quality diagnostics can be
6404    * generated for cases where both rules are violated.
6405    */
6406   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6407      YYLTYPE loc = this->condition->get_location();
6408
6409      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6410                       "boolean");
6411   }
6412
6413   ir_if *const stmt = new(ctx) ir_if(condition);
6414
6415   if (then_statement != NULL) {
6416      state->symbols->push_scope();
6417      then_statement->hir(& stmt->then_instructions, state);
6418      state->symbols->pop_scope();
6419   }
6420
6421   if (else_statement != NULL) {
6422      state->symbols->push_scope();
6423      else_statement->hir(& stmt->else_instructions, state);
6424      state->symbols->pop_scope();
6425   }
6426
6427   instructions->push_tail(stmt);
6428
6429   /* if-statements do not have r-values.
6430    */
6431   return NULL;
6432}
6433
6434
6435struct case_label {
6436   /** Value of the case label. */
6437   unsigned value;
6438
6439   /** Does this label occur after the default? */
6440   bool after_default;
6441
6442   /**
6443    * AST for the case label.
6444    *
6445    * This is only used to generate error messages for duplicate labels.
6446    */
6447   ast_expression *ast;
6448};
6449
6450/* Used for detection of duplicate case values, compare
6451 * given contents directly.
6452 */
6453static bool
6454compare_case_value(const void *a, const void *b)
6455{
6456   return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6457}
6458
6459
6460/* Used for detection of duplicate case values, just
6461 * returns key contents as is.
6462 */
6463static unsigned
6464key_contents(const void *key)
6465{
6466   return ((struct case_label *) key)->value;
6467}
6468
6469
6470ir_rvalue *
6471ast_switch_statement::hir(exec_list *instructions,
6472                          struct _mesa_glsl_parse_state *state)
6473{
6474   void *ctx = state;
6475
6476   ir_rvalue *const test_expression =
6477      this->test_expression->hir(instructions, state);
6478
6479   /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6480    *
6481    *    "The type of init-expression in a switch statement must be a
6482    *     scalar integer."
6483    */
6484   if (!test_expression->type->is_scalar() ||
6485       !test_expression->type->is_integer()) {
6486      YYLTYPE loc = this->test_expression->get_location();
6487
6488      _mesa_glsl_error(& loc,
6489                       state,
6490                       "switch-statement expression must be scalar "
6491                       "integer");
6492      return NULL;
6493   }
6494
6495   /* Track the switch-statement nesting in a stack-like manner.
6496    */
6497   struct glsl_switch_state saved = state->switch_state;
6498
6499   state->switch_state.is_switch_innermost = true;
6500   state->switch_state.switch_nesting_ast = this;
6501   state->switch_state.labels_ht =
6502         _mesa_hash_table_create(NULL, key_contents,
6503                                 compare_case_value);
6504   state->switch_state.previous_default = NULL;
6505
6506   /* Initalize is_fallthru state to false.
6507    */
6508   ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6509   state->switch_state.is_fallthru_var =
6510      new(ctx) ir_variable(glsl_type::bool_type,
6511                           "switch_is_fallthru_tmp",
6512                           ir_var_temporary);
6513   instructions->push_tail(state->switch_state.is_fallthru_var);
6514
6515   ir_dereference_variable *deref_is_fallthru_var =
6516      new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6517   instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6518                                                  is_fallthru_val));
6519
6520   /* Initialize continue_inside state to false.
6521    */
6522   state->switch_state.continue_inside =
6523      new(ctx) ir_variable(glsl_type::bool_type,
6524                           "continue_inside_tmp",
6525                           ir_var_temporary);
6526   instructions->push_tail(state->switch_state.continue_inside);
6527
6528   ir_rvalue *const false_val = new (ctx) ir_constant(false);
6529   ir_dereference_variable *deref_continue_inside_var =
6530      new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6531   instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6532                                                  false_val));
6533
6534   state->switch_state.run_default =
6535      new(ctx) ir_variable(glsl_type::bool_type,
6536                             "run_default_tmp",
6537                             ir_var_temporary);
6538   instructions->push_tail(state->switch_state.run_default);
6539
6540   /* Loop around the switch is used for flow control. */
6541   ir_loop * loop = new(ctx) ir_loop();
6542   instructions->push_tail(loop);
6543
6544   /* Cache test expression.
6545    */
6546   test_to_hir(&loop->body_instructions, state);
6547
6548   /* Emit code for body of switch stmt.
6549    */
6550   body->hir(&loop->body_instructions, state);
6551
6552   /* Insert a break at the end to exit loop. */
6553   ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6554   loop->body_instructions.push_tail(jump);
6555
6556   /* If we are inside loop, check if continue got called inside switch. */
6557   if (state->loop_nesting_ast != NULL) {
6558      ir_dereference_variable *deref_continue_inside =
6559         new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6560      ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6561      ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6562
6563      if (state->loop_nesting_ast != NULL) {
6564         if (state->loop_nesting_ast->rest_expression) {
6565            state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6566                                                          state);
6567         }
6568         if (state->loop_nesting_ast->mode ==
6569             ast_iteration_statement::ast_do_while) {
6570            state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6571         }
6572      }
6573      irif->then_instructions.push_tail(jump);
6574      instructions->push_tail(irif);
6575   }
6576
6577   _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6578
6579   state->switch_state = saved;
6580
6581   /* Switch statements do not have r-values. */
6582   return NULL;
6583}
6584
6585
6586void
6587ast_switch_statement::test_to_hir(exec_list *instructions,
6588                                  struct _mesa_glsl_parse_state *state)
6589{
6590   void *ctx = state;
6591
6592   /* set to true to avoid a duplicate "use of uninitialized variable" warning
6593    * on the switch test case. The first one would be already raised when
6594    * getting the test_expression at ast_switch_statement::hir
6595    */
6596   test_expression->set_is_lhs(true);
6597   /* Cache value of test expression. */
6598   ir_rvalue *const test_val = test_expression->hir(instructions, state);
6599
6600   state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6601                                                       "switch_test_tmp",
6602                                                       ir_var_temporary);
6603   ir_dereference_variable *deref_test_var =
6604      new(ctx) ir_dereference_variable(state->switch_state.test_var);
6605
6606   instructions->push_tail(state->switch_state.test_var);
6607   instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6608}
6609
6610
6611ir_rvalue *
6612ast_switch_body::hir(exec_list *instructions,
6613                     struct _mesa_glsl_parse_state *state)
6614{
6615   if (stmts != NULL)
6616      stmts->hir(instructions, state);
6617
6618   /* Switch bodies do not have r-values. */
6619   return NULL;
6620}
6621
6622ir_rvalue *
6623ast_case_statement_list::hir(exec_list *instructions,
6624                             struct _mesa_glsl_parse_state *state)
6625{
6626   exec_list default_case, after_default, tmp;
6627
6628   foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6629      case_stmt->hir(&tmp, state);
6630
6631      /* Default case. */
6632      if (state->switch_state.previous_default && default_case.is_empty()) {
6633         default_case.append_list(&tmp);
6634         continue;
6635      }
6636
6637      /* If default case found, append 'after_default' list. */
6638      if (!default_case.is_empty())
6639         after_default.append_list(&tmp);
6640      else
6641         instructions->append_list(&tmp);
6642   }
6643
6644   /* Handle the default case. This is done here because default might not be
6645    * the last case. We need to add checks against following cases first to see
6646    * if default should be chosen or not.
6647    */
6648   if (!default_case.is_empty()) {
6649      ir_factory body(instructions, state);
6650
6651      ir_expression *cmp = NULL;
6652
6653      hash_table_foreach(state->switch_state.labels_ht, entry) {
6654         const struct case_label *const l = (struct case_label *) entry->data;
6655
6656         /* If the switch init-value is the value of one of the labels that
6657          * occurs after the default case, disable execution of the default
6658          * case.
6659          */
6660         if (l->after_default) {
6661            ir_constant *const cnst =
6662               state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6663               ? body.constant(unsigned(l->value))
6664               : body.constant(int(l->value));
6665
6666            cmp = cmp == NULL
6667               ? equal(cnst, state->switch_state.test_var)
6668               : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6669         }
6670      }
6671
6672      if (cmp != NULL)
6673         body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6674      else
6675         body.emit(assign(state->switch_state.run_default, body.constant(true)));
6676
6677      /* Append default case and all cases after it. */
6678      instructions->append_list(&default_case);
6679      instructions->append_list(&after_default);
6680   }
6681
6682   /* Case statements do not have r-values. */
6683   return NULL;
6684}
6685
6686ir_rvalue *
6687ast_case_statement::hir(exec_list *instructions,
6688                        struct _mesa_glsl_parse_state *state)
6689{
6690   labels->hir(instructions, state);
6691
6692   /* Guard case statements depending on fallthru state. */
6693   ir_dereference_variable *const deref_fallthru_guard =
6694      new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6695   ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6696
6697   foreach_list_typed (ast_node, stmt, link, & this->stmts)
6698      stmt->hir(& test_fallthru->then_instructions, state);
6699
6700   instructions->push_tail(test_fallthru);
6701
6702   /* Case statements do not have r-values. */
6703   return NULL;
6704}
6705
6706
6707ir_rvalue *
6708ast_case_label_list::hir(exec_list *instructions,
6709                         struct _mesa_glsl_parse_state *state)
6710{
6711   foreach_list_typed (ast_case_label, label, link, & this->labels)
6712      label->hir(instructions, state);
6713
6714   /* Case labels do not have r-values. */
6715   return NULL;
6716}
6717
6718ir_rvalue *
6719ast_case_label::hir(exec_list *instructions,
6720                    struct _mesa_glsl_parse_state *state)
6721{
6722   ir_factory body(instructions, state);
6723
6724   ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6725
6726   /* If not default case, ... */
6727   if (this->test_value != NULL) {
6728      /* Conditionally set fallthru state based on
6729       * comparison of cached test expression value to case label.
6730       */
6731      ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6732      ir_constant *label_const =
6733         label_rval->constant_expression_value(body.mem_ctx);
6734
6735      if (!label_const) {
6736         YYLTYPE loc = this->test_value->get_location();
6737
6738         _mesa_glsl_error(& loc, state,
6739                          "switch statement case label must be a "
6740                          "constant expression");
6741
6742         /* Stuff a dummy value in to allow processing to continue. */
6743         label_const = body.constant(0);
6744      } else {
6745         hash_entry *entry =
6746               _mesa_hash_table_search(state->switch_state.labels_ht,
6747                                       &label_const->value.u[0]);
6748
6749         if (entry) {
6750            const struct case_label *const l =
6751               (struct case_label *) entry->data;
6752            const ast_expression *const previous_label = l->ast;
6753            YYLTYPE loc = this->test_value->get_location();
6754
6755            _mesa_glsl_error(& loc, state, "duplicate case value");
6756
6757            loc = previous_label->get_location();
6758            _mesa_glsl_error(& loc, state, "this is the previous case label");
6759         } else {
6760            struct case_label *l = ralloc(state->switch_state.labels_ht,
6761                                          struct case_label);
6762
6763            l->value = label_const->value.u[0];
6764            l->after_default = state->switch_state.previous_default != NULL;
6765            l->ast = this->test_value;
6766
6767            _mesa_hash_table_insert(state->switch_state.labels_ht,
6768                                    &label_const->value.u[0],
6769                                    l);
6770         }
6771      }
6772
6773      /* Create an r-value version of the ir_constant label here (after we may
6774       * have created a fake one in error cases) that can be passed to
6775       * apply_implicit_conversion below.
6776       */
6777      ir_rvalue *label = label_const;
6778
6779      ir_rvalue *deref_test_var =
6780         new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6781
6782      /*
6783       * From GLSL 4.40 specification section 6.2 ("Selection"):
6784       *
6785       *     "The type of the init-expression value in a switch statement must
6786       *     be a scalar int or uint. The type of the constant-expression value
6787       *     in a case label also must be a scalar int or uint. When any pair
6788       *     of these values is tested for "equal value" and the types do not
6789       *     match, an implicit conversion will be done to convert the int to a
6790       *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
6791       *     is done."
6792       */
6793      if (label->type != state->switch_state.test_var->type) {
6794         YYLTYPE loc = this->test_value->get_location();
6795
6796         const glsl_type *type_a = label->type;
6797         const glsl_type *type_b = state->switch_state.test_var->type;
6798
6799         /* Check if int->uint implicit conversion is supported. */
6800         bool integer_conversion_supported =
6801            glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6802                                                           state);
6803
6804         if ((!type_a->is_integer() || !type_b->is_integer()) ||
6805              !integer_conversion_supported) {
6806            _mesa_glsl_error(&loc, state, "type mismatch with switch "
6807                             "init-expression and case label (%s != %s)",
6808                             type_a->name, type_b->name);
6809         } else {
6810            /* Conversion of the case label. */
6811            if (type_a->base_type == GLSL_TYPE_INT) {
6812               if (!apply_implicit_conversion(glsl_type::uint_type,
6813                                              label, state))
6814                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
6815            } else {
6816               /* Conversion of the init-expression value. */
6817               if (!apply_implicit_conversion(glsl_type::uint_type,
6818                                              deref_test_var, state))
6819                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
6820            }
6821         }
6822
6823         /* If the implicit conversion was allowed, the types will already be
6824          * the same.  If the implicit conversion wasn't allowed, smash the
6825          * type of the label anyway.  This will prevent the expression
6826          * constructor (below) from failing an assertion.
6827          */
6828         label->type = deref_test_var->type;
6829      }
6830
6831      body.emit(assign(fallthru_var,
6832                       logic_or(fallthru_var, equal(label, deref_test_var))));
6833   } else { /* default case */
6834      if (state->switch_state.previous_default) {
6835         YYLTYPE loc = this->get_location();
6836         _mesa_glsl_error(& loc, state,
6837                          "multiple default labels in one switch");
6838
6839         loc = state->switch_state.previous_default->get_location();
6840         _mesa_glsl_error(& loc, state, "this is the first default label");
6841      }
6842      state->switch_state.previous_default = this;
6843
6844      /* Set fallthru condition on 'run_default' bool. */
6845      body.emit(assign(fallthru_var,
6846                       logic_or(fallthru_var,
6847                                state->switch_state.run_default)));
6848   }
6849
6850   /* Case statements do not have r-values. */
6851   return NULL;
6852}
6853
6854void
6855ast_iteration_statement::condition_to_hir(exec_list *instructions,
6856                                          struct _mesa_glsl_parse_state *state)
6857{
6858   void *ctx = state;
6859
6860   if (condition != NULL) {
6861      ir_rvalue *const cond =
6862         condition->hir(instructions, state);
6863
6864      if ((cond == NULL)
6865          || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6866         YYLTYPE loc = condition->get_location();
6867
6868         _mesa_glsl_error(& loc, state,
6869                          "loop condition must be scalar boolean");
6870      } else {
6871         /* As the first code in the loop body, generate a block that looks
6872          * like 'if (!condition) break;' as the loop termination condition.
6873          */
6874         ir_rvalue *const not_cond =
6875            new(ctx) ir_expression(ir_unop_logic_not, cond);
6876
6877         ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6878
6879         ir_jump *const break_stmt =
6880            new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6881
6882         if_stmt->then_instructions.push_tail(break_stmt);
6883         instructions->push_tail(if_stmt);
6884      }
6885   }
6886}
6887
6888
6889ir_rvalue *
6890ast_iteration_statement::hir(exec_list *instructions,
6891                             struct _mesa_glsl_parse_state *state)
6892{
6893   void *ctx = state;
6894
6895   /* For-loops and while-loops start a new scope, but do-while loops do not.
6896    */
6897   if (mode != ast_do_while)
6898      state->symbols->push_scope();
6899
6900   if (init_statement != NULL)
6901      init_statement->hir(instructions, state);
6902
6903   ir_loop *const stmt = new(ctx) ir_loop();
6904   instructions->push_tail(stmt);
6905
6906   /* Track the current loop nesting. */
6907   ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6908
6909   state->loop_nesting_ast = this;
6910
6911   /* Likewise, indicate that following code is closest to a loop,
6912    * NOT closest to a switch.
6913    */
6914   bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6915   state->switch_state.is_switch_innermost = false;
6916
6917   if (mode != ast_do_while)
6918      condition_to_hir(&stmt->body_instructions, state);
6919
6920   if (body != NULL)
6921      body->hir(& stmt->body_instructions, state);
6922
6923   if (rest_expression != NULL)
6924      rest_expression->hir(& stmt->body_instructions, state);
6925
6926   if (mode == ast_do_while)
6927      condition_to_hir(&stmt->body_instructions, state);
6928
6929   if (mode != ast_do_while)
6930      state->symbols->pop_scope();
6931
6932   /* Restore previous nesting before returning. */
6933   state->loop_nesting_ast = nesting_ast;
6934   state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6935
6936   /* Loops do not have r-values.
6937    */
6938   return NULL;
6939}
6940
6941
6942/**
6943 * Determine if the given type is valid for establishing a default precision
6944 * qualifier.
6945 *
6946 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6947 *
6948 *     "The precision statement
6949 *
6950 *         precision precision-qualifier type;
6951 *
6952 *     can be used to establish a default precision qualifier. The type field
6953 *     can be either int or float or any of the sampler types, and the
6954 *     precision-qualifier can be lowp, mediump, or highp."
6955 *
6956 * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
6957 * qualifiers on sampler types, but this seems like an oversight (since the
6958 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6959 * shaders).  So we allow int, float, and all sampler types regardless of GLSL
6960 * version.
6961 */
6962static bool
6963is_valid_default_precision_type(const struct glsl_type *const type)
6964{
6965   if (type == NULL)
6966      return false;
6967
6968   switch (type->base_type) {
6969   case GLSL_TYPE_INT:
6970   case GLSL_TYPE_FLOAT:
6971      /* "int" and "float" are valid, but vectors and matrices are not. */
6972      return type->vector_elements == 1 && type->matrix_columns == 1;
6973   case GLSL_TYPE_SAMPLER:
6974   case GLSL_TYPE_IMAGE:
6975   case GLSL_TYPE_ATOMIC_UINT:
6976      return true;
6977   default:
6978      return false;
6979   }
6980}
6981
6982
6983ir_rvalue *
6984ast_type_specifier::hir(exec_list *instructions,
6985                        struct _mesa_glsl_parse_state *state)
6986{
6987   if (this->default_precision == ast_precision_none && this->structure == NULL)
6988      return NULL;
6989
6990   YYLTYPE loc = this->get_location();
6991
6992   /* If this is a precision statement, check that the type to which it is
6993    * applied is either float or int.
6994    *
6995    * From section 4.5.3 of the GLSL 1.30 spec:
6996    *    "The precision statement
6997    *       precision precision-qualifier type;
6998    *    can be used to establish a default precision qualifier. The type
6999    *    field can be either int or float [...].  Any other types or
7000    *    qualifiers will result in an error.
7001    */
7002   if (this->default_precision != ast_precision_none) {
7003      if (!state->check_precision_qualifiers_allowed(&loc))
7004         return NULL;
7005
7006      if (this->structure != NULL) {
7007         _mesa_glsl_error(&loc, state,
7008                          "precision qualifiers do not apply to structures");
7009         return NULL;
7010      }
7011
7012      if (this->array_specifier != NULL) {
7013         _mesa_glsl_error(&loc, state,
7014                          "default precision statements do not apply to "
7015                          "arrays");
7016         return NULL;
7017      }
7018
7019      const struct glsl_type *const type =
7020         state->symbols->get_type(this->type_name);
7021      if (!is_valid_default_precision_type(type)) {
7022         _mesa_glsl_error(&loc, state,
7023                          "default precision statements apply only to "
7024                          "float, int, and opaque types");
7025         return NULL;
7026      }
7027
7028      if (state->es_shader) {
7029         /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7030          * spec says:
7031          *
7032          *     "Non-precision qualified declarations will use the precision
7033          *     qualifier specified in the most recent precision statement
7034          *     that is still in scope. The precision statement has the same
7035          *     scoping rules as variable declarations. If it is declared
7036          *     inside a compound statement, its effect stops at the end of
7037          *     the innermost statement it was declared in. Precision
7038          *     statements in nested scopes override precision statements in
7039          *     outer scopes. Multiple precision statements for the same basic
7040          *     type can appear inside the same scope, with later statements
7041          *     overriding earlier statements within that scope."
7042          *
7043          * Default precision specifications follow the same scope rules as
7044          * variables.  So, we can track the state of the default precision
7045          * qualifiers in the symbol table, and the rules will just work.  This
7046          * is a slight abuse of the symbol table, but it has the semantics
7047          * that we want.
7048          */
7049         state->symbols->add_default_precision_qualifier(this->type_name,
7050                                                         this->default_precision);
7051      }
7052
7053      /* FINISHME: Translate precision statements into IR. */
7054      return NULL;
7055   }
7056
7057   /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7058    * process_record_constructor() can do type-checking on C-style initializer
7059    * expressions of structs, but ast_struct_specifier should only be translated
7060    * to HIR if it is declaring the type of a structure.
7061    *
7062    * The ->is_declaration field is false for initializers of variables
7063    * declared separately from the struct's type definition.
7064    *
7065    *    struct S { ... };              (is_declaration = true)
7066    *    struct T { ... } t = { ... };  (is_declaration = true)
7067    *    S s = { ... };                 (is_declaration = false)
7068    */
7069   if (this->structure != NULL && this->structure->is_declaration)
7070      return this->structure->hir(instructions, state);
7071
7072   return NULL;
7073}
7074
7075
7076/**
7077 * Process a structure or interface block tree into an array of structure fields
7078 *
7079 * After parsing, where there are some syntax differnces, structures and
7080 * interface blocks are almost identical.  They are similar enough that the
7081 * AST for each can be processed the same way into a set of
7082 * \c glsl_struct_field to describe the members.
7083 *
7084 * If we're processing an interface block, var_mode should be the type of the
7085 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7086 * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7087 * ir_var_auto.
7088 *
7089 * \return
7090 * The number of fields processed.  A pointer to the array structure fields is
7091 * stored in \c *fields_ret.
7092 */
7093static unsigned
7094ast_process_struct_or_iface_block_members(exec_list *instructions,
7095                                          struct _mesa_glsl_parse_state *state,
7096                                          exec_list *declarations,
7097                                          glsl_struct_field **fields_ret,
7098                                          bool is_interface,
7099                                          enum glsl_matrix_layout matrix_layout,
7100                                          bool allow_reserved_names,
7101                                          ir_variable_mode var_mode,
7102                                          ast_type_qualifier *layout,
7103                                          unsigned block_stream,
7104                                          unsigned block_xfb_buffer,
7105                                          unsigned block_xfb_offset,
7106                                          unsigned expl_location,
7107                                          unsigned expl_align)
7108{
7109   unsigned decl_count = 0;
7110   unsigned next_offset = 0;
7111
7112   /* Make an initial pass over the list of fields to determine how
7113    * many there are.  Each element in this list is an ast_declarator_list.
7114    * This means that we actually need to count the number of elements in the
7115    * 'declarations' list in each of the elements.
7116    */
7117   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7118      decl_count += decl_list->declarations.length();
7119   }
7120
7121   /* Allocate storage for the fields and process the field
7122    * declarations.  As the declarations are processed, try to also convert
7123    * the types to HIR.  This ensures that structure definitions embedded in
7124    * other structure definitions or in interface blocks are processed.
7125    */
7126   glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7127                                                   decl_count);
7128
7129   bool first_member = true;
7130   bool first_member_has_explicit_location = false;
7131
7132   unsigned i = 0;
7133   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7134      const char *type_name;
7135      YYLTYPE loc = decl_list->get_location();
7136
7137      decl_list->type->specifier->hir(instructions, state);
7138
7139      /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7140       *
7141       *    "Anonymous structures are not supported; so embedded structures
7142       *    must have a declarator. A name given to an embedded struct is
7143       *    scoped at the same level as the struct it is embedded in."
7144       *
7145       * The same section of the  GLSL 1.20 spec says:
7146       *
7147       *    "Anonymous structures are not supported. Embedded structures are
7148       *    not supported."
7149       *
7150       * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7151       * embedded structures in 1.10 only.
7152       */
7153      if (state->language_version != 110 &&
7154          decl_list->type->specifier->structure != NULL)
7155         _mesa_glsl_error(&loc, state,
7156                          "embedded structure declarations are not allowed");
7157
7158      const glsl_type *decl_type =
7159         decl_list->type->glsl_type(& type_name, state);
7160
7161      const struct ast_type_qualifier *const qual =
7162         &decl_list->type->qualifier;
7163
7164      /* From section 4.3.9 of the GLSL 4.40 spec:
7165       *
7166       *    "[In interface blocks] opaque types are not allowed."
7167       *
7168       * It should be impossible for decl_type to be NULL here.  Cases that
7169       * might naturally lead to decl_type being NULL, especially for the
7170       * is_interface case, will have resulted in compilation having
7171       * already halted due to a syntax error.
7172       */
7173      assert(decl_type);
7174
7175      if (is_interface) {
7176         /* From section 4.3.7 of the ARB_bindless_texture spec:
7177          *
7178          *    "(remove the following bullet from the last list on p. 39,
7179          *     thereby permitting sampler types in interface blocks; image
7180          *     types are also permitted in blocks by this extension)"
7181          *
7182          *     * sampler types are not allowed
7183          */
7184         if (decl_type->contains_atomic() ||
7185             (!state->has_bindless() && decl_type->contains_opaque())) {
7186            _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7187                             "interface block contains %s variable",
7188                             state->has_bindless() ? "atomic" : "opaque");
7189         }
7190      } else {
7191         if (decl_type->contains_atomic()) {
7192            /* From section 4.1.7.3 of the GLSL 4.40 spec:
7193             *
7194             *    "Members of structures cannot be declared as atomic counter
7195             *     types."
7196             */
7197            _mesa_glsl_error(&loc, state, "atomic counter in structure");
7198         }
7199
7200         if (!state->has_bindless() && decl_type->contains_image()) {
7201            /* FINISHME: Same problem as with atomic counters.
7202             * FINISHME: Request clarification from Khronos and add
7203             * FINISHME: spec quotation here.
7204             */
7205            _mesa_glsl_error(&loc, state, "image in structure");
7206         }
7207      }
7208
7209      if (qual->flags.q.explicit_binding) {
7210         _mesa_glsl_error(&loc, state,
7211                          "binding layout qualifier cannot be applied "
7212                          "to struct or interface block members");
7213      }
7214
7215      if (is_interface) {
7216         if (!first_member) {
7217            if (!layout->flags.q.explicit_location &&
7218                ((first_member_has_explicit_location &&
7219                  !qual->flags.q.explicit_location) ||
7220                 (!first_member_has_explicit_location &&
7221                  qual->flags.q.explicit_location))) {
7222               _mesa_glsl_error(&loc, state,
7223                                "when block-level location layout qualifier "
7224                                "is not supplied either all members must "
7225                                "have a location layout qualifier or all "
7226                                "members must not have a location layout "
7227                                "qualifier");
7228            }
7229         } else {
7230            first_member = false;
7231            first_member_has_explicit_location =
7232               qual->flags.q.explicit_location;
7233         }
7234      }
7235
7236      if (qual->flags.q.std140 ||
7237          qual->flags.q.std430 ||
7238          qual->flags.q.packed ||
7239          qual->flags.q.shared) {
7240         _mesa_glsl_error(&loc, state,
7241                          "uniform/shader storage block layout qualifiers "
7242                          "std140, std430, packed, and shared can only be "
7243                          "applied to uniform/shader storage blocks, not "
7244                          "members");
7245      }
7246
7247      if (qual->flags.q.constant) {
7248         _mesa_glsl_error(&loc, state,
7249                          "const storage qualifier cannot be applied "
7250                          "to struct or interface block members");
7251      }
7252
7253      validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7254      validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7255
7256      /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7257       *
7258       *   "A block member may be declared with a stream identifier, but
7259       *   the specified stream must match the stream associated with the
7260       *   containing block."
7261       */
7262      if (qual->flags.q.explicit_stream) {
7263         unsigned qual_stream;
7264         if (process_qualifier_constant(state, &loc, "stream",
7265                                        qual->stream, &qual_stream) &&
7266             qual_stream != block_stream) {
7267            _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7268                             "interface block member does not match "
7269                             "the interface block (%u vs %u)", qual_stream,
7270                             block_stream);
7271         }
7272      }
7273
7274      int xfb_buffer;
7275      unsigned explicit_xfb_buffer = 0;
7276      if (qual->flags.q.explicit_xfb_buffer) {
7277         unsigned qual_xfb_buffer;
7278         if (process_qualifier_constant(state, &loc, "xfb_buffer",
7279                                        qual->xfb_buffer, &qual_xfb_buffer)) {
7280            explicit_xfb_buffer = 1;
7281            if (qual_xfb_buffer != block_xfb_buffer)
7282               _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7283                                "interface block member does not match "
7284                                "the interface block (%u vs %u)",
7285                                qual_xfb_buffer, block_xfb_buffer);
7286         }
7287         xfb_buffer = (int) qual_xfb_buffer;
7288      } else {
7289         if (layout)
7290            explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7291         xfb_buffer = (int) block_xfb_buffer;
7292      }
7293
7294      int xfb_stride = -1;
7295      if (qual->flags.q.explicit_xfb_stride) {
7296         unsigned qual_xfb_stride;
7297         if (process_qualifier_constant(state, &loc, "xfb_stride",
7298                                        qual->xfb_stride, &qual_xfb_stride)) {
7299            xfb_stride = (int) qual_xfb_stride;
7300         }
7301      }
7302
7303      if (qual->flags.q.uniform && qual->has_interpolation()) {
7304         _mesa_glsl_error(&loc, state,
7305                          "interpolation qualifiers cannot be used "
7306                          "with uniform interface blocks");
7307      }
7308
7309      if ((qual->flags.q.uniform || !is_interface) &&
7310          qual->has_auxiliary_storage()) {
7311         _mesa_glsl_error(&loc, state,
7312                          "auxiliary storage qualifiers cannot be used "
7313                          "in uniform blocks or structures.");
7314      }
7315
7316      if (qual->flags.q.row_major || qual->flags.q.column_major) {
7317         if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7318            _mesa_glsl_error(&loc, state,
7319                             "row_major and column_major can only be "
7320                             "applied to interface blocks");
7321         } else
7322            validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7323      }
7324
7325      foreach_list_typed (ast_declaration, decl, link,
7326                          &decl_list->declarations) {
7327         YYLTYPE loc = decl->get_location();
7328
7329         if (!allow_reserved_names)
7330            validate_identifier(decl->identifier, loc, state);
7331
7332         const struct glsl_type *field_type =
7333            process_array_type(&loc, decl_type, decl->array_specifier, state);
7334         validate_array_dimensions(field_type, state, &loc);
7335         fields[i].type = field_type;
7336         fields[i].name = decl->identifier;
7337         fields[i].interpolation =
7338            interpret_interpolation_qualifier(qual, field_type,
7339                                              var_mode, state, &loc);
7340         fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7341         fields[i].sample = qual->flags.q.sample ? 1 : 0;
7342         fields[i].patch = qual->flags.q.patch ? 1 : 0;
7343         fields[i].precision = qual->precision;
7344         fields[i].offset = -1;
7345         fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7346         fields[i].xfb_buffer = xfb_buffer;
7347         fields[i].xfb_stride = xfb_stride;
7348
7349         if (qual->flags.q.explicit_location) {
7350            unsigned qual_location;
7351            if (process_qualifier_constant(state, &loc, "location",
7352                                           qual->location, &qual_location)) {
7353               fields[i].location = qual_location +
7354                  (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7355               expl_location = fields[i].location +
7356                  fields[i].type->count_attribute_slots(false);
7357            }
7358         } else {
7359            if (layout && layout->flags.q.explicit_location) {
7360               fields[i].location = expl_location;
7361               expl_location += fields[i].type->count_attribute_slots(false);
7362            } else {
7363               fields[i].location = -1;
7364            }
7365         }
7366
7367         /* Offset can only be used with std430 and std140 layouts an initial
7368          * value of 0 is used for error detection.
7369          */
7370         unsigned align = 0;
7371         unsigned size = 0;
7372         if (layout) {
7373            bool row_major;
7374            if (qual->flags.q.row_major ||
7375                matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7376               row_major = true;
7377            } else {
7378               row_major = false;
7379            }
7380
7381            if(layout->flags.q.std140) {
7382               align = field_type->std140_base_alignment(row_major);
7383               size = field_type->std140_size(row_major);
7384            } else if (layout->flags.q.std430) {
7385               align = field_type->std430_base_alignment(row_major);
7386               size = field_type->std430_size(row_major);
7387            }
7388         }
7389
7390         if (qual->flags.q.explicit_offset) {
7391            unsigned qual_offset;
7392            if (process_qualifier_constant(state, &loc, "offset",
7393                                           qual->offset, &qual_offset)) {
7394               if (align != 0 && size != 0) {
7395                   if (next_offset > qual_offset)
7396                      _mesa_glsl_error(&loc, state, "layout qualifier "
7397                                       "offset overlaps previous member");
7398
7399                  if (qual_offset % align) {
7400                     _mesa_glsl_error(&loc, state, "layout qualifier offset "
7401                                      "must be a multiple of the base "
7402                                      "alignment of %s", field_type->name);
7403                  }
7404                  fields[i].offset = qual_offset;
7405                  next_offset = glsl_align(qual_offset + size, align);
7406               } else {
7407                  _mesa_glsl_error(&loc, state, "offset can only be used "
7408                                   "with std430 and std140 layouts");
7409               }
7410            }
7411         }
7412
7413         if (qual->flags.q.explicit_align || expl_align != 0) {
7414            unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7415               next_offset;
7416            if (align == 0 || size == 0) {
7417               _mesa_glsl_error(&loc, state, "align can only be used with "
7418                                "std430 and std140 layouts");
7419            } else if (qual->flags.q.explicit_align) {
7420               unsigned member_align;
7421               if (process_qualifier_constant(state, &loc, "align",
7422                                              qual->align, &member_align)) {
7423                  if (member_align == 0 ||
7424                      member_align & (member_align - 1)) {
7425                     _mesa_glsl_error(&loc, state, "align layout qualifier "
7426                                      "is not a power of 2");
7427                  } else {
7428                     fields[i].offset = glsl_align(offset, member_align);
7429                     next_offset = glsl_align(fields[i].offset + size, align);
7430                  }
7431               }
7432            } else {
7433               fields[i].offset = glsl_align(offset, expl_align);
7434               next_offset = glsl_align(fields[i].offset + size, align);
7435            }
7436         } else if (!qual->flags.q.explicit_offset) {
7437            if (align != 0 && size != 0)
7438               next_offset = glsl_align(next_offset + size, align);
7439         }
7440
7441         /* From the ARB_enhanced_layouts spec:
7442          *
7443          *    "The given offset applies to the first component of the first
7444          *    member of the qualified entity.  Then, within the qualified
7445          *    entity, subsequent components are each assigned, in order, to
7446          *    the next available offset aligned to a multiple of that
7447          *    component's size.  Aggregate types are flattened down to the
7448          *    component level to get this sequence of components."
7449          */
7450         if (qual->flags.q.explicit_xfb_offset) {
7451            unsigned xfb_offset;
7452            if (process_qualifier_constant(state, &loc, "xfb_offset",
7453                                           qual->offset, &xfb_offset)) {
7454               fields[i].offset = xfb_offset;
7455               block_xfb_offset = fields[i].offset +
7456                  4 * field_type->component_slots();
7457            }
7458         } else {
7459            if (layout && layout->flags.q.explicit_xfb_offset) {
7460               unsigned align = field_type->is_64bit() ? 8 : 4;
7461               fields[i].offset = glsl_align(block_xfb_offset, align);
7462               block_xfb_offset += 4 * field_type->component_slots();
7463            }
7464         }
7465
7466         /* Propogate row- / column-major information down the fields of the
7467          * structure or interface block.  Structures need this data because
7468          * the structure may contain a structure that contains ... a matrix
7469          * that need the proper layout.
7470          */
7471         if (is_interface && layout &&
7472             (layout->flags.q.uniform || layout->flags.q.buffer) &&
7473             (field_type->without_array()->is_matrix()
7474              || field_type->without_array()->is_record())) {
7475            /* If no layout is specified for the field, inherit the layout
7476             * from the block.
7477             */
7478            fields[i].matrix_layout = matrix_layout;
7479
7480            if (qual->flags.q.row_major)
7481               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7482            else if (qual->flags.q.column_major)
7483               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7484
7485            /* If we're processing an uniform or buffer block, the matrix
7486             * layout must be decided by this point.
7487             */
7488            assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7489                   || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7490         }
7491
7492         /* Memory qualifiers are allowed on buffer and image variables, while
7493          * the format qualifier is only accepted for images.
7494          */
7495         if (var_mode == ir_var_shader_storage ||
7496             field_type->without_array()->is_image()) {
7497            /* For readonly and writeonly qualifiers the field definition,
7498             * if set, overwrites the layout qualifier.
7499             */
7500            if (qual->flags.q.read_only || qual->flags.q.write_only) {
7501               fields[i].memory_read_only = qual->flags.q.read_only;
7502               fields[i].memory_write_only = qual->flags.q.write_only;
7503            } else {
7504               fields[i].memory_read_only =
7505                  layout ? layout->flags.q.read_only : 0;
7506               fields[i].memory_write_only =
7507                  layout ? layout->flags.q.write_only : 0;
7508            }
7509
7510            /* For other qualifiers, we set the flag if either the layout
7511             * qualifier or the field qualifier are set
7512             */
7513            fields[i].memory_coherent = qual->flags.q.coherent ||
7514                                        (layout && layout->flags.q.coherent);
7515            fields[i].memory_volatile = qual->flags.q._volatile ||
7516                                        (layout && layout->flags.q._volatile);
7517            fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7518                                        (layout && layout->flags.q.restrict_flag);
7519
7520            if (field_type->without_array()->is_image()) {
7521               if (qual->flags.q.explicit_image_format) {
7522                  if (qual->image_base_type !=
7523                      field_type->without_array()->sampled_type) {
7524                     _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7525                                      "match the base data type of the image");
7526                  }
7527
7528                  fields[i].image_format = qual->image_format;
7529               } else {
7530                  if (!qual->flags.q.write_only) {
7531                     _mesa_glsl_error(&loc, state, "image not qualified with "
7532                                      "`writeonly' must have a format layout "
7533                                      "qualifier");
7534                  }
7535
7536                  fields[i].image_format = GL_NONE;
7537               }
7538            }
7539         }
7540
7541         i++;
7542      }
7543   }
7544
7545   assert(i == decl_count);
7546
7547   *fields_ret = fields;
7548   return decl_count;
7549}
7550
7551
7552ir_rvalue *
7553ast_struct_specifier::hir(exec_list *instructions,
7554                          struct _mesa_glsl_parse_state *state)
7555{
7556   YYLTYPE loc = this->get_location();
7557
7558   unsigned expl_location = 0;
7559   if (layout && layout->flags.q.explicit_location) {
7560      if (!process_qualifier_constant(state, &loc, "location",
7561                                      layout->location, &expl_location)) {
7562         return NULL;
7563      } else {
7564         expl_location = VARYING_SLOT_VAR0 + expl_location;
7565      }
7566   }
7567
7568   glsl_struct_field *fields;
7569   unsigned decl_count =
7570      ast_process_struct_or_iface_block_members(instructions,
7571                                                state,
7572                                                &this->declarations,
7573                                                &fields,
7574                                                false,
7575                                                GLSL_MATRIX_LAYOUT_INHERITED,
7576                                                false /* allow_reserved_names */,
7577                                                ir_var_auto,
7578                                                layout,
7579                                                0, /* for interface only */
7580                                                0, /* for interface only */
7581                                                0, /* for interface only */
7582                                                expl_location,
7583                                                0 /* for interface only */);
7584
7585   validate_identifier(this->name, loc, state);
7586
7587   type = glsl_type::get_record_instance(fields, decl_count, this->name);
7588
7589   if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7590      const glsl_type *match = state->symbols->get_type(name);
7591      /* allow struct matching for desktop GL - older UE4 does this */
7592      if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7593         _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7594      else
7595         _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7596   } else {
7597      const glsl_type **s = reralloc(state, state->user_structures,
7598                                     const glsl_type *,
7599                                     state->num_user_structures + 1);
7600      if (s != NULL) {
7601         s[state->num_user_structures] = type;
7602         state->user_structures = s;
7603         state->num_user_structures++;
7604      }
7605   }
7606
7607   /* Structure type definitions do not have r-values.
7608    */
7609   return NULL;
7610}
7611
7612
7613/**
7614 * Visitor class which detects whether a given interface block has been used.
7615 */
7616class interface_block_usage_visitor : public ir_hierarchical_visitor
7617{
7618public:
7619   interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7620      : mode(mode), block(block), found(false)
7621   {
7622   }
7623
7624   virtual ir_visitor_status visit(ir_dereference_variable *ir)
7625   {
7626      if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7627         found = true;
7628         return visit_stop;
7629      }
7630      return visit_continue;
7631   }
7632
7633   bool usage_found() const
7634   {
7635      return this->found;
7636   }
7637
7638private:
7639   ir_variable_mode mode;
7640   const glsl_type *block;
7641   bool found;
7642};
7643
7644static bool
7645is_unsized_array_last_element(ir_variable *v)
7646{
7647   const glsl_type *interface_type = v->get_interface_type();
7648   int length = interface_type->length;
7649
7650   assert(v->type->is_unsized_array());
7651
7652   /* Check if it is the last element of the interface */
7653   if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7654      return true;
7655   return false;
7656}
7657
7658static void
7659apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7660{
7661   var->data.memory_read_only = field.memory_read_only;
7662   var->data.memory_write_only = field.memory_write_only;
7663   var->data.memory_coherent = field.memory_coherent;
7664   var->data.memory_volatile = field.memory_volatile;
7665   var->data.memory_restrict = field.memory_restrict;
7666}
7667
7668ir_rvalue *
7669ast_interface_block::hir(exec_list *instructions,
7670                         struct _mesa_glsl_parse_state *state)
7671{
7672   YYLTYPE loc = this->get_location();
7673
7674   /* Interface blocks must be declared at global scope */
7675   if (state->current_function != NULL) {
7676      _mesa_glsl_error(&loc, state,
7677                       "Interface block `%s' must be declared "
7678                       "at global scope",
7679                       this->block_name);
7680   }
7681
7682   /* Validate qualifiers:
7683    *
7684    * - Layout Qualifiers as per the table in Section 4.4
7685    *   ("Layout Qualifiers") of the GLSL 4.50 spec.
7686    *
7687    * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7688    *   GLSL 4.50 spec:
7689    *
7690    *     "Additionally, memory qualifiers may also be used in the declaration
7691    *      of shader storage blocks"
7692    *
7693    * Note the table in Section 4.4 says std430 is allowed on both uniform and
7694    * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7695    * Layout Qualifiers) of the GLSL 4.50 spec says:
7696    *
7697    *    "The std430 qualifier is supported only for shader storage blocks;
7698    *    using std430 on a uniform block will result in a compile-time error."
7699    */
7700   ast_type_qualifier allowed_blk_qualifiers;
7701   allowed_blk_qualifiers.flags.i = 0;
7702   if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7703      allowed_blk_qualifiers.flags.q.shared = 1;
7704      allowed_blk_qualifiers.flags.q.packed = 1;
7705      allowed_blk_qualifiers.flags.q.std140 = 1;
7706      allowed_blk_qualifiers.flags.q.row_major = 1;
7707      allowed_blk_qualifiers.flags.q.column_major = 1;
7708      allowed_blk_qualifiers.flags.q.explicit_align = 1;
7709      allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7710      if (this->layout.flags.q.buffer) {
7711         allowed_blk_qualifiers.flags.q.buffer = 1;
7712         allowed_blk_qualifiers.flags.q.std430 = 1;
7713         allowed_blk_qualifiers.flags.q.coherent = 1;
7714         allowed_blk_qualifiers.flags.q._volatile = 1;
7715         allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7716         allowed_blk_qualifiers.flags.q.read_only = 1;
7717         allowed_blk_qualifiers.flags.q.write_only = 1;
7718      } else {
7719         allowed_blk_qualifiers.flags.q.uniform = 1;
7720      }
7721   } else {
7722      /* Interface block */
7723      assert(this->layout.flags.q.in || this->layout.flags.q.out);
7724
7725      allowed_blk_qualifiers.flags.q.explicit_location = 1;
7726      if (this->layout.flags.q.out) {
7727         allowed_blk_qualifiers.flags.q.out = 1;
7728         if (state->stage == MESA_SHADER_GEOMETRY ||
7729          state->stage == MESA_SHADER_TESS_CTRL ||
7730          state->stage == MESA_SHADER_TESS_EVAL ||
7731          state->stage == MESA_SHADER_VERTEX ) {
7732            allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7733            allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7734            allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7735            allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7736            allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7737            if (state->stage == MESA_SHADER_GEOMETRY) {
7738               allowed_blk_qualifiers.flags.q.stream = 1;
7739               allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7740            }
7741            if (state->stage == MESA_SHADER_TESS_CTRL) {
7742               allowed_blk_qualifiers.flags.q.patch = 1;
7743            }
7744         }
7745      } else {
7746         allowed_blk_qualifiers.flags.q.in = 1;
7747         if (state->stage == MESA_SHADER_TESS_EVAL) {
7748            allowed_blk_qualifiers.flags.q.patch = 1;
7749         }
7750      }
7751   }
7752
7753   this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7754                               "invalid qualifier for block",
7755                               this->block_name);
7756
7757   enum glsl_interface_packing packing;
7758   if (this->layout.flags.q.std140) {
7759      packing = GLSL_INTERFACE_PACKING_STD140;
7760   } else if (this->layout.flags.q.packed) {
7761      packing = GLSL_INTERFACE_PACKING_PACKED;
7762   } else if (this->layout.flags.q.std430) {
7763      packing = GLSL_INTERFACE_PACKING_STD430;
7764   } else {
7765      /* The default layout is shared.
7766       */
7767      packing = GLSL_INTERFACE_PACKING_SHARED;
7768   }
7769
7770   ir_variable_mode var_mode;
7771   const char *iface_type_name;
7772   if (this->layout.flags.q.in) {
7773      var_mode = ir_var_shader_in;
7774      iface_type_name = "in";
7775   } else if (this->layout.flags.q.out) {
7776      var_mode = ir_var_shader_out;
7777      iface_type_name = "out";
7778   } else if (this->layout.flags.q.uniform) {
7779      var_mode = ir_var_uniform;
7780      iface_type_name = "uniform";
7781   } else if (this->layout.flags.q.buffer) {
7782      var_mode = ir_var_shader_storage;
7783      iface_type_name = "buffer";
7784   } else {
7785      var_mode = ir_var_auto;
7786      iface_type_name = "UNKNOWN";
7787      assert(!"interface block layout qualifier not found!");
7788   }
7789
7790   enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7791   if (this->layout.flags.q.row_major)
7792      matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7793   else if (this->layout.flags.q.column_major)
7794      matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7795
7796   bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7797   exec_list declared_variables;
7798   glsl_struct_field *fields;
7799
7800   /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7801    * that we don't have incompatible qualifiers
7802    */
7803   if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7804      _mesa_glsl_error(&loc, state,
7805                       "Interface block sets both readonly and writeonly");
7806   }
7807
7808   unsigned qual_stream;
7809   if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7810                                   &qual_stream) ||
7811       !validate_stream_qualifier(&loc, state, qual_stream)) {
7812      /* If the stream qualifier is invalid it doesn't make sense to continue
7813       * on and try to compare stream layouts on member variables against it
7814       * so just return early.
7815       */
7816      return NULL;
7817   }
7818
7819   unsigned qual_xfb_buffer;
7820   if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7821                                   layout.xfb_buffer, &qual_xfb_buffer) ||
7822       !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7823      return NULL;
7824   }
7825
7826   unsigned qual_xfb_offset;
7827   if (layout.flags.q.explicit_xfb_offset) {
7828      if (!process_qualifier_constant(state, &loc, "xfb_offset",
7829                                      layout.offset, &qual_xfb_offset)) {
7830         return NULL;
7831      }
7832   }
7833
7834   unsigned qual_xfb_stride;
7835   if (layout.flags.q.explicit_xfb_stride) {
7836      if (!process_qualifier_constant(state, &loc, "xfb_stride",
7837                                      layout.xfb_stride, &qual_xfb_stride)) {
7838         return NULL;
7839      }
7840   }
7841
7842   unsigned expl_location = 0;
7843   if (layout.flags.q.explicit_location) {
7844      if (!process_qualifier_constant(state, &loc, "location",
7845                                      layout.location, &expl_location)) {
7846         return NULL;
7847      } else {
7848         expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7849                                                     : VARYING_SLOT_VAR0;
7850      }
7851   }
7852
7853   unsigned expl_align = 0;
7854   if (layout.flags.q.explicit_align) {
7855      if (!process_qualifier_constant(state, &loc, "align",
7856                                      layout.align, &expl_align)) {
7857         return NULL;
7858      } else {
7859         if (expl_align == 0 || expl_align & (expl_align - 1)) {
7860            _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7861                             "power of 2.");
7862            return NULL;
7863         }
7864      }
7865   }
7866
7867   unsigned int num_variables =
7868      ast_process_struct_or_iface_block_members(&declared_variables,
7869                                                state,
7870                                                &this->declarations,
7871                                                &fields,
7872                                                true,
7873                                                matrix_layout,
7874                                                redeclaring_per_vertex,
7875                                                var_mode,
7876                                                &this->layout,
7877                                                qual_stream,
7878                                                qual_xfb_buffer,
7879                                                qual_xfb_offset,
7880                                                expl_location,
7881                                                expl_align);
7882
7883   if (!redeclaring_per_vertex) {
7884      validate_identifier(this->block_name, loc, state);
7885
7886      /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7887       *
7888       *     "Block names have no other use within a shader beyond interface
7889       *     matching; it is a compile-time error to use a block name at global
7890       *     scope for anything other than as a block name."
7891       */
7892      ir_variable *var = state->symbols->get_variable(this->block_name);
7893      if (var && !var->type->is_interface()) {
7894         _mesa_glsl_error(&loc, state, "Block name `%s' is "
7895                          "already used in the scope.",
7896                          this->block_name);
7897      }
7898   }
7899
7900   const glsl_type *earlier_per_vertex = NULL;
7901   if (redeclaring_per_vertex) {
7902      /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
7903       * the named interface block gl_in, we can find it by looking at the
7904       * previous declaration of gl_in.  Otherwise we can find it by looking
7905       * at the previous decalartion of any of the built-in outputs,
7906       * e.g. gl_Position.
7907       *
7908       * Also check that the instance name and array-ness of the redeclaration
7909       * are correct.
7910       */
7911      switch (var_mode) {
7912      case ir_var_shader_in:
7913         if (ir_variable *earlier_gl_in =
7914             state->symbols->get_variable("gl_in")) {
7915            earlier_per_vertex = earlier_gl_in->get_interface_type();
7916         } else {
7917            _mesa_glsl_error(&loc, state,
7918                             "redeclaration of gl_PerVertex input not allowed "
7919                             "in the %s shader",
7920                             _mesa_shader_stage_to_string(state->stage));
7921         }
7922         if (this->instance_name == NULL ||
7923             strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7924             !this->array_specifier->is_single_dimension()) {
7925            _mesa_glsl_error(&loc, state,
7926                             "gl_PerVertex input must be redeclared as "
7927                             "gl_in[]");
7928         }
7929         break;
7930      case ir_var_shader_out:
7931         if (ir_variable *earlier_gl_Position =
7932             state->symbols->get_variable("gl_Position")) {
7933            earlier_per_vertex = earlier_gl_Position->get_interface_type();
7934         } else if (ir_variable *earlier_gl_out =
7935               state->symbols->get_variable("gl_out")) {
7936            earlier_per_vertex = earlier_gl_out->get_interface_type();
7937         } else {
7938            _mesa_glsl_error(&loc, state,
7939                             "redeclaration of gl_PerVertex output not "
7940                             "allowed in the %s shader",
7941                             _mesa_shader_stage_to_string(state->stage));
7942         }
7943         if (state->stage == MESA_SHADER_TESS_CTRL) {
7944            if (this->instance_name == NULL ||
7945                strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7946               _mesa_glsl_error(&loc, state,
7947                                "gl_PerVertex output must be redeclared as "
7948                                "gl_out[]");
7949            }
7950         } else {
7951            if (this->instance_name != NULL) {
7952               _mesa_glsl_error(&loc, state,
7953                                "gl_PerVertex output may not be redeclared with "
7954                                "an instance name");
7955            }
7956         }
7957         break;
7958      default:
7959         _mesa_glsl_error(&loc, state,
7960                          "gl_PerVertex must be declared as an input or an "
7961                          "output");
7962         break;
7963      }
7964
7965      if (earlier_per_vertex == NULL) {
7966         /* An error has already been reported.  Bail out to avoid null
7967          * dereferences later in this function.
7968          */
7969         return NULL;
7970      }
7971
7972      /* Copy locations from the old gl_PerVertex interface block. */
7973      for (unsigned i = 0; i < num_variables; i++) {
7974         int j = earlier_per_vertex->field_index(fields[i].name);
7975         if (j == -1) {
7976            _mesa_glsl_error(&loc, state,
7977                             "redeclaration of gl_PerVertex must be a subset "
7978                             "of the built-in members of gl_PerVertex");
7979         } else {
7980            fields[i].location =
7981               earlier_per_vertex->fields.structure[j].location;
7982            fields[i].offset =
7983               earlier_per_vertex->fields.structure[j].offset;
7984            fields[i].interpolation =
7985               earlier_per_vertex->fields.structure[j].interpolation;
7986            fields[i].centroid =
7987               earlier_per_vertex->fields.structure[j].centroid;
7988            fields[i].sample =
7989               earlier_per_vertex->fields.structure[j].sample;
7990            fields[i].patch =
7991               earlier_per_vertex->fields.structure[j].patch;
7992            fields[i].precision =
7993               earlier_per_vertex->fields.structure[j].precision;
7994            fields[i].explicit_xfb_buffer =
7995               earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7996            fields[i].xfb_buffer =
7997               earlier_per_vertex->fields.structure[j].xfb_buffer;
7998            fields[i].xfb_stride =
7999               earlier_per_vertex->fields.structure[j].xfb_stride;
8000         }
8001      }
8002
8003      /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8004       * spec:
8005       *
8006       *     If a built-in interface block is redeclared, it must appear in
8007       *     the shader before any use of any member included in the built-in
8008       *     declaration, or a compilation error will result.
8009       *
8010       * This appears to be a clarification to the behaviour established for
8011       * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8012       * regardless of GLSL version.
8013       */
8014      interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8015      v.run(instructions);
8016      if (v.usage_found()) {
8017         _mesa_glsl_error(&loc, state,
8018                          "redeclaration of a built-in interface block must "
8019                          "appear before any use of any member of the "
8020                          "interface block");
8021      }
8022   }
8023
8024   const glsl_type *block_type =
8025      glsl_type::get_interface_instance(fields,
8026                                        num_variables,
8027                                        packing,
8028                                        matrix_layout ==
8029                                           GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8030                                        this->block_name);
8031
8032   unsigned component_size = block_type->contains_double() ? 8 : 4;
8033   int xfb_offset =
8034      layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8035   validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8036                                 component_size);
8037
8038   if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8039      YYLTYPE loc = this->get_location();
8040      _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8041                       "already taken in the current scope",
8042                       this->block_name, iface_type_name);
8043   }
8044
8045   /* Since interface blocks cannot contain statements, it should be
8046    * impossible for the block to generate any instructions.
8047    */
8048   assert(declared_variables.is_empty());
8049
8050   /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8051    *
8052    *     Geometry shader input variables get the per-vertex values written
8053    *     out by vertex shader output variables of the same names. Since a
8054    *     geometry shader operates on a set of vertices, each input varying
8055    *     variable (or input block, see interface blocks below) needs to be
8056    *     declared as an array.
8057    */
8058   if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8059       var_mode == ir_var_shader_in) {
8060      _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8061   } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8062               state->stage == MESA_SHADER_TESS_EVAL) &&
8063              !this->layout.flags.q.patch &&
8064              this->array_specifier == NULL &&
8065              var_mode == ir_var_shader_in) {
8066      _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8067   } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8068              !this->layout.flags.q.patch &&
8069              this->array_specifier == NULL &&
8070              var_mode == ir_var_shader_out) {
8071      _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8072   }
8073
8074
8075   /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8076    * says:
8077    *
8078    *     "If an instance name (instance-name) is used, then it puts all the
8079    *     members inside a scope within its own name space, accessed with the
8080    *     field selector ( . ) operator (analogously to structures)."
8081    */
8082   if (this->instance_name) {
8083      if (redeclaring_per_vertex) {
8084         /* When a built-in in an unnamed interface block is redeclared,
8085          * get_variable_being_redeclared() calls
8086          * check_builtin_array_max_size() to make sure that built-in array
8087          * variables aren't redeclared to illegal sizes.  But we're looking
8088          * at a redeclaration of a named built-in interface block.  So we
8089          * have to manually call check_builtin_array_max_size() for all parts
8090          * of the interface that are arrays.
8091          */
8092         for (unsigned i = 0; i < num_variables; i++) {
8093            if (fields[i].type->is_array()) {
8094               const unsigned size = fields[i].type->array_size();
8095               check_builtin_array_max_size(fields[i].name, size, loc, state);
8096            }
8097         }
8098      } else {
8099         validate_identifier(this->instance_name, loc, state);
8100      }
8101
8102      ir_variable *var;
8103
8104      if (this->array_specifier != NULL) {
8105         const glsl_type *block_array_type =
8106            process_array_type(&loc, block_type, this->array_specifier, state);
8107
8108         /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8109          *
8110          *     For uniform blocks declared an array, each individual array
8111          *     element corresponds to a separate buffer object backing one
8112          *     instance of the block. As the array size indicates the number
8113          *     of buffer objects needed, uniform block array declarations
8114          *     must specify an array size.
8115          *
8116          * And a few paragraphs later:
8117          *
8118          *     Geometry shader input blocks must be declared as arrays and
8119          *     follow the array declaration and linking rules for all
8120          *     geometry shader inputs. All other input and output block
8121          *     arrays must specify an array size.
8122          *
8123          * The same applies to tessellation shaders.
8124          *
8125          * The upshot of this is that the only circumstance where an
8126          * interface array size *doesn't* need to be specified is on a
8127          * geometry shader input, tessellation control shader input,
8128          * tessellation control shader output, and tessellation evaluation
8129          * shader input.
8130          */
8131         if (block_array_type->is_unsized_array()) {
8132            bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8133                                state->stage == MESA_SHADER_TESS_CTRL ||
8134                                state->stage == MESA_SHADER_TESS_EVAL;
8135            bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8136
8137            if (this->layout.flags.q.in) {
8138               if (!allow_inputs)
8139                  _mesa_glsl_error(&loc, state,
8140                                   "unsized input block arrays not allowed in "
8141                                   "%s shader",
8142                                   _mesa_shader_stage_to_string(state->stage));
8143            } else if (this->layout.flags.q.out) {
8144               if (!allow_outputs)
8145                  _mesa_glsl_error(&loc, state,
8146                                   "unsized output block arrays not allowed in "
8147                                   "%s shader",
8148                                   _mesa_shader_stage_to_string(state->stage));
8149            } else {
8150               /* by elimination, this is a uniform block array */
8151               _mesa_glsl_error(&loc, state,
8152                                "unsized uniform block arrays not allowed in "
8153                                "%s shader",
8154                                _mesa_shader_stage_to_string(state->stage));
8155            }
8156         }
8157
8158         /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8159          *
8160          *     * Arrays of arrays of blocks are not allowed
8161          */
8162         if (state->es_shader && block_array_type->is_array() &&
8163             block_array_type->fields.array->is_array()) {
8164            _mesa_glsl_error(&loc, state,
8165                             "arrays of arrays interface blocks are "
8166                             "not allowed");
8167         }
8168
8169         var = new(state) ir_variable(block_array_type,
8170                                      this->instance_name,
8171                                      var_mode);
8172      } else {
8173         var = new(state) ir_variable(block_type,
8174                                      this->instance_name,
8175                                      var_mode);
8176      }
8177
8178      var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8179         ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8180
8181      if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8182         var->data.read_only = true;
8183
8184      var->data.patch = this->layout.flags.q.patch;
8185
8186      if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8187         handle_geometry_shader_input_decl(state, loc, var);
8188      else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8189           state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8190         handle_tess_shader_input_decl(state, loc, var);
8191      else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8192         handle_tess_ctrl_shader_output_decl(state, loc, var);
8193
8194      for (unsigned i = 0; i < num_variables; i++) {
8195         if (var->data.mode == ir_var_shader_storage)
8196            apply_memory_qualifiers(var, fields[i]);
8197      }
8198
8199      if (ir_variable *earlier =
8200          state->symbols->get_variable(this->instance_name)) {
8201         if (!redeclaring_per_vertex) {
8202            _mesa_glsl_error(&loc, state, "`%s' redeclared",
8203                             this->instance_name);
8204         }
8205         earlier->data.how_declared = ir_var_declared_normally;
8206         earlier->type = var->type;
8207         earlier->reinit_interface_type(block_type);
8208         delete var;
8209      } else {
8210         if (this->layout.flags.q.explicit_binding) {
8211            apply_explicit_binding(state, &loc, var, var->type,
8212                                   &this->layout);
8213         }
8214
8215         var->data.stream = qual_stream;
8216         if (layout.flags.q.explicit_location) {
8217            var->data.location = expl_location;
8218            var->data.explicit_location = true;
8219         }
8220
8221         state->symbols->add_variable(var);
8222         instructions->push_tail(var);
8223      }
8224   } else {
8225      /* In order to have an array size, the block must also be declared with
8226       * an instance name.
8227       */
8228      assert(this->array_specifier == NULL);
8229
8230      for (unsigned i = 0; i < num_variables; i++) {
8231         ir_variable *var =
8232            new(state) ir_variable(fields[i].type,
8233                                   ralloc_strdup(state, fields[i].name),
8234                                   var_mode);
8235         var->data.interpolation = fields[i].interpolation;
8236         var->data.centroid = fields[i].centroid;
8237         var->data.sample = fields[i].sample;
8238         var->data.patch = fields[i].patch;
8239         var->data.stream = qual_stream;
8240         var->data.location = fields[i].location;
8241
8242         if (fields[i].location != -1)
8243            var->data.explicit_location = true;
8244
8245         var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8246         var->data.xfb_buffer = fields[i].xfb_buffer;
8247
8248         if (fields[i].offset != -1)
8249            var->data.explicit_xfb_offset = true;
8250         var->data.offset = fields[i].offset;
8251
8252         var->init_interface_type(block_type);
8253
8254         if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8255            var->data.read_only = true;
8256
8257         /* Precision qualifiers do not have any meaning in Desktop GLSL */
8258         if (state->es_shader) {
8259            var->data.precision =
8260               select_gles_precision(fields[i].precision, fields[i].type,
8261                                     state, &loc);
8262         }
8263
8264         if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8265            var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8266               ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8267         } else {
8268            var->data.matrix_layout = fields[i].matrix_layout;
8269         }
8270
8271         if (var->data.mode == ir_var_shader_storage)
8272            apply_memory_qualifiers(var, fields[i]);
8273
8274         /* Examine var name here since var may get deleted in the next call */
8275         bool var_is_gl_id = is_gl_identifier(var->name);
8276
8277         if (redeclaring_per_vertex) {
8278            bool is_redeclaration;
8279            var =
8280               get_variable_being_redeclared(&var, loc, state,
8281                                             true /* allow_all_redeclarations */,
8282                                             &is_redeclaration);
8283            if (!var_is_gl_id || !is_redeclaration) {
8284               _mesa_glsl_error(&loc, state,
8285                                "redeclaration of gl_PerVertex can only "
8286                                "include built-in variables");
8287            } else if (var->data.how_declared == ir_var_declared_normally) {
8288               _mesa_glsl_error(&loc, state,
8289                                "`%s' has already been redeclared",
8290                                var->name);
8291            } else {
8292               var->data.how_declared = ir_var_declared_in_block;
8293               var->reinit_interface_type(block_type);
8294            }
8295            continue;
8296         }
8297
8298         if (state->symbols->get_variable(var->name) != NULL)
8299            _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8300
8301         /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8302          * The UBO declaration itself doesn't get an ir_variable unless it
8303          * has an instance name.  This is ugly.
8304          */
8305         if (this->layout.flags.q.explicit_binding) {
8306            apply_explicit_binding(state, &loc, var,
8307                                   var->get_interface_type(), &this->layout);
8308         }
8309
8310         if (var->type->is_unsized_array()) {
8311            if (var->is_in_shader_storage_block() &&
8312                is_unsized_array_last_element(var)) {
8313               var->data.from_ssbo_unsized_array = true;
8314            } else {
8315               /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8316                *
8317                * "If an array is declared as the last member of a shader storage
8318                * block and the size is not specified at compile-time, it is
8319                * sized at run-time. In all other cases, arrays are sized only
8320                * at compile-time."
8321                *
8322                * In desktop GLSL it is allowed to have unsized-arrays that are
8323                * not last, as long as we can determine that they are implicitly
8324                * sized.
8325                */
8326               if (state->es_shader) {
8327                  _mesa_glsl_error(&loc, state, "unsized array `%s' "
8328                                   "definition: only last member of a shader "
8329                                   "storage block can be defined as unsized "
8330                                   "array", fields[i].name);
8331               }
8332            }
8333         }
8334
8335         state->symbols->add_variable(var);
8336         instructions->push_tail(var);
8337      }
8338
8339      if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8340         /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8341          *
8342          *     It is also a compilation error ... to redeclare a built-in
8343          *     block and then use a member from that built-in block that was
8344          *     not included in the redeclaration.
8345          *
8346          * This appears to be a clarification to the behaviour established
8347          * for gl_PerVertex by GLSL 1.50, therefore we implement this
8348          * behaviour regardless of GLSL version.
8349          *
8350          * To prevent the shader from using a member that was not included in
8351          * the redeclaration, we disable any ir_variables that are still
8352          * associated with the old declaration of gl_PerVertex (since we've
8353          * already updated all of the variables contained in the new
8354          * gl_PerVertex to point to it).
8355          *
8356          * As a side effect this will prevent
8357          * validate_intrastage_interface_blocks() from getting confused and
8358          * thinking there are conflicting definitions of gl_PerVertex in the
8359          * shader.
8360          */
8361         foreach_in_list_safe(ir_instruction, node, instructions) {
8362            ir_variable *const var = node->as_variable();
8363            if (var != NULL &&
8364                var->get_interface_type() == earlier_per_vertex &&
8365                var->data.mode == var_mode) {
8366               if (var->data.how_declared == ir_var_declared_normally) {
8367                  _mesa_glsl_error(&loc, state,
8368                                   "redeclaration of gl_PerVertex cannot "
8369                                   "follow a redeclaration of `%s'",
8370                                   var->name);
8371               }
8372               state->symbols->disable_variable(var->name);
8373               var->remove();
8374            }
8375         }
8376      }
8377   }
8378
8379   return NULL;
8380}
8381
8382
8383ir_rvalue *
8384ast_tcs_output_layout::hir(exec_list *instructions,
8385                           struct _mesa_glsl_parse_state *state)
8386{
8387   YYLTYPE loc = this->get_location();
8388
8389   unsigned num_vertices;
8390   if (!state->out_qualifier->vertices->
8391          process_qualifier_constant(state, "vertices", &num_vertices,
8392                                     false)) {
8393      /* return here to stop cascading incorrect error messages */
8394     return NULL;
8395   }
8396
8397   /* If any shader outputs occurred before this declaration and specified an
8398    * array size, make sure the size they specified is consistent with the
8399    * primitive type.
8400    */
8401   if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8402      _mesa_glsl_error(&loc, state,
8403                       "this tessellation control shader output layout "
8404                       "specifies %u vertices, but a previous output "
8405                       "is declared with size %u",
8406                       num_vertices, state->tcs_output_size);
8407      return NULL;
8408   }
8409
8410   state->tcs_output_vertices_specified = true;
8411
8412   /* If any shader outputs occurred before this declaration and did not
8413    * specify an array size, their size is determined now.
8414    */
8415   foreach_in_list (ir_instruction, node, instructions) {
8416      ir_variable *var = node->as_variable();
8417      if (var == NULL || var->data.mode != ir_var_shader_out)
8418         continue;
8419
8420      /* Note: Not all tessellation control shader output are arrays. */
8421      if (!var->type->is_unsized_array() || var->data.patch)
8422         continue;
8423
8424      if (var->data.max_array_access >= (int)num_vertices) {
8425         _mesa_glsl_error(&loc, state,
8426                          "this tessellation control shader output layout "
8427                          "specifies %u vertices, but an access to element "
8428                          "%u of output `%s' already exists", num_vertices,
8429                          var->data.max_array_access, var->name);
8430      } else {
8431         var->type = glsl_type::get_array_instance(var->type->fields.array,
8432                                                   num_vertices);
8433      }
8434   }
8435
8436   return NULL;
8437}
8438
8439
8440ir_rvalue *
8441ast_gs_input_layout::hir(exec_list *instructions,
8442                         struct _mesa_glsl_parse_state *state)
8443{
8444   YYLTYPE loc = this->get_location();
8445
8446   /* Should have been prevented by the parser. */
8447   assert(!state->gs_input_prim_type_specified
8448          || state->in_qualifier->prim_type == this->prim_type);
8449
8450   /* If any shader inputs occurred before this declaration and specified an
8451    * array size, make sure the size they specified is consistent with the
8452    * primitive type.
8453    */
8454   unsigned num_vertices = vertices_per_prim(this->prim_type);
8455   if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8456      _mesa_glsl_error(&loc, state,
8457                       "this geometry shader input layout implies %u vertices"
8458                       " per primitive, but a previous input is declared"
8459                       " with size %u", num_vertices, state->gs_input_size);
8460      return NULL;
8461   }
8462
8463   state->gs_input_prim_type_specified = true;
8464
8465   /* If any shader inputs occurred before this declaration and did not
8466    * specify an array size, their size is determined now.
8467    */
8468   foreach_in_list(ir_instruction, node, instructions) {
8469      ir_variable *var = node->as_variable();
8470      if (var == NULL || var->data.mode != ir_var_shader_in)
8471         continue;
8472
8473      /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8474       * array; skip it.
8475       */
8476
8477      if (var->type->is_unsized_array()) {
8478         if (var->data.max_array_access >= (int)num_vertices) {
8479            _mesa_glsl_error(&loc, state,
8480                             "this geometry shader input layout implies %u"
8481                             " vertices, but an access to element %u of input"
8482                             " `%s' already exists", num_vertices,
8483                             var->data.max_array_access, var->name);
8484         } else {
8485            var->type = glsl_type::get_array_instance(var->type->fields.array,
8486                                                      num_vertices);
8487         }
8488      }
8489   }
8490
8491   return NULL;
8492}
8493
8494
8495ir_rvalue *
8496ast_cs_input_layout::hir(exec_list *instructions,
8497                         struct _mesa_glsl_parse_state *state)
8498{
8499   YYLTYPE loc = this->get_location();
8500
8501   /* From the ARB_compute_shader specification:
8502    *
8503    *     If the local size of the shader in any dimension is greater
8504    *     than the maximum size supported by the implementation for that
8505    *     dimension, a compile-time error results.
8506    *
8507    * It is not clear from the spec how the error should be reported if
8508    * the total size of the work group exceeds
8509    * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8510    * report it at compile time as well.
8511    */
8512   GLuint64 total_invocations = 1;
8513   unsigned qual_local_size[3];
8514   for (int i = 0; i < 3; i++) {
8515
8516      char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8517                                             'x' + i);
8518      /* Infer a local_size of 1 for unspecified dimensions */
8519      if (this->local_size[i] == NULL) {
8520         qual_local_size[i] = 1;
8521      } else if (!this->local_size[i]->
8522             process_qualifier_constant(state, local_size_str,
8523                                        &qual_local_size[i], false)) {
8524         ralloc_free(local_size_str);
8525         return NULL;
8526      }
8527      ralloc_free(local_size_str);
8528
8529      if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8530         _mesa_glsl_error(&loc, state,
8531                          "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8532                          " (%d)", 'x' + i,
8533                          state->ctx->Const.MaxComputeWorkGroupSize[i]);
8534         break;
8535      }
8536      total_invocations *= qual_local_size[i];
8537      if (total_invocations >
8538          state->ctx->Const.MaxComputeWorkGroupInvocations) {
8539         _mesa_glsl_error(&loc, state,
8540                          "product of local_sizes exceeds "
8541                          "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8542                          state->ctx->Const.MaxComputeWorkGroupInvocations);
8543         break;
8544      }
8545   }
8546
8547   /* If any compute input layout declaration preceded this one, make sure it
8548    * was consistent with this one.
8549    */
8550   if (state->cs_input_local_size_specified) {
8551      for (int i = 0; i < 3; i++) {
8552         if (state->cs_input_local_size[i] != qual_local_size[i]) {
8553            _mesa_glsl_error(&loc, state,
8554                             "compute shader input layout does not match"
8555                             " previous declaration");
8556            return NULL;
8557         }
8558      }
8559   }
8560
8561   /* The ARB_compute_variable_group_size spec says:
8562    *
8563    *     If a compute shader including a *local_size_variable* qualifier also
8564    *     declares a fixed local group size using the *local_size_x*,
8565    *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8566    *     results
8567    */
8568   if (state->cs_input_local_size_variable_specified) {
8569      _mesa_glsl_error(&loc, state,
8570                       "compute shader can't include both a variable and a "
8571                       "fixed local group size");
8572      return NULL;
8573   }
8574
8575   state->cs_input_local_size_specified = true;
8576   for (int i = 0; i < 3; i++)
8577      state->cs_input_local_size[i] = qual_local_size[i];
8578
8579   /* We may now declare the built-in constant gl_WorkGroupSize (see
8580    * builtin_variable_generator::generate_constants() for why we didn't
8581    * declare it earlier).
8582    */
8583   ir_variable *var = new(state->symbols)
8584      ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8585   var->data.how_declared = ir_var_declared_implicitly;
8586   var->data.read_only = true;
8587   instructions->push_tail(var);
8588   state->symbols->add_variable(var);
8589   ir_constant_data data;
8590   memset(&data, 0, sizeof(data));
8591   for (int i = 0; i < 3; i++)
8592      data.u[i] = qual_local_size[i];
8593   var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8594   var->constant_initializer =
8595      new(var) ir_constant(glsl_type::uvec3_type, &data);
8596   var->data.has_initializer = true;
8597
8598   return NULL;
8599}
8600
8601
8602static void
8603detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8604                               exec_list *instructions)
8605{
8606   bool gl_FragColor_assigned = false;
8607   bool gl_FragData_assigned = false;
8608   bool gl_FragSecondaryColor_assigned = false;
8609   bool gl_FragSecondaryData_assigned = false;
8610   bool user_defined_fs_output_assigned = false;
8611   ir_variable *user_defined_fs_output = NULL;
8612
8613   /* It would be nice to have proper location information. */
8614   YYLTYPE loc;
8615   memset(&loc, 0, sizeof(loc));
8616
8617   foreach_in_list(ir_instruction, node, instructions) {
8618      ir_variable *var = node->as_variable();
8619
8620      if (!var || !var->data.assigned)
8621         continue;
8622
8623      if (strcmp(var->name, "gl_FragColor") == 0)
8624         gl_FragColor_assigned = true;
8625      else if (strcmp(var->name, "gl_FragData") == 0)
8626         gl_FragData_assigned = true;
8627        else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8628         gl_FragSecondaryColor_assigned = true;
8629        else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8630         gl_FragSecondaryData_assigned = true;
8631      else if (!is_gl_identifier(var->name)) {
8632         if (state->stage == MESA_SHADER_FRAGMENT &&
8633             var->data.mode == ir_var_shader_out) {
8634            user_defined_fs_output_assigned = true;
8635            user_defined_fs_output = var;
8636         }
8637      }
8638   }
8639
8640   /* From the GLSL 1.30 spec:
8641    *
8642    *     "If a shader statically assigns a value to gl_FragColor, it
8643    *      may not assign a value to any element of gl_FragData. If a
8644    *      shader statically writes a value to any element of
8645    *      gl_FragData, it may not assign a value to
8646    *      gl_FragColor. That is, a shader may assign values to either
8647    *      gl_FragColor or gl_FragData, but not both. Multiple shaders
8648    *      linked together must also consistently write just one of
8649    *      these variables.  Similarly, if user declared output
8650    *      variables are in use (statically assigned to), then the
8651    *      built-in variables gl_FragColor and gl_FragData may not be
8652    *      assigned to. These incorrect usages all generate compile
8653    *      time errors."
8654    */
8655   if (gl_FragColor_assigned && gl_FragData_assigned) {
8656      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8657                       "`gl_FragColor' and `gl_FragData'");
8658   } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8659      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8660                       "`gl_FragColor' and `%s'",
8661                       user_defined_fs_output->name);
8662   } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8663      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8664                       "`gl_FragSecondaryColorEXT' and"
8665                       " `gl_FragSecondaryDataEXT'");
8666   } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8667      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8668                       "`gl_FragColor' and"
8669                       " `gl_FragSecondaryDataEXT'");
8670   } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8671      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8672                       "`gl_FragData' and"
8673                       " `gl_FragSecondaryColorEXT'");
8674   } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8675      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8676                       "`gl_FragData' and `%s'",
8677                       user_defined_fs_output->name);
8678   }
8679
8680   if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8681       !state->EXT_blend_func_extended_enable) {
8682      _mesa_glsl_error(&loc, state,
8683                       "Dual source blending requires EXT_blend_func_extended");
8684   }
8685}
8686
8687static void
8688verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8689{
8690   YYLTYPE loc;
8691   memset(&loc, 0, sizeof(loc));
8692
8693   /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8694    *
8695    *   "A program will fail to compile or link if any shader
8696    *    or stage contains two or more functions with the same
8697    *    name if the name is associated with a subroutine type."
8698    */
8699
8700   for (int i = 0; i < state->num_subroutines; i++) {
8701      unsigned definitions = 0;
8702      ir_function *fn = state->subroutines[i];
8703      /* Calculate number of function definitions with the same name */
8704      foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8705         if (sig->is_defined) {
8706            if (++definitions > 1) {
8707               _mesa_glsl_error(&loc, state,
8708                     "%s shader contains two or more function "
8709                     "definitions with name `%s', which is "
8710                     "associated with a subroutine type.\n",
8711                     _mesa_shader_stage_to_string(state->stage),
8712                     fn->name);
8713               return;
8714            }
8715         }
8716      }
8717   }
8718}
8719
8720static void
8721remove_per_vertex_blocks(exec_list *instructions,
8722                         _mesa_glsl_parse_state *state, ir_variable_mode mode)
8723{
8724   /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8725    * if it exists in this shader type.
8726    */
8727   const glsl_type *per_vertex = NULL;
8728   switch (mode) {
8729   case ir_var_shader_in:
8730      if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8731         per_vertex = gl_in->get_interface_type();
8732      break;
8733   case ir_var_shader_out:
8734      if (ir_variable *gl_Position =
8735          state->symbols->get_variable("gl_Position")) {
8736         per_vertex = gl_Position->get_interface_type();
8737      }
8738      break;
8739   default:
8740      assert(!"Unexpected mode");
8741      break;
8742   }
8743
8744   /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8745    * need to do anything.
8746    */
8747   if (per_vertex == NULL)
8748      return;
8749
8750   /* If the interface block is used by the shader, then we don't need to do
8751    * anything.
8752    */
8753   interface_block_usage_visitor v(mode, per_vertex);
8754   v.run(instructions);
8755   if (v.usage_found())
8756      return;
8757
8758   /* Remove any ir_variable declarations that refer to the interface block
8759    * we're removing.
8760    */
8761   foreach_in_list_safe(ir_instruction, node, instructions) {
8762      ir_variable *const var = node->as_variable();
8763      if (var != NULL && var->get_interface_type() == per_vertex &&
8764          var->data.mode == mode) {
8765         state->symbols->disable_variable(var->name);
8766         var->remove();
8767      }
8768   }
8769}
8770