ast_to_hir.cpp revision 993e1d59
1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file ast_to_hir.c 26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR). 27 * 28 * During the conversion to HIR, the majority of the symantic checking is 29 * preformed on the program. This includes: 30 * 31 * * Symbol table management 32 * * Type checking 33 * * Function binding 34 * 35 * The majority of this work could be done during parsing, and the parser could 36 * probably generate HIR directly. However, this results in frequent changes 37 * to the parser code. Since we do not assume that every system this complier 38 * is built on will have Flex and Bison installed, we have to store the code 39 * generated by these tools in our version control system. In other parts of 40 * the system we've seen problems where a parser was changed but the generated 41 * code was not committed, merge conflicts where created because two developers 42 * had slightly different versions of Bison installed, etc. 43 * 44 * I have also noticed that running Bison generated parsers in GDB is very 45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very 46 * well 'print $1' in GDB. 47 * 48 * As a result, my preference is to put as little C code as possible in the 49 * parser (and lexer) sources. 50 */ 51 52#include "glsl_symbol_table.h" 53#include "glsl_parser_extras.h" 54#include "ast.h" 55#include "compiler/glsl_types.h" 56#include "util/hash_table.h" 57#include "main/mtypes.h" 58#include "main/macros.h" 59#include "main/shaderobj.h" 60#include "ir.h" 61#include "ir_builder.h" 62#include "builtin_functions.h" 63 64using namespace ir_builder; 65 66static void 67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, 68 exec_list *instructions); 69static void 70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state); 71 72static void 73remove_per_vertex_blocks(exec_list *instructions, 74 _mesa_glsl_parse_state *state, ir_variable_mode mode); 75 76/** 77 * Visitor class that finds the first instance of any write-only variable that 78 * is ever read, if any 79 */ 80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor 81{ 82public: 83 read_from_write_only_variable_visitor() : found(NULL) 84 { 85 } 86 87 virtual ir_visitor_status visit(ir_dereference_variable *ir) 88 { 89 if (this->in_assignee) 90 return visit_continue; 91 92 ir_variable *var = ir->variable_referenced(); 93 /* We can have memory_write_only set on both images and buffer variables, 94 * but in the former there is a distinction between reads from 95 * the variable itself (write_only) and from the memory they point to 96 * (memory_write_only), while in the case of buffer variables there is 97 * no such distinction, that is why this check here is limited to 98 * buffer variables alone. 99 */ 100 if (!var || var->data.mode != ir_var_shader_storage) 101 return visit_continue; 102 103 if (var->data.memory_write_only) { 104 found = var; 105 return visit_stop; 106 } 107 108 return visit_continue; 109 } 110 111 ir_variable *get_variable() { 112 return found; 113 } 114 115 virtual ir_visitor_status visit_enter(ir_expression *ir) 116 { 117 /* .length() doesn't actually read anything */ 118 if (ir->operation == ir_unop_ssbo_unsized_array_length) 119 return visit_continue_with_parent; 120 121 return visit_continue; 122 } 123 124private: 125 ir_variable *found; 126}; 127 128void 129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 130{ 131 _mesa_glsl_initialize_variables(instructions, state); 132 133 state->symbols->separate_function_namespace = state->language_version == 110; 134 135 state->current_function = NULL; 136 137 state->toplevel_ir = instructions; 138 139 state->gs_input_prim_type_specified = false; 140 state->tcs_output_vertices_specified = false; 141 state->cs_input_local_size_specified = false; 142 143 /* Section 4.2 of the GLSL 1.20 specification states: 144 * "The built-in functions are scoped in a scope outside the global scope 145 * users declare global variables in. That is, a shader's global scope, 146 * available for user-defined functions and global variables, is nested 147 * inside the scope containing the built-in functions." 148 * 149 * Since built-in functions like ftransform() access built-in variables, 150 * it follows that those must be in the outer scope as well. 151 * 152 * We push scope here to create this nesting effect...but don't pop. 153 * This way, a shader's globals are still in the symbol table for use 154 * by the linker. 155 */ 156 state->symbols->push_scope(); 157 158 foreach_list_typed (ast_node, ast, link, & state->translation_unit) 159 ast->hir(instructions, state); 160 161 verify_subroutine_associated_funcs(state); 162 detect_recursion_unlinked(state, instructions); 163 detect_conflicting_assignments(state, instructions); 164 165 state->toplevel_ir = NULL; 166 167 /* Move all of the variable declarations to the front of the IR list, and 168 * reverse the order. This has the (intended!) side effect that vertex 169 * shader inputs and fragment shader outputs will appear in the IR in the 170 * same order that they appeared in the shader code. This results in the 171 * locations being assigned in the declared order. Many (arguably buggy) 172 * applications depend on this behavior, and it matches what nearly all 173 * other drivers do. 174 */ 175 foreach_in_list_safe(ir_instruction, node, instructions) { 176 ir_variable *const var = node->as_variable(); 177 178 if (var == NULL) 179 continue; 180 181 var->remove(); 182 instructions->push_head(var); 183 } 184 185 /* Figure out if gl_FragCoord is actually used in fragment shader */ 186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord"); 187 if (var != NULL) 188 state->fs_uses_gl_fragcoord = var->data.used; 189 190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec: 191 * 192 * If multiple shaders using members of a built-in block belonging to 193 * the same interface are linked together in the same program, they 194 * must all redeclare the built-in block in the same way, as described 195 * in section 4.3.7 "Interface Blocks" for interface block matching, or 196 * a link error will result. 197 * 198 * The phrase "using members of a built-in block" implies that if two 199 * shaders are linked together and one of them *does not use* any members 200 * of the built-in block, then that shader does not need to have a matching 201 * redeclaration of the built-in block. 202 * 203 * This appears to be a clarification to the behaviour established for 204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL 205 * version. 206 * 207 * The definition of "interface" in section 4.3.7 that applies here is as 208 * follows: 209 * 210 * The boundary between adjacent programmable pipeline stages: This 211 * spans all the outputs in all compilation units of the first stage 212 * and all the inputs in all compilation units of the second stage. 213 * 214 * Therefore this rule applies to both inter- and intra-stage linking. 215 * 216 * The easiest way to implement this is to check whether the shader uses 217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply 218 * remove all the relevant variable declaration from the IR, so that the 219 * linker won't see them and complain about mismatches. 220 */ 221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in); 222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out); 223 224 /* Check that we don't have reads from write-only variables */ 225 read_from_write_only_variable_visitor v; 226 v.run(instructions); 227 ir_variable *error_var = v.get_variable(); 228 if (error_var) { 229 /* It would be nice to have proper location information, but for that 230 * we would need to check this as we process each kind of AST node 231 */ 232 YYLTYPE loc; 233 memset(&loc, 0, sizeof(loc)); 234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'", 235 error_var->name); 236 } 237} 238 239 240static ir_expression_operation 241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from, 242 struct _mesa_glsl_parse_state *state) 243{ 244 switch (to->base_type) { 245 case GLSL_TYPE_FLOAT: 246 switch (from->base_type) { 247 case GLSL_TYPE_INT: return ir_unop_i2f; 248 case GLSL_TYPE_UINT: return ir_unop_u2f; 249 default: return (ir_expression_operation)0; 250 } 251 252 case GLSL_TYPE_UINT: 253 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable 254 && !state->MESA_shader_integer_functions_enable) 255 return (ir_expression_operation)0; 256 switch (from->base_type) { 257 case GLSL_TYPE_INT: return ir_unop_i2u; 258 default: return (ir_expression_operation)0; 259 } 260 261 case GLSL_TYPE_DOUBLE: 262 if (!state->has_double()) 263 return (ir_expression_operation)0; 264 switch (from->base_type) { 265 case GLSL_TYPE_INT: return ir_unop_i2d; 266 case GLSL_TYPE_UINT: return ir_unop_u2d; 267 case GLSL_TYPE_FLOAT: return ir_unop_f2d; 268 case GLSL_TYPE_INT64: return ir_unop_i642d; 269 case GLSL_TYPE_UINT64: return ir_unop_u642d; 270 default: return (ir_expression_operation)0; 271 } 272 273 case GLSL_TYPE_UINT64: 274 if (!state->has_int64()) 275 return (ir_expression_operation)0; 276 switch (from->base_type) { 277 case GLSL_TYPE_INT: return ir_unop_i2u64; 278 case GLSL_TYPE_UINT: return ir_unop_u2u64; 279 case GLSL_TYPE_INT64: return ir_unop_i642u64; 280 default: return (ir_expression_operation)0; 281 } 282 283 case GLSL_TYPE_INT64: 284 if (!state->has_int64()) 285 return (ir_expression_operation)0; 286 switch (from->base_type) { 287 case GLSL_TYPE_INT: return ir_unop_i2i64; 288 default: return (ir_expression_operation)0; 289 } 290 291 default: return (ir_expression_operation)0; 292 } 293} 294 295 296/** 297 * If a conversion is available, convert one operand to a different type 298 * 299 * The \c from \c ir_rvalue is converted "in place". 300 * 301 * \param to Type that the operand it to be converted to 302 * \param from Operand that is being converted 303 * \param state GLSL compiler state 304 * 305 * \return 306 * If a conversion is possible (or unnecessary), \c true is returned. 307 * Otherwise \c false is returned. 308 */ 309static bool 310apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, 311 struct _mesa_glsl_parse_state *state) 312{ 313 void *ctx = state; 314 if (to->base_type == from->type->base_type) 315 return true; 316 317 /* Prior to GLSL 1.20, there are no implicit conversions */ 318 if (!state->is_version(120, 0)) 319 return false; 320 321 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: 322 * 323 * "There are no implicit array or structure conversions. For 324 * example, an array of int cannot be implicitly converted to an 325 * array of float. 326 */ 327 if (!to->is_numeric() || !from->type->is_numeric()) 328 return false; 329 330 /* We don't actually want the specific type `to`, we want a type 331 * with the same base type as `to`, but the same vector width as 332 * `from`. 333 */ 334 to = glsl_type::get_instance(to->base_type, from->type->vector_elements, 335 from->type->matrix_columns); 336 337 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state); 338 if (op) { 339 from = new(ctx) ir_expression(op, to, from, NULL); 340 return true; 341 } else { 342 return false; 343 } 344} 345 346 347static const struct glsl_type * 348arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 349 bool multiply, 350 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 351{ 352 const glsl_type *type_a = value_a->type; 353 const glsl_type *type_b = value_b->type; 354 355 /* From GLSL 1.50 spec, page 56: 356 * 357 * "The arithmetic binary operators add (+), subtract (-), 358 * multiply (*), and divide (/) operate on integer and 359 * floating-point scalars, vectors, and matrices." 360 */ 361 if (!type_a->is_numeric() || !type_b->is_numeric()) { 362 _mesa_glsl_error(loc, state, 363 "operands to arithmetic operators must be numeric"); 364 return glsl_type::error_type; 365 } 366 367 368 /* "If one operand is floating-point based and the other is 369 * not, then the conversions from Section 4.1.10 "Implicit 370 * Conversions" are applied to the non-floating-point-based operand." 371 */ 372 if (!apply_implicit_conversion(type_a, value_b, state) 373 && !apply_implicit_conversion(type_b, value_a, state)) { 374 _mesa_glsl_error(loc, state, 375 "could not implicitly convert operands to " 376 "arithmetic operator"); 377 return glsl_type::error_type; 378 } 379 type_a = value_a->type; 380 type_b = value_b->type; 381 382 /* "If the operands are integer types, they must both be signed or 383 * both be unsigned." 384 * 385 * From this rule and the preceeding conversion it can be inferred that 386 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. 387 * The is_numeric check above already filtered out the case where either 388 * type is not one of these, so now the base types need only be tested for 389 * equality. 390 */ 391 if (type_a->base_type != type_b->base_type) { 392 _mesa_glsl_error(loc, state, 393 "base type mismatch for arithmetic operator"); 394 return glsl_type::error_type; 395 } 396 397 /* "All arithmetic binary operators result in the same fundamental type 398 * (signed integer, unsigned integer, or floating-point) as the 399 * operands they operate on, after operand type conversion. After 400 * conversion, the following cases are valid 401 * 402 * * The two operands are scalars. In this case the operation is 403 * applied, resulting in a scalar." 404 */ 405 if (type_a->is_scalar() && type_b->is_scalar()) 406 return type_a; 407 408 /* "* One operand is a scalar, and the other is a vector or matrix. 409 * In this case, the scalar operation is applied independently to each 410 * component of the vector or matrix, resulting in the same size 411 * vector or matrix." 412 */ 413 if (type_a->is_scalar()) { 414 if (!type_b->is_scalar()) 415 return type_b; 416 } else if (type_b->is_scalar()) { 417 return type_a; 418 } 419 420 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 421 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been 422 * handled. 423 */ 424 assert(!type_a->is_scalar()); 425 assert(!type_b->is_scalar()); 426 427 /* "* The two operands are vectors of the same size. In this case, the 428 * operation is done component-wise resulting in the same size 429 * vector." 430 */ 431 if (type_a->is_vector() && type_b->is_vector()) { 432 if (type_a == type_b) { 433 return type_a; 434 } else { 435 _mesa_glsl_error(loc, state, 436 "vector size mismatch for arithmetic operator"); 437 return glsl_type::error_type; 438 } 439 } 440 441 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 442 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and 443 * <vector, vector> have been handled. At least one of the operands must 444 * be matrix. Further, since there are no integer matrix types, the base 445 * type of both operands must be float. 446 */ 447 assert(type_a->is_matrix() || type_b->is_matrix()); 448 assert(type_a->is_float() || type_a->is_double()); 449 assert(type_b->is_float() || type_b->is_double()); 450 451 /* "* The operator is add (+), subtract (-), or divide (/), and the 452 * operands are matrices with the same number of rows and the same 453 * number of columns. In this case, the operation is done component- 454 * wise resulting in the same size matrix." 455 * * The operator is multiply (*), where both operands are matrices or 456 * one operand is a vector and the other a matrix. A right vector 457 * operand is treated as a column vector and a left vector operand as a 458 * row vector. In all these cases, it is required that the number of 459 * columns of the left operand is equal to the number of rows of the 460 * right operand. Then, the multiply (*) operation does a linear 461 * algebraic multiply, yielding an object that has the same number of 462 * rows as the left operand and the same number of columns as the right 463 * operand. Section 5.10 "Vector and Matrix Operations" explains in 464 * more detail how vectors and matrices are operated on." 465 */ 466 if (! multiply) { 467 if (type_a == type_b) 468 return type_a; 469 } else { 470 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b); 471 472 if (type == glsl_type::error_type) { 473 _mesa_glsl_error(loc, state, 474 "size mismatch for matrix multiplication"); 475 } 476 477 return type; 478 } 479 480 481 /* "All other cases are illegal." 482 */ 483 _mesa_glsl_error(loc, state, "type mismatch"); 484 return glsl_type::error_type; 485} 486 487 488static const struct glsl_type * 489unary_arithmetic_result_type(const struct glsl_type *type, 490 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 491{ 492 /* From GLSL 1.50 spec, page 57: 493 * 494 * "The arithmetic unary operators negate (-), post- and pre-increment 495 * and decrement (-- and ++) operate on integer or floating-point 496 * values (including vectors and matrices). All unary operators work 497 * component-wise on their operands. These result with the same type 498 * they operated on." 499 */ 500 if (!type->is_numeric()) { 501 _mesa_glsl_error(loc, state, 502 "operands to arithmetic operators must be numeric"); 503 return glsl_type::error_type; 504 } 505 506 return type; 507} 508 509/** 510 * \brief Return the result type of a bit-logic operation. 511 * 512 * If the given types to the bit-logic operator are invalid, return 513 * glsl_type::error_type. 514 * 515 * \param value_a LHS of bit-logic op 516 * \param value_b RHS of bit-logic op 517 */ 518static const struct glsl_type * 519bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 520 ast_operators op, 521 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 522{ 523 const glsl_type *type_a = value_a->type; 524 const glsl_type *type_b = value_b->type; 525 526 if (!state->check_bitwise_operations_allowed(loc)) { 527 return glsl_type::error_type; 528 } 529 530 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec: 531 * 532 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or 533 * (|). The operands must be of type signed or unsigned integers or 534 * integer vectors." 535 */ 536 if (!type_a->is_integer_32_64()) { 537 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer", 538 ast_expression::operator_string(op)); 539 return glsl_type::error_type; 540 } 541 if (!type_b->is_integer_32_64()) { 542 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer", 543 ast_expression::operator_string(op)); 544 return glsl_type::error_type; 545 } 546 547 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't 548 * make sense for bitwise operations, as they don't operate on floats. 549 * 550 * GLSL 4.0 added implicit int -> uint conversions, which are relevant 551 * here. It wasn't clear whether or not we should apply them to bitwise 552 * operations. However, Khronos has decided that they should in future 553 * language revisions. Applications also rely on this behavior. We opt 554 * to apply them in general, but issue a portability warning. 555 * 556 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405 557 */ 558 if (type_a->base_type != type_b->base_type) { 559 if (!apply_implicit_conversion(type_a, value_b, state) 560 && !apply_implicit_conversion(type_b, value_a, state)) { 561 _mesa_glsl_error(loc, state, 562 "could not implicitly convert operands to " 563 "`%s` operator", 564 ast_expression::operator_string(op)); 565 return glsl_type::error_type; 566 } else { 567 _mesa_glsl_warning(loc, state, 568 "some implementations may not support implicit " 569 "int -> uint conversions for `%s' operators; " 570 "consider casting explicitly for portability", 571 ast_expression::operator_string(op)); 572 } 573 type_a = value_a->type; 574 type_b = value_b->type; 575 } 576 577 /* "The fundamental types of the operands (signed or unsigned) must 578 * match," 579 */ 580 if (type_a->base_type != type_b->base_type) { 581 _mesa_glsl_error(loc, state, "operands of `%s' must have the same " 582 "base type", ast_expression::operator_string(op)); 583 return glsl_type::error_type; 584 } 585 586 /* "The operands cannot be vectors of differing size." */ 587 if (type_a->is_vector() && 588 type_b->is_vector() && 589 type_a->vector_elements != type_b->vector_elements) { 590 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of " 591 "different sizes", ast_expression::operator_string(op)); 592 return glsl_type::error_type; 593 } 594 595 /* "If one operand is a scalar and the other a vector, the scalar is 596 * applied component-wise to the vector, resulting in the same type as 597 * the vector. The fundamental types of the operands [...] will be the 598 * resulting fundamental type." 599 */ 600 if (type_a->is_scalar()) 601 return type_b; 602 else 603 return type_a; 604} 605 606static const struct glsl_type * 607modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 608 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 609{ 610 const glsl_type *type_a = value_a->type; 611 const glsl_type *type_b = value_b->type; 612 613 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) { 614 return glsl_type::error_type; 615 } 616 617 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says: 618 * 619 * "The operator modulus (%) operates on signed or unsigned integers or 620 * integer vectors." 621 */ 622 if (!type_a->is_integer_32_64()) { 623 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer"); 624 return glsl_type::error_type; 625 } 626 if (!type_b->is_integer_32_64()) { 627 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer"); 628 return glsl_type::error_type; 629 } 630 631 /* "If the fundamental types in the operands do not match, then the 632 * conversions from section 4.1.10 "Implicit Conversions" are applied 633 * to create matching types." 634 * 635 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit 636 * int -> uint conversion rules. Prior to that, there were no implicit 637 * conversions. So it's harmless to apply them universally - no implicit 638 * conversions will exist. If the types don't match, we'll receive false, 639 * and raise an error, satisfying the GLSL 1.50 spec, page 56: 640 * 641 * "The operand types must both be signed or unsigned." 642 */ 643 if (!apply_implicit_conversion(type_a, value_b, state) && 644 !apply_implicit_conversion(type_b, value_a, state)) { 645 _mesa_glsl_error(loc, state, 646 "could not implicitly convert operands to " 647 "modulus (%%) operator"); 648 return glsl_type::error_type; 649 } 650 type_a = value_a->type; 651 type_b = value_b->type; 652 653 /* "The operands cannot be vectors of differing size. If one operand is 654 * a scalar and the other vector, then the scalar is applied component- 655 * wise to the vector, resulting in the same type as the vector. If both 656 * are vectors of the same size, the result is computed component-wise." 657 */ 658 if (type_a->is_vector()) { 659 if (!type_b->is_vector() 660 || (type_a->vector_elements == type_b->vector_elements)) 661 return type_a; 662 } else 663 return type_b; 664 665 /* "The operator modulus (%) is not defined for any other data types 666 * (non-integer types)." 667 */ 668 _mesa_glsl_error(loc, state, "type mismatch"); 669 return glsl_type::error_type; 670} 671 672 673static const struct glsl_type * 674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 675 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 676{ 677 const glsl_type *type_a = value_a->type; 678 const glsl_type *type_b = value_b->type; 679 680 /* From GLSL 1.50 spec, page 56: 681 * "The relational operators greater than (>), less than (<), greater 682 * than or equal (>=), and less than or equal (<=) operate only on 683 * scalar integer and scalar floating-point expressions." 684 */ 685 if (!type_a->is_numeric() 686 || !type_b->is_numeric() 687 || !type_a->is_scalar() 688 || !type_b->is_scalar()) { 689 _mesa_glsl_error(loc, state, 690 "operands to relational operators must be scalar and " 691 "numeric"); 692 return glsl_type::error_type; 693 } 694 695 /* "Either the operands' types must match, or the conversions from 696 * Section 4.1.10 "Implicit Conversions" will be applied to the integer 697 * operand, after which the types must match." 698 */ 699 if (!apply_implicit_conversion(type_a, value_b, state) 700 && !apply_implicit_conversion(type_b, value_a, state)) { 701 _mesa_glsl_error(loc, state, 702 "could not implicitly convert operands to " 703 "relational operator"); 704 return glsl_type::error_type; 705 } 706 type_a = value_a->type; 707 type_b = value_b->type; 708 709 if (type_a->base_type != type_b->base_type) { 710 _mesa_glsl_error(loc, state, "base type mismatch"); 711 return glsl_type::error_type; 712 } 713 714 /* "The result is scalar Boolean." 715 */ 716 return glsl_type::bool_type; 717} 718 719/** 720 * \brief Return the result type of a bit-shift operation. 721 * 722 * If the given types to the bit-shift operator are invalid, return 723 * glsl_type::error_type. 724 * 725 * \param type_a Type of LHS of bit-shift op 726 * \param type_b Type of RHS of bit-shift op 727 */ 728static const struct glsl_type * 729shift_result_type(const struct glsl_type *type_a, 730 const struct glsl_type *type_b, 731 ast_operators op, 732 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 733{ 734 if (!state->check_bitwise_operations_allowed(loc)) { 735 return glsl_type::error_type; 736 } 737 738 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec: 739 * 740 * "The shift operators (<<) and (>>). For both operators, the operands 741 * must be signed or unsigned integers or integer vectors. One operand 742 * can be signed while the other is unsigned." 743 */ 744 if (!type_a->is_integer_32_64()) { 745 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or " 746 "integer vector", ast_expression::operator_string(op)); 747 return glsl_type::error_type; 748 749 } 750 if (!type_b->is_integer()) { 751 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or " 752 "integer vector", ast_expression::operator_string(op)); 753 return glsl_type::error_type; 754 } 755 756 /* "If the first operand is a scalar, the second operand has to be 757 * a scalar as well." 758 */ 759 if (type_a->is_scalar() && !type_b->is_scalar()) { 760 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the " 761 "second must be scalar as well", 762 ast_expression::operator_string(op)); 763 return glsl_type::error_type; 764 } 765 766 /* If both operands are vectors, check that they have same number of 767 * elements. 768 */ 769 if (type_a->is_vector() && 770 type_b->is_vector() && 771 type_a->vector_elements != type_b->vector_elements) { 772 _mesa_glsl_error(loc, state, "vector operands to operator %s must " 773 "have same number of elements", 774 ast_expression::operator_string(op)); 775 return glsl_type::error_type; 776 } 777 778 /* "In all cases, the resulting type will be the same type as the left 779 * operand." 780 */ 781 return type_a; 782} 783 784/** 785 * Returns the innermost array index expression in an rvalue tree. 786 * This is the largest indexing level -- if an array of blocks, then 787 * it is the block index rather than an indexing expression for an 788 * array-typed member of an array of blocks. 789 */ 790static ir_rvalue * 791find_innermost_array_index(ir_rvalue *rv) 792{ 793 ir_dereference_array *last = NULL; 794 while (rv) { 795 if (rv->as_dereference_array()) { 796 last = rv->as_dereference_array(); 797 rv = last->array; 798 } else if (rv->as_dereference_record()) 799 rv = rv->as_dereference_record()->record; 800 else if (rv->as_swizzle()) 801 rv = rv->as_swizzle()->val; 802 else 803 rv = NULL; 804 } 805 806 if (last) 807 return last->array_index; 808 809 return NULL; 810} 811 812/** 813 * Validates that a value can be assigned to a location with a specified type 814 * 815 * Validates that \c rhs can be assigned to some location. If the types are 816 * not an exact match but an automatic conversion is possible, \c rhs will be 817 * converted. 818 * 819 * \return 820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. 821 * Otherwise the actual RHS to be assigned will be returned. This may be 822 * \c rhs, or it may be \c rhs after some type conversion. 823 * 824 * \note 825 * In addition to being used for assignments, this function is used to 826 * type-check return values. 827 */ 828static ir_rvalue * 829validate_assignment(struct _mesa_glsl_parse_state *state, 830 YYLTYPE loc, ir_rvalue *lhs, 831 ir_rvalue *rhs, bool is_initializer) 832{ 833 /* If there is already some error in the RHS, just return it. Anything 834 * else will lead to an avalanche of error message back to the user. 835 */ 836 if (rhs->type->is_error()) 837 return rhs; 838 839 /* In the Tessellation Control Shader: 840 * If a per-vertex output variable is used as an l-value, it is an error 841 * if the expression indicating the vertex number is not the identifier 842 * `gl_InvocationID`. 843 */ 844 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) { 845 ir_variable *var = lhs->variable_referenced(); 846 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) { 847 ir_rvalue *index = find_innermost_array_index(lhs); 848 ir_variable *index_var = index ? index->variable_referenced() : NULL; 849 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) { 850 _mesa_glsl_error(&loc, state, 851 "Tessellation control shader outputs can only " 852 "be indexed by gl_InvocationID"); 853 return NULL; 854 } 855 } 856 } 857 858 /* If the types are identical, the assignment can trivially proceed. 859 */ 860 if (rhs->type == lhs->type) 861 return rhs; 862 863 /* If the array element types are the same and the LHS is unsized, 864 * the assignment is okay for initializers embedded in variable 865 * declarations. 866 * 867 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this 868 * is handled by ir_dereference::is_lvalue. 869 */ 870 const glsl_type *lhs_t = lhs->type; 871 const glsl_type *rhs_t = rhs->type; 872 bool unsized_array = false; 873 while(lhs_t->is_array()) { 874 if (rhs_t == lhs_t) 875 break; /* the rest of the inner arrays match so break out early */ 876 if (!rhs_t->is_array()) { 877 unsized_array = false; 878 break; /* number of dimensions mismatch */ 879 } 880 if (lhs_t->length == rhs_t->length) { 881 lhs_t = lhs_t->fields.array; 882 rhs_t = rhs_t->fields.array; 883 continue; 884 } else if (lhs_t->is_unsized_array()) { 885 unsized_array = true; 886 } else { 887 unsized_array = false; 888 break; /* sized array mismatch */ 889 } 890 lhs_t = lhs_t->fields.array; 891 rhs_t = rhs_t->fields.array; 892 } 893 if (unsized_array) { 894 if (is_initializer) { 895 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type()) 896 return rhs; 897 } else { 898 _mesa_glsl_error(&loc, state, 899 "implicitly sized arrays cannot be assigned"); 900 return NULL; 901 } 902 } 903 904 /* Check for implicit conversion in GLSL 1.20 */ 905 if (apply_implicit_conversion(lhs->type, rhs, state)) { 906 if (rhs->type == lhs->type) 907 return rhs; 908 } 909 910 _mesa_glsl_error(&loc, state, 911 "%s of type %s cannot be assigned to " 912 "variable of type %s", 913 is_initializer ? "initializer" : "value", 914 rhs->type->name, lhs->type->name); 915 916 return NULL; 917} 918 919static void 920mark_whole_array_access(ir_rvalue *access) 921{ 922 ir_dereference_variable *deref = access->as_dereference_variable(); 923 924 if (deref && deref->var) { 925 deref->var->data.max_array_access = deref->type->length - 1; 926 } 927} 928 929static bool 930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, 931 const char *non_lvalue_description, 932 ir_rvalue *lhs, ir_rvalue *rhs, 933 ir_rvalue **out_rvalue, bool needs_rvalue, 934 bool is_initializer, 935 YYLTYPE lhs_loc) 936{ 937 void *ctx = state; 938 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); 939 940 ir_variable *lhs_var = lhs->variable_referenced(); 941 if (lhs_var) 942 lhs_var->data.assigned = true; 943 944 if (!error_emitted) { 945 if (non_lvalue_description != NULL) { 946 _mesa_glsl_error(&lhs_loc, state, 947 "assignment to %s", 948 non_lvalue_description); 949 error_emitted = true; 950 } else if (lhs_var != NULL && (lhs_var->data.read_only || 951 (lhs_var->data.mode == ir_var_shader_storage && 952 lhs_var->data.memory_read_only))) { 953 /* We can have memory_read_only set on both images and buffer variables, 954 * but in the former there is a distinction between assignments to 955 * the variable itself (read_only) and to the memory they point to 956 * (memory_read_only), while in the case of buffer variables there is 957 * no such distinction, that is why this check here is limited to 958 * buffer variables alone. 959 */ 960 _mesa_glsl_error(&lhs_loc, state, 961 "assignment to read-only variable '%s'", 962 lhs_var->name); 963 error_emitted = true; 964 } else if (lhs->type->is_array() && 965 !state->check_version(120, 300, &lhs_loc, 966 "whole array assignment forbidden")) { 967 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: 968 * 969 * "Other binary or unary expressions, non-dereferenced 970 * arrays, function names, swizzles with repeated fields, 971 * and constants cannot be l-values." 972 * 973 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00. 974 */ 975 error_emitted = true; 976 } else if (!lhs->is_lvalue(state)) { 977 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); 978 error_emitted = true; 979 } 980 } 981 982 ir_rvalue *new_rhs = 983 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer); 984 if (new_rhs != NULL) { 985 rhs = new_rhs; 986 987 /* If the LHS array was not declared with a size, it takes it size from 988 * the RHS. If the LHS is an l-value and a whole array, it must be a 989 * dereference of a variable. Any other case would require that the LHS 990 * is either not an l-value or not a whole array. 991 */ 992 if (lhs->type->is_unsized_array()) { 993 ir_dereference *const d = lhs->as_dereference(); 994 995 assert(d != NULL); 996 997 ir_variable *const var = d->variable_referenced(); 998 999 assert(var != NULL); 1000 1001 if (var->data.max_array_access >= rhs->type->array_size()) { 1002 /* FINISHME: This should actually log the location of the RHS. */ 1003 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " 1004 "previous access", 1005 var->data.max_array_access); 1006 } 1007 1008 var->type = glsl_type::get_array_instance(lhs->type->fields.array, 1009 rhs->type->array_size()); 1010 d->type = var->type; 1011 } 1012 if (lhs->type->is_array()) { 1013 mark_whole_array_access(rhs); 1014 mark_whole_array_access(lhs); 1015 } 1016 } else { 1017 error_emitted = true; 1018 } 1019 1020 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, 1021 * but not post_inc) need the converted assigned value as an rvalue 1022 * to handle things like: 1023 * 1024 * i = j += 1; 1025 */ 1026 if (needs_rvalue) { 1027 ir_rvalue *rvalue; 1028 if (!error_emitted) { 1029 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", 1030 ir_var_temporary); 1031 instructions->push_tail(var); 1032 instructions->push_tail(assign(var, rhs)); 1033 1034 ir_dereference_variable *deref_var = 1035 new(ctx) ir_dereference_variable(var); 1036 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var)); 1037 rvalue = new(ctx) ir_dereference_variable(var); 1038 } else { 1039 rvalue = ir_rvalue::error_value(ctx); 1040 } 1041 *out_rvalue = rvalue; 1042 } else { 1043 if (!error_emitted) 1044 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs)); 1045 *out_rvalue = NULL; 1046 } 1047 1048 return error_emitted; 1049} 1050 1051static ir_rvalue * 1052get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) 1053{ 1054 void *ctx = ralloc_parent(lvalue); 1055 ir_variable *var; 1056 1057 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", 1058 ir_var_temporary); 1059 instructions->push_tail(var); 1060 1061 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), 1062 lvalue)); 1063 1064 return new(ctx) ir_dereference_variable(var); 1065} 1066 1067 1068ir_rvalue * 1069ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 1070{ 1071 (void) instructions; 1072 (void) state; 1073 1074 return NULL; 1075} 1076 1077bool 1078ast_node::has_sequence_subexpression() const 1079{ 1080 return false; 1081} 1082 1083void 1084ast_node::set_is_lhs(bool /* new_value */) 1085{ 1086} 1087 1088void 1089ast_function_expression::hir_no_rvalue(exec_list *instructions, 1090 struct _mesa_glsl_parse_state *state) 1091{ 1092 (void)hir(instructions, state); 1093} 1094 1095void 1096ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions, 1097 struct _mesa_glsl_parse_state *state) 1098{ 1099 (void)hir(instructions, state); 1100} 1101 1102static ir_rvalue * 1103do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1) 1104{ 1105 int join_op; 1106 ir_rvalue *cmp = NULL; 1107 1108 if (operation == ir_binop_all_equal) 1109 join_op = ir_binop_logic_and; 1110 else 1111 join_op = ir_binop_logic_or; 1112 1113 switch (op0->type->base_type) { 1114 case GLSL_TYPE_FLOAT: 1115 case GLSL_TYPE_FLOAT16: 1116 case GLSL_TYPE_UINT: 1117 case GLSL_TYPE_INT: 1118 case GLSL_TYPE_BOOL: 1119 case GLSL_TYPE_DOUBLE: 1120 case GLSL_TYPE_UINT64: 1121 case GLSL_TYPE_INT64: 1122 case GLSL_TYPE_UINT16: 1123 case GLSL_TYPE_INT16: 1124 case GLSL_TYPE_UINT8: 1125 case GLSL_TYPE_INT8: 1126 return new(mem_ctx) ir_expression(operation, op0, op1); 1127 1128 case GLSL_TYPE_ARRAY: { 1129 for (unsigned int i = 0; i < op0->type->length; i++) { 1130 ir_rvalue *e0, *e1, *result; 1131 1132 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL), 1133 new(mem_ctx) ir_constant(i)); 1134 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL), 1135 new(mem_ctx) ir_constant(i)); 1136 result = do_comparison(mem_ctx, operation, e0, e1); 1137 1138 if (cmp) { 1139 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 1140 } else { 1141 cmp = result; 1142 } 1143 } 1144 1145 mark_whole_array_access(op0); 1146 mark_whole_array_access(op1); 1147 break; 1148 } 1149 1150 case GLSL_TYPE_STRUCT: { 1151 for (unsigned int i = 0; i < op0->type->length; i++) { 1152 ir_rvalue *e0, *e1, *result; 1153 const char *field_name = op0->type->fields.structure[i].name; 1154 1155 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL), 1156 field_name); 1157 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL), 1158 field_name); 1159 result = do_comparison(mem_ctx, operation, e0, e1); 1160 1161 if (cmp) { 1162 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 1163 } else { 1164 cmp = result; 1165 } 1166 } 1167 break; 1168 } 1169 1170 case GLSL_TYPE_ERROR: 1171 case GLSL_TYPE_VOID: 1172 case GLSL_TYPE_SAMPLER: 1173 case GLSL_TYPE_IMAGE: 1174 case GLSL_TYPE_INTERFACE: 1175 case GLSL_TYPE_ATOMIC_UINT: 1176 case GLSL_TYPE_SUBROUTINE: 1177 case GLSL_TYPE_FUNCTION: 1178 /* I assume a comparison of a struct containing a sampler just 1179 * ignores the sampler present in the type. 1180 */ 1181 break; 1182 } 1183 1184 if (cmp == NULL) 1185 cmp = new(mem_ctx) ir_constant(true); 1186 1187 return cmp; 1188} 1189 1190/* For logical operations, we want to ensure that the operands are 1191 * scalar booleans. If it isn't, emit an error and return a constant 1192 * boolean to avoid triggering cascading error messages. 1193 */ 1194static ir_rvalue * 1195get_scalar_boolean_operand(exec_list *instructions, 1196 struct _mesa_glsl_parse_state *state, 1197 ast_expression *parent_expr, 1198 int operand, 1199 const char *operand_name, 1200 bool *error_emitted) 1201{ 1202 ast_expression *expr = parent_expr->subexpressions[operand]; 1203 void *ctx = state; 1204 ir_rvalue *val = expr->hir(instructions, state); 1205 1206 if (val->type->is_boolean() && val->type->is_scalar()) 1207 return val; 1208 1209 if (!*error_emitted) { 1210 YYLTYPE loc = expr->get_location(); 1211 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean", 1212 operand_name, 1213 parent_expr->operator_string(parent_expr->oper)); 1214 *error_emitted = true; 1215 } 1216 1217 return new(ctx) ir_constant(true); 1218} 1219 1220/** 1221 * If name refers to a builtin array whose maximum allowed size is less than 1222 * size, report an error and return true. Otherwise return false. 1223 */ 1224void 1225check_builtin_array_max_size(const char *name, unsigned size, 1226 YYLTYPE loc, struct _mesa_glsl_parse_state *state) 1227{ 1228 if ((strcmp("gl_TexCoord", name) == 0) 1229 && (size > state->Const.MaxTextureCoords)) { 1230 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: 1231 * 1232 * "The size [of gl_TexCoord] can be at most 1233 * gl_MaxTextureCoords." 1234 */ 1235 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot " 1236 "be larger than gl_MaxTextureCoords (%u)", 1237 state->Const.MaxTextureCoords); 1238 } else if (strcmp("gl_ClipDistance", name) == 0) { 1239 state->clip_dist_size = size; 1240 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) { 1241 /* From section 7.1 (Vertex Shader Special Variables) of the 1242 * GLSL 1.30 spec: 1243 * 1244 * "The gl_ClipDistance array is predeclared as unsized and 1245 * must be sized by the shader either redeclaring it with a 1246 * size or indexing it only with integral constant 1247 * expressions. ... The size can be at most 1248 * gl_MaxClipDistances." 1249 */ 1250 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot " 1251 "be larger than gl_MaxClipDistances (%u)", 1252 state->Const.MaxClipPlanes); 1253 } 1254 } else if (strcmp("gl_CullDistance", name) == 0) { 1255 state->cull_dist_size = size; 1256 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) { 1257 /* From the ARB_cull_distance spec: 1258 * 1259 * "The gl_CullDistance array is predeclared as unsized and 1260 * must be sized by the shader either redeclaring it with 1261 * a size or indexing it only with integral constant 1262 * expressions. The size determines the number and set of 1263 * enabled cull distances and can be at most 1264 * gl_MaxCullDistances." 1265 */ 1266 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot " 1267 "be larger than gl_MaxCullDistances (%u)", 1268 state->Const.MaxClipPlanes); 1269 } 1270 } 1271} 1272 1273/** 1274 * Create the constant 1, of a which is appropriate for incrementing and 1275 * decrementing values of the given GLSL type. For example, if type is vec4, 1276 * this creates a constant value of 1.0 having type float. 1277 * 1278 * If the given type is invalid for increment and decrement operators, return 1279 * a floating point 1--the error will be detected later. 1280 */ 1281static ir_rvalue * 1282constant_one_for_inc_dec(void *ctx, const glsl_type *type) 1283{ 1284 switch (type->base_type) { 1285 case GLSL_TYPE_UINT: 1286 return new(ctx) ir_constant((unsigned) 1); 1287 case GLSL_TYPE_INT: 1288 return new(ctx) ir_constant(1); 1289 case GLSL_TYPE_UINT64: 1290 return new(ctx) ir_constant((uint64_t) 1); 1291 case GLSL_TYPE_INT64: 1292 return new(ctx) ir_constant((int64_t) 1); 1293 default: 1294 case GLSL_TYPE_FLOAT: 1295 return new(ctx) ir_constant(1.0f); 1296 } 1297} 1298 1299ir_rvalue * 1300ast_expression::hir(exec_list *instructions, 1301 struct _mesa_glsl_parse_state *state) 1302{ 1303 return do_hir(instructions, state, true); 1304} 1305 1306void 1307ast_expression::hir_no_rvalue(exec_list *instructions, 1308 struct _mesa_glsl_parse_state *state) 1309{ 1310 do_hir(instructions, state, false); 1311} 1312 1313void 1314ast_expression::set_is_lhs(bool new_value) 1315{ 1316 /* is_lhs is tracked only to print "variable used uninitialized" warnings, 1317 * if we lack an identifier we can just skip it. 1318 */ 1319 if (this->primary_expression.identifier == NULL) 1320 return; 1321 1322 this->is_lhs = new_value; 1323 1324 /* We need to go through the subexpressions tree to cover cases like 1325 * ast_field_selection 1326 */ 1327 if (this->subexpressions[0] != NULL) 1328 this->subexpressions[0]->set_is_lhs(new_value); 1329} 1330 1331ir_rvalue * 1332ast_expression::do_hir(exec_list *instructions, 1333 struct _mesa_glsl_parse_state *state, 1334 bool needs_rvalue) 1335{ 1336 void *ctx = state; 1337 static const int operations[AST_NUM_OPERATORS] = { 1338 -1, /* ast_assign doesn't convert to ir_expression. */ 1339 -1, /* ast_plus doesn't convert to ir_expression. */ 1340 ir_unop_neg, 1341 ir_binop_add, 1342 ir_binop_sub, 1343 ir_binop_mul, 1344 ir_binop_div, 1345 ir_binop_mod, 1346 ir_binop_lshift, 1347 ir_binop_rshift, 1348 ir_binop_less, 1349 ir_binop_less, /* This is correct. See the ast_greater case below. */ 1350 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */ 1351 ir_binop_gequal, 1352 ir_binop_all_equal, 1353 ir_binop_any_nequal, 1354 ir_binop_bit_and, 1355 ir_binop_bit_xor, 1356 ir_binop_bit_or, 1357 ir_unop_bit_not, 1358 ir_binop_logic_and, 1359 ir_binop_logic_xor, 1360 ir_binop_logic_or, 1361 ir_unop_logic_not, 1362 1363 /* Note: The following block of expression types actually convert 1364 * to multiple IR instructions. 1365 */ 1366 ir_binop_mul, /* ast_mul_assign */ 1367 ir_binop_div, /* ast_div_assign */ 1368 ir_binop_mod, /* ast_mod_assign */ 1369 ir_binop_add, /* ast_add_assign */ 1370 ir_binop_sub, /* ast_sub_assign */ 1371 ir_binop_lshift, /* ast_ls_assign */ 1372 ir_binop_rshift, /* ast_rs_assign */ 1373 ir_binop_bit_and, /* ast_and_assign */ 1374 ir_binop_bit_xor, /* ast_xor_assign */ 1375 ir_binop_bit_or, /* ast_or_assign */ 1376 1377 -1, /* ast_conditional doesn't convert to ir_expression. */ 1378 ir_binop_add, /* ast_pre_inc. */ 1379 ir_binop_sub, /* ast_pre_dec. */ 1380 ir_binop_add, /* ast_post_inc. */ 1381 ir_binop_sub, /* ast_post_dec. */ 1382 -1, /* ast_field_selection doesn't conv to ir_expression. */ 1383 -1, /* ast_array_index doesn't convert to ir_expression. */ 1384 -1, /* ast_function_call doesn't conv to ir_expression. */ 1385 -1, /* ast_identifier doesn't convert to ir_expression. */ 1386 -1, /* ast_int_constant doesn't convert to ir_expression. */ 1387 -1, /* ast_uint_constant doesn't conv to ir_expression. */ 1388 -1, /* ast_float_constant doesn't conv to ir_expression. */ 1389 -1, /* ast_bool_constant doesn't conv to ir_expression. */ 1390 -1, /* ast_sequence doesn't convert to ir_expression. */ 1391 -1, /* ast_aggregate shouldn't ever even get here. */ 1392 }; 1393 ir_rvalue *result = NULL; 1394 ir_rvalue *op[3]; 1395 const struct glsl_type *type, *orig_type; 1396 bool error_emitted = false; 1397 YYLTYPE loc; 1398 1399 loc = this->get_location(); 1400 1401 switch (this->oper) { 1402 case ast_aggregate: 1403 unreachable("ast_aggregate: Should never get here."); 1404 1405 case ast_assign: { 1406 this->subexpressions[0]->set_is_lhs(true); 1407 op[0] = this->subexpressions[0]->hir(instructions, state); 1408 op[1] = this->subexpressions[1]->hir(instructions, state); 1409 1410 error_emitted = 1411 do_assignment(instructions, state, 1412 this->subexpressions[0]->non_lvalue_description, 1413 op[0], op[1], &result, needs_rvalue, false, 1414 this->subexpressions[0]->get_location()); 1415 break; 1416 } 1417 1418 case ast_plus: 1419 op[0] = this->subexpressions[0]->hir(instructions, state); 1420 1421 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 1422 1423 error_emitted = type->is_error(); 1424 1425 result = op[0]; 1426 break; 1427 1428 case ast_neg: 1429 op[0] = this->subexpressions[0]->hir(instructions, state); 1430 1431 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 1432 1433 error_emitted = type->is_error(); 1434 1435 result = new(ctx) ir_expression(operations[this->oper], type, 1436 op[0], NULL); 1437 break; 1438 1439 case ast_add: 1440 case ast_sub: 1441 case ast_mul: 1442 case ast_div: 1443 op[0] = this->subexpressions[0]->hir(instructions, state); 1444 op[1] = this->subexpressions[1]->hir(instructions, state); 1445 1446 type = arithmetic_result_type(op[0], op[1], 1447 (this->oper == ast_mul), 1448 state, & loc); 1449 error_emitted = type->is_error(); 1450 1451 result = new(ctx) ir_expression(operations[this->oper], type, 1452 op[0], op[1]); 1453 break; 1454 1455 case ast_mod: 1456 op[0] = this->subexpressions[0]->hir(instructions, state); 1457 op[1] = this->subexpressions[1]->hir(instructions, state); 1458 1459 type = modulus_result_type(op[0], op[1], state, &loc); 1460 1461 assert(operations[this->oper] == ir_binop_mod); 1462 1463 result = new(ctx) ir_expression(operations[this->oper], type, 1464 op[0], op[1]); 1465 error_emitted = type->is_error(); 1466 break; 1467 1468 case ast_lshift: 1469 case ast_rshift: 1470 if (!state->check_bitwise_operations_allowed(&loc)) { 1471 error_emitted = true; 1472 } 1473 1474 op[0] = this->subexpressions[0]->hir(instructions, state); 1475 op[1] = this->subexpressions[1]->hir(instructions, state); 1476 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1477 &loc); 1478 result = new(ctx) ir_expression(operations[this->oper], type, 1479 op[0], op[1]); 1480 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1481 break; 1482 1483 case ast_less: 1484 case ast_greater: 1485 case ast_lequal: 1486 case ast_gequal: 1487 op[0] = this->subexpressions[0]->hir(instructions, state); 1488 op[1] = this->subexpressions[1]->hir(instructions, state); 1489 1490 type = relational_result_type(op[0], op[1], state, & loc); 1491 1492 /* The relational operators must either generate an error or result 1493 * in a scalar boolean. See page 57 of the GLSL 1.50 spec. 1494 */ 1495 assert(type->is_error() 1496 || (type->is_boolean() && type->is_scalar())); 1497 1498 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap 1499 * the arguments and use < or >=. 1500 */ 1501 if (this->oper == ast_greater || this->oper == ast_lequal) { 1502 ir_rvalue *const tmp = op[0]; 1503 op[0] = op[1]; 1504 op[1] = tmp; 1505 } 1506 1507 result = new(ctx) ir_expression(operations[this->oper], type, 1508 op[0], op[1]); 1509 error_emitted = type->is_error(); 1510 break; 1511 1512 case ast_nequal: 1513 case ast_equal: 1514 op[0] = this->subexpressions[0]->hir(instructions, state); 1515 op[1] = this->subexpressions[1]->hir(instructions, state); 1516 1517 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: 1518 * 1519 * "The equality operators equal (==), and not equal (!=) 1520 * operate on all types. They result in a scalar Boolean. If 1521 * the operand types do not match, then there must be a 1522 * conversion from Section 4.1.10 "Implicit Conversions" 1523 * applied to one operand that can make them match, in which 1524 * case this conversion is done." 1525 */ 1526 1527 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) { 1528 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: " 1529 "no operation `%1$s' exists that takes a left-hand " 1530 "operand of type 'void' or a right operand of type " 1531 "'void'", (this->oper == ast_equal) ? "==" : "!="); 1532 error_emitted = true; 1533 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state) 1534 && !apply_implicit_conversion(op[1]->type, op[0], state)) 1535 || (op[0]->type != op[1]->type)) { 1536 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " 1537 "type", (this->oper == ast_equal) ? "==" : "!="); 1538 error_emitted = true; 1539 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) && 1540 !state->check_version(120, 300, &loc, 1541 "array comparisons forbidden")) { 1542 error_emitted = true; 1543 } else if ((op[0]->type->contains_subroutine() || 1544 op[1]->type->contains_subroutine())) { 1545 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden"); 1546 error_emitted = true; 1547 } else if ((op[0]->type->contains_opaque() || 1548 op[1]->type->contains_opaque())) { 1549 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden"); 1550 error_emitted = true; 1551 } 1552 1553 if (error_emitted) { 1554 result = new(ctx) ir_constant(false); 1555 } else { 1556 result = do_comparison(ctx, operations[this->oper], op[0], op[1]); 1557 assert(result->type == glsl_type::bool_type); 1558 } 1559 break; 1560 1561 case ast_bit_and: 1562 case ast_bit_xor: 1563 case ast_bit_or: 1564 op[0] = this->subexpressions[0]->hir(instructions, state); 1565 op[1] = this->subexpressions[1]->hir(instructions, state); 1566 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); 1567 result = new(ctx) ir_expression(operations[this->oper], type, 1568 op[0], op[1]); 1569 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1570 break; 1571 1572 case ast_bit_not: 1573 op[0] = this->subexpressions[0]->hir(instructions, state); 1574 1575 if (!state->check_bitwise_operations_allowed(&loc)) { 1576 error_emitted = true; 1577 } 1578 1579 if (!op[0]->type->is_integer_32_64()) { 1580 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); 1581 error_emitted = true; 1582 } 1583 1584 type = error_emitted ? glsl_type::error_type : op[0]->type; 1585 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL); 1586 break; 1587 1588 case ast_logic_and: { 1589 exec_list rhs_instructions; 1590 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1591 "LHS", &error_emitted); 1592 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, 1593 "RHS", &error_emitted); 1594 1595 if (rhs_instructions.is_empty()) { 1596 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]); 1597 } else { 1598 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1599 "and_tmp", 1600 ir_var_temporary); 1601 instructions->push_tail(tmp); 1602 1603 ir_if *const stmt = new(ctx) ir_if(op[0]); 1604 instructions->push_tail(stmt); 1605 1606 stmt->then_instructions.append_list(&rhs_instructions); 1607 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1608 ir_assignment *const then_assign = 1609 new(ctx) ir_assignment(then_deref, op[1]); 1610 stmt->then_instructions.push_tail(then_assign); 1611 1612 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1613 ir_assignment *const else_assign = 1614 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false)); 1615 stmt->else_instructions.push_tail(else_assign); 1616 1617 result = new(ctx) ir_dereference_variable(tmp); 1618 } 1619 break; 1620 } 1621 1622 case ast_logic_or: { 1623 exec_list rhs_instructions; 1624 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1625 "LHS", &error_emitted); 1626 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, 1627 "RHS", &error_emitted); 1628 1629 if (rhs_instructions.is_empty()) { 1630 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]); 1631 } else { 1632 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1633 "or_tmp", 1634 ir_var_temporary); 1635 instructions->push_tail(tmp); 1636 1637 ir_if *const stmt = new(ctx) ir_if(op[0]); 1638 instructions->push_tail(stmt); 1639 1640 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1641 ir_assignment *const then_assign = 1642 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true)); 1643 stmt->then_instructions.push_tail(then_assign); 1644 1645 stmt->else_instructions.append_list(&rhs_instructions); 1646 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1647 ir_assignment *const else_assign = 1648 new(ctx) ir_assignment(else_deref, op[1]); 1649 stmt->else_instructions.push_tail(else_assign); 1650 1651 result = new(ctx) ir_dereference_variable(tmp); 1652 } 1653 break; 1654 } 1655 1656 case ast_logic_xor: 1657 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1658 * 1659 * "The logical binary operators and (&&), or ( | | ), and 1660 * exclusive or (^^). They operate only on two Boolean 1661 * expressions and result in a Boolean expression." 1662 */ 1663 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS", 1664 &error_emitted); 1665 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS", 1666 &error_emitted); 1667 1668 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1669 op[0], op[1]); 1670 break; 1671 1672 case ast_logic_not: 1673 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1674 "operand", &error_emitted); 1675 1676 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1677 op[0], NULL); 1678 break; 1679 1680 case ast_mul_assign: 1681 case ast_div_assign: 1682 case ast_add_assign: 1683 case ast_sub_assign: { 1684 this->subexpressions[0]->set_is_lhs(true); 1685 op[0] = this->subexpressions[0]->hir(instructions, state); 1686 op[1] = this->subexpressions[1]->hir(instructions, state); 1687 1688 orig_type = op[0]->type; 1689 1690 /* Break out if operand types were not parsed successfully. */ 1691 if ((op[0]->type == glsl_type::error_type || 1692 op[1]->type == glsl_type::error_type)) 1693 break; 1694 1695 type = arithmetic_result_type(op[0], op[1], 1696 (this->oper == ast_mul_assign), 1697 state, & loc); 1698 1699 if (type != orig_type) { 1700 _mesa_glsl_error(& loc, state, 1701 "could not implicitly convert " 1702 "%s to %s", type->name, orig_type->name); 1703 type = glsl_type::error_type; 1704 } 1705 1706 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1707 op[0], op[1]); 1708 1709 error_emitted = 1710 do_assignment(instructions, state, 1711 this->subexpressions[0]->non_lvalue_description, 1712 op[0]->clone(ctx, NULL), temp_rhs, 1713 &result, needs_rvalue, false, 1714 this->subexpressions[0]->get_location()); 1715 1716 /* GLSL 1.10 does not allow array assignment. However, we don't have to 1717 * explicitly test for this because none of the binary expression 1718 * operators allow array operands either. 1719 */ 1720 1721 break; 1722 } 1723 1724 case ast_mod_assign: { 1725 this->subexpressions[0]->set_is_lhs(true); 1726 op[0] = this->subexpressions[0]->hir(instructions, state); 1727 op[1] = this->subexpressions[1]->hir(instructions, state); 1728 1729 orig_type = op[0]->type; 1730 type = modulus_result_type(op[0], op[1], state, &loc); 1731 1732 if (type != orig_type) { 1733 _mesa_glsl_error(& loc, state, 1734 "could not implicitly convert " 1735 "%s to %s", type->name, orig_type->name); 1736 type = glsl_type::error_type; 1737 } 1738 1739 assert(operations[this->oper] == ir_binop_mod); 1740 1741 ir_rvalue *temp_rhs; 1742 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1743 op[0], op[1]); 1744 1745 error_emitted = 1746 do_assignment(instructions, state, 1747 this->subexpressions[0]->non_lvalue_description, 1748 op[0]->clone(ctx, NULL), temp_rhs, 1749 &result, needs_rvalue, false, 1750 this->subexpressions[0]->get_location()); 1751 break; 1752 } 1753 1754 case ast_ls_assign: 1755 case ast_rs_assign: { 1756 this->subexpressions[0]->set_is_lhs(true); 1757 op[0] = this->subexpressions[0]->hir(instructions, state); 1758 op[1] = this->subexpressions[1]->hir(instructions, state); 1759 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1760 &loc); 1761 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1762 type, op[0], op[1]); 1763 error_emitted = 1764 do_assignment(instructions, state, 1765 this->subexpressions[0]->non_lvalue_description, 1766 op[0]->clone(ctx, NULL), temp_rhs, 1767 &result, needs_rvalue, false, 1768 this->subexpressions[0]->get_location()); 1769 break; 1770 } 1771 1772 case ast_and_assign: 1773 case ast_xor_assign: 1774 case ast_or_assign: { 1775 this->subexpressions[0]->set_is_lhs(true); 1776 op[0] = this->subexpressions[0]->hir(instructions, state); 1777 op[1] = this->subexpressions[1]->hir(instructions, state); 1778 1779 orig_type = op[0]->type; 1780 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); 1781 1782 if (type != orig_type) { 1783 _mesa_glsl_error(& loc, state, 1784 "could not implicitly convert " 1785 "%s to %s", type->name, orig_type->name); 1786 type = glsl_type::error_type; 1787 } 1788 1789 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1790 type, op[0], op[1]); 1791 error_emitted = 1792 do_assignment(instructions, state, 1793 this->subexpressions[0]->non_lvalue_description, 1794 op[0]->clone(ctx, NULL), temp_rhs, 1795 &result, needs_rvalue, false, 1796 this->subexpressions[0]->get_location()); 1797 break; 1798 } 1799 1800 case ast_conditional: { 1801 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1802 * 1803 * "The ternary selection operator (?:). It operates on three 1804 * expressions (exp1 ? exp2 : exp3). This operator evaluates the 1805 * first expression, which must result in a scalar Boolean." 1806 */ 1807 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1808 "condition", &error_emitted); 1809 1810 /* The :? operator is implemented by generating an anonymous temporary 1811 * followed by an if-statement. The last instruction in each branch of 1812 * the if-statement assigns a value to the anonymous temporary. This 1813 * temporary is the r-value of the expression. 1814 */ 1815 exec_list then_instructions; 1816 exec_list else_instructions; 1817 1818 op[1] = this->subexpressions[1]->hir(&then_instructions, state); 1819 op[2] = this->subexpressions[2]->hir(&else_instructions, state); 1820 1821 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1822 * 1823 * "The second and third expressions can be any type, as 1824 * long their types match, or there is a conversion in 1825 * Section 4.1.10 "Implicit Conversions" that can be applied 1826 * to one of the expressions to make their types match. This 1827 * resulting matching type is the type of the entire 1828 * expression." 1829 */ 1830 if ((!apply_implicit_conversion(op[1]->type, op[2], state) 1831 && !apply_implicit_conversion(op[2]->type, op[1], state)) 1832 || (op[1]->type != op[2]->type)) { 1833 YYLTYPE loc = this->subexpressions[1]->get_location(); 1834 1835 _mesa_glsl_error(& loc, state, "second and third operands of ?: " 1836 "operator must have matching types"); 1837 error_emitted = true; 1838 type = glsl_type::error_type; 1839 } else { 1840 type = op[1]->type; 1841 } 1842 1843 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1844 * 1845 * "The second and third expressions must be the same type, but can 1846 * be of any type other than an array." 1847 */ 1848 if (type->is_array() && 1849 !state->check_version(120, 300, &loc, 1850 "second and third operands of ?: operator " 1851 "cannot be arrays")) { 1852 error_emitted = true; 1853 } 1854 1855 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types): 1856 * 1857 * "Except for array indexing, structure member selection, and 1858 * parentheses, opaque variables are not allowed to be operands in 1859 * expressions; such use results in a compile-time error." 1860 */ 1861 if (type->contains_opaque()) { 1862 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) { 1863 _mesa_glsl_error(&loc, state, "variables of type %s cannot be " 1864 "operands of the ?: operator", type->name); 1865 error_emitted = true; 1866 } 1867 } 1868 1869 ir_constant *cond_val = op[0]->constant_expression_value(ctx); 1870 1871 if (then_instructions.is_empty() 1872 && else_instructions.is_empty() 1873 && cond_val != NULL) { 1874 result = cond_val->value.b[0] ? op[1] : op[2]; 1875 } else { 1876 /* The copy to conditional_tmp reads the whole array. */ 1877 if (type->is_array()) { 1878 mark_whole_array_access(op[1]); 1879 mark_whole_array_access(op[2]); 1880 } 1881 1882 ir_variable *const tmp = 1883 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); 1884 instructions->push_tail(tmp); 1885 1886 ir_if *const stmt = new(ctx) ir_if(op[0]); 1887 instructions->push_tail(stmt); 1888 1889 then_instructions.move_nodes_to(& stmt->then_instructions); 1890 ir_dereference *const then_deref = 1891 new(ctx) ir_dereference_variable(tmp); 1892 ir_assignment *const then_assign = 1893 new(ctx) ir_assignment(then_deref, op[1]); 1894 stmt->then_instructions.push_tail(then_assign); 1895 1896 else_instructions.move_nodes_to(& stmt->else_instructions); 1897 ir_dereference *const else_deref = 1898 new(ctx) ir_dereference_variable(tmp); 1899 ir_assignment *const else_assign = 1900 new(ctx) ir_assignment(else_deref, op[2]); 1901 stmt->else_instructions.push_tail(else_assign); 1902 1903 result = new(ctx) ir_dereference_variable(tmp); 1904 } 1905 break; 1906 } 1907 1908 case ast_pre_inc: 1909 case ast_pre_dec: { 1910 this->non_lvalue_description = (this->oper == ast_pre_inc) 1911 ? "pre-increment operation" : "pre-decrement operation"; 1912 1913 op[0] = this->subexpressions[0]->hir(instructions, state); 1914 op[1] = constant_one_for_inc_dec(ctx, op[0]->type); 1915 1916 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1917 1918 ir_rvalue *temp_rhs; 1919 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1920 op[0], op[1]); 1921 1922 error_emitted = 1923 do_assignment(instructions, state, 1924 this->subexpressions[0]->non_lvalue_description, 1925 op[0]->clone(ctx, NULL), temp_rhs, 1926 &result, needs_rvalue, false, 1927 this->subexpressions[0]->get_location()); 1928 break; 1929 } 1930 1931 case ast_post_inc: 1932 case ast_post_dec: { 1933 this->non_lvalue_description = (this->oper == ast_post_inc) 1934 ? "post-increment operation" : "post-decrement operation"; 1935 op[0] = this->subexpressions[0]->hir(instructions, state); 1936 op[1] = constant_one_for_inc_dec(ctx, op[0]->type); 1937 1938 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1939 1940 if (error_emitted) { 1941 result = ir_rvalue::error_value(ctx); 1942 break; 1943 } 1944 1945 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1946 1947 ir_rvalue *temp_rhs; 1948 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1949 op[0], op[1]); 1950 1951 /* Get a temporary of a copy of the lvalue before it's modified. 1952 * This may get thrown away later. 1953 */ 1954 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL)); 1955 1956 ir_rvalue *junk_rvalue; 1957 error_emitted = 1958 do_assignment(instructions, state, 1959 this->subexpressions[0]->non_lvalue_description, 1960 op[0]->clone(ctx, NULL), temp_rhs, 1961 &junk_rvalue, false, false, 1962 this->subexpressions[0]->get_location()); 1963 1964 break; 1965 } 1966 1967 case ast_field_selection: 1968 result = _mesa_ast_field_selection_to_hir(this, instructions, state); 1969 break; 1970 1971 case ast_array_index: { 1972 YYLTYPE index_loc = subexpressions[1]->get_location(); 1973 1974 /* Getting if an array is being used uninitialized is beyond what we get 1975 * from ir_value.data.assigned. Setting is_lhs as true would force to 1976 * not raise a uninitialized warning when using an array 1977 */ 1978 subexpressions[0]->set_is_lhs(true); 1979 op[0] = subexpressions[0]->hir(instructions, state); 1980 op[1] = subexpressions[1]->hir(instructions, state); 1981 1982 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1], 1983 loc, index_loc); 1984 1985 if (result->type->is_error()) 1986 error_emitted = true; 1987 1988 break; 1989 } 1990 1991 case ast_unsized_array_dim: 1992 unreachable("ast_unsized_array_dim: Should never get here."); 1993 1994 case ast_function_call: 1995 /* Should *NEVER* get here. ast_function_call should always be handled 1996 * by ast_function_expression::hir. 1997 */ 1998 unreachable("ast_function_call: handled elsewhere "); 1999 2000 case ast_identifier: { 2001 /* ast_identifier can appear several places in a full abstract syntax 2002 * tree. This particular use must be at location specified in the grammar 2003 * as 'variable_identifier'. 2004 */ 2005 ir_variable *var = 2006 state->symbols->get_variable(this->primary_expression.identifier); 2007 2008 if (var == NULL) { 2009 /* the identifier might be a subroutine name */ 2010 char *sub_name; 2011 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier); 2012 var = state->symbols->get_variable(sub_name); 2013 ralloc_free(sub_name); 2014 } 2015 2016 if (var != NULL) { 2017 var->data.used = true; 2018 result = new(ctx) ir_dereference_variable(var); 2019 2020 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) 2021 && !this->is_lhs 2022 && result->variable_referenced()->data.assigned != true 2023 && !is_gl_identifier(var->name)) { 2024 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", 2025 this->primary_expression.identifier); 2026 } 2027 2028 /* From the EXT_shader_framebuffer_fetch spec: 2029 * 2030 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been 2031 * enabled in addition, it's an error to use gl_LastFragData if it 2032 * hasn't been explicitly redeclared with layout(noncoherent)." 2033 */ 2034 if (var->data.fb_fetch_output && var->data.memory_coherent && 2035 !state->EXT_shader_framebuffer_fetch_enable) { 2036 _mesa_glsl_error(&loc, state, 2037 "invalid use of framebuffer fetch output not " 2038 "qualified with layout(noncoherent)"); 2039 } 2040 2041 } else { 2042 _mesa_glsl_error(& loc, state, "`%s' undeclared", 2043 this->primary_expression.identifier); 2044 2045 result = ir_rvalue::error_value(ctx); 2046 error_emitted = true; 2047 } 2048 break; 2049 } 2050 2051 case ast_int_constant: 2052 result = new(ctx) ir_constant(this->primary_expression.int_constant); 2053 break; 2054 2055 case ast_uint_constant: 2056 result = new(ctx) ir_constant(this->primary_expression.uint_constant); 2057 break; 2058 2059 case ast_float_constant: 2060 result = new(ctx) ir_constant(this->primary_expression.float_constant); 2061 break; 2062 2063 case ast_bool_constant: 2064 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); 2065 break; 2066 2067 case ast_double_constant: 2068 result = new(ctx) ir_constant(this->primary_expression.double_constant); 2069 break; 2070 2071 case ast_uint64_constant: 2072 result = new(ctx) ir_constant(this->primary_expression.uint64_constant); 2073 break; 2074 2075 case ast_int64_constant: 2076 result = new(ctx) ir_constant(this->primary_expression.int64_constant); 2077 break; 2078 2079 case ast_sequence: { 2080 /* It should not be possible to generate a sequence in the AST without 2081 * any expressions in it. 2082 */ 2083 assert(!this->expressions.is_empty()); 2084 2085 /* The r-value of a sequence is the last expression in the sequence. If 2086 * the other expressions in the sequence do not have side-effects (and 2087 * therefore add instructions to the instruction list), they get dropped 2088 * on the floor. 2089 */ 2090 exec_node *previous_tail = NULL; 2091 YYLTYPE previous_operand_loc = loc; 2092 2093 foreach_list_typed (ast_node, ast, link, &this->expressions) { 2094 /* If one of the operands of comma operator does not generate any 2095 * code, we want to emit a warning. At each pass through the loop 2096 * previous_tail will point to the last instruction in the stream 2097 * *before* processing the previous operand. Naturally, 2098 * instructions->get_tail_raw() will point to the last instruction in 2099 * the stream *after* processing the previous operand. If the two 2100 * pointers match, then the previous operand had no effect. 2101 * 2102 * The warning behavior here differs slightly from GCC. GCC will 2103 * only emit a warning if none of the left-hand operands have an 2104 * effect. However, it will emit a warning for each. I believe that 2105 * there are some cases in C (especially with GCC extensions) where 2106 * it is useful to have an intermediate step in a sequence have no 2107 * effect, but I don't think these cases exist in GLSL. Either way, 2108 * it would be a giant hassle to replicate that behavior. 2109 */ 2110 if (previous_tail == instructions->get_tail_raw()) { 2111 _mesa_glsl_warning(&previous_operand_loc, state, 2112 "left-hand operand of comma expression has " 2113 "no effect"); 2114 } 2115 2116 /* The tail is directly accessed instead of using the get_tail() 2117 * method for performance reasons. get_tail() has extra code to 2118 * return NULL when the list is empty. We don't care about that 2119 * here, so using get_tail_raw() is fine. 2120 */ 2121 previous_tail = instructions->get_tail_raw(); 2122 previous_operand_loc = ast->get_location(); 2123 2124 result = ast->hir(instructions, state); 2125 } 2126 2127 /* Any errors should have already been emitted in the loop above. 2128 */ 2129 error_emitted = true; 2130 break; 2131 } 2132 } 2133 type = NULL; /* use result->type, not type. */ 2134 assert(result != NULL || !needs_rvalue); 2135 2136 if (result && result->type->is_error() && !error_emitted) 2137 _mesa_glsl_error(& loc, state, "type mismatch"); 2138 2139 return result; 2140} 2141 2142bool 2143ast_expression::has_sequence_subexpression() const 2144{ 2145 switch (this->oper) { 2146 case ast_plus: 2147 case ast_neg: 2148 case ast_bit_not: 2149 case ast_logic_not: 2150 case ast_pre_inc: 2151 case ast_pre_dec: 2152 case ast_post_inc: 2153 case ast_post_dec: 2154 return this->subexpressions[0]->has_sequence_subexpression(); 2155 2156 case ast_assign: 2157 case ast_add: 2158 case ast_sub: 2159 case ast_mul: 2160 case ast_div: 2161 case ast_mod: 2162 case ast_lshift: 2163 case ast_rshift: 2164 case ast_less: 2165 case ast_greater: 2166 case ast_lequal: 2167 case ast_gequal: 2168 case ast_nequal: 2169 case ast_equal: 2170 case ast_bit_and: 2171 case ast_bit_xor: 2172 case ast_bit_or: 2173 case ast_logic_and: 2174 case ast_logic_or: 2175 case ast_logic_xor: 2176 case ast_array_index: 2177 case ast_mul_assign: 2178 case ast_div_assign: 2179 case ast_add_assign: 2180 case ast_sub_assign: 2181 case ast_mod_assign: 2182 case ast_ls_assign: 2183 case ast_rs_assign: 2184 case ast_and_assign: 2185 case ast_xor_assign: 2186 case ast_or_assign: 2187 return this->subexpressions[0]->has_sequence_subexpression() || 2188 this->subexpressions[1]->has_sequence_subexpression(); 2189 2190 case ast_conditional: 2191 return this->subexpressions[0]->has_sequence_subexpression() || 2192 this->subexpressions[1]->has_sequence_subexpression() || 2193 this->subexpressions[2]->has_sequence_subexpression(); 2194 2195 case ast_sequence: 2196 return true; 2197 2198 case ast_field_selection: 2199 case ast_identifier: 2200 case ast_int_constant: 2201 case ast_uint_constant: 2202 case ast_float_constant: 2203 case ast_bool_constant: 2204 case ast_double_constant: 2205 case ast_int64_constant: 2206 case ast_uint64_constant: 2207 return false; 2208 2209 case ast_aggregate: 2210 return false; 2211 2212 case ast_function_call: 2213 unreachable("should be handled by ast_function_expression::hir"); 2214 2215 case ast_unsized_array_dim: 2216 unreachable("ast_unsized_array_dim: Should never get here."); 2217 } 2218 2219 return false; 2220} 2221 2222ir_rvalue * 2223ast_expression_statement::hir(exec_list *instructions, 2224 struct _mesa_glsl_parse_state *state) 2225{ 2226 /* It is possible to have expression statements that don't have an 2227 * expression. This is the solitary semicolon: 2228 * 2229 * for (i = 0; i < 5; i++) 2230 * ; 2231 * 2232 * In this case the expression will be NULL. Test for NULL and don't do 2233 * anything in that case. 2234 */ 2235 if (expression != NULL) 2236 expression->hir_no_rvalue(instructions, state); 2237 2238 /* Statements do not have r-values. 2239 */ 2240 return NULL; 2241} 2242 2243 2244ir_rvalue * 2245ast_compound_statement::hir(exec_list *instructions, 2246 struct _mesa_glsl_parse_state *state) 2247{ 2248 if (new_scope) 2249 state->symbols->push_scope(); 2250 2251 foreach_list_typed (ast_node, ast, link, &this->statements) 2252 ast->hir(instructions, state); 2253 2254 if (new_scope) 2255 state->symbols->pop_scope(); 2256 2257 /* Compound statements do not have r-values. 2258 */ 2259 return NULL; 2260} 2261 2262/** 2263 * Evaluate the given exec_node (which should be an ast_node representing 2264 * a single array dimension) and return its integer value. 2265 */ 2266static unsigned 2267process_array_size(exec_node *node, 2268 struct _mesa_glsl_parse_state *state) 2269{ 2270 void *mem_ctx = state; 2271 2272 exec_list dummy_instructions; 2273 2274 ast_node *array_size = exec_node_data(ast_node, node, link); 2275 2276 /** 2277 * Dimensions other than the outermost dimension can by unsized if they 2278 * are immediately sized by a constructor or initializer. 2279 */ 2280 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim) 2281 return 0; 2282 2283 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); 2284 YYLTYPE loc = array_size->get_location(); 2285 2286 if (ir == NULL) { 2287 _mesa_glsl_error(& loc, state, 2288 "array size could not be resolved"); 2289 return 0; 2290 } 2291 2292 if (!ir->type->is_integer()) { 2293 _mesa_glsl_error(& loc, state, 2294 "array size must be integer type"); 2295 return 0; 2296 } 2297 2298 if (!ir->type->is_scalar()) { 2299 _mesa_glsl_error(& loc, state, 2300 "array size must be scalar type"); 2301 return 0; 2302 } 2303 2304 ir_constant *const size = ir->constant_expression_value(mem_ctx); 2305 if (size == NULL || 2306 (state->is_version(120, 300) && 2307 array_size->has_sequence_subexpression())) { 2308 _mesa_glsl_error(& loc, state, "array size must be a " 2309 "constant valued expression"); 2310 return 0; 2311 } 2312 2313 if (size->value.i[0] <= 0) { 2314 _mesa_glsl_error(& loc, state, "array size must be > 0"); 2315 return 0; 2316 } 2317 2318 assert(size->type == ir->type); 2319 2320 /* If the array size is const (and we've verified that 2321 * it is) then no instructions should have been emitted 2322 * when we converted it to HIR. If they were emitted, 2323 * then either the array size isn't const after all, or 2324 * we are emitting unnecessary instructions. 2325 */ 2326 assert(dummy_instructions.is_empty()); 2327 2328 return size->value.u[0]; 2329} 2330 2331static const glsl_type * 2332process_array_type(YYLTYPE *loc, const glsl_type *base, 2333 ast_array_specifier *array_specifier, 2334 struct _mesa_glsl_parse_state *state) 2335{ 2336 const glsl_type *array_type = base; 2337 2338 if (array_specifier != NULL) { 2339 if (base->is_array()) { 2340 2341 /* From page 19 (page 25) of the GLSL 1.20 spec: 2342 * 2343 * "Only one-dimensional arrays may be declared." 2344 */ 2345 if (!state->check_arrays_of_arrays_allowed(loc)) { 2346 return glsl_type::error_type; 2347 } 2348 } 2349 2350 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw(); 2351 !node->is_head_sentinel(); node = node->prev) { 2352 unsigned array_size = process_array_size(node, state); 2353 array_type = glsl_type::get_array_instance(array_type, array_size); 2354 } 2355 } 2356 2357 return array_type; 2358} 2359 2360static bool 2361precision_qualifier_allowed(const glsl_type *type) 2362{ 2363 /* Precision qualifiers apply to floating point, integer and opaque 2364 * types. 2365 * 2366 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says: 2367 * "Any floating point or any integer declaration can have the type 2368 * preceded by one of these precision qualifiers [...] Literal 2369 * constants do not have precision qualifiers. Neither do Boolean 2370 * variables. 2371 * 2372 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30 2373 * spec also says: 2374 * 2375 * "Precision qualifiers are added for code portability with OpenGL 2376 * ES, not for functionality. They have the same syntax as in OpenGL 2377 * ES." 2378 * 2379 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says: 2380 * 2381 * "uniform lowp sampler2D sampler; 2382 * highp vec2 coord; 2383 * ... 2384 * lowp vec4 col = texture2D (sampler, coord); 2385 * // texture2D returns lowp" 2386 * 2387 * From this, we infer that GLSL 1.30 (and later) should allow precision 2388 * qualifiers on sampler types just like float and integer types. 2389 */ 2390 const glsl_type *const t = type->without_array(); 2391 2392 return (t->is_float() || t->is_integer() || t->contains_opaque()) && 2393 !t->is_record(); 2394} 2395 2396const glsl_type * 2397ast_type_specifier::glsl_type(const char **name, 2398 struct _mesa_glsl_parse_state *state) const 2399{ 2400 const struct glsl_type *type; 2401 2402 if (this->type != NULL) 2403 type = this->type; 2404 else if (structure) 2405 type = structure->type; 2406 else 2407 type = state->symbols->get_type(this->type_name); 2408 *name = this->type_name; 2409 2410 YYLTYPE loc = this->get_location(); 2411 type = process_array_type(&loc, type, this->array_specifier, state); 2412 2413 return type; 2414} 2415 2416/** 2417 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers: 2418 * 2419 * "The precision statement 2420 * 2421 * precision precision-qualifier type; 2422 * 2423 * can be used to establish a default precision qualifier. The type field can 2424 * be either int or float or any of the sampler types, (...) If type is float, 2425 * the directive applies to non-precision-qualified floating point type 2426 * (scalar, vector, and matrix) declarations. If type is int, the directive 2427 * applies to all non-precision-qualified integer type (scalar, vector, signed, 2428 * and unsigned) declarations." 2429 * 2430 * We use the symbol table to keep the values of the default precisions for 2431 * each 'type' in each scope and we use the 'type' string from the precision 2432 * statement as key in the symbol table. When we want to retrieve the default 2433 * precision associated with a given glsl_type we need to know the type string 2434 * associated with it. This is what this function returns. 2435 */ 2436static const char * 2437get_type_name_for_precision_qualifier(const glsl_type *type) 2438{ 2439 switch (type->base_type) { 2440 case GLSL_TYPE_FLOAT: 2441 return "float"; 2442 case GLSL_TYPE_UINT: 2443 case GLSL_TYPE_INT: 2444 return "int"; 2445 case GLSL_TYPE_ATOMIC_UINT: 2446 return "atomic_uint"; 2447 case GLSL_TYPE_IMAGE: 2448 /* fallthrough */ 2449 case GLSL_TYPE_SAMPLER: { 2450 const unsigned type_idx = 2451 type->sampler_array + 2 * type->sampler_shadow; 2452 const unsigned offset = type->is_sampler() ? 0 : 4; 2453 assert(type_idx < 4); 2454 switch (type->sampled_type) { 2455 case GLSL_TYPE_FLOAT: 2456 switch (type->sampler_dimensionality) { 2457 case GLSL_SAMPLER_DIM_1D: { 2458 assert(type->is_sampler()); 2459 static const char *const names[4] = { 2460 "sampler1D", "sampler1DArray", 2461 "sampler1DShadow", "sampler1DArrayShadow" 2462 }; 2463 return names[type_idx]; 2464 } 2465 case GLSL_SAMPLER_DIM_2D: { 2466 static const char *const names[8] = { 2467 "sampler2D", "sampler2DArray", 2468 "sampler2DShadow", "sampler2DArrayShadow", 2469 "image2D", "image2DArray", NULL, NULL 2470 }; 2471 return names[offset + type_idx]; 2472 } 2473 case GLSL_SAMPLER_DIM_3D: { 2474 static const char *const names[8] = { 2475 "sampler3D", NULL, NULL, NULL, 2476 "image3D", NULL, NULL, NULL 2477 }; 2478 return names[offset + type_idx]; 2479 } 2480 case GLSL_SAMPLER_DIM_CUBE: { 2481 static const char *const names[8] = { 2482 "samplerCube", "samplerCubeArray", 2483 "samplerCubeShadow", "samplerCubeArrayShadow", 2484 "imageCube", NULL, NULL, NULL 2485 }; 2486 return names[offset + type_idx]; 2487 } 2488 case GLSL_SAMPLER_DIM_MS: { 2489 assert(type->is_sampler()); 2490 static const char *const names[4] = { 2491 "sampler2DMS", "sampler2DMSArray", NULL, NULL 2492 }; 2493 return names[type_idx]; 2494 } 2495 case GLSL_SAMPLER_DIM_RECT: { 2496 assert(type->is_sampler()); 2497 static const char *const names[4] = { 2498 "samplerRect", NULL, "samplerRectShadow", NULL 2499 }; 2500 return names[type_idx]; 2501 } 2502 case GLSL_SAMPLER_DIM_BUF: { 2503 static const char *const names[8] = { 2504 "samplerBuffer", NULL, NULL, NULL, 2505 "imageBuffer", NULL, NULL, NULL 2506 }; 2507 return names[offset + type_idx]; 2508 } 2509 case GLSL_SAMPLER_DIM_EXTERNAL: { 2510 assert(type->is_sampler()); 2511 static const char *const names[4] = { 2512 "samplerExternalOES", NULL, NULL, NULL 2513 }; 2514 return names[type_idx]; 2515 } 2516 default: 2517 unreachable("Unsupported sampler/image dimensionality"); 2518 } /* sampler/image float dimensionality */ 2519 break; 2520 case GLSL_TYPE_INT: 2521 switch (type->sampler_dimensionality) { 2522 case GLSL_SAMPLER_DIM_1D: { 2523 assert(type->is_sampler()); 2524 static const char *const names[4] = { 2525 "isampler1D", "isampler1DArray", NULL, NULL 2526 }; 2527 return names[type_idx]; 2528 } 2529 case GLSL_SAMPLER_DIM_2D: { 2530 static const char *const names[8] = { 2531 "isampler2D", "isampler2DArray", NULL, NULL, 2532 "iimage2D", "iimage2DArray", NULL, NULL 2533 }; 2534 return names[offset + type_idx]; 2535 } 2536 case GLSL_SAMPLER_DIM_3D: { 2537 static const char *const names[8] = { 2538 "isampler3D", NULL, NULL, NULL, 2539 "iimage3D", NULL, NULL, NULL 2540 }; 2541 return names[offset + type_idx]; 2542 } 2543 case GLSL_SAMPLER_DIM_CUBE: { 2544 static const char *const names[8] = { 2545 "isamplerCube", "isamplerCubeArray", NULL, NULL, 2546 "iimageCube", NULL, NULL, NULL 2547 }; 2548 return names[offset + type_idx]; 2549 } 2550 case GLSL_SAMPLER_DIM_MS: { 2551 assert(type->is_sampler()); 2552 static const char *const names[4] = { 2553 "isampler2DMS", "isampler2DMSArray", NULL, NULL 2554 }; 2555 return names[type_idx]; 2556 } 2557 case GLSL_SAMPLER_DIM_RECT: { 2558 assert(type->is_sampler()); 2559 static const char *const names[4] = { 2560 "isamplerRect", NULL, "isamplerRectShadow", NULL 2561 }; 2562 return names[type_idx]; 2563 } 2564 case GLSL_SAMPLER_DIM_BUF: { 2565 static const char *const names[8] = { 2566 "isamplerBuffer", NULL, NULL, NULL, 2567 "iimageBuffer", NULL, NULL, NULL 2568 }; 2569 return names[offset + type_idx]; 2570 } 2571 default: 2572 unreachable("Unsupported isampler/iimage dimensionality"); 2573 } /* sampler/image int dimensionality */ 2574 break; 2575 case GLSL_TYPE_UINT: 2576 switch (type->sampler_dimensionality) { 2577 case GLSL_SAMPLER_DIM_1D: { 2578 assert(type->is_sampler()); 2579 static const char *const names[4] = { 2580 "usampler1D", "usampler1DArray", NULL, NULL 2581 }; 2582 return names[type_idx]; 2583 } 2584 case GLSL_SAMPLER_DIM_2D: { 2585 static const char *const names[8] = { 2586 "usampler2D", "usampler2DArray", NULL, NULL, 2587 "uimage2D", "uimage2DArray", NULL, NULL 2588 }; 2589 return names[offset + type_idx]; 2590 } 2591 case GLSL_SAMPLER_DIM_3D: { 2592 static const char *const names[8] = { 2593 "usampler3D", NULL, NULL, NULL, 2594 "uimage3D", NULL, NULL, NULL 2595 }; 2596 return names[offset + type_idx]; 2597 } 2598 case GLSL_SAMPLER_DIM_CUBE: { 2599 static const char *const names[8] = { 2600 "usamplerCube", "usamplerCubeArray", NULL, NULL, 2601 "uimageCube", NULL, NULL, NULL 2602 }; 2603 return names[offset + type_idx]; 2604 } 2605 case GLSL_SAMPLER_DIM_MS: { 2606 assert(type->is_sampler()); 2607 static const char *const names[4] = { 2608 "usampler2DMS", "usampler2DMSArray", NULL, NULL 2609 }; 2610 return names[type_idx]; 2611 } 2612 case GLSL_SAMPLER_DIM_RECT: { 2613 assert(type->is_sampler()); 2614 static const char *const names[4] = { 2615 "usamplerRect", NULL, "usamplerRectShadow", NULL 2616 }; 2617 return names[type_idx]; 2618 } 2619 case GLSL_SAMPLER_DIM_BUF: { 2620 static const char *const names[8] = { 2621 "usamplerBuffer", NULL, NULL, NULL, 2622 "uimageBuffer", NULL, NULL, NULL 2623 }; 2624 return names[offset + type_idx]; 2625 } 2626 default: 2627 unreachable("Unsupported usampler/uimage dimensionality"); 2628 } /* sampler/image uint dimensionality */ 2629 break; 2630 default: 2631 unreachable("Unsupported sampler/image type"); 2632 } /* sampler/image type */ 2633 break; 2634 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */ 2635 break; 2636 default: 2637 unreachable("Unsupported type"); 2638 } /* base type */ 2639} 2640 2641static unsigned 2642select_gles_precision(unsigned qual_precision, 2643 const glsl_type *type, 2644 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 2645{ 2646 /* Precision qualifiers do not have any meaning in Desktop GLSL. 2647 * In GLES we take the precision from the type qualifier if present, 2648 * otherwise, if the type of the variable allows precision qualifiers at 2649 * all, we look for the default precision qualifier for that type in the 2650 * current scope. 2651 */ 2652 assert(state->es_shader); 2653 2654 unsigned precision = GLSL_PRECISION_NONE; 2655 if (qual_precision) { 2656 precision = qual_precision; 2657 } else if (precision_qualifier_allowed(type)) { 2658 const char *type_name = 2659 get_type_name_for_precision_qualifier(type->without_array()); 2660 assert(type_name != NULL); 2661 2662 precision = 2663 state->symbols->get_default_precision_qualifier(type_name); 2664 if (precision == ast_precision_none) { 2665 _mesa_glsl_error(loc, state, 2666 "No precision specified in this scope for type `%s'", 2667 type->name); 2668 } 2669 } 2670 2671 2672 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says: 2673 * 2674 * "The default precision of all atomic types is highp. It is an error to 2675 * declare an atomic type with a different precision or to specify the 2676 * default precision for an atomic type to be lowp or mediump." 2677 */ 2678 if (type->is_atomic_uint() && precision != ast_precision_high) { 2679 _mesa_glsl_error(loc, state, 2680 "atomic_uint can only have highp precision qualifier"); 2681 } 2682 2683 return precision; 2684} 2685 2686const glsl_type * 2687ast_fully_specified_type::glsl_type(const char **name, 2688 struct _mesa_glsl_parse_state *state) const 2689{ 2690 return this->specifier->glsl_type(name, state); 2691} 2692 2693/** 2694 * Determine whether a toplevel variable declaration declares a varying. This 2695 * function operates by examining the variable's mode and the shader target, 2696 * so it correctly identifies linkage variables regardless of whether they are 2697 * declared using the deprecated "varying" syntax or the new "in/out" syntax. 2698 * 2699 * Passing a non-toplevel variable declaration (e.g. a function parameter) to 2700 * this function will produce undefined results. 2701 */ 2702static bool 2703is_varying_var(ir_variable *var, gl_shader_stage target) 2704{ 2705 switch (target) { 2706 case MESA_SHADER_VERTEX: 2707 return var->data.mode == ir_var_shader_out; 2708 case MESA_SHADER_FRAGMENT: 2709 return var->data.mode == ir_var_shader_in; 2710 default: 2711 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in; 2712 } 2713} 2714 2715static bool 2716is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state) 2717{ 2718 if (is_varying_var(var, state->stage)) 2719 return true; 2720 2721 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec: 2722 * "Only variables output from a vertex shader can be candidates 2723 * for invariance". 2724 */ 2725 if (!state->is_version(130, 0)) 2726 return false; 2727 2728 /* 2729 * Later specs remove this language - so allowed invariant 2730 * on fragment shader outputs as well. 2731 */ 2732 if (state->stage == MESA_SHADER_FRAGMENT && 2733 var->data.mode == ir_var_shader_out) 2734 return true; 2735 return false; 2736} 2737 2738/** 2739 * Matrix layout qualifiers are only allowed on certain types 2740 */ 2741static void 2742validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state, 2743 YYLTYPE *loc, 2744 const glsl_type *type, 2745 ir_variable *var) 2746{ 2747 if (var && !var->is_in_buffer_block()) { 2748 /* Layout qualifiers may only apply to interface blocks and fields in 2749 * them. 2750 */ 2751 _mesa_glsl_error(loc, state, 2752 "uniform block layout qualifiers row_major and " 2753 "column_major may not be applied to variables " 2754 "outside of uniform blocks"); 2755 } else if (!type->without_array()->is_matrix()) { 2756 /* The OpenGL ES 3.0 conformance tests did not originally allow 2757 * matrix layout qualifiers on non-matrices. However, the OpenGL 2758 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were 2759 * amended to specifically allow these layouts on all types. Emit 2760 * a warning so that people know their code may not be portable. 2761 */ 2762 _mesa_glsl_warning(loc, state, 2763 "uniform block layout qualifiers row_major and " 2764 "column_major applied to non-matrix types may " 2765 "be rejected by older compilers"); 2766 } 2767} 2768 2769static bool 2770validate_xfb_buffer_qualifier(YYLTYPE *loc, 2771 struct _mesa_glsl_parse_state *state, 2772 unsigned xfb_buffer) { 2773 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) { 2774 _mesa_glsl_error(loc, state, 2775 "invalid xfb_buffer specified %d is larger than " 2776 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).", 2777 xfb_buffer, 2778 state->Const.MaxTransformFeedbackBuffers - 1); 2779 return false; 2780 } 2781 2782 return true; 2783} 2784 2785/* From the ARB_enhanced_layouts spec: 2786 * 2787 * "Variables and block members qualified with *xfb_offset* can be 2788 * scalars, vectors, matrices, structures, and (sized) arrays of these. 2789 * The offset must be a multiple of the size of the first component of 2790 * the first qualified variable or block member, or a compile-time error 2791 * results. Further, if applied to an aggregate containing a double, 2792 * the offset must also be a multiple of 8, and the space taken in the 2793 * buffer will be a multiple of 8. 2794 */ 2795static bool 2796validate_xfb_offset_qualifier(YYLTYPE *loc, 2797 struct _mesa_glsl_parse_state *state, 2798 int xfb_offset, const glsl_type *type, 2799 unsigned component_size) { 2800 const glsl_type *t_without_array = type->without_array(); 2801 2802 if (xfb_offset != -1 && type->is_unsized_array()) { 2803 _mesa_glsl_error(loc, state, 2804 "xfb_offset can't be used with unsized arrays."); 2805 return false; 2806 } 2807 2808 /* Make sure nested structs don't contain unsized arrays, and validate 2809 * any xfb_offsets on interface members. 2810 */ 2811 if (t_without_array->is_record() || t_without_array->is_interface()) 2812 for (unsigned int i = 0; i < t_without_array->length; i++) { 2813 const glsl_type *member_t = t_without_array->fields.structure[i].type; 2814 2815 /* When the interface block doesn't have an xfb_offset qualifier then 2816 * we apply the component size rules at the member level. 2817 */ 2818 if (xfb_offset == -1) 2819 component_size = member_t->contains_double() ? 8 : 4; 2820 2821 int xfb_offset = t_without_array->fields.structure[i].offset; 2822 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t, 2823 component_size); 2824 } 2825 2826 /* Nested structs or interface block without offset may not have had an 2827 * offset applied yet so return. 2828 */ 2829 if (xfb_offset == -1) { 2830 return true; 2831 } 2832 2833 if (xfb_offset % component_size) { 2834 _mesa_glsl_error(loc, state, 2835 "invalid qualifier xfb_offset=%d must be a multiple " 2836 "of the first component size of the first qualified " 2837 "variable or block member. Or double if an aggregate " 2838 "that contains a double (%d).", 2839 xfb_offset, component_size); 2840 return false; 2841 } 2842 2843 return true; 2844} 2845 2846static bool 2847validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state, 2848 unsigned stream) 2849{ 2850 if (stream >= state->ctx->Const.MaxVertexStreams) { 2851 _mesa_glsl_error(loc, state, 2852 "invalid stream specified %d is larger than " 2853 "MAX_VERTEX_STREAMS - 1 (%d).", 2854 stream, state->ctx->Const.MaxVertexStreams - 1); 2855 return false; 2856 } 2857 2858 return true; 2859} 2860 2861static void 2862apply_explicit_binding(struct _mesa_glsl_parse_state *state, 2863 YYLTYPE *loc, 2864 ir_variable *var, 2865 const glsl_type *type, 2866 const ast_type_qualifier *qual) 2867{ 2868 if (!qual->flags.q.uniform && !qual->flags.q.buffer) { 2869 _mesa_glsl_error(loc, state, 2870 "the \"binding\" qualifier only applies to uniforms and " 2871 "shader storage buffer objects"); 2872 return; 2873 } 2874 2875 unsigned qual_binding; 2876 if (!process_qualifier_constant(state, loc, "binding", qual->binding, 2877 &qual_binding)) { 2878 return; 2879 } 2880 2881 const struct gl_context *const ctx = state->ctx; 2882 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1; 2883 unsigned max_index = qual_binding + elements - 1; 2884 const glsl_type *base_type = type->without_array(); 2885 2886 if (base_type->is_interface()) { 2887 /* UBOs. From page 60 of the GLSL 4.20 specification: 2888 * "If the binding point for any uniform block instance is less than zero, 2889 * or greater than or equal to the implementation-dependent maximum 2890 * number of uniform buffer bindings, a compilation error will occur. 2891 * When the binding identifier is used with a uniform block instanced as 2892 * an array of size N, all elements of the array from binding through 2893 * binding + N – 1 must be within this range." 2894 * 2895 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS. 2896 */ 2897 if (qual->flags.q.uniform && 2898 max_index >= ctx->Const.MaxUniformBufferBindings) { 2899 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds " 2900 "the maximum number of UBO binding points (%d)", 2901 qual_binding, elements, 2902 ctx->Const.MaxUniformBufferBindings); 2903 return; 2904 } 2905 2906 /* SSBOs. From page 67 of the GLSL 4.30 specification: 2907 * "If the binding point for any uniform or shader storage block instance 2908 * is less than zero, or greater than or equal to the 2909 * implementation-dependent maximum number of uniform buffer bindings, a 2910 * compile-time error will occur. When the binding identifier is used 2911 * with a uniform or shader storage block instanced as an array of size 2912 * N, all elements of the array from binding through binding + N – 1 must 2913 * be within this range." 2914 */ 2915 if (qual->flags.q.buffer && 2916 max_index >= ctx->Const.MaxShaderStorageBufferBindings) { 2917 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds " 2918 "the maximum number of SSBO binding points (%d)", 2919 qual_binding, elements, 2920 ctx->Const.MaxShaderStorageBufferBindings); 2921 return; 2922 } 2923 } else if (base_type->is_sampler()) { 2924 /* Samplers. From page 63 of the GLSL 4.20 specification: 2925 * "If the binding is less than zero, or greater than or equal to the 2926 * implementation-dependent maximum supported number of units, a 2927 * compilation error will occur. When the binding identifier is used 2928 * with an array of size N, all elements of the array from binding 2929 * through binding + N - 1 must be within this range." 2930 */ 2931 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits; 2932 2933 if (max_index >= limit) { 2934 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers " 2935 "exceeds the maximum number of texture image units " 2936 "(%u)", qual_binding, elements, limit); 2937 2938 return; 2939 } 2940 } else if (base_type->contains_atomic()) { 2941 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS); 2942 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) { 2943 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the " 2944 "maximum number of atomic counter buffer bindings " 2945 "(%u)", qual_binding, 2946 ctx->Const.MaxAtomicBufferBindings); 2947 2948 return; 2949 } 2950 } else if ((state->is_version(420, 310) || 2951 state->ARB_shading_language_420pack_enable) && 2952 base_type->is_image()) { 2953 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS); 2954 if (max_index >= ctx->Const.MaxImageUnits) { 2955 _mesa_glsl_error(loc, state, "Image binding %d exceeds the " 2956 "maximum number of image units (%d)", max_index, 2957 ctx->Const.MaxImageUnits); 2958 return; 2959 } 2960 2961 } else { 2962 _mesa_glsl_error(loc, state, 2963 "the \"binding\" qualifier only applies to uniform " 2964 "blocks, storage blocks, opaque variables, or arrays " 2965 "thereof"); 2966 return; 2967 } 2968 2969 var->data.explicit_binding = true; 2970 var->data.binding = qual_binding; 2971 2972 return; 2973} 2974 2975static void 2976validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state, 2977 YYLTYPE *loc, 2978 const glsl_interp_mode interpolation, 2979 const struct glsl_type *var_type, 2980 ir_variable_mode mode) 2981{ 2982 if (state->stage != MESA_SHADER_FRAGMENT || 2983 interpolation == INTERP_MODE_FLAT || 2984 mode != ir_var_shader_in) 2985 return; 2986 2987 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES, 2988 * so must integer vertex outputs. 2989 * 2990 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec: 2991 * "Fragment shader inputs that are signed or unsigned integers or 2992 * integer vectors must be qualified with the interpolation qualifier 2993 * flat." 2994 * 2995 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec: 2996 * "Fragment shader inputs that are, or contain, signed or unsigned 2997 * integers or integer vectors must be qualified with the 2998 * interpolation qualifier flat." 2999 * 3000 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec: 3001 * "Vertex shader outputs that are, or contain, signed or unsigned 3002 * integers or integer vectors must be qualified with the 3003 * interpolation qualifier flat." 3004 * 3005 * Note that prior to GLSL 1.50, this requirement applied to vertex 3006 * outputs rather than fragment inputs. That creates problems in the 3007 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all 3008 * desktop GL shaders. For GLSL ES shaders, we follow the spec and 3009 * apply the restriction to both vertex outputs and fragment inputs. 3010 * 3011 * Note also that the desktop GLSL specs are missing the text "or 3012 * contain"; this is presumably an oversight, since there is no 3013 * reasonable way to interpolate a fragment shader input that contains 3014 * an integer. See Khronos bug #15671. 3015 */ 3016 if (state->is_version(130, 300) 3017 && var_type->contains_integer()) { 3018 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3019 "an integer, then it must be qualified with 'flat'"); 3020 } 3021 3022 /* Double fragment inputs must be qualified with 'flat'. 3023 * 3024 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec: 3025 * "This extension does not support interpolation of double-precision 3026 * values; doubles used as fragment shader inputs must be qualified as 3027 * "flat"." 3028 * 3029 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec: 3030 * "Fragment shader inputs that are signed or unsigned integers, integer 3031 * vectors, or any double-precision floating-point type must be 3032 * qualified with the interpolation qualifier flat." 3033 * 3034 * Note that the GLSL specs are missing the text "or contain"; this is 3035 * presumably an oversight. See Khronos bug #15671. 3036 * 3037 * The 'double' type does not exist in GLSL ES so far. 3038 */ 3039 if (state->has_double() 3040 && var_type->contains_double()) { 3041 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3042 "a double, then it must be qualified with 'flat'"); 3043 } 3044 3045 /* Bindless sampler/image fragment inputs must be qualified with 'flat'. 3046 * 3047 * From section 4.3.4 of the ARB_bindless_texture spec: 3048 * 3049 * "(modify last paragraph, p. 35, allowing samplers and images as 3050 * fragment shader inputs) ... Fragment inputs can only be signed and 3051 * unsigned integers and integer vectors, floating point scalars, 3052 * floating-point vectors, matrices, sampler and image types, or arrays 3053 * or structures of these. Fragment shader inputs that are signed or 3054 * unsigned integers, integer vectors, or any double-precision floating- 3055 * point type, or any sampler or image type must be qualified with the 3056 * interpolation qualifier "flat"." 3057 */ 3058 if (state->has_bindless() 3059 && (var_type->contains_sampler() || var_type->contains_image())) { 3060 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3061 "a bindless sampler (or image), then it must be " 3062 "qualified with 'flat'"); 3063 } 3064} 3065 3066static void 3067validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state, 3068 YYLTYPE *loc, 3069 const glsl_interp_mode interpolation, 3070 const struct ast_type_qualifier *qual, 3071 const struct glsl_type *var_type, 3072 ir_variable_mode mode) 3073{ 3074 /* Interpolation qualifiers can only apply to shader inputs or outputs, but 3075 * not to vertex shader inputs nor fragment shader outputs. 3076 * 3077 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: 3078 * "Outputs from a vertex shader (out) and inputs to a fragment 3079 * shader (in) can be further qualified with one or more of these 3080 * interpolation qualifiers" 3081 * ... 3082 * "These interpolation qualifiers may only precede the qualifiers in, 3083 * centroid in, out, or centroid out in a declaration. They do not apply 3084 * to the deprecated storage qualifiers varying or centroid 3085 * varying. They also do not apply to inputs into a vertex shader or 3086 * outputs from a fragment shader." 3087 * 3088 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec: 3089 * "Outputs from a shader (out) and inputs to a shader (in) can be 3090 * further qualified with one of these interpolation qualifiers." 3091 * ... 3092 * "These interpolation qualifiers may only precede the qualifiers 3093 * in, centroid in, out, or centroid out in a declaration. They do 3094 * not apply to inputs into a vertex shader or outputs from a 3095 * fragment shader." 3096 */ 3097 if (state->is_version(130, 300) 3098 && interpolation != INTERP_MODE_NONE) { 3099 const char *i = interpolation_string(interpolation); 3100 if (mode != ir_var_shader_in && mode != ir_var_shader_out) 3101 _mesa_glsl_error(loc, state, 3102 "interpolation qualifier `%s' can only be applied to " 3103 "shader inputs or outputs.", i); 3104 3105 switch (state->stage) { 3106 case MESA_SHADER_VERTEX: 3107 if (mode == ir_var_shader_in) { 3108 _mesa_glsl_error(loc, state, 3109 "interpolation qualifier '%s' cannot be applied to " 3110 "vertex shader inputs", i); 3111 } 3112 break; 3113 case MESA_SHADER_FRAGMENT: 3114 if (mode == ir_var_shader_out) { 3115 _mesa_glsl_error(loc, state, 3116 "interpolation qualifier '%s' cannot be applied to " 3117 "fragment shader outputs", i); 3118 } 3119 break; 3120 default: 3121 break; 3122 } 3123 } 3124 3125 /* Interpolation qualifiers cannot be applied to 'centroid' and 3126 * 'centroid varying'. 3127 * 3128 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: 3129 * "interpolation qualifiers may only precede the qualifiers in, 3130 * centroid in, out, or centroid out in a declaration. They do not apply 3131 * to the deprecated storage qualifiers varying or centroid varying." 3132 * 3133 * These deprecated storage qualifiers do not exist in GLSL ES 3.00. 3134 */ 3135 if (state->is_version(130, 0) 3136 && interpolation != INTERP_MODE_NONE 3137 && qual->flags.q.varying) { 3138 3139 const char *i = interpolation_string(interpolation); 3140 const char *s; 3141 if (qual->flags.q.centroid) 3142 s = "centroid varying"; 3143 else 3144 s = "varying"; 3145 3146 _mesa_glsl_error(loc, state, 3147 "qualifier '%s' cannot be applied to the " 3148 "deprecated storage qualifier '%s'", i, s); 3149 } 3150 3151 validate_fragment_flat_interpolation_input(state, loc, interpolation, 3152 var_type, mode); 3153} 3154 3155static glsl_interp_mode 3156interpret_interpolation_qualifier(const struct ast_type_qualifier *qual, 3157 const struct glsl_type *var_type, 3158 ir_variable_mode mode, 3159 struct _mesa_glsl_parse_state *state, 3160 YYLTYPE *loc) 3161{ 3162 glsl_interp_mode interpolation; 3163 if (qual->flags.q.flat) 3164 interpolation = INTERP_MODE_FLAT; 3165 else if (qual->flags.q.noperspective) 3166 interpolation = INTERP_MODE_NOPERSPECTIVE; 3167 else if (qual->flags.q.smooth) 3168 interpolation = INTERP_MODE_SMOOTH; 3169 else 3170 interpolation = INTERP_MODE_NONE; 3171 3172 validate_interpolation_qualifier(state, loc, 3173 interpolation, 3174 qual, var_type, mode); 3175 3176 return interpolation; 3177} 3178 3179 3180static void 3181apply_explicit_location(const struct ast_type_qualifier *qual, 3182 ir_variable *var, 3183 struct _mesa_glsl_parse_state *state, 3184 YYLTYPE *loc) 3185{ 3186 bool fail = false; 3187 3188 unsigned qual_location; 3189 if (!process_qualifier_constant(state, loc, "location", qual->location, 3190 &qual_location)) { 3191 return; 3192 } 3193 3194 /* Checks for GL_ARB_explicit_uniform_location. */ 3195 if (qual->flags.q.uniform) { 3196 if (!state->check_explicit_uniform_location_allowed(loc, var)) 3197 return; 3198 3199 const struct gl_context *const ctx = state->ctx; 3200 unsigned max_loc = qual_location + var->type->uniform_locations() - 1; 3201 3202 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) { 3203 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s " 3204 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name, 3205 ctx->Const.MaxUserAssignableUniformLocations); 3206 return; 3207 } 3208 3209 var->data.explicit_location = true; 3210 var->data.location = qual_location; 3211 return; 3212 } 3213 3214 /* Between GL_ARB_explicit_attrib_location an 3215 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader 3216 * stage can be assigned explicit locations. The checking here associates 3217 * the correct extension with the correct stage's input / output: 3218 * 3219 * input output 3220 * ----- ------ 3221 * vertex explicit_loc sso 3222 * tess control sso sso 3223 * tess eval sso sso 3224 * geometry sso sso 3225 * fragment sso explicit_loc 3226 */ 3227 switch (state->stage) { 3228 case MESA_SHADER_VERTEX: 3229 if (var->data.mode == ir_var_shader_in) { 3230 if (!state->check_explicit_attrib_location_allowed(loc, var)) 3231 return; 3232 3233 break; 3234 } 3235 3236 if (var->data.mode == ir_var_shader_out) { 3237 if (!state->check_separate_shader_objects_allowed(loc, var)) 3238 return; 3239 3240 break; 3241 } 3242 3243 fail = true; 3244 break; 3245 3246 case MESA_SHADER_TESS_CTRL: 3247 case MESA_SHADER_TESS_EVAL: 3248 case MESA_SHADER_GEOMETRY: 3249 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) { 3250 if (!state->check_separate_shader_objects_allowed(loc, var)) 3251 return; 3252 3253 break; 3254 } 3255 3256 fail = true; 3257 break; 3258 3259 case MESA_SHADER_FRAGMENT: 3260 if (var->data.mode == ir_var_shader_in) { 3261 if (!state->check_separate_shader_objects_allowed(loc, var)) 3262 return; 3263 3264 break; 3265 } 3266 3267 if (var->data.mode == ir_var_shader_out) { 3268 if (!state->check_explicit_attrib_location_allowed(loc, var)) 3269 return; 3270 3271 break; 3272 } 3273 3274 fail = true; 3275 break; 3276 3277 case MESA_SHADER_COMPUTE: 3278 _mesa_glsl_error(loc, state, 3279 "compute shader variables cannot be given " 3280 "explicit locations"); 3281 return; 3282 default: 3283 fail = true; 3284 break; 3285 }; 3286 3287 if (fail) { 3288 _mesa_glsl_error(loc, state, 3289 "%s cannot be given an explicit location in %s shader", 3290 mode_string(var), 3291 _mesa_shader_stage_to_string(state->stage)); 3292 } else { 3293 var->data.explicit_location = true; 3294 3295 switch (state->stage) { 3296 case MESA_SHADER_VERTEX: 3297 var->data.location = (var->data.mode == ir_var_shader_in) 3298 ? (qual_location + VERT_ATTRIB_GENERIC0) 3299 : (qual_location + VARYING_SLOT_VAR0); 3300 break; 3301 3302 case MESA_SHADER_TESS_CTRL: 3303 case MESA_SHADER_TESS_EVAL: 3304 case MESA_SHADER_GEOMETRY: 3305 if (var->data.patch) 3306 var->data.location = qual_location + VARYING_SLOT_PATCH0; 3307 else 3308 var->data.location = qual_location + VARYING_SLOT_VAR0; 3309 break; 3310 3311 case MESA_SHADER_FRAGMENT: 3312 var->data.location = (var->data.mode == ir_var_shader_out) 3313 ? (qual_location + FRAG_RESULT_DATA0) 3314 : (qual_location + VARYING_SLOT_VAR0); 3315 break; 3316 default: 3317 assert(!"Unexpected shader type"); 3318 break; 3319 } 3320 3321 /* Check if index was set for the uniform instead of the function */ 3322 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) { 3323 _mesa_glsl_error(loc, state, "an index qualifier can only be " 3324 "used with subroutine functions"); 3325 return; 3326 } 3327 3328 unsigned qual_index; 3329 if (qual->flags.q.explicit_index && 3330 process_qualifier_constant(state, loc, "index", qual->index, 3331 &qual_index)) { 3332 /* From the GLSL 4.30 specification, section 4.4.2 (Output 3333 * Layout Qualifiers): 3334 * 3335 * "It is also a compile-time error if a fragment shader 3336 * sets a layout index to less than 0 or greater than 1." 3337 * 3338 * Older specifications don't mandate a behavior; we take 3339 * this as a clarification and always generate the error. 3340 */ 3341 if (qual_index > 1) { 3342 _mesa_glsl_error(loc, state, 3343 "explicit index may only be 0 or 1"); 3344 } else { 3345 var->data.explicit_index = true; 3346 var->data.index = qual_index; 3347 } 3348 } 3349 } 3350} 3351 3352static bool 3353validate_storage_for_sampler_image_types(ir_variable *var, 3354 struct _mesa_glsl_parse_state *state, 3355 YYLTYPE *loc) 3356{ 3357 /* From section 4.1.7 of the GLSL 4.40 spec: 3358 * 3359 * "[Opaque types] can only be declared as function 3360 * parameters or uniform-qualified variables." 3361 * 3362 * From section 4.1.7 of the ARB_bindless_texture spec: 3363 * 3364 * "Samplers may be declared as shader inputs and outputs, as uniform 3365 * variables, as temporary variables, and as function parameters." 3366 * 3367 * From section 4.1.X of the ARB_bindless_texture spec: 3368 * 3369 * "Images may be declared as shader inputs and outputs, as uniform 3370 * variables, as temporary variables, and as function parameters." 3371 */ 3372 if (state->has_bindless()) { 3373 if (var->data.mode != ir_var_auto && 3374 var->data.mode != ir_var_uniform && 3375 var->data.mode != ir_var_shader_in && 3376 var->data.mode != ir_var_shader_out && 3377 var->data.mode != ir_var_function_in && 3378 var->data.mode != ir_var_function_out && 3379 var->data.mode != ir_var_function_inout) { 3380 _mesa_glsl_error(loc, state, "bindless image/sampler variables may " 3381 "only be declared as shader inputs and outputs, as " 3382 "uniform variables, as temporary variables and as " 3383 "function parameters"); 3384 return false; 3385 } 3386 } else { 3387 if (var->data.mode != ir_var_uniform && 3388 var->data.mode != ir_var_function_in) { 3389 _mesa_glsl_error(loc, state, "image/sampler variables may only be " 3390 "declared as function parameters or " 3391 "uniform-qualified global variables"); 3392 return false; 3393 } 3394 } 3395 return true; 3396} 3397 3398static bool 3399validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state, 3400 YYLTYPE *loc, 3401 const struct ast_type_qualifier *qual, 3402 const glsl_type *type) 3403{ 3404 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec: 3405 * 3406 * "Memory qualifiers are only supported in the declarations of image 3407 * variables, buffer variables, and shader storage blocks; it is an error 3408 * to use such qualifiers in any other declarations. 3409 */ 3410 if (!type->is_image() && !qual->flags.q.buffer) { 3411 if (qual->flags.q.read_only || 3412 qual->flags.q.write_only || 3413 qual->flags.q.coherent || 3414 qual->flags.q._volatile || 3415 qual->flags.q.restrict_flag) { 3416 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied " 3417 "in the declarations of image variables, buffer " 3418 "variables, and shader storage blocks"); 3419 return false; 3420 } 3421 } 3422 return true; 3423} 3424 3425static bool 3426validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state, 3427 YYLTYPE *loc, 3428 const struct ast_type_qualifier *qual, 3429 const glsl_type *type) 3430{ 3431 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec: 3432 * 3433 * "Format layout qualifiers can be used on image variable declarations 3434 * (those declared with a basic type having “image ” in its keyword)." 3435 */ 3436 if (!type->is_image() && qual->flags.q.explicit_image_format) { 3437 _mesa_glsl_error(loc, state, "format layout qualifiers may only be " 3438 "applied to images"); 3439 return false; 3440 } 3441 return true; 3442} 3443 3444static void 3445apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual, 3446 ir_variable *var, 3447 struct _mesa_glsl_parse_state *state, 3448 YYLTYPE *loc) 3449{ 3450 const glsl_type *base_type = var->type->without_array(); 3451 3452 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) || 3453 !validate_memory_qualifier_for_type(state, loc, qual, base_type)) 3454 return; 3455 3456 if (!base_type->is_image()) 3457 return; 3458 3459 if (!validate_storage_for_sampler_image_types(var, state, loc)) 3460 return; 3461 3462 var->data.memory_read_only |= qual->flags.q.read_only; 3463 var->data.memory_write_only |= qual->flags.q.write_only; 3464 var->data.memory_coherent |= qual->flags.q.coherent; 3465 var->data.memory_volatile |= qual->flags.q._volatile; 3466 var->data.memory_restrict |= qual->flags.q.restrict_flag; 3467 3468 if (qual->flags.q.explicit_image_format) { 3469 if (var->data.mode == ir_var_function_in) { 3470 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on " 3471 "image function parameters"); 3472 } 3473 3474 if (qual->image_base_type != base_type->sampled_type) { 3475 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base " 3476 "data type of the image"); 3477 } 3478 3479 var->data.image_format = qual->image_format; 3480 } else { 3481 if (var->data.mode == ir_var_uniform) { 3482 if (state->es_shader) { 3483 _mesa_glsl_error(loc, state, "all image uniforms must have a " 3484 "format layout qualifier"); 3485 } else if (!qual->flags.q.write_only) { 3486 _mesa_glsl_error(loc, state, "image uniforms not qualified with " 3487 "`writeonly' must have a format layout qualifier"); 3488 } 3489 } 3490 var->data.image_format = GL_NONE; 3491 } 3492 3493 /* From page 70 of the GLSL ES 3.1 specification: 3494 * 3495 * "Except for image variables qualified with the format qualifiers r32f, 3496 * r32i, and r32ui, image variables must specify either memory qualifier 3497 * readonly or the memory qualifier writeonly." 3498 */ 3499 if (state->es_shader && 3500 var->data.image_format != GL_R32F && 3501 var->data.image_format != GL_R32I && 3502 var->data.image_format != GL_R32UI && 3503 !var->data.memory_read_only && 3504 !var->data.memory_write_only) { 3505 _mesa_glsl_error(loc, state, "image variables of format other than r32f, " 3506 "r32i or r32ui must be qualified `readonly' or " 3507 "`writeonly'"); 3508 } 3509} 3510 3511static inline const char* 3512get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer) 3513{ 3514 if (origin_upper_left && pixel_center_integer) 3515 return "origin_upper_left, pixel_center_integer"; 3516 else if (origin_upper_left) 3517 return "origin_upper_left"; 3518 else if (pixel_center_integer) 3519 return "pixel_center_integer"; 3520 else 3521 return " "; 3522} 3523 3524static inline bool 3525is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state, 3526 const struct ast_type_qualifier *qual) 3527{ 3528 /* If gl_FragCoord was previously declared, and the qualifiers were 3529 * different in any way, return true. 3530 */ 3531 if (state->fs_redeclares_gl_fragcoord) { 3532 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer 3533 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left); 3534 } 3535 3536 return false; 3537} 3538 3539static inline void 3540validate_array_dimensions(const glsl_type *t, 3541 struct _mesa_glsl_parse_state *state, 3542 YYLTYPE *loc) { 3543 if (t->is_array()) { 3544 t = t->fields.array; 3545 while (t->is_array()) { 3546 if (t->is_unsized_array()) { 3547 _mesa_glsl_error(loc, state, 3548 "only the outermost array dimension can " 3549 "be unsized", 3550 t->name); 3551 break; 3552 } 3553 t = t->fields.array; 3554 } 3555 } 3556} 3557 3558static void 3559apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual, 3560 ir_variable *var, 3561 struct _mesa_glsl_parse_state *state, 3562 YYLTYPE *loc) 3563{ 3564 bool has_local_qualifiers = qual->flags.q.bindless_sampler || 3565 qual->flags.q.bindless_image || 3566 qual->flags.q.bound_sampler || 3567 qual->flags.q.bound_image; 3568 3569 /* The ARB_bindless_texture spec says: 3570 * 3571 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30 3572 * spec" 3573 * 3574 * "If these layout qualifiers are applied to other types of default block 3575 * uniforms, or variables with non-uniform storage, a compile-time error 3576 * will be generated." 3577 */ 3578 if (has_local_qualifiers && !qual->flags.q.uniform) { 3579 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers " 3580 "can only be applied to default block uniforms or " 3581 "variables with uniform storage"); 3582 return; 3583 } 3584 3585 /* The ARB_bindless_texture spec doesn't state anything in this situation, 3586 * but it makes sense to only allow bindless_sampler/bound_sampler for 3587 * sampler types, and respectively bindless_image/bound_image for image 3588 * types. 3589 */ 3590 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) && 3591 !var->type->contains_sampler()) { 3592 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only " 3593 "be applied to sampler types"); 3594 return; 3595 } 3596 3597 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) && 3598 !var->type->contains_image()) { 3599 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be " 3600 "applied to image types"); 3601 return; 3602 } 3603 3604 /* The bindless_sampler/bindless_image (and respectively 3605 * bound_sampler/bound_image) layout qualifiers can be set at global and at 3606 * local scope. 3607 */ 3608 if (var->type->contains_sampler() || var->type->contains_image()) { 3609 var->data.bindless = qual->flags.q.bindless_sampler || 3610 qual->flags.q.bindless_image || 3611 state->bindless_sampler_specified || 3612 state->bindless_image_specified; 3613 3614 var->data.bound = qual->flags.q.bound_sampler || 3615 qual->flags.q.bound_image || 3616 state->bound_sampler_specified || 3617 state->bound_image_specified; 3618 } 3619} 3620 3621static void 3622apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual, 3623 ir_variable *var, 3624 struct _mesa_glsl_parse_state *state, 3625 YYLTYPE *loc) 3626{ 3627 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) { 3628 3629 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says: 3630 * 3631 * "Within any shader, the first redeclarations of gl_FragCoord 3632 * must appear before any use of gl_FragCoord." 3633 * 3634 * Generate a compiler error if above condition is not met by the 3635 * fragment shader. 3636 */ 3637 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord"); 3638 if (earlier != NULL && 3639 earlier->data.used && 3640 !state->fs_redeclares_gl_fragcoord) { 3641 _mesa_glsl_error(loc, state, 3642 "gl_FragCoord used before its first redeclaration " 3643 "in fragment shader"); 3644 } 3645 3646 /* Make sure all gl_FragCoord redeclarations specify the same layout 3647 * qualifiers. 3648 */ 3649 if (is_conflicting_fragcoord_redeclaration(state, qual)) { 3650 const char *const qual_string = 3651 get_layout_qualifier_string(qual->flags.q.origin_upper_left, 3652 qual->flags.q.pixel_center_integer); 3653 3654 const char *const state_string = 3655 get_layout_qualifier_string(state->fs_origin_upper_left, 3656 state->fs_pixel_center_integer); 3657 3658 _mesa_glsl_error(loc, state, 3659 "gl_FragCoord redeclared with different layout " 3660 "qualifiers (%s) and (%s) ", 3661 state_string, 3662 qual_string); 3663 } 3664 state->fs_origin_upper_left = qual->flags.q.origin_upper_left; 3665 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer; 3666 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = 3667 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer; 3668 state->fs_redeclares_gl_fragcoord = 3669 state->fs_origin_upper_left || 3670 state->fs_pixel_center_integer || 3671 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers; 3672 } 3673 3674 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer; 3675 var->data.origin_upper_left = qual->flags.q.origin_upper_left; 3676 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer) 3677 && (strcmp(var->name, "gl_FragCoord") != 0)) { 3678 const char *const qual_string = (qual->flags.q.origin_upper_left) 3679 ? "origin_upper_left" : "pixel_center_integer"; 3680 3681 _mesa_glsl_error(loc, state, 3682 "layout qualifier `%s' can only be applied to " 3683 "fragment shader input `gl_FragCoord'", 3684 qual_string); 3685 } 3686 3687 if (qual->flags.q.explicit_location) { 3688 apply_explicit_location(qual, var, state, loc); 3689 3690 if (qual->flags.q.explicit_component) { 3691 unsigned qual_component; 3692 if (process_qualifier_constant(state, loc, "component", 3693 qual->component, &qual_component)) { 3694 const glsl_type *type = var->type->without_array(); 3695 unsigned components = type->component_slots(); 3696 3697 if (type->is_matrix() || type->is_record()) { 3698 _mesa_glsl_error(loc, state, "component layout qualifier " 3699 "cannot be applied to a matrix, a structure, " 3700 "a block, or an array containing any of " 3701 "these."); 3702 } else if (components > 4 && type->is_64bit()) { 3703 _mesa_glsl_error(loc, state, "component layout qualifier " 3704 "cannot be applied to dvec%u.", 3705 components / 2); 3706 } else if (qual_component != 0 && 3707 (qual_component + components - 1) > 3) { 3708 _mesa_glsl_error(loc, state, "component overflow (%u > 3)", 3709 (qual_component + components - 1)); 3710 } else if (qual_component == 1 && type->is_64bit()) { 3711 /* We don't bother checking for 3 as it should be caught by the 3712 * overflow check above. 3713 */ 3714 _mesa_glsl_error(loc, state, "doubles cannot begin at " 3715 "component 1 or 3"); 3716 } else { 3717 var->data.explicit_component = true; 3718 var->data.location_frac = qual_component; 3719 } 3720 } 3721 } 3722 } else if (qual->flags.q.explicit_index) { 3723 if (!qual->subroutine_list) 3724 _mesa_glsl_error(loc, state, 3725 "explicit index requires explicit location"); 3726 } else if (qual->flags.q.explicit_component) { 3727 _mesa_glsl_error(loc, state, 3728 "explicit component requires explicit location"); 3729 } 3730 3731 if (qual->flags.q.explicit_binding) { 3732 apply_explicit_binding(state, loc, var, var->type, qual); 3733 } 3734 3735 if (state->stage == MESA_SHADER_GEOMETRY && 3736 qual->flags.q.out && qual->flags.q.stream) { 3737 unsigned qual_stream; 3738 if (process_qualifier_constant(state, loc, "stream", qual->stream, 3739 &qual_stream) && 3740 validate_stream_qualifier(loc, state, qual_stream)) { 3741 var->data.stream = qual_stream; 3742 } 3743 } 3744 3745 if (qual->flags.q.out && qual->flags.q.xfb_buffer) { 3746 unsigned qual_xfb_buffer; 3747 if (process_qualifier_constant(state, loc, "xfb_buffer", 3748 qual->xfb_buffer, &qual_xfb_buffer) && 3749 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) { 3750 var->data.xfb_buffer = qual_xfb_buffer; 3751 if (qual->flags.q.explicit_xfb_buffer) 3752 var->data.explicit_xfb_buffer = true; 3753 } 3754 } 3755 3756 if (qual->flags.q.explicit_xfb_offset) { 3757 unsigned qual_xfb_offset; 3758 unsigned component_size = var->type->contains_double() ? 8 : 4; 3759 3760 if (process_qualifier_constant(state, loc, "xfb_offset", 3761 qual->offset, &qual_xfb_offset) && 3762 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset, 3763 var->type, component_size)) { 3764 var->data.offset = qual_xfb_offset; 3765 var->data.explicit_xfb_offset = true; 3766 } 3767 } 3768 3769 if (qual->flags.q.explicit_xfb_stride) { 3770 unsigned qual_xfb_stride; 3771 if (process_qualifier_constant(state, loc, "xfb_stride", 3772 qual->xfb_stride, &qual_xfb_stride)) { 3773 var->data.xfb_stride = qual_xfb_stride; 3774 var->data.explicit_xfb_stride = true; 3775 } 3776 } 3777 3778 if (var->type->contains_atomic()) { 3779 if (var->data.mode == ir_var_uniform) { 3780 if (var->data.explicit_binding) { 3781 unsigned *offset = 3782 &state->atomic_counter_offsets[var->data.binding]; 3783 3784 if (*offset % ATOMIC_COUNTER_SIZE) 3785 _mesa_glsl_error(loc, state, 3786 "misaligned atomic counter offset"); 3787 3788 var->data.offset = *offset; 3789 *offset += var->type->atomic_size(); 3790 3791 } else { 3792 _mesa_glsl_error(loc, state, 3793 "atomic counters require explicit binding point"); 3794 } 3795 } else if (var->data.mode != ir_var_function_in) { 3796 _mesa_glsl_error(loc, state, "atomic counters may only be declared as " 3797 "function parameters or uniform-qualified " 3798 "global variables"); 3799 } 3800 } 3801 3802 if (var->type->contains_sampler() && 3803 !validate_storage_for_sampler_image_types(var, state, loc)) 3804 return; 3805 3806 /* Is the 'layout' keyword used with parameters that allow relaxed checking. 3807 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some 3808 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable 3809 * allowed the layout qualifier to be used with 'varying' and 'attribute'. 3810 * These extensions and all following extensions that add the 'layout' 3811 * keyword have been modified to require the use of 'in' or 'out'. 3812 * 3813 * The following extension do not allow the deprecated keywords: 3814 * 3815 * GL_AMD_conservative_depth 3816 * GL_ARB_conservative_depth 3817 * GL_ARB_gpu_shader5 3818 * GL_ARB_separate_shader_objects 3819 * GL_ARB_tessellation_shader 3820 * GL_ARB_transform_feedback3 3821 * GL_ARB_uniform_buffer_object 3822 * 3823 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5 3824 * allow layout with the deprecated keywords. 3825 */ 3826 const bool relaxed_layout_qualifier_checking = 3827 state->ARB_fragment_coord_conventions_enable; 3828 3829 const bool uses_deprecated_qualifier = qual->flags.q.attribute 3830 || qual->flags.q.varying; 3831 if (qual->has_layout() && uses_deprecated_qualifier) { 3832 if (relaxed_layout_qualifier_checking) { 3833 _mesa_glsl_warning(loc, state, 3834 "`layout' qualifier may not be used with " 3835 "`attribute' or `varying'"); 3836 } else { 3837 _mesa_glsl_error(loc, state, 3838 "`layout' qualifier may not be used with " 3839 "`attribute' or `varying'"); 3840 } 3841 } 3842 3843 /* Layout qualifiers for gl_FragDepth, which are enabled by extension 3844 * AMD_conservative_depth. 3845 */ 3846 if (qual->flags.q.depth_type 3847 && !state->is_version(420, 0) 3848 && !state->AMD_conservative_depth_enable 3849 && !state->ARB_conservative_depth_enable) { 3850 _mesa_glsl_error(loc, state, 3851 "extension GL_AMD_conservative_depth or " 3852 "GL_ARB_conservative_depth must be enabled " 3853 "to use depth layout qualifiers"); 3854 } else if (qual->flags.q.depth_type 3855 && strcmp(var->name, "gl_FragDepth") != 0) { 3856 _mesa_glsl_error(loc, state, 3857 "depth layout qualifiers can be applied only to " 3858 "gl_FragDepth"); 3859 } 3860 3861 switch (qual->depth_type) { 3862 case ast_depth_any: 3863 var->data.depth_layout = ir_depth_layout_any; 3864 break; 3865 case ast_depth_greater: 3866 var->data.depth_layout = ir_depth_layout_greater; 3867 break; 3868 case ast_depth_less: 3869 var->data.depth_layout = ir_depth_layout_less; 3870 break; 3871 case ast_depth_unchanged: 3872 var->data.depth_layout = ir_depth_layout_unchanged; 3873 break; 3874 default: 3875 var->data.depth_layout = ir_depth_layout_none; 3876 break; 3877 } 3878 3879 if (qual->flags.q.std140 || 3880 qual->flags.q.std430 || 3881 qual->flags.q.packed || 3882 qual->flags.q.shared) { 3883 _mesa_glsl_error(loc, state, 3884 "uniform and shader storage block layout qualifiers " 3885 "std140, std430, packed, and shared can only be " 3886 "applied to uniform or shader storage blocks, not " 3887 "members"); 3888 } 3889 3890 if (qual->flags.q.row_major || qual->flags.q.column_major) { 3891 validate_matrix_layout_for_type(state, loc, var->type, var); 3892 } 3893 3894 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader 3895 * Inputs): 3896 * 3897 * "Fragment shaders also allow the following layout qualifier on in only 3898 * (not with variable declarations) 3899 * layout-qualifier-id 3900 * early_fragment_tests 3901 * [...]" 3902 */ 3903 if (qual->flags.q.early_fragment_tests) { 3904 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only " 3905 "valid in fragment shader input layout declaration."); 3906 } 3907 3908 if (qual->flags.q.inner_coverage) { 3909 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only " 3910 "valid in fragment shader input layout declaration."); 3911 } 3912 3913 if (qual->flags.q.post_depth_coverage) { 3914 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only " 3915 "valid in fragment shader input layout declaration."); 3916 } 3917 3918 if (state->has_bindless()) 3919 apply_bindless_qualifier_to_variable(qual, var, state, loc); 3920 3921 if (qual->flags.q.pixel_interlock_ordered || 3922 qual->flags.q.pixel_interlock_unordered || 3923 qual->flags.q.sample_interlock_ordered || 3924 qual->flags.q.sample_interlock_unordered) { 3925 _mesa_glsl_error(loc, state, "interlock layout qualifiers: " 3926 "pixel_interlock_ordered, pixel_interlock_unordered, " 3927 "sample_interlock_ordered and sample_interlock_unordered, " 3928 "only valid in fragment shader input layout declaration."); 3929 } 3930} 3931 3932static void 3933apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual, 3934 ir_variable *var, 3935 struct _mesa_glsl_parse_state *state, 3936 YYLTYPE *loc, 3937 bool is_parameter) 3938{ 3939 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i)); 3940 3941 if (qual->flags.q.invariant) { 3942 if (var->data.used) { 3943 _mesa_glsl_error(loc, state, 3944 "variable `%s' may not be redeclared " 3945 "`invariant' after being used", 3946 var->name); 3947 } else { 3948 var->data.explicit_invariant = true; 3949 var->data.invariant = true; 3950 } 3951 } 3952 3953 if (qual->flags.q.precise) { 3954 if (var->data.used) { 3955 _mesa_glsl_error(loc, state, 3956 "variable `%s' may not be redeclared " 3957 "`precise' after being used", 3958 var->name); 3959 } else { 3960 var->data.precise = 1; 3961 } 3962 } 3963 3964 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) { 3965 _mesa_glsl_error(loc, state, 3966 "`subroutine' may only be applied to uniforms, " 3967 "subroutine type declarations, or function definitions"); 3968 } 3969 3970 if (qual->flags.q.constant || qual->flags.q.attribute 3971 || qual->flags.q.uniform 3972 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) 3973 var->data.read_only = 1; 3974 3975 if (qual->flags.q.centroid) 3976 var->data.centroid = 1; 3977 3978 if (qual->flags.q.sample) 3979 var->data.sample = 1; 3980 3981 /* Precision qualifiers do not hold any meaning in Desktop GLSL */ 3982 if (state->es_shader) { 3983 var->data.precision = 3984 select_gles_precision(qual->precision, var->type, state, loc); 3985 } 3986 3987 if (qual->flags.q.patch) 3988 var->data.patch = 1; 3989 3990 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) { 3991 var->type = glsl_type::error_type; 3992 _mesa_glsl_error(loc, state, 3993 "`attribute' variables may not be declared in the " 3994 "%s shader", 3995 _mesa_shader_stage_to_string(state->stage)); 3996 } 3997 3998 /* Disallow layout qualifiers which may only appear on layout declarations. */ 3999 if (qual->flags.q.prim_type) { 4000 _mesa_glsl_error(loc, state, 4001 "Primitive type may only be specified on GS input or output " 4002 "layout declaration, not on variables."); 4003 } 4004 4005 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says: 4006 * 4007 * "However, the const qualifier cannot be used with out or inout." 4008 * 4009 * The same section of the GLSL 4.40 spec further clarifies this saying: 4010 * 4011 * "The const qualifier cannot be used with out or inout, or a 4012 * compile-time error results." 4013 */ 4014 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) { 4015 _mesa_glsl_error(loc, state, 4016 "`const' may not be applied to `out' or `inout' " 4017 "function parameters"); 4018 } 4019 4020 /* If there is no qualifier that changes the mode of the variable, leave 4021 * the setting alone. 4022 */ 4023 assert(var->data.mode != ir_var_temporary); 4024 if (qual->flags.q.in && qual->flags.q.out) 4025 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out; 4026 else if (qual->flags.q.in) 4027 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in; 4028 else if (qual->flags.q.attribute 4029 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) 4030 var->data.mode = ir_var_shader_in; 4031 else if (qual->flags.q.out) 4032 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out; 4033 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX)) 4034 var->data.mode = ir_var_shader_out; 4035 else if (qual->flags.q.uniform) 4036 var->data.mode = ir_var_uniform; 4037 else if (qual->flags.q.buffer) 4038 var->data.mode = ir_var_shader_storage; 4039 else if (qual->flags.q.shared_storage) 4040 var->data.mode = ir_var_shader_shared; 4041 4042 if (!is_parameter && state->has_framebuffer_fetch() && 4043 state->stage == MESA_SHADER_FRAGMENT) { 4044 if (state->is_version(130, 300)) 4045 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out; 4046 else 4047 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0); 4048 } 4049 4050 if (var->data.fb_fetch_output) { 4051 var->data.assigned = true; 4052 var->data.memory_coherent = !qual->flags.q.non_coherent; 4053 4054 /* From the EXT_shader_framebuffer_fetch spec: 4055 * 4056 * "It is an error to declare an inout fragment output not qualified 4057 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch 4058 * extension hasn't been enabled." 4059 */ 4060 if (var->data.memory_coherent && 4061 !state->EXT_shader_framebuffer_fetch_enable) 4062 _mesa_glsl_error(loc, state, 4063 "invalid declaration of framebuffer fetch output not " 4064 "qualified with layout(noncoherent)"); 4065 4066 } else { 4067 /* From the EXT_shader_framebuffer_fetch spec: 4068 * 4069 * "Fragment outputs declared inout may specify the following layout 4070 * qualifier: [...] noncoherent" 4071 */ 4072 if (qual->flags.q.non_coherent) 4073 _mesa_glsl_error(loc, state, 4074 "invalid layout(noncoherent) qualifier not part of " 4075 "framebuffer fetch output declaration"); 4076 } 4077 4078 if (!is_parameter && is_varying_var(var, state->stage)) { 4079 /* User-defined ins/outs are not permitted in compute shaders. */ 4080 if (state->stage == MESA_SHADER_COMPUTE) { 4081 _mesa_glsl_error(loc, state, 4082 "user-defined input and output variables are not " 4083 "permitted in compute shaders"); 4084 } 4085 4086 /* This variable is being used to link data between shader stages (in 4087 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type 4088 * that is allowed for such purposes. 4089 * 4090 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec: 4091 * 4092 * "The varying qualifier can be used only with the data types 4093 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of 4094 * these." 4095 * 4096 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From 4097 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec: 4098 * 4099 * "Fragment inputs can only be signed and unsigned integers and 4100 * integer vectors, float, floating-point vectors, matrices, or 4101 * arrays of these. Structures cannot be input. 4102 * 4103 * Similar text exists in the section on vertex shader outputs. 4104 * 4105 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES 4106 * 3.00 spec allows structs as well. Varying structs are also allowed 4107 * in GLSL 1.50. 4108 * 4109 * From section 4.3.4 of the ARB_bindless_texture spec: 4110 * 4111 * "(modify third paragraph of the section to allow sampler and image 4112 * types) ... Vertex shader inputs can only be float, 4113 * single-precision floating-point scalars, single-precision 4114 * floating-point vectors, matrices, signed and unsigned integers 4115 * and integer vectors, sampler and image types." 4116 * 4117 * From section 4.3.6 of the ARB_bindless_texture spec: 4118 * 4119 * "Output variables can only be floating-point scalars, 4120 * floating-point vectors, matrices, signed or unsigned integers or 4121 * integer vectors, sampler or image types, or arrays or structures 4122 * of any these." 4123 */ 4124 switch (var->type->without_array()->base_type) { 4125 case GLSL_TYPE_FLOAT: 4126 /* Ok in all GLSL versions */ 4127 break; 4128 case GLSL_TYPE_UINT: 4129 case GLSL_TYPE_INT: 4130 if (state->is_version(130, 300)) 4131 break; 4132 _mesa_glsl_error(loc, state, 4133 "varying variables must be of base type float in %s", 4134 state->get_version_string()); 4135 break; 4136 case GLSL_TYPE_STRUCT: 4137 if (state->is_version(150, 300)) 4138 break; 4139 _mesa_glsl_error(loc, state, 4140 "varying variables may not be of type struct"); 4141 break; 4142 case GLSL_TYPE_DOUBLE: 4143 case GLSL_TYPE_UINT64: 4144 case GLSL_TYPE_INT64: 4145 break; 4146 case GLSL_TYPE_SAMPLER: 4147 case GLSL_TYPE_IMAGE: 4148 if (state->has_bindless()) 4149 break; 4150 /* fallthrough */ 4151 default: 4152 _mesa_glsl_error(loc, state, "illegal type for a varying variable"); 4153 break; 4154 } 4155 } 4156 4157 if (state->all_invariant && var->data.mode == ir_var_shader_out) { 4158 var->data.explicit_invariant = true; 4159 var->data.invariant = true; 4160 } 4161 4162 var->data.interpolation = 4163 interpret_interpolation_qualifier(qual, var->type, 4164 (ir_variable_mode) var->data.mode, 4165 state, loc); 4166 4167 /* Does the declaration use the deprecated 'attribute' or 'varying' 4168 * keywords? 4169 */ 4170 const bool uses_deprecated_qualifier = qual->flags.q.attribute 4171 || qual->flags.q.varying; 4172 4173 4174 /* Validate auxiliary storage qualifiers */ 4175 4176 /* From section 4.3.4 of the GLSL 1.30 spec: 4177 * "It is an error to use centroid in in a vertex shader." 4178 * 4179 * From section 4.3.4 of the GLSL ES 3.00 spec: 4180 * "It is an error to use centroid in or interpolation qualifiers in 4181 * a vertex shader input." 4182 */ 4183 4184 /* Section 4.3.6 of the GLSL 1.30 specification states: 4185 * "It is an error to use centroid out in a fragment shader." 4186 * 4187 * The GL_ARB_shading_language_420pack extension specification states: 4188 * "It is an error to use auxiliary storage qualifiers or interpolation 4189 * qualifiers on an output in a fragment shader." 4190 */ 4191 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) { 4192 _mesa_glsl_error(loc, state, 4193 "sample qualifier may only be used on `in` or `out` " 4194 "variables between shader stages"); 4195 } 4196 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) { 4197 _mesa_glsl_error(loc, state, 4198 "centroid qualifier may only be used with `in', " 4199 "`out' or `varying' variables between shader stages"); 4200 } 4201 4202 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) { 4203 _mesa_glsl_error(loc, state, 4204 "the shared storage qualifiers can only be used with " 4205 "compute shaders"); 4206 } 4207 4208 apply_image_qualifier_to_variable(qual, var, state, loc); 4209} 4210 4211/** 4212 * Get the variable that is being redeclared by this declaration or if it 4213 * does not exist, the current declared variable. 4214 * 4215 * Semantic checks to verify the validity of the redeclaration are also 4216 * performed. If semantic checks fail, compilation error will be emitted via 4217 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned. 4218 * 4219 * \returns 4220 * A pointer to an existing variable in the current scope if the declaration 4221 * is a redeclaration, current variable otherwise. \c is_declared boolean 4222 * will return \c true if the declaration is a redeclaration, \c false 4223 * otherwise. 4224 */ 4225static ir_variable * 4226get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc, 4227 struct _mesa_glsl_parse_state *state, 4228 bool allow_all_redeclarations, 4229 bool *is_redeclaration) 4230{ 4231 ir_variable *var = *var_ptr; 4232 4233 /* Check if this declaration is actually a re-declaration, either to 4234 * resize an array or add qualifiers to an existing variable. 4235 * 4236 * This is allowed for variables in the current scope, or when at 4237 * global scope (for built-ins in the implicit outer scope). 4238 */ 4239 ir_variable *earlier = state->symbols->get_variable(var->name); 4240 if (earlier == NULL || 4241 (state->current_function != NULL && 4242 !state->symbols->name_declared_this_scope(var->name))) { 4243 *is_redeclaration = false; 4244 return var; 4245 } 4246 4247 *is_redeclaration = true; 4248 4249 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec, 4250 * 4251 * "It is legal to declare an array without a size and then 4252 * later re-declare the same name as an array of the same 4253 * type and specify a size." 4254 */ 4255 if (earlier->type->is_unsized_array() && var->type->is_array() 4256 && (var->type->fields.array == earlier->type->fields.array)) { 4257 /* FINISHME: This doesn't match the qualifiers on the two 4258 * FINISHME: declarations. It's not 100% clear whether this is 4259 * FINISHME: required or not. 4260 */ 4261 4262 const int size = var->type->array_size(); 4263 check_builtin_array_max_size(var->name, size, loc, state); 4264 if ((size > 0) && (size <= earlier->data.max_array_access)) { 4265 _mesa_glsl_error(& loc, state, "array size must be > %u due to " 4266 "previous access", 4267 earlier->data.max_array_access); 4268 } 4269 4270 earlier->type = var->type; 4271 delete var; 4272 var = NULL; 4273 *var_ptr = NULL; 4274 } else if ((state->ARB_fragment_coord_conventions_enable || 4275 state->is_version(150, 0)) 4276 && strcmp(var->name, "gl_FragCoord") == 0 4277 && earlier->type == var->type 4278 && var->data.mode == ir_var_shader_in) { 4279 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout 4280 * qualifiers. 4281 */ 4282 earlier->data.origin_upper_left = var->data.origin_upper_left; 4283 earlier->data.pixel_center_integer = var->data.pixel_center_integer; 4284 4285 /* According to section 4.3.7 of the GLSL 1.30 spec, 4286 * the following built-in varaibles can be redeclared with an 4287 * interpolation qualifier: 4288 * * gl_FrontColor 4289 * * gl_BackColor 4290 * * gl_FrontSecondaryColor 4291 * * gl_BackSecondaryColor 4292 * * gl_Color 4293 * * gl_SecondaryColor 4294 */ 4295 } else if (state->is_version(130, 0) 4296 && (strcmp(var->name, "gl_FrontColor") == 0 4297 || strcmp(var->name, "gl_BackColor") == 0 4298 || strcmp(var->name, "gl_FrontSecondaryColor") == 0 4299 || strcmp(var->name, "gl_BackSecondaryColor") == 0 4300 || strcmp(var->name, "gl_Color") == 0 4301 || strcmp(var->name, "gl_SecondaryColor") == 0) 4302 && earlier->type == var->type 4303 && earlier->data.mode == var->data.mode) { 4304 earlier->data.interpolation = var->data.interpolation; 4305 4306 /* Layout qualifiers for gl_FragDepth. */ 4307 } else if ((state->is_version(420, 0) || 4308 state->AMD_conservative_depth_enable || 4309 state->ARB_conservative_depth_enable) 4310 && strcmp(var->name, "gl_FragDepth") == 0 4311 && earlier->type == var->type 4312 && earlier->data.mode == var->data.mode) { 4313 4314 /** From the AMD_conservative_depth spec: 4315 * Within any shader, the first redeclarations of gl_FragDepth 4316 * must appear before any use of gl_FragDepth. 4317 */ 4318 if (earlier->data.used) { 4319 _mesa_glsl_error(&loc, state, 4320 "the first redeclaration of gl_FragDepth " 4321 "must appear before any use of gl_FragDepth"); 4322 } 4323 4324 /* Prevent inconsistent redeclaration of depth layout qualifier. */ 4325 if (earlier->data.depth_layout != ir_depth_layout_none 4326 && earlier->data.depth_layout != var->data.depth_layout) { 4327 _mesa_glsl_error(&loc, state, 4328 "gl_FragDepth: depth layout is declared here " 4329 "as '%s, but it was previously declared as " 4330 "'%s'", 4331 depth_layout_string(var->data.depth_layout), 4332 depth_layout_string(earlier->data.depth_layout)); 4333 } 4334 4335 earlier->data.depth_layout = var->data.depth_layout; 4336 4337 } else if (state->has_framebuffer_fetch() && 4338 strcmp(var->name, "gl_LastFragData") == 0 && 4339 var->type == earlier->type && 4340 var->data.mode == ir_var_auto) { 4341 /* According to the EXT_shader_framebuffer_fetch spec: 4342 * 4343 * "By default, gl_LastFragData is declared with the mediump precision 4344 * qualifier. This can be changed by redeclaring the corresponding 4345 * variables with the desired precision qualifier." 4346 * 4347 * "Fragment shaders may specify the following layout qualifier only for 4348 * redeclaring the built-in gl_LastFragData array [...]: noncoherent" 4349 */ 4350 earlier->data.precision = var->data.precision; 4351 earlier->data.memory_coherent = var->data.memory_coherent; 4352 4353 } else if (earlier->data.how_declared == ir_var_declared_implicitly && 4354 state->allow_builtin_variable_redeclaration) { 4355 /* Allow verbatim redeclarations of built-in variables. Not explicitly 4356 * valid, but some applications do it. 4357 */ 4358 if (earlier->data.mode != var->data.mode && 4359 !(earlier->data.mode == ir_var_system_value && 4360 var->data.mode == ir_var_shader_in)) { 4361 _mesa_glsl_error(&loc, state, 4362 "redeclaration of `%s' with incorrect qualifiers", 4363 var->name); 4364 } else if (earlier->type != var->type) { 4365 _mesa_glsl_error(&loc, state, 4366 "redeclaration of `%s' has incorrect type", 4367 var->name); 4368 } 4369 } else if (allow_all_redeclarations) { 4370 if (earlier->data.mode != var->data.mode) { 4371 _mesa_glsl_error(&loc, state, 4372 "redeclaration of `%s' with incorrect qualifiers", 4373 var->name); 4374 } else if (earlier->type != var->type) { 4375 _mesa_glsl_error(&loc, state, 4376 "redeclaration of `%s' has incorrect type", 4377 var->name); 4378 } 4379 } else { 4380 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); 4381 } 4382 4383 return earlier; 4384} 4385 4386/** 4387 * Generate the IR for an initializer in a variable declaration 4388 */ 4389static ir_rvalue * 4390process_initializer(ir_variable *var, ast_declaration *decl, 4391 ast_fully_specified_type *type, 4392 exec_list *initializer_instructions, 4393 struct _mesa_glsl_parse_state *state) 4394{ 4395 void *mem_ctx = state; 4396 ir_rvalue *result = NULL; 4397 4398 YYLTYPE initializer_loc = decl->initializer->get_location(); 4399 4400 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec: 4401 * 4402 * "All uniform variables are read-only and are initialized either 4403 * directly by an application via API commands, or indirectly by 4404 * OpenGL." 4405 */ 4406 if (var->data.mode == ir_var_uniform) { 4407 state->check_version(120, 0, &initializer_loc, 4408 "cannot initialize uniform %s", 4409 var->name); 4410 } 4411 4412 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: 4413 * 4414 * "Buffer variables cannot have initializers." 4415 */ 4416 if (var->data.mode == ir_var_shader_storage) { 4417 _mesa_glsl_error(&initializer_loc, state, 4418 "cannot initialize buffer variable %s", 4419 var->name); 4420 } 4421 4422 /* From section 4.1.7 of the GLSL 4.40 spec: 4423 * 4424 * "Opaque variables [...] are initialized only through the 4425 * OpenGL API; they cannot be declared with an initializer in a 4426 * shader." 4427 * 4428 * From section 4.1.7 of the ARB_bindless_texture spec: 4429 * 4430 * "Samplers may be declared as shader inputs and outputs, as uniform 4431 * variables, as temporary variables, and as function parameters." 4432 * 4433 * From section 4.1.X of the ARB_bindless_texture spec: 4434 * 4435 * "Images may be declared as shader inputs and outputs, as uniform 4436 * variables, as temporary variables, and as function parameters." 4437 */ 4438 if (var->type->contains_atomic() || 4439 (!state->has_bindless() && var->type->contains_opaque())) { 4440 _mesa_glsl_error(&initializer_loc, state, 4441 "cannot initialize %s variable %s", 4442 var->name, state->has_bindless() ? "atomic" : "opaque"); 4443 } 4444 4445 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) { 4446 _mesa_glsl_error(&initializer_loc, state, 4447 "cannot initialize %s shader input / %s %s", 4448 _mesa_shader_stage_to_string(state->stage), 4449 (state->stage == MESA_SHADER_VERTEX) 4450 ? "attribute" : "varying", 4451 var->name); 4452 } 4453 4454 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) { 4455 _mesa_glsl_error(&initializer_loc, state, 4456 "cannot initialize %s shader output %s", 4457 _mesa_shader_stage_to_string(state->stage), 4458 var->name); 4459 } 4460 4461 /* If the initializer is an ast_aggregate_initializer, recursively store 4462 * type information from the LHS into it, so that its hir() function can do 4463 * type checking. 4464 */ 4465 if (decl->initializer->oper == ast_aggregate) 4466 _mesa_ast_set_aggregate_type(var->type, decl->initializer); 4467 4468 ir_dereference *const lhs = new(state) ir_dereference_variable(var); 4469 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state); 4470 4471 /* Calculate the constant value if this is a const or uniform 4472 * declaration. 4473 * 4474 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says: 4475 * 4476 * "Declarations of globals without a storage qualifier, or with 4477 * just the const qualifier, may include initializers, in which case 4478 * they will be initialized before the first line of main() is 4479 * executed. Such initializers must be a constant expression." 4480 * 4481 * The same section of the GLSL ES 3.00.4 spec has similar language. 4482 */ 4483 if (type->qualifier.flags.q.constant 4484 || type->qualifier.flags.q.uniform 4485 || (state->es_shader && state->current_function == NULL)) { 4486 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc, 4487 lhs, rhs, true); 4488 if (new_rhs != NULL) { 4489 rhs = new_rhs; 4490 4491 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec 4492 * says: 4493 * 4494 * "A constant expression is one of 4495 * 4496 * ... 4497 * 4498 * - an expression formed by an operator on operands that are 4499 * all constant expressions, including getting an element of 4500 * a constant array, or a field of a constant structure, or 4501 * components of a constant vector. However, the sequence 4502 * operator ( , ) and the assignment operators ( =, +=, ...) 4503 * are not included in the operators that can create a 4504 * constant expression." 4505 * 4506 * Section 12.43 (Sequence operator and constant expressions) says: 4507 * 4508 * "Should the following construct be allowed? 4509 * 4510 * float a[2,3]; 4511 * 4512 * The expression within the brackets uses the sequence operator 4513 * (',') and returns the integer 3 so the construct is declaring 4514 * a single-dimensional array of size 3. In some languages, the 4515 * construct declares a two-dimensional array. It would be 4516 * preferable to make this construct illegal to avoid confusion. 4517 * 4518 * One possibility is to change the definition of the sequence 4519 * operator so that it does not return a constant-expression and 4520 * hence cannot be used to declare an array size. 4521 * 4522 * RESOLUTION: The result of a sequence operator is not a 4523 * constant-expression." 4524 * 4525 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec 4526 * contains language almost identical to the section 4.3.3 in the 4527 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL 4528 * versions. 4529 */ 4530 ir_constant *constant_value = 4531 rhs->constant_expression_value(mem_ctx); 4532 4533 if (!constant_value || 4534 (state->is_version(430, 300) && 4535 decl->initializer->has_sequence_subexpression())) { 4536 const char *const variable_mode = 4537 (type->qualifier.flags.q.constant) 4538 ? "const" 4539 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global"); 4540 4541 /* If ARB_shading_language_420pack is enabled, initializers of 4542 * const-qualified local variables do not have to be constant 4543 * expressions. Const-qualified global variables must still be 4544 * initialized with constant expressions. 4545 */ 4546 if (!state->has_420pack() 4547 || state->current_function == NULL) { 4548 _mesa_glsl_error(& initializer_loc, state, 4549 "initializer of %s variable `%s' must be a " 4550 "constant expression", 4551 variable_mode, 4552 decl->identifier); 4553 if (var->type->is_numeric()) { 4554 /* Reduce cascading errors. */ 4555 var->constant_value = type->qualifier.flags.q.constant 4556 ? ir_constant::zero(state, var->type) : NULL; 4557 } 4558 } 4559 } else { 4560 rhs = constant_value; 4561 var->constant_value = type->qualifier.flags.q.constant 4562 ? constant_value : NULL; 4563 } 4564 } else { 4565 if (var->type->is_numeric()) { 4566 /* Reduce cascading errors. */ 4567 rhs = var->constant_value = type->qualifier.flags.q.constant 4568 ? ir_constant::zero(state, var->type) : NULL; 4569 } 4570 } 4571 } 4572 4573 if (rhs && !rhs->type->is_error()) { 4574 bool temp = var->data.read_only; 4575 if (type->qualifier.flags.q.constant) 4576 var->data.read_only = false; 4577 4578 /* Never emit code to initialize a uniform. 4579 */ 4580 const glsl_type *initializer_type; 4581 bool error_emitted = false; 4582 if (!type->qualifier.flags.q.uniform) { 4583 error_emitted = 4584 do_assignment(initializer_instructions, state, 4585 NULL, lhs, rhs, 4586 &result, true, true, 4587 type->get_location()); 4588 initializer_type = result->type; 4589 } else 4590 initializer_type = rhs->type; 4591 4592 if (!error_emitted) { 4593 var->constant_initializer = rhs->constant_expression_value(mem_ctx); 4594 var->data.has_initializer = true; 4595 4596 /* If the declared variable is an unsized array, it must inherrit 4597 * its full type from the initializer. A declaration such as 4598 * 4599 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0); 4600 * 4601 * becomes 4602 * 4603 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0); 4604 * 4605 * The assignment generated in the if-statement (below) will also 4606 * automatically handle this case for non-uniforms. 4607 * 4608 * If the declared variable is not an array, the types must 4609 * already match exactly. As a result, the type assignment 4610 * here can be done unconditionally. For non-uniforms the call 4611 * to do_assignment can change the type of the initializer (via 4612 * the implicit conversion rules). For uniforms the initializer 4613 * must be a constant expression, and the type of that expression 4614 * was validated above. 4615 */ 4616 var->type = initializer_type; 4617 } 4618 4619 var->data.read_only = temp; 4620 } 4621 4622 return result; 4623} 4624 4625static void 4626validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state, 4627 YYLTYPE loc, ir_variable *var, 4628 unsigned num_vertices, 4629 unsigned *size, 4630 const char *var_category) 4631{ 4632 if (var->type->is_unsized_array()) { 4633 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says: 4634 * 4635 * All geometry shader input unsized array declarations will be 4636 * sized by an earlier input layout qualifier, when present, as per 4637 * the following table. 4638 * 4639 * Followed by a table mapping each allowed input layout qualifier to 4640 * the corresponding input length. 4641 * 4642 * Similarly for tessellation control shader outputs. 4643 */ 4644 if (num_vertices != 0) 4645 var->type = glsl_type::get_array_instance(var->type->fields.array, 4646 num_vertices); 4647 } else { 4648 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec 4649 * includes the following examples of compile-time errors: 4650 * 4651 * // code sequence within one shader... 4652 * in vec4 Color1[]; // size unknown 4653 * ...Color1.length()...// illegal, length() unknown 4654 * in vec4 Color2[2]; // size is 2 4655 * ...Color1.length()...// illegal, Color1 still has no size 4656 * in vec4 Color3[3]; // illegal, input sizes are inconsistent 4657 * layout(lines) in; // legal, input size is 2, matching 4658 * in vec4 Color4[3]; // illegal, contradicts layout 4659 * ... 4660 * 4661 * To detect the case illustrated by Color3, we verify that the size of 4662 * an explicitly-sized array matches the size of any previously declared 4663 * explicitly-sized array. To detect the case illustrated by Color4, we 4664 * verify that the size of an explicitly-sized array is consistent with 4665 * any previously declared input layout. 4666 */ 4667 if (num_vertices != 0 && var->type->length != num_vertices) { 4668 _mesa_glsl_error(&loc, state, 4669 "%s size contradicts previously declared layout " 4670 "(size is %u, but layout requires a size of %u)", 4671 var_category, var->type->length, num_vertices); 4672 } else if (*size != 0 && var->type->length != *size) { 4673 _mesa_glsl_error(&loc, state, 4674 "%s sizes are inconsistent (size is %u, but a " 4675 "previous declaration has size %u)", 4676 var_category, var->type->length, *size); 4677 } else { 4678 *size = var->type->length; 4679 } 4680 } 4681} 4682 4683static void 4684handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state, 4685 YYLTYPE loc, ir_variable *var) 4686{ 4687 unsigned num_vertices = 0; 4688 4689 if (state->tcs_output_vertices_specified) { 4690 if (!state->out_qualifier->vertices-> 4691 process_qualifier_constant(state, "vertices", 4692 &num_vertices, false)) { 4693 return; 4694 } 4695 4696 if (num_vertices > state->Const.MaxPatchVertices) { 4697 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds " 4698 "GL_MAX_PATCH_VERTICES", num_vertices); 4699 return; 4700 } 4701 } 4702 4703 if (!var->type->is_array() && !var->data.patch) { 4704 _mesa_glsl_error(&loc, state, 4705 "tessellation control shader outputs must be arrays"); 4706 4707 /* To avoid cascading failures, short circuit the checks below. */ 4708 return; 4709 } 4710 4711 if (var->data.patch) 4712 return; 4713 4714 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, 4715 &state->tcs_output_size, 4716 "tessellation control shader output"); 4717} 4718 4719/** 4720 * Do additional processing necessary for tessellation control/evaluation shader 4721 * input declarations. This covers both interface block arrays and bare input 4722 * variables. 4723 */ 4724static void 4725handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state, 4726 YYLTYPE loc, ir_variable *var) 4727{ 4728 if (!var->type->is_array() && !var->data.patch) { 4729 _mesa_glsl_error(&loc, state, 4730 "per-vertex tessellation shader inputs must be arrays"); 4731 /* Avoid cascading failures. */ 4732 return; 4733 } 4734 4735 if (var->data.patch) 4736 return; 4737 4738 /* The ARB_tessellation_shader spec says: 4739 * 4740 * "Declaring an array size is optional. If no size is specified, it 4741 * will be taken from the implementation-dependent maximum patch size 4742 * (gl_MaxPatchVertices). If a size is specified, it must match the 4743 * maximum patch size; otherwise, a compile or link error will occur." 4744 * 4745 * This text appears twice, once for TCS inputs, and again for TES inputs. 4746 */ 4747 if (var->type->is_unsized_array()) { 4748 var->type = glsl_type::get_array_instance(var->type->fields.array, 4749 state->Const.MaxPatchVertices); 4750 } else if (var->type->length != state->Const.MaxPatchVertices) { 4751 _mesa_glsl_error(&loc, state, 4752 "per-vertex tessellation shader input arrays must be " 4753 "sized to gl_MaxPatchVertices (%d).", 4754 state->Const.MaxPatchVertices); 4755 } 4756} 4757 4758 4759/** 4760 * Do additional processing necessary for geometry shader input declarations 4761 * (this covers both interface blocks arrays and bare input variables). 4762 */ 4763static void 4764handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state, 4765 YYLTYPE loc, ir_variable *var) 4766{ 4767 unsigned num_vertices = 0; 4768 4769 if (state->gs_input_prim_type_specified) { 4770 num_vertices = vertices_per_prim(state->in_qualifier->prim_type); 4771 } 4772 4773 /* Geometry shader input variables must be arrays. Caller should have 4774 * reported an error for this. 4775 */ 4776 if (!var->type->is_array()) { 4777 assert(state->error); 4778 4779 /* To avoid cascading failures, short circuit the checks below. */ 4780 return; 4781 } 4782 4783 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, 4784 &state->gs_input_size, 4785 "geometry shader input"); 4786} 4787 4788static void 4789validate_identifier(const char *identifier, YYLTYPE loc, 4790 struct _mesa_glsl_parse_state *state) 4791{ 4792 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, 4793 * 4794 * "Identifiers starting with "gl_" are reserved for use by 4795 * OpenGL, and may not be declared in a shader as either a 4796 * variable or a function." 4797 */ 4798 if (is_gl_identifier(identifier)) { 4799 _mesa_glsl_error(&loc, state, 4800 "identifier `%s' uses reserved `gl_' prefix", 4801 identifier); 4802 } else if (strstr(identifier, "__")) { 4803 /* From page 14 (page 20 of the PDF) of the GLSL 1.10 4804 * spec: 4805 * 4806 * "In addition, all identifiers containing two 4807 * consecutive underscores (__) are reserved as 4808 * possible future keywords." 4809 * 4810 * The intention is that names containing __ are reserved for internal 4811 * use by the implementation, and names prefixed with GL_ are reserved 4812 * for use by Khronos. Names simply containing __ are dangerous to use, 4813 * but should be allowed. 4814 * 4815 * A future version of the GLSL specification will clarify this. 4816 */ 4817 _mesa_glsl_warning(&loc, state, 4818 "identifier `%s' uses reserved `__' string", 4819 identifier); 4820 } 4821} 4822 4823ir_rvalue * 4824ast_declarator_list::hir(exec_list *instructions, 4825 struct _mesa_glsl_parse_state *state) 4826{ 4827 void *ctx = state; 4828 const struct glsl_type *decl_type; 4829 const char *type_name = NULL; 4830 ir_rvalue *result = NULL; 4831 YYLTYPE loc = this->get_location(); 4832 4833 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec: 4834 * 4835 * "To ensure that a particular output variable is invariant, it is 4836 * necessary to use the invariant qualifier. It can either be used to 4837 * qualify a previously declared variable as being invariant 4838 * 4839 * invariant gl_Position; // make existing gl_Position be invariant" 4840 * 4841 * In these cases the parser will set the 'invariant' flag in the declarator 4842 * list, and the type will be NULL. 4843 */ 4844 if (this->invariant) { 4845 assert(this->type == NULL); 4846 4847 if (state->current_function != NULL) { 4848 _mesa_glsl_error(& loc, state, 4849 "all uses of `invariant' keyword must be at global " 4850 "scope"); 4851 } 4852 4853 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 4854 assert(decl->array_specifier == NULL); 4855 assert(decl->initializer == NULL); 4856 4857 ir_variable *const earlier = 4858 state->symbols->get_variable(decl->identifier); 4859 if (earlier == NULL) { 4860 _mesa_glsl_error(& loc, state, 4861 "undeclared variable `%s' cannot be marked " 4862 "invariant", decl->identifier); 4863 } else if (!is_allowed_invariant(earlier, state)) { 4864 _mesa_glsl_error(&loc, state, 4865 "`%s' cannot be marked invariant; interfaces between " 4866 "shader stages only.", decl->identifier); 4867 } else if (earlier->data.used) { 4868 _mesa_glsl_error(& loc, state, 4869 "variable `%s' may not be redeclared " 4870 "`invariant' after being used", 4871 earlier->name); 4872 } else { 4873 earlier->data.explicit_invariant = true; 4874 earlier->data.invariant = true; 4875 } 4876 } 4877 4878 /* Invariant redeclarations do not have r-values. 4879 */ 4880 return NULL; 4881 } 4882 4883 if (this->precise) { 4884 assert(this->type == NULL); 4885 4886 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 4887 assert(decl->array_specifier == NULL); 4888 assert(decl->initializer == NULL); 4889 4890 ir_variable *const earlier = 4891 state->symbols->get_variable(decl->identifier); 4892 if (earlier == NULL) { 4893 _mesa_glsl_error(& loc, state, 4894 "undeclared variable `%s' cannot be marked " 4895 "precise", decl->identifier); 4896 } else if (state->current_function != NULL && 4897 !state->symbols->name_declared_this_scope(decl->identifier)) { 4898 /* Note: we have to check if we're in a function, since 4899 * builtins are treated as having come from another scope. 4900 */ 4901 _mesa_glsl_error(& loc, state, 4902 "variable `%s' from an outer scope may not be " 4903 "redeclared `precise' in this scope", 4904 earlier->name); 4905 } else if (earlier->data.used) { 4906 _mesa_glsl_error(& loc, state, 4907 "variable `%s' may not be redeclared " 4908 "`precise' after being used", 4909 earlier->name); 4910 } else { 4911 earlier->data.precise = true; 4912 } 4913 } 4914 4915 /* Precise redeclarations do not have r-values either. */ 4916 return NULL; 4917 } 4918 4919 assert(this->type != NULL); 4920 assert(!this->invariant); 4921 assert(!this->precise); 4922 4923 /* The type specifier may contain a structure definition. Process that 4924 * before any of the variable declarations. 4925 */ 4926 (void) this->type->specifier->hir(instructions, state); 4927 4928 decl_type = this->type->glsl_type(& type_name, state); 4929 4930 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: 4931 * "Buffer variables may only be declared inside interface blocks 4932 * (section 4.3.9 “Interface Blocks”), which are then referred to as 4933 * shader storage blocks. It is a compile-time error to declare buffer 4934 * variables at global scope (outside a block)." 4935 */ 4936 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) { 4937 _mesa_glsl_error(&loc, state, 4938 "buffer variables cannot be declared outside " 4939 "interface blocks"); 4940 } 4941 4942 /* An offset-qualified atomic counter declaration sets the default 4943 * offset for the next declaration within the same atomic counter 4944 * buffer. 4945 */ 4946 if (decl_type && decl_type->contains_atomic()) { 4947 if (type->qualifier.flags.q.explicit_binding && 4948 type->qualifier.flags.q.explicit_offset) { 4949 unsigned qual_binding; 4950 unsigned qual_offset; 4951 if (process_qualifier_constant(state, &loc, "binding", 4952 type->qualifier.binding, 4953 &qual_binding) 4954 && process_qualifier_constant(state, &loc, "offset", 4955 type->qualifier.offset, 4956 &qual_offset)) { 4957 state->atomic_counter_offsets[qual_binding] = qual_offset; 4958 } 4959 } 4960 4961 ast_type_qualifier allowed_atomic_qual_mask; 4962 allowed_atomic_qual_mask.flags.i = 0; 4963 allowed_atomic_qual_mask.flags.q.explicit_binding = 1; 4964 allowed_atomic_qual_mask.flags.q.explicit_offset = 1; 4965 allowed_atomic_qual_mask.flags.q.uniform = 1; 4966 4967 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask, 4968 "invalid layout qualifier for", 4969 "atomic_uint"); 4970 } 4971 4972 if (this->declarations.is_empty()) { 4973 /* If there is no structure involved in the program text, there are two 4974 * possible scenarios: 4975 * 4976 * - The program text contained something like 'vec4;'. This is an 4977 * empty declaration. It is valid but weird. Emit a warning. 4978 * 4979 * - The program text contained something like 'S;' and 'S' is not the 4980 * name of a known structure type. This is both invalid and weird. 4981 * Emit an error. 4982 * 4983 * - The program text contained something like 'mediump float;' 4984 * when the programmer probably meant 'precision mediump 4985 * float;' Emit a warning with a description of what they 4986 * probably meant to do. 4987 * 4988 * Note that if decl_type is NULL and there is a structure involved, 4989 * there must have been some sort of error with the structure. In this 4990 * case we assume that an error was already generated on this line of 4991 * code for the structure. There is no need to generate an additional, 4992 * confusing error. 4993 */ 4994 assert(this->type->specifier->structure == NULL || decl_type != NULL 4995 || state->error); 4996 4997 if (decl_type == NULL) { 4998 _mesa_glsl_error(&loc, state, 4999 "invalid type `%s' in empty declaration", 5000 type_name); 5001 } else { 5002 if (decl_type->is_array()) { 5003 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2 5004 * spec: 5005 * 5006 * "... any declaration that leaves the size undefined is 5007 * disallowed as this would add complexity and there are no 5008 * use-cases." 5009 */ 5010 if (state->es_shader && decl_type->is_unsized_array()) { 5011 _mesa_glsl_error(&loc, state, "array size must be explicitly " 5012 "or implicitly defined"); 5013 } 5014 5015 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec: 5016 * 5017 * "The combinations of types and qualifiers that cause 5018 * compile-time or link-time errors are the same whether or not 5019 * the declaration is empty." 5020 */ 5021 validate_array_dimensions(decl_type, state, &loc); 5022 } 5023 5024 if (decl_type->is_atomic_uint()) { 5025 /* Empty atomic counter declarations are allowed and useful 5026 * to set the default offset qualifier. 5027 */ 5028 return NULL; 5029 } else if (this->type->qualifier.precision != ast_precision_none) { 5030 if (this->type->specifier->structure != NULL) { 5031 _mesa_glsl_error(&loc, state, 5032 "precision qualifiers can't be applied " 5033 "to structures"); 5034 } else { 5035 static const char *const precision_names[] = { 5036 "highp", 5037 "highp", 5038 "mediump", 5039 "lowp" 5040 }; 5041 5042 _mesa_glsl_warning(&loc, state, 5043 "empty declaration with precision " 5044 "qualifier, to set the default precision, " 5045 "use `precision %s %s;'", 5046 precision_names[this->type-> 5047 qualifier.precision], 5048 type_name); 5049 } 5050 } else if (this->type->specifier->structure == NULL) { 5051 _mesa_glsl_warning(&loc, state, "empty declaration"); 5052 } 5053 } 5054 } 5055 5056 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 5057 const struct glsl_type *var_type; 5058 ir_variable *var; 5059 const char *identifier = decl->identifier; 5060 /* FINISHME: Emit a warning if a variable declaration shadows a 5061 * FINISHME: declaration at a higher scope. 5062 */ 5063 5064 if ((decl_type == NULL) || decl_type->is_void()) { 5065 if (type_name != NULL) { 5066 _mesa_glsl_error(& loc, state, 5067 "invalid type `%s' in declaration of `%s'", 5068 type_name, decl->identifier); 5069 } else { 5070 _mesa_glsl_error(& loc, state, 5071 "invalid type in declaration of `%s'", 5072 decl->identifier); 5073 } 5074 continue; 5075 } 5076 5077 if (this->type->qualifier.is_subroutine_decl()) { 5078 const glsl_type *t; 5079 const char *name; 5080 5081 t = state->symbols->get_type(this->type->specifier->type_name); 5082 if (!t) 5083 _mesa_glsl_error(& loc, state, 5084 "invalid type in declaration of `%s'", 5085 decl->identifier); 5086 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier); 5087 5088 identifier = name; 5089 5090 } 5091 var_type = process_array_type(&loc, decl_type, decl->array_specifier, 5092 state); 5093 5094 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto); 5095 5096 /* The 'varying in' and 'varying out' qualifiers can only be used with 5097 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support 5098 * yet. 5099 */ 5100 if (this->type->qualifier.flags.q.varying) { 5101 if (this->type->qualifier.flags.q.in) { 5102 _mesa_glsl_error(& loc, state, 5103 "`varying in' qualifier in declaration of " 5104 "`%s' only valid for geometry shaders using " 5105 "ARB_geometry_shader4 or EXT_geometry_shader4", 5106 decl->identifier); 5107 } else if (this->type->qualifier.flags.q.out) { 5108 _mesa_glsl_error(& loc, state, 5109 "`varying out' qualifier in declaration of " 5110 "`%s' only valid for geometry shaders using " 5111 "ARB_geometry_shader4 or EXT_geometry_shader4", 5112 decl->identifier); 5113 } 5114 } 5115 5116 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification; 5117 * 5118 * "Global variables can only use the qualifiers const, 5119 * attribute, uniform, or varying. Only one may be 5120 * specified. 5121 * 5122 * Local variables can only use the qualifier const." 5123 * 5124 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by 5125 * any extension that adds the 'layout' keyword. 5126 */ 5127 if (!state->is_version(130, 300) 5128 && !state->has_explicit_attrib_location() 5129 && !state->has_separate_shader_objects() 5130 && !state->ARB_fragment_coord_conventions_enable) { 5131 if (this->type->qualifier.flags.q.out) { 5132 _mesa_glsl_error(& loc, state, 5133 "`out' qualifier in declaration of `%s' " 5134 "only valid for function parameters in %s", 5135 decl->identifier, state->get_version_string()); 5136 } 5137 if (this->type->qualifier.flags.q.in) { 5138 _mesa_glsl_error(& loc, state, 5139 "`in' qualifier in declaration of `%s' " 5140 "only valid for function parameters in %s", 5141 decl->identifier, state->get_version_string()); 5142 } 5143 /* FINISHME: Test for other invalid qualifiers. */ 5144 } 5145 5146 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, 5147 & loc, false); 5148 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state, 5149 &loc); 5150 5151 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary) 5152 && (var->type->is_numeric() || var->type->is_boolean()) 5153 && state->zero_init) { 5154 const ir_constant_data data = { { 0 } }; 5155 var->data.has_initializer = true; 5156 var->constant_initializer = new(var) ir_constant(var->type, &data); 5157 } 5158 5159 if (this->type->qualifier.flags.q.invariant) { 5160 if (!is_allowed_invariant(var, state)) { 5161 _mesa_glsl_error(&loc, state, 5162 "`%s' cannot be marked invariant; interfaces between " 5163 "shader stages only", var->name); 5164 } 5165 } 5166 5167 if (state->current_function != NULL) { 5168 const char *mode = NULL; 5169 const char *extra = ""; 5170 5171 /* There is no need to check for 'inout' here because the parser will 5172 * only allow that in function parameter lists. 5173 */ 5174 if (this->type->qualifier.flags.q.attribute) { 5175 mode = "attribute"; 5176 } else if (this->type->qualifier.is_subroutine_decl()) { 5177 mode = "subroutine uniform"; 5178 } else if (this->type->qualifier.flags.q.uniform) { 5179 mode = "uniform"; 5180 } else if (this->type->qualifier.flags.q.varying) { 5181 mode = "varying"; 5182 } else if (this->type->qualifier.flags.q.in) { 5183 mode = "in"; 5184 extra = " or in function parameter list"; 5185 } else if (this->type->qualifier.flags.q.out) { 5186 mode = "out"; 5187 extra = " or in function parameter list"; 5188 } 5189 5190 if (mode) { 5191 _mesa_glsl_error(& loc, state, 5192 "%s variable `%s' must be declared at " 5193 "global scope%s", 5194 mode, var->name, extra); 5195 } 5196 } else if (var->data.mode == ir_var_shader_in) { 5197 var->data.read_only = true; 5198 5199 if (state->stage == MESA_SHADER_VERTEX) { 5200 bool error_emitted = false; 5201 5202 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: 5203 * 5204 * "Vertex shader inputs can only be float, floating-point 5205 * vectors, matrices, signed and unsigned integers and integer 5206 * vectors. Vertex shader inputs can also form arrays of these 5207 * types, but not structures." 5208 * 5209 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec: 5210 * 5211 * "Vertex shader inputs can only be float, floating-point 5212 * vectors, matrices, signed and unsigned integers and integer 5213 * vectors. They cannot be arrays or structures." 5214 * 5215 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec: 5216 * 5217 * "The attribute qualifier can be used only with float, 5218 * floating-point vectors, and matrices. Attribute variables 5219 * cannot be declared as arrays or structures." 5220 * 5221 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec: 5222 * 5223 * "Vertex shader inputs can only be float, floating-point 5224 * vectors, matrices, signed and unsigned integers and integer 5225 * vectors. Vertex shader inputs cannot be arrays or 5226 * structures." 5227 * 5228 * From section 4.3.4 of the ARB_bindless_texture spec: 5229 * 5230 * "(modify third paragraph of the section to allow sampler and 5231 * image types) ... Vertex shader inputs can only be float, 5232 * single-precision floating-point scalars, single-precision 5233 * floating-point vectors, matrices, signed and unsigned 5234 * integers and integer vectors, sampler and image types." 5235 */ 5236 const glsl_type *check_type = var->type->without_array(); 5237 5238 switch (check_type->base_type) { 5239 case GLSL_TYPE_FLOAT: 5240 break; 5241 case GLSL_TYPE_UINT64: 5242 case GLSL_TYPE_INT64: 5243 break; 5244 case GLSL_TYPE_UINT: 5245 case GLSL_TYPE_INT: 5246 if (state->is_version(120, 300)) 5247 break; 5248 case GLSL_TYPE_DOUBLE: 5249 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable)) 5250 break; 5251 case GLSL_TYPE_SAMPLER: 5252 if (check_type->is_sampler() && state->has_bindless()) 5253 break; 5254 case GLSL_TYPE_IMAGE: 5255 if (check_type->is_image() && state->has_bindless()) 5256 break; 5257 /* FALLTHROUGH */ 5258 default: 5259 _mesa_glsl_error(& loc, state, 5260 "vertex shader input / attribute cannot have " 5261 "type %s`%s'", 5262 var->type->is_array() ? "array of " : "", 5263 check_type->name); 5264 error_emitted = true; 5265 } 5266 5267 if (!error_emitted && var->type->is_array() && 5268 !state->check_version(150, 0, &loc, 5269 "vertex shader input / attribute " 5270 "cannot have array type")) { 5271 error_emitted = true; 5272 } 5273 } else if (state->stage == MESA_SHADER_GEOMETRY) { 5274 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: 5275 * 5276 * Geometry shader input variables get the per-vertex values 5277 * written out by vertex shader output variables of the same 5278 * names. Since a geometry shader operates on a set of 5279 * vertices, each input varying variable (or input block, see 5280 * interface blocks below) needs to be declared as an array. 5281 */ 5282 if (!var->type->is_array()) { 5283 _mesa_glsl_error(&loc, state, 5284 "geometry shader inputs must be arrays"); 5285 } 5286 5287 handle_geometry_shader_input_decl(state, loc, var); 5288 } else if (state->stage == MESA_SHADER_FRAGMENT) { 5289 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec: 5290 * 5291 * It is a compile-time error to declare a fragment shader 5292 * input with, or that contains, any of the following types: 5293 * 5294 * * A boolean type 5295 * * An opaque type 5296 * * An array of arrays 5297 * * An array of structures 5298 * * A structure containing an array 5299 * * A structure containing a structure 5300 */ 5301 if (state->es_shader) { 5302 const glsl_type *check_type = var->type->without_array(); 5303 if (check_type->is_boolean() || 5304 check_type->contains_opaque()) { 5305 _mesa_glsl_error(&loc, state, 5306 "fragment shader input cannot have type %s", 5307 check_type->name); 5308 } 5309 if (var->type->is_array() && 5310 var->type->fields.array->is_array()) { 5311 _mesa_glsl_error(&loc, state, 5312 "%s shader output " 5313 "cannot have an array of arrays", 5314 _mesa_shader_stage_to_string(state->stage)); 5315 } 5316 if (var->type->is_array() && 5317 var->type->fields.array->is_record()) { 5318 _mesa_glsl_error(&loc, state, 5319 "fragment shader input " 5320 "cannot have an array of structs"); 5321 } 5322 if (var->type->is_record()) { 5323 for (unsigned i = 0; i < var->type->length; i++) { 5324 if (var->type->fields.structure[i].type->is_array() || 5325 var->type->fields.structure[i].type->is_record()) 5326 _mesa_glsl_error(&loc, state, 5327 "fragment shader input cannot have " 5328 "a struct that contains an " 5329 "array or struct"); 5330 } 5331 } 5332 } 5333 } else if (state->stage == MESA_SHADER_TESS_CTRL || 5334 state->stage == MESA_SHADER_TESS_EVAL) { 5335 handle_tess_shader_input_decl(state, loc, var); 5336 } 5337 } else if (var->data.mode == ir_var_shader_out) { 5338 const glsl_type *check_type = var->type->without_array(); 5339 5340 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec: 5341 * 5342 * It is a compile-time error to declare a fragment shader output 5343 * that contains any of the following: 5344 * 5345 * * A Boolean type (bool, bvec2 ...) 5346 * * A double-precision scalar or vector (double, dvec2 ...) 5347 * * An opaque type 5348 * * Any matrix type 5349 * * A structure 5350 */ 5351 if (state->stage == MESA_SHADER_FRAGMENT) { 5352 if (check_type->is_record() || check_type->is_matrix()) 5353 _mesa_glsl_error(&loc, state, 5354 "fragment shader output " 5355 "cannot have struct or matrix type"); 5356 switch (check_type->base_type) { 5357 case GLSL_TYPE_UINT: 5358 case GLSL_TYPE_INT: 5359 case GLSL_TYPE_FLOAT: 5360 break; 5361 default: 5362 _mesa_glsl_error(&loc, state, 5363 "fragment shader output cannot have " 5364 "type %s", check_type->name); 5365 } 5366 } 5367 5368 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec: 5369 * 5370 * It is a compile-time error to declare a vertex shader output 5371 * with, or that contains, any of the following types: 5372 * 5373 * * A boolean type 5374 * * An opaque type 5375 * * An array of arrays 5376 * * An array of structures 5377 * * A structure containing an array 5378 * * A structure containing a structure 5379 * 5380 * It is a compile-time error to declare a fragment shader output 5381 * with, or that contains, any of the following types: 5382 * 5383 * * A boolean type 5384 * * An opaque type 5385 * * A matrix 5386 * * A structure 5387 * * An array of array 5388 * 5389 * ES 3.20 updates this to apply to tessellation and geometry shaders 5390 * as well. Because there are per-vertex arrays in the new stages, 5391 * it strikes the "array of..." rules and replaces them with these: 5392 * 5393 * * For per-vertex-arrayed variables (applies to tessellation 5394 * control, tessellation evaluation and geometry shaders): 5395 * 5396 * * Per-vertex-arrayed arrays of arrays 5397 * * Per-vertex-arrayed arrays of structures 5398 * 5399 * * For non-per-vertex-arrayed variables: 5400 * 5401 * * An array of arrays 5402 * * An array of structures 5403 * 5404 * which basically says to unwrap the per-vertex aspect and apply 5405 * the old rules. 5406 */ 5407 if (state->es_shader) { 5408 if (var->type->is_array() && 5409 var->type->fields.array->is_array()) { 5410 _mesa_glsl_error(&loc, state, 5411 "%s shader output " 5412 "cannot have an array of arrays", 5413 _mesa_shader_stage_to_string(state->stage)); 5414 } 5415 if (state->stage <= MESA_SHADER_GEOMETRY) { 5416 const glsl_type *type = var->type; 5417 5418 if (state->stage == MESA_SHADER_TESS_CTRL && 5419 !var->data.patch && var->type->is_array()) { 5420 type = var->type->fields.array; 5421 } 5422 5423 if (type->is_array() && type->fields.array->is_record()) { 5424 _mesa_glsl_error(&loc, state, 5425 "%s shader output cannot have " 5426 "an array of structs", 5427 _mesa_shader_stage_to_string(state->stage)); 5428 } 5429 if (type->is_record()) { 5430 for (unsigned i = 0; i < type->length; i++) { 5431 if (type->fields.structure[i].type->is_array() || 5432 type->fields.structure[i].type->is_record()) 5433 _mesa_glsl_error(&loc, state, 5434 "%s shader output cannot have a " 5435 "struct that contains an " 5436 "array or struct", 5437 _mesa_shader_stage_to_string(state->stage)); 5438 } 5439 } 5440 } 5441 } 5442 5443 if (state->stage == MESA_SHADER_TESS_CTRL) { 5444 handle_tess_ctrl_shader_output_decl(state, loc, var); 5445 } 5446 } else if (var->type->contains_subroutine()) { 5447 /* declare subroutine uniforms as hidden */ 5448 var->data.how_declared = ir_var_hidden; 5449 } 5450 5451 /* From section 4.3.4 of the GLSL 4.00 spec: 5452 * "Input variables may not be declared using the patch in qualifier 5453 * in tessellation control or geometry shaders." 5454 * 5455 * From section 4.3.6 of the GLSL 4.00 spec: 5456 * "It is an error to use patch out in a vertex, tessellation 5457 * evaluation, or geometry shader." 5458 * 5459 * This doesn't explicitly forbid using them in a fragment shader, but 5460 * that's probably just an oversight. 5461 */ 5462 if (state->stage != MESA_SHADER_TESS_EVAL 5463 && this->type->qualifier.flags.q.patch 5464 && this->type->qualifier.flags.q.in) { 5465 5466 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a " 5467 "tessellation evaluation shader"); 5468 } 5469 5470 if (state->stage != MESA_SHADER_TESS_CTRL 5471 && this->type->qualifier.flags.q.patch 5472 && this->type->qualifier.flags.q.out) { 5473 5474 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a " 5475 "tessellation control shader"); 5476 } 5477 5478 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30. 5479 */ 5480 if (this->type->qualifier.precision != ast_precision_none) { 5481 state->check_precision_qualifiers_allowed(&loc); 5482 } 5483 5484 if (this->type->qualifier.precision != ast_precision_none && 5485 !precision_qualifier_allowed(var->type)) { 5486 _mesa_glsl_error(&loc, state, 5487 "precision qualifiers apply only to floating point" 5488 ", integer and opaque types"); 5489 } 5490 5491 /* From section 4.1.7 of the GLSL 4.40 spec: 5492 * 5493 * "[Opaque types] can only be declared as function 5494 * parameters or uniform-qualified variables." 5495 * 5496 * From section 4.1.7 of the ARB_bindless_texture spec: 5497 * 5498 * "Samplers may be declared as shader inputs and outputs, as uniform 5499 * variables, as temporary variables, and as function parameters." 5500 * 5501 * From section 4.1.X of the ARB_bindless_texture spec: 5502 * 5503 * "Images may be declared as shader inputs and outputs, as uniform 5504 * variables, as temporary variables, and as function parameters." 5505 */ 5506 if (!this->type->qualifier.flags.q.uniform && 5507 (var_type->contains_atomic() || 5508 (!state->has_bindless() && var_type->contains_opaque()))) { 5509 _mesa_glsl_error(&loc, state, 5510 "%s variables must be declared uniform", 5511 state->has_bindless() ? "atomic" : "opaque"); 5512 } 5513 5514 /* Process the initializer and add its instructions to a temporary 5515 * list. This list will be added to the instruction stream (below) after 5516 * the declaration is added. This is done because in some cases (such as 5517 * redeclarations) the declaration may not actually be added to the 5518 * instruction stream. 5519 */ 5520 exec_list initializer_instructions; 5521 5522 /* Examine var name here since var may get deleted in the next call */ 5523 bool var_is_gl_id = is_gl_identifier(var->name); 5524 5525 bool is_redeclaration; 5526 var = get_variable_being_redeclared(&var, decl->get_location(), state, 5527 false /* allow_all_redeclarations */, 5528 &is_redeclaration); 5529 if (is_redeclaration) { 5530 if (var_is_gl_id && 5531 var->data.how_declared == ir_var_declared_in_block) { 5532 _mesa_glsl_error(&loc, state, 5533 "`%s' has already been redeclared using " 5534 "gl_PerVertex", var->name); 5535 } 5536 var->data.how_declared = ir_var_declared_normally; 5537 } 5538 5539 if (decl->initializer != NULL) { 5540 result = process_initializer(var, 5541 decl, this->type, 5542 &initializer_instructions, state); 5543 } else { 5544 validate_array_dimensions(var_type, state, &loc); 5545 } 5546 5547 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec: 5548 * 5549 * "It is an error to write to a const variable outside of 5550 * its declaration, so they must be initialized when 5551 * declared." 5552 */ 5553 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) { 5554 _mesa_glsl_error(& loc, state, 5555 "const declaration of `%s' must be initialized", 5556 decl->identifier); 5557 } 5558 5559 if (state->es_shader) { 5560 const glsl_type *const t = var->type; 5561 5562 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs. 5563 * 5564 * The GL_OES_tessellation_shader spec says about inputs: 5565 * 5566 * "Declaring an array size is optional. If no size is specified, 5567 * it will be taken from the implementation-dependent maximum 5568 * patch size (gl_MaxPatchVertices)." 5569 * 5570 * and about TCS outputs: 5571 * 5572 * "If no size is specified, it will be taken from output patch 5573 * size declared in the shader." 5574 * 5575 * The GL_OES_geometry_shader spec says: 5576 * 5577 * "All geometry shader input unsized array declarations will be 5578 * sized by an earlier input primitive layout qualifier, when 5579 * present, as per the following table." 5580 */ 5581 const bool implicitly_sized = 5582 (var->data.mode == ir_var_shader_in && 5583 state->stage >= MESA_SHADER_TESS_CTRL && 5584 state->stage <= MESA_SHADER_GEOMETRY) || 5585 (var->data.mode == ir_var_shader_out && 5586 state->stage == MESA_SHADER_TESS_CTRL); 5587 5588 if (t->is_unsized_array() && !implicitly_sized) 5589 /* Section 10.17 of the GLSL ES 1.00 specification states that 5590 * unsized array declarations have been removed from the language. 5591 * Arrays that are sized using an initializer are still explicitly 5592 * sized. However, GLSL ES 1.00 does not allow array 5593 * initializers. That is only allowed in GLSL ES 3.00. 5594 * 5595 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says: 5596 * 5597 * "An array type can also be formed without specifying a size 5598 * if the definition includes an initializer: 5599 * 5600 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2 5601 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3 5602 * 5603 * float a[5]; 5604 * float b[] = a;" 5605 */ 5606 _mesa_glsl_error(& loc, state, 5607 "unsized array declarations are not allowed in " 5608 "GLSL ES"); 5609 } 5610 5611 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec: 5612 * 5613 * "It is a compile-time error to declare an unsized array of 5614 * atomic_uint" 5615 */ 5616 if (var->type->is_unsized_array() && 5617 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) { 5618 _mesa_glsl_error(& loc, state, 5619 "Unsized array of atomic_uint is not allowed"); 5620 } 5621 5622 /* If the declaration is not a redeclaration, there are a few additional 5623 * semantic checks that must be applied. In addition, variable that was 5624 * created for the declaration should be added to the IR stream. 5625 */ 5626 if (!is_redeclaration) { 5627 validate_identifier(decl->identifier, loc, state); 5628 5629 /* Add the variable to the symbol table. Note that the initializer's 5630 * IR was already processed earlier (though it hasn't been emitted 5631 * yet), without the variable in scope. 5632 * 5633 * This differs from most C-like languages, but it follows the GLSL 5634 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50 5635 * spec: 5636 * 5637 * "Within a declaration, the scope of a name starts immediately 5638 * after the initializer if present or immediately after the name 5639 * being declared if not." 5640 */ 5641 if (!state->symbols->add_variable(var)) { 5642 YYLTYPE loc = this->get_location(); 5643 _mesa_glsl_error(&loc, state, "name `%s' already taken in the " 5644 "current scope", decl->identifier); 5645 continue; 5646 } 5647 5648 /* Push the variable declaration to the top. It means that all the 5649 * variable declarations will appear in a funny last-to-first order, 5650 * but otherwise we run into trouble if a function is prototyped, a 5651 * global var is decled, then the function is defined with usage of 5652 * the global var. See glslparsertest's CorrectModule.frag. 5653 */ 5654 instructions->push_head(var); 5655 } 5656 5657 instructions->append_list(&initializer_instructions); 5658 } 5659 5660 5661 /* Generally, variable declarations do not have r-values. However, 5662 * one is used for the declaration in 5663 * 5664 * while (bool b = some_condition()) { 5665 * ... 5666 * } 5667 * 5668 * so we return the rvalue from the last seen declaration here. 5669 */ 5670 return result; 5671} 5672 5673 5674ir_rvalue * 5675ast_parameter_declarator::hir(exec_list *instructions, 5676 struct _mesa_glsl_parse_state *state) 5677{ 5678 void *ctx = state; 5679 const struct glsl_type *type; 5680 const char *name = NULL; 5681 YYLTYPE loc = this->get_location(); 5682 5683 type = this->type->glsl_type(& name, state); 5684 5685 if (type == NULL) { 5686 if (name != NULL) { 5687 _mesa_glsl_error(& loc, state, 5688 "invalid type `%s' in declaration of `%s'", 5689 name, this->identifier); 5690 } else { 5691 _mesa_glsl_error(& loc, state, 5692 "invalid type in declaration of `%s'", 5693 this->identifier); 5694 } 5695 5696 type = glsl_type::error_type; 5697 } 5698 5699 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec: 5700 * 5701 * "Functions that accept no input arguments need not use void in the 5702 * argument list because prototypes (or definitions) are required and 5703 * therefore there is no ambiguity when an empty argument list "( )" is 5704 * declared. The idiom "(void)" as a parameter list is provided for 5705 * convenience." 5706 * 5707 * Placing this check here prevents a void parameter being set up 5708 * for a function, which avoids tripping up checks for main taking 5709 * parameters and lookups of an unnamed symbol. 5710 */ 5711 if (type->is_void()) { 5712 if (this->identifier != NULL) 5713 _mesa_glsl_error(& loc, state, 5714 "named parameter cannot have type `void'"); 5715 5716 is_void = true; 5717 return NULL; 5718 } 5719 5720 if (formal_parameter && (this->identifier == NULL)) { 5721 _mesa_glsl_error(& loc, state, "formal parameter lacks a name"); 5722 return NULL; 5723 } 5724 5725 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...) 5726 * call already handled the "vec4[..] foo" case. 5727 */ 5728 type = process_array_type(&loc, type, this->array_specifier, state); 5729 5730 if (!type->is_error() && type->is_unsized_array()) { 5731 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have " 5732 "a declared size"); 5733 type = glsl_type::error_type; 5734 } 5735 5736 is_void = false; 5737 ir_variable *var = new(ctx) 5738 ir_variable(type, this->identifier, ir_var_function_in); 5739 5740 /* Apply any specified qualifiers to the parameter declaration. Note that 5741 * for function parameters the default mode is 'in'. 5742 */ 5743 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc, 5744 true); 5745 5746 /* From section 4.1.7 of the GLSL 4.40 spec: 5747 * 5748 * "Opaque variables cannot be treated as l-values; hence cannot 5749 * be used as out or inout function parameters, nor can they be 5750 * assigned into." 5751 * 5752 * From section 4.1.7 of the ARB_bindless_texture spec: 5753 * 5754 * "Samplers can be used as l-values, so can be assigned into and used 5755 * as "out" and "inout" function parameters." 5756 * 5757 * From section 4.1.X of the ARB_bindless_texture spec: 5758 * 5759 * "Images can be used as l-values, so can be assigned into and used as 5760 * "out" and "inout" function parameters." 5761 */ 5762 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) 5763 && (type->contains_atomic() || 5764 (!state->has_bindless() && type->contains_opaque()))) { 5765 _mesa_glsl_error(&loc, state, "out and inout parameters cannot " 5766 "contain %s variables", 5767 state->has_bindless() ? "atomic" : "opaque"); 5768 type = glsl_type::error_type; 5769 } 5770 5771 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec: 5772 * 5773 * "When calling a function, expressions that do not evaluate to 5774 * l-values cannot be passed to parameters declared as out or inout." 5775 * 5776 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: 5777 * 5778 * "Other binary or unary expressions, non-dereferenced arrays, 5779 * function names, swizzles with repeated fields, and constants 5780 * cannot be l-values." 5781 * 5782 * So for GLSL 1.10, passing an array as an out or inout parameter is not 5783 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES. 5784 */ 5785 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) 5786 && type->is_array() 5787 && !state->check_version(120, 100, &loc, 5788 "arrays cannot be out or inout parameters")) { 5789 type = glsl_type::error_type; 5790 } 5791 5792 instructions->push_tail(var); 5793 5794 /* Parameter declarations do not have r-values. 5795 */ 5796 return NULL; 5797} 5798 5799 5800void 5801ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters, 5802 bool formal, 5803 exec_list *ir_parameters, 5804 _mesa_glsl_parse_state *state) 5805{ 5806 ast_parameter_declarator *void_param = NULL; 5807 unsigned count = 0; 5808 5809 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) { 5810 param->formal_parameter = formal; 5811 param->hir(ir_parameters, state); 5812 5813 if (param->is_void) 5814 void_param = param; 5815 5816 count++; 5817 } 5818 5819 if ((void_param != NULL) && (count > 1)) { 5820 YYLTYPE loc = void_param->get_location(); 5821 5822 _mesa_glsl_error(& loc, state, 5823 "`void' parameter must be only parameter"); 5824 } 5825} 5826 5827 5828void 5829emit_function(_mesa_glsl_parse_state *state, ir_function *f) 5830{ 5831 /* IR invariants disallow function declarations or definitions 5832 * nested within other function definitions. But there is no 5833 * requirement about the relative order of function declarations 5834 * and definitions with respect to one another. So simply insert 5835 * the new ir_function block at the end of the toplevel instruction 5836 * list. 5837 */ 5838 state->toplevel_ir->push_tail(f); 5839} 5840 5841 5842ir_rvalue * 5843ast_function::hir(exec_list *instructions, 5844 struct _mesa_glsl_parse_state *state) 5845{ 5846 void *ctx = state; 5847 ir_function *f = NULL; 5848 ir_function_signature *sig = NULL; 5849 exec_list hir_parameters; 5850 YYLTYPE loc = this->get_location(); 5851 5852 const char *const name = identifier; 5853 5854 /* New functions are always added to the top-level IR instruction stream, 5855 * so this instruction list pointer is ignored. See also emit_function 5856 * (called below). 5857 */ 5858 (void) instructions; 5859 5860 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec, 5861 * 5862 * "Function declarations (prototypes) cannot occur inside of functions; 5863 * they must be at global scope, or for the built-in functions, outside 5864 * the global scope." 5865 * 5866 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec, 5867 * 5868 * "User defined functions may only be defined within the global scope." 5869 * 5870 * Note that this language does not appear in GLSL 1.10. 5871 */ 5872 if ((state->current_function != NULL) && 5873 state->is_version(120, 100)) { 5874 YYLTYPE loc = this->get_location(); 5875 _mesa_glsl_error(&loc, state, 5876 "declaration of function `%s' not allowed within " 5877 "function body", name); 5878 } 5879 5880 validate_identifier(name, this->get_location(), state); 5881 5882 /* Convert the list of function parameters to HIR now so that they can be 5883 * used below to compare this function's signature with previously seen 5884 * signatures for functions with the same name. 5885 */ 5886 ast_parameter_declarator::parameters_to_hir(& this->parameters, 5887 is_definition, 5888 & hir_parameters, state); 5889 5890 const char *return_type_name; 5891 const glsl_type *return_type = 5892 this->return_type->glsl_type(& return_type_name, state); 5893 5894 if (!return_type) { 5895 YYLTYPE loc = this->get_location(); 5896 _mesa_glsl_error(&loc, state, 5897 "function `%s' has undeclared return type `%s'", 5898 name, return_type_name); 5899 return_type = glsl_type::error_type; 5900 } 5901 5902 /* ARB_shader_subroutine states: 5903 * "Subroutine declarations cannot be prototyped. It is an error to prepend 5904 * subroutine(...) to a function declaration." 5905 */ 5906 if (this->return_type->qualifier.subroutine_list && !is_definition) { 5907 YYLTYPE loc = this->get_location(); 5908 _mesa_glsl_error(&loc, state, 5909 "function declaration `%s' cannot have subroutine prepended", 5910 name); 5911 } 5912 5913 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec: 5914 * "No qualifier is allowed on the return type of a function." 5915 */ 5916 if (this->return_type->has_qualifiers(state)) { 5917 YYLTYPE loc = this->get_location(); 5918 _mesa_glsl_error(& loc, state, 5919 "function `%s' return type has qualifiers", name); 5920 } 5921 5922 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says: 5923 * 5924 * "Arrays are allowed as arguments and as the return type. In both 5925 * cases, the array must be explicitly sized." 5926 */ 5927 if (return_type->is_unsized_array()) { 5928 YYLTYPE loc = this->get_location(); 5929 _mesa_glsl_error(& loc, state, 5930 "function `%s' return type array must be explicitly " 5931 "sized", name); 5932 } 5933 5934 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec: 5935 * 5936 * "Arrays are allowed as arguments, but not as the return type. [...] 5937 * The return type can also be a structure if the structure does not 5938 * contain an array." 5939 */ 5940 if (state->language_version == 100 && return_type->contains_array()) { 5941 YYLTYPE loc = this->get_location(); 5942 _mesa_glsl_error(& loc, state, 5943 "function `%s' return type contains an array", name); 5944 } 5945 5946 /* From section 4.1.7 of the GLSL 4.40 spec: 5947 * 5948 * "[Opaque types] can only be declared as function parameters 5949 * or uniform-qualified variables." 5950 * 5951 * The ARB_bindless_texture spec doesn't clearly state this, but as it says 5952 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X, 5953 * (Images)", this should be allowed. 5954 */ 5955 if (return_type->contains_atomic() || 5956 (!state->has_bindless() && return_type->contains_opaque())) { 5957 YYLTYPE loc = this->get_location(); 5958 _mesa_glsl_error(&loc, state, 5959 "function `%s' return type can't contain an %s type", 5960 name, state->has_bindless() ? "atomic" : "opaque"); 5961 } 5962 5963 /**/ 5964 if (return_type->is_subroutine()) { 5965 YYLTYPE loc = this->get_location(); 5966 _mesa_glsl_error(&loc, state, 5967 "function `%s' return type can't be a subroutine type", 5968 name); 5969 } 5970 5971 5972 /* Create an ir_function if one doesn't already exist. */ 5973 f = state->symbols->get_function(name); 5974 if (f == NULL) { 5975 f = new(ctx) ir_function(name); 5976 if (!this->return_type->qualifier.is_subroutine_decl()) { 5977 if (!state->symbols->add_function(f)) { 5978 /* This function name shadows a non-function use of the same name. */ 5979 YYLTYPE loc = this->get_location(); 5980 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with " 5981 "non-function", name); 5982 return NULL; 5983 } 5984 } 5985 emit_function(state, f); 5986 } 5987 5988 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71: 5989 * 5990 * "A shader cannot redefine or overload built-in functions." 5991 * 5992 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions": 5993 * 5994 * "User code can overload the built-in functions but cannot redefine 5995 * them." 5996 */ 5997 if (state->es_shader) { 5998 /* Local shader has no exact candidates; check the built-ins. */ 5999 _mesa_glsl_initialize_builtin_functions(); 6000 if (state->language_version >= 300 && 6001 _mesa_glsl_has_builtin_function(state, name)) { 6002 YYLTYPE loc = this->get_location(); 6003 _mesa_glsl_error(& loc, state, 6004 "A shader cannot redefine or overload built-in " 6005 "function `%s' in GLSL ES 3.00", name); 6006 return NULL; 6007 } 6008 6009 if (state->language_version == 100) { 6010 ir_function_signature *sig = 6011 _mesa_glsl_find_builtin_function(state, name, &hir_parameters); 6012 if (sig && sig->is_builtin()) { 6013 _mesa_glsl_error(& loc, state, 6014 "A shader cannot redefine built-in " 6015 "function `%s' in GLSL ES 1.00", name); 6016 } 6017 } 6018 } 6019 6020 /* Verify that this function's signature either doesn't match a previously 6021 * seen signature for a function with the same name, or, if a match is found, 6022 * that the previously seen signature does not have an associated definition. 6023 */ 6024 if (state->es_shader || f->has_user_signature()) { 6025 sig = f->exact_matching_signature(state, &hir_parameters); 6026 if (sig != NULL) { 6027 const char *badvar = sig->qualifiers_match(&hir_parameters); 6028 if (badvar != NULL) { 6029 YYLTYPE loc = this->get_location(); 6030 6031 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' " 6032 "qualifiers don't match prototype", name, badvar); 6033 } 6034 6035 if (sig->return_type != return_type) { 6036 YYLTYPE loc = this->get_location(); 6037 6038 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't " 6039 "match prototype", name); 6040 } 6041 6042 if (sig->is_defined) { 6043 if (is_definition) { 6044 YYLTYPE loc = this->get_location(); 6045 _mesa_glsl_error(& loc, state, "function `%s' redefined", name); 6046 } else { 6047 /* We just encountered a prototype that exactly matches a 6048 * function that's already been defined. This is redundant, 6049 * and we should ignore it. 6050 */ 6051 return NULL; 6052 } 6053 } else if (state->language_version == 100 && !is_definition) { 6054 /* From the GLSL 1.00 spec, section 4.2.7: 6055 * 6056 * "A particular variable, structure or function declaration 6057 * may occur at most once within a scope with the exception 6058 * that a single function prototype plus the corresponding 6059 * function definition are allowed." 6060 */ 6061 YYLTYPE loc = this->get_location(); 6062 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name); 6063 } 6064 } 6065 } 6066 6067 /* Verify the return type of main() */ 6068 if (strcmp(name, "main") == 0) { 6069 if (! return_type->is_void()) { 6070 YYLTYPE loc = this->get_location(); 6071 6072 _mesa_glsl_error(& loc, state, "main() must return void"); 6073 } 6074 6075 if (!hir_parameters.is_empty()) { 6076 YYLTYPE loc = this->get_location(); 6077 6078 _mesa_glsl_error(& loc, state, "main() must not take any parameters"); 6079 } 6080 } 6081 6082 /* Finish storing the information about this new function in its signature. 6083 */ 6084 if (sig == NULL) { 6085 sig = new(ctx) ir_function_signature(return_type); 6086 f->add_signature(sig); 6087 } 6088 6089 sig->replace_parameters(&hir_parameters); 6090 signature = sig; 6091 6092 if (this->return_type->qualifier.subroutine_list) { 6093 int idx; 6094 6095 if (this->return_type->qualifier.flags.q.explicit_index) { 6096 unsigned qual_index; 6097 if (process_qualifier_constant(state, &loc, "index", 6098 this->return_type->qualifier.index, 6099 &qual_index)) { 6100 if (!state->has_explicit_uniform_location()) { 6101 _mesa_glsl_error(&loc, state, "subroutine index requires " 6102 "GL_ARB_explicit_uniform_location or " 6103 "GLSL 4.30"); 6104 } else if (qual_index >= MAX_SUBROUTINES) { 6105 _mesa_glsl_error(&loc, state, 6106 "invalid subroutine index (%d) index must " 6107 "be a number between 0 and " 6108 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index, 6109 MAX_SUBROUTINES - 1); 6110 } else { 6111 f->subroutine_index = qual_index; 6112 } 6113 } 6114 } 6115 6116 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length(); 6117 f->subroutine_types = ralloc_array(state, const struct glsl_type *, 6118 f->num_subroutine_types); 6119 idx = 0; 6120 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) { 6121 const struct glsl_type *type; 6122 /* the subroutine type must be already declared */ 6123 type = state->symbols->get_type(decl->identifier); 6124 if (!type) { 6125 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier); 6126 } 6127 6128 for (int i = 0; i < state->num_subroutine_types; i++) { 6129 ir_function *fn = state->subroutine_types[i]; 6130 ir_function_signature *tsig = NULL; 6131 6132 if (strcmp(fn->name, decl->identifier)) 6133 continue; 6134 6135 tsig = fn->matching_signature(state, &sig->parameters, 6136 false); 6137 if (!tsig) { 6138 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier); 6139 } else { 6140 if (tsig->return_type != sig->return_type) { 6141 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier); 6142 } 6143 } 6144 } 6145 f->subroutine_types[idx++] = type; 6146 } 6147 state->subroutines = (ir_function **)reralloc(state, state->subroutines, 6148 ir_function *, 6149 state->num_subroutines + 1); 6150 state->subroutines[state->num_subroutines] = f; 6151 state->num_subroutines++; 6152 6153 } 6154 6155 if (this->return_type->qualifier.is_subroutine_decl()) { 6156 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) { 6157 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier); 6158 return NULL; 6159 } 6160 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types, 6161 ir_function *, 6162 state->num_subroutine_types + 1); 6163 state->subroutine_types[state->num_subroutine_types] = f; 6164 state->num_subroutine_types++; 6165 6166 f->is_subroutine = true; 6167 } 6168 6169 /* Function declarations (prototypes) do not have r-values. 6170 */ 6171 return NULL; 6172} 6173 6174 6175ir_rvalue * 6176ast_function_definition::hir(exec_list *instructions, 6177 struct _mesa_glsl_parse_state *state) 6178{ 6179 prototype->is_definition = true; 6180 prototype->hir(instructions, state); 6181 6182 ir_function_signature *signature = prototype->signature; 6183 if (signature == NULL) 6184 return NULL; 6185 6186 assert(state->current_function == NULL); 6187 state->current_function = signature; 6188 state->found_return = false; 6189 6190 /* Duplicate parameters declared in the prototype as concrete variables. 6191 * Add these to the symbol table. 6192 */ 6193 state->symbols->push_scope(); 6194 foreach_in_list(ir_variable, var, &signature->parameters) { 6195 assert(var->as_variable() != NULL); 6196 6197 /* The only way a parameter would "exist" is if two parameters have 6198 * the same name. 6199 */ 6200 if (state->symbols->name_declared_this_scope(var->name)) { 6201 YYLTYPE loc = this->get_location(); 6202 6203 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name); 6204 } else { 6205 state->symbols->add_variable(var); 6206 } 6207 } 6208 6209 /* Convert the body of the function to HIR. */ 6210 this->body->hir(&signature->body, state); 6211 signature->is_defined = true; 6212 6213 state->symbols->pop_scope(); 6214 6215 assert(state->current_function == signature); 6216 state->current_function = NULL; 6217 6218 if (!signature->return_type->is_void() && !state->found_return) { 6219 YYLTYPE loc = this->get_location(); 6220 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type " 6221 "%s, but no return statement", 6222 signature->function_name(), 6223 signature->return_type->name); 6224 } 6225 6226 /* Function definitions do not have r-values. 6227 */ 6228 return NULL; 6229} 6230 6231 6232ir_rvalue * 6233ast_jump_statement::hir(exec_list *instructions, 6234 struct _mesa_glsl_parse_state *state) 6235{ 6236 void *ctx = state; 6237 6238 switch (mode) { 6239 case ast_return: { 6240 ir_return *inst; 6241 assert(state->current_function); 6242 6243 if (opt_return_value) { 6244 ir_rvalue *ret = opt_return_value->hir(instructions, state); 6245 6246 /* The value of the return type can be NULL if the shader says 6247 * 'return foo();' and foo() is a function that returns void. 6248 * 6249 * NOTE: The GLSL spec doesn't say that this is an error. The type 6250 * of the return value is void. If the return type of the function is 6251 * also void, then this should compile without error. Seriously. 6252 */ 6253 const glsl_type *const ret_type = 6254 (ret == NULL) ? glsl_type::void_type : ret->type; 6255 6256 /* Implicit conversions are not allowed for return values prior to 6257 * ARB_shading_language_420pack. 6258 */ 6259 if (state->current_function->return_type != ret_type) { 6260 YYLTYPE loc = this->get_location(); 6261 6262 if (state->has_420pack()) { 6263 if (!apply_implicit_conversion(state->current_function->return_type, 6264 ret, state)) { 6265 _mesa_glsl_error(& loc, state, 6266 "could not implicitly convert return value " 6267 "to %s, in function `%s'", 6268 state->current_function->return_type->name, 6269 state->current_function->function_name()); 6270 } 6271 } else { 6272 _mesa_glsl_error(& loc, state, 6273 "`return' with wrong type %s, in function `%s' " 6274 "returning %s", 6275 ret_type->name, 6276 state->current_function->function_name(), 6277 state->current_function->return_type->name); 6278 } 6279 } else if (state->current_function->return_type->base_type == 6280 GLSL_TYPE_VOID) { 6281 YYLTYPE loc = this->get_location(); 6282 6283 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20 6284 * specs add a clarification: 6285 * 6286 * "A void function can only use return without a return argument, even if 6287 * the return argument has void type. Return statements only accept values: 6288 * 6289 * void func1() { } 6290 * void func2() { return func1(); } // illegal return statement" 6291 */ 6292 _mesa_glsl_error(& loc, state, 6293 "void functions can only use `return' without a " 6294 "return argument"); 6295 } 6296 6297 inst = new(ctx) ir_return(ret); 6298 } else { 6299 if (state->current_function->return_type->base_type != 6300 GLSL_TYPE_VOID) { 6301 YYLTYPE loc = this->get_location(); 6302 6303 _mesa_glsl_error(& loc, state, 6304 "`return' with no value, in function %s returning " 6305 "non-void", 6306 state->current_function->function_name()); 6307 } 6308 inst = new(ctx) ir_return; 6309 } 6310 6311 state->found_return = true; 6312 instructions->push_tail(inst); 6313 break; 6314 } 6315 6316 case ast_discard: 6317 if (state->stage != MESA_SHADER_FRAGMENT) { 6318 YYLTYPE loc = this->get_location(); 6319 6320 _mesa_glsl_error(& loc, state, 6321 "`discard' may only appear in a fragment shader"); 6322 } 6323 instructions->push_tail(new(ctx) ir_discard); 6324 break; 6325 6326 case ast_break: 6327 case ast_continue: 6328 if (mode == ast_continue && 6329 state->loop_nesting_ast == NULL) { 6330 YYLTYPE loc = this->get_location(); 6331 6332 _mesa_glsl_error(& loc, state, "continue may only appear in a loop"); 6333 } else if (mode == ast_break && 6334 state->loop_nesting_ast == NULL && 6335 state->switch_state.switch_nesting_ast == NULL) { 6336 YYLTYPE loc = this->get_location(); 6337 6338 _mesa_glsl_error(& loc, state, 6339 "break may only appear in a loop or a switch"); 6340 } else { 6341 /* For a loop, inline the for loop expression again, since we don't 6342 * know where near the end of the loop body the normal copy of it is 6343 * going to be placed. Same goes for the condition for a do-while 6344 * loop. 6345 */ 6346 if (state->loop_nesting_ast != NULL && 6347 mode == ast_continue && !state->switch_state.is_switch_innermost) { 6348 if (state->loop_nesting_ast->rest_expression) { 6349 state->loop_nesting_ast->rest_expression->hir(instructions, 6350 state); 6351 } 6352 if (state->loop_nesting_ast->mode == 6353 ast_iteration_statement::ast_do_while) { 6354 state->loop_nesting_ast->condition_to_hir(instructions, state); 6355 } 6356 } 6357 6358 if (state->switch_state.is_switch_innermost && 6359 mode == ast_continue) { 6360 /* Set 'continue_inside' to true. */ 6361 ir_rvalue *const true_val = new (ctx) ir_constant(true); 6362 ir_dereference_variable *deref_continue_inside_var = 6363 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6364 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var, 6365 true_val)); 6366 6367 /* Break out from the switch, continue for the loop will 6368 * be called right after switch. */ 6369 ir_loop_jump *const jump = 6370 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6371 instructions->push_tail(jump); 6372 6373 } else if (state->switch_state.is_switch_innermost && 6374 mode == ast_break) { 6375 /* Force break out of switch by inserting a break. */ 6376 ir_loop_jump *const jump = 6377 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6378 instructions->push_tail(jump); 6379 } else { 6380 ir_loop_jump *const jump = 6381 new(ctx) ir_loop_jump((mode == ast_break) 6382 ? ir_loop_jump::jump_break 6383 : ir_loop_jump::jump_continue); 6384 instructions->push_tail(jump); 6385 } 6386 } 6387 6388 break; 6389 } 6390 6391 /* Jump instructions do not have r-values. 6392 */ 6393 return NULL; 6394} 6395 6396 6397ir_rvalue * 6398ast_selection_statement::hir(exec_list *instructions, 6399 struct _mesa_glsl_parse_state *state) 6400{ 6401 void *ctx = state; 6402 6403 ir_rvalue *const condition = this->condition->hir(instructions, state); 6404 6405 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec: 6406 * 6407 * "Any expression whose type evaluates to a Boolean can be used as the 6408 * conditional expression bool-expression. Vector types are not accepted 6409 * as the expression to if." 6410 * 6411 * The checks are separated so that higher quality diagnostics can be 6412 * generated for cases where both rules are violated. 6413 */ 6414 if (!condition->type->is_boolean() || !condition->type->is_scalar()) { 6415 YYLTYPE loc = this->condition->get_location(); 6416 6417 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar " 6418 "boolean"); 6419 } 6420 6421 ir_if *const stmt = new(ctx) ir_if(condition); 6422 6423 if (then_statement != NULL) { 6424 state->symbols->push_scope(); 6425 then_statement->hir(& stmt->then_instructions, state); 6426 state->symbols->pop_scope(); 6427 } 6428 6429 if (else_statement != NULL) { 6430 state->symbols->push_scope(); 6431 else_statement->hir(& stmt->else_instructions, state); 6432 state->symbols->pop_scope(); 6433 } 6434 6435 instructions->push_tail(stmt); 6436 6437 /* if-statements do not have r-values. 6438 */ 6439 return NULL; 6440} 6441 6442 6443struct case_label { 6444 /** Value of the case label. */ 6445 unsigned value; 6446 6447 /** Does this label occur after the default? */ 6448 bool after_default; 6449 6450 /** 6451 * AST for the case label. 6452 * 6453 * This is only used to generate error messages for duplicate labels. 6454 */ 6455 ast_expression *ast; 6456}; 6457 6458/* Used for detection of duplicate case values, compare 6459 * given contents directly. 6460 */ 6461static bool 6462compare_case_value(const void *a, const void *b) 6463{ 6464 return ((struct case_label *) a)->value == ((struct case_label *) b)->value; 6465} 6466 6467 6468/* Used for detection of duplicate case values, just 6469 * returns key contents as is. 6470 */ 6471static unsigned 6472key_contents(const void *key) 6473{ 6474 return ((struct case_label *) key)->value; 6475} 6476 6477 6478ir_rvalue * 6479ast_switch_statement::hir(exec_list *instructions, 6480 struct _mesa_glsl_parse_state *state) 6481{ 6482 void *ctx = state; 6483 6484 ir_rvalue *const test_expression = 6485 this->test_expression->hir(instructions, state); 6486 6487 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec: 6488 * 6489 * "The type of init-expression in a switch statement must be a 6490 * scalar integer." 6491 */ 6492 if (!test_expression->type->is_scalar() || 6493 !test_expression->type->is_integer()) { 6494 YYLTYPE loc = this->test_expression->get_location(); 6495 6496 _mesa_glsl_error(& loc, 6497 state, 6498 "switch-statement expression must be scalar " 6499 "integer"); 6500 return NULL; 6501 } 6502 6503 /* Track the switch-statement nesting in a stack-like manner. 6504 */ 6505 struct glsl_switch_state saved = state->switch_state; 6506 6507 state->switch_state.is_switch_innermost = true; 6508 state->switch_state.switch_nesting_ast = this; 6509 state->switch_state.labels_ht = 6510 _mesa_hash_table_create(NULL, key_contents, 6511 compare_case_value); 6512 state->switch_state.previous_default = NULL; 6513 6514 /* Initalize is_fallthru state to false. 6515 */ 6516 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false); 6517 state->switch_state.is_fallthru_var = 6518 new(ctx) ir_variable(glsl_type::bool_type, 6519 "switch_is_fallthru_tmp", 6520 ir_var_temporary); 6521 instructions->push_tail(state->switch_state.is_fallthru_var); 6522 6523 ir_dereference_variable *deref_is_fallthru_var = 6524 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var); 6525 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var, 6526 is_fallthru_val)); 6527 6528 /* Initialize continue_inside state to false. 6529 */ 6530 state->switch_state.continue_inside = 6531 new(ctx) ir_variable(glsl_type::bool_type, 6532 "continue_inside_tmp", 6533 ir_var_temporary); 6534 instructions->push_tail(state->switch_state.continue_inside); 6535 6536 ir_rvalue *const false_val = new (ctx) ir_constant(false); 6537 ir_dereference_variable *deref_continue_inside_var = 6538 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6539 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var, 6540 false_val)); 6541 6542 state->switch_state.run_default = 6543 new(ctx) ir_variable(glsl_type::bool_type, 6544 "run_default_tmp", 6545 ir_var_temporary); 6546 instructions->push_tail(state->switch_state.run_default); 6547 6548 /* Loop around the switch is used for flow control. */ 6549 ir_loop * loop = new(ctx) ir_loop(); 6550 instructions->push_tail(loop); 6551 6552 /* Cache test expression. 6553 */ 6554 test_to_hir(&loop->body_instructions, state); 6555 6556 /* Emit code for body of switch stmt. 6557 */ 6558 body->hir(&loop->body_instructions, state); 6559 6560 /* Insert a break at the end to exit loop. */ 6561 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6562 loop->body_instructions.push_tail(jump); 6563 6564 /* If we are inside loop, check if continue got called inside switch. */ 6565 if (state->loop_nesting_ast != NULL) { 6566 ir_dereference_variable *deref_continue_inside = 6567 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6568 ir_if *irif = new(ctx) ir_if(deref_continue_inside); 6569 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue); 6570 6571 if (state->loop_nesting_ast != NULL) { 6572 if (state->loop_nesting_ast->rest_expression) { 6573 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions, 6574 state); 6575 } 6576 if (state->loop_nesting_ast->mode == 6577 ast_iteration_statement::ast_do_while) { 6578 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state); 6579 } 6580 } 6581 irif->then_instructions.push_tail(jump); 6582 instructions->push_tail(irif); 6583 } 6584 6585 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL); 6586 6587 state->switch_state = saved; 6588 6589 /* Switch statements do not have r-values. */ 6590 return NULL; 6591} 6592 6593 6594void 6595ast_switch_statement::test_to_hir(exec_list *instructions, 6596 struct _mesa_glsl_parse_state *state) 6597{ 6598 void *ctx = state; 6599 6600 /* set to true to avoid a duplicate "use of uninitialized variable" warning 6601 * on the switch test case. The first one would be already raised when 6602 * getting the test_expression at ast_switch_statement::hir 6603 */ 6604 test_expression->set_is_lhs(true); 6605 /* Cache value of test expression. */ 6606 ir_rvalue *const test_val = test_expression->hir(instructions, state); 6607 6608 state->switch_state.test_var = new(ctx) ir_variable(test_val->type, 6609 "switch_test_tmp", 6610 ir_var_temporary); 6611 ir_dereference_variable *deref_test_var = 6612 new(ctx) ir_dereference_variable(state->switch_state.test_var); 6613 6614 instructions->push_tail(state->switch_state.test_var); 6615 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val)); 6616} 6617 6618 6619ir_rvalue * 6620ast_switch_body::hir(exec_list *instructions, 6621 struct _mesa_glsl_parse_state *state) 6622{ 6623 if (stmts != NULL) 6624 stmts->hir(instructions, state); 6625 6626 /* Switch bodies do not have r-values. */ 6627 return NULL; 6628} 6629 6630ir_rvalue * 6631ast_case_statement_list::hir(exec_list *instructions, 6632 struct _mesa_glsl_parse_state *state) 6633{ 6634 exec_list default_case, after_default, tmp; 6635 6636 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) { 6637 case_stmt->hir(&tmp, state); 6638 6639 /* Default case. */ 6640 if (state->switch_state.previous_default && default_case.is_empty()) { 6641 default_case.append_list(&tmp); 6642 continue; 6643 } 6644 6645 /* If default case found, append 'after_default' list. */ 6646 if (!default_case.is_empty()) 6647 after_default.append_list(&tmp); 6648 else 6649 instructions->append_list(&tmp); 6650 } 6651 6652 /* Handle the default case. This is done here because default might not be 6653 * the last case. We need to add checks against following cases first to see 6654 * if default should be chosen or not. 6655 */ 6656 if (!default_case.is_empty()) { 6657 ir_factory body(instructions, state); 6658 6659 ir_expression *cmp = NULL; 6660 6661 hash_table_foreach(state->switch_state.labels_ht, entry) { 6662 const struct case_label *const l = (struct case_label *) entry->data; 6663 6664 /* If the switch init-value is the value of one of the labels that 6665 * occurs after the default case, disable execution of the default 6666 * case. 6667 */ 6668 if (l->after_default) { 6669 ir_constant *const cnst = 6670 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT 6671 ? body.constant(unsigned(l->value)) 6672 : body.constant(int(l->value)); 6673 6674 cmp = cmp == NULL 6675 ? equal(cnst, state->switch_state.test_var) 6676 : logic_or(cmp, equal(cnst, state->switch_state.test_var)); 6677 } 6678 } 6679 6680 if (cmp != NULL) 6681 body.emit(assign(state->switch_state.run_default, logic_not(cmp))); 6682 else 6683 body.emit(assign(state->switch_state.run_default, body.constant(true))); 6684 6685 /* Append default case and all cases after it. */ 6686 instructions->append_list(&default_case); 6687 instructions->append_list(&after_default); 6688 } 6689 6690 /* Case statements do not have r-values. */ 6691 return NULL; 6692} 6693 6694ir_rvalue * 6695ast_case_statement::hir(exec_list *instructions, 6696 struct _mesa_glsl_parse_state *state) 6697{ 6698 labels->hir(instructions, state); 6699 6700 /* Guard case statements depending on fallthru state. */ 6701 ir_dereference_variable *const deref_fallthru_guard = 6702 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var); 6703 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard); 6704 6705 foreach_list_typed (ast_node, stmt, link, & this->stmts) 6706 stmt->hir(& test_fallthru->then_instructions, state); 6707 6708 instructions->push_tail(test_fallthru); 6709 6710 /* Case statements do not have r-values. */ 6711 return NULL; 6712} 6713 6714 6715ir_rvalue * 6716ast_case_label_list::hir(exec_list *instructions, 6717 struct _mesa_glsl_parse_state *state) 6718{ 6719 foreach_list_typed (ast_case_label, label, link, & this->labels) 6720 label->hir(instructions, state); 6721 6722 /* Case labels do not have r-values. */ 6723 return NULL; 6724} 6725 6726ir_rvalue * 6727ast_case_label::hir(exec_list *instructions, 6728 struct _mesa_glsl_parse_state *state) 6729{ 6730 ir_factory body(instructions, state); 6731 6732 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var; 6733 6734 /* If not default case, ... */ 6735 if (this->test_value != NULL) { 6736 /* Conditionally set fallthru state based on 6737 * comparison of cached test expression value to case label. 6738 */ 6739 ir_rvalue *const label_rval = this->test_value->hir(instructions, state); 6740 ir_constant *label_const = 6741 label_rval->constant_expression_value(body.mem_ctx); 6742 6743 if (!label_const) { 6744 YYLTYPE loc = this->test_value->get_location(); 6745 6746 _mesa_glsl_error(& loc, state, 6747 "switch statement case label must be a " 6748 "constant expression"); 6749 6750 /* Stuff a dummy value in to allow processing to continue. */ 6751 label_const = body.constant(0); 6752 } else { 6753 hash_entry *entry = 6754 _mesa_hash_table_search(state->switch_state.labels_ht, 6755 &label_const->value.u[0]); 6756 6757 if (entry) { 6758 const struct case_label *const l = 6759 (struct case_label *) entry->data; 6760 const ast_expression *const previous_label = l->ast; 6761 YYLTYPE loc = this->test_value->get_location(); 6762 6763 _mesa_glsl_error(& loc, state, "duplicate case value"); 6764 6765 loc = previous_label->get_location(); 6766 _mesa_glsl_error(& loc, state, "this is the previous case label"); 6767 } else { 6768 struct case_label *l = ralloc(state->switch_state.labels_ht, 6769 struct case_label); 6770 6771 l->value = label_const->value.u[0]; 6772 l->after_default = state->switch_state.previous_default != NULL; 6773 l->ast = this->test_value; 6774 6775 _mesa_hash_table_insert(state->switch_state.labels_ht, 6776 &label_const->value.u[0], 6777 l); 6778 } 6779 } 6780 6781 /* Create an r-value version of the ir_constant label here (after we may 6782 * have created a fake one in error cases) that can be passed to 6783 * apply_implicit_conversion below. 6784 */ 6785 ir_rvalue *label = label_const; 6786 6787 ir_rvalue *deref_test_var = 6788 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var); 6789 6790 /* 6791 * From GLSL 4.40 specification section 6.2 ("Selection"): 6792 * 6793 * "The type of the init-expression value in a switch statement must 6794 * be a scalar int or uint. The type of the constant-expression value 6795 * in a case label also must be a scalar int or uint. When any pair 6796 * of these values is tested for "equal value" and the types do not 6797 * match, an implicit conversion will be done to convert the int to a 6798 * uint (see section 4.1.10 “Implicit Conversions”) before the compare 6799 * is done." 6800 */ 6801 if (label->type != state->switch_state.test_var->type) { 6802 YYLTYPE loc = this->test_value->get_location(); 6803 6804 const glsl_type *type_a = label->type; 6805 const glsl_type *type_b = state->switch_state.test_var->type; 6806 6807 /* Check if int->uint implicit conversion is supported. */ 6808 bool integer_conversion_supported = 6809 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type, 6810 state); 6811 6812 if ((!type_a->is_integer() || !type_b->is_integer()) || 6813 !integer_conversion_supported) { 6814 _mesa_glsl_error(&loc, state, "type mismatch with switch " 6815 "init-expression and case label (%s != %s)", 6816 type_a->name, type_b->name); 6817 } else { 6818 /* Conversion of the case label. */ 6819 if (type_a->base_type == GLSL_TYPE_INT) { 6820 if (!apply_implicit_conversion(glsl_type::uint_type, 6821 label, state)) 6822 _mesa_glsl_error(&loc, state, "implicit type conversion error"); 6823 } else { 6824 /* Conversion of the init-expression value. */ 6825 if (!apply_implicit_conversion(glsl_type::uint_type, 6826 deref_test_var, state)) 6827 _mesa_glsl_error(&loc, state, "implicit type conversion error"); 6828 } 6829 } 6830 6831 /* If the implicit conversion was allowed, the types will already be 6832 * the same. If the implicit conversion wasn't allowed, smash the 6833 * type of the label anyway. This will prevent the expression 6834 * constructor (below) from failing an assertion. 6835 */ 6836 label->type = deref_test_var->type; 6837 } 6838 6839 body.emit(assign(fallthru_var, 6840 logic_or(fallthru_var, equal(label, deref_test_var)))); 6841 } else { /* default case */ 6842 if (state->switch_state.previous_default) { 6843 YYLTYPE loc = this->get_location(); 6844 _mesa_glsl_error(& loc, state, 6845 "multiple default labels in one switch"); 6846 6847 loc = state->switch_state.previous_default->get_location(); 6848 _mesa_glsl_error(& loc, state, "this is the first default label"); 6849 } 6850 state->switch_state.previous_default = this; 6851 6852 /* Set fallthru condition on 'run_default' bool. */ 6853 body.emit(assign(fallthru_var, 6854 logic_or(fallthru_var, 6855 state->switch_state.run_default))); 6856 } 6857 6858 /* Case statements do not have r-values. */ 6859 return NULL; 6860} 6861 6862void 6863ast_iteration_statement::condition_to_hir(exec_list *instructions, 6864 struct _mesa_glsl_parse_state *state) 6865{ 6866 void *ctx = state; 6867 6868 if (condition != NULL) { 6869 ir_rvalue *const cond = 6870 condition->hir(instructions, state); 6871 6872 if ((cond == NULL) 6873 || !cond->type->is_boolean() || !cond->type->is_scalar()) { 6874 YYLTYPE loc = condition->get_location(); 6875 6876 _mesa_glsl_error(& loc, state, 6877 "loop condition must be scalar boolean"); 6878 } else { 6879 /* As the first code in the loop body, generate a block that looks 6880 * like 'if (!condition) break;' as the loop termination condition. 6881 */ 6882 ir_rvalue *const not_cond = 6883 new(ctx) ir_expression(ir_unop_logic_not, cond); 6884 6885 ir_if *const if_stmt = new(ctx) ir_if(not_cond); 6886 6887 ir_jump *const break_stmt = 6888 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6889 6890 if_stmt->then_instructions.push_tail(break_stmt); 6891 instructions->push_tail(if_stmt); 6892 } 6893 } 6894} 6895 6896 6897ir_rvalue * 6898ast_iteration_statement::hir(exec_list *instructions, 6899 struct _mesa_glsl_parse_state *state) 6900{ 6901 void *ctx = state; 6902 6903 /* For-loops and while-loops start a new scope, but do-while loops do not. 6904 */ 6905 if (mode != ast_do_while) 6906 state->symbols->push_scope(); 6907 6908 if (init_statement != NULL) 6909 init_statement->hir(instructions, state); 6910 6911 ir_loop *const stmt = new(ctx) ir_loop(); 6912 instructions->push_tail(stmt); 6913 6914 /* Track the current loop nesting. */ 6915 ast_iteration_statement *nesting_ast = state->loop_nesting_ast; 6916 6917 state->loop_nesting_ast = this; 6918 6919 /* Likewise, indicate that following code is closest to a loop, 6920 * NOT closest to a switch. 6921 */ 6922 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost; 6923 state->switch_state.is_switch_innermost = false; 6924 6925 if (mode != ast_do_while) 6926 condition_to_hir(&stmt->body_instructions, state); 6927 6928 if (body != NULL) 6929 body->hir(& stmt->body_instructions, state); 6930 6931 if (rest_expression != NULL) 6932 rest_expression->hir(& stmt->body_instructions, state); 6933 6934 if (mode == ast_do_while) 6935 condition_to_hir(&stmt->body_instructions, state); 6936 6937 if (mode != ast_do_while) 6938 state->symbols->pop_scope(); 6939 6940 /* Restore previous nesting before returning. */ 6941 state->loop_nesting_ast = nesting_ast; 6942 state->switch_state.is_switch_innermost = saved_is_switch_innermost; 6943 6944 /* Loops do not have r-values. 6945 */ 6946 return NULL; 6947} 6948 6949 6950/** 6951 * Determine if the given type is valid for establishing a default precision 6952 * qualifier. 6953 * 6954 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"): 6955 * 6956 * "The precision statement 6957 * 6958 * precision precision-qualifier type; 6959 * 6960 * can be used to establish a default precision qualifier. The type field 6961 * can be either int or float or any of the sampler types, and the 6962 * precision-qualifier can be lowp, mediump, or highp." 6963 * 6964 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision 6965 * qualifiers on sampler types, but this seems like an oversight (since the 6966 * intention of including these in GLSL 1.30 is to allow compatibility with ES 6967 * shaders). So we allow int, float, and all sampler types regardless of GLSL 6968 * version. 6969 */ 6970static bool 6971is_valid_default_precision_type(const struct glsl_type *const type) 6972{ 6973 if (type == NULL) 6974 return false; 6975 6976 switch (type->base_type) { 6977 case GLSL_TYPE_INT: 6978 case GLSL_TYPE_FLOAT: 6979 /* "int" and "float" are valid, but vectors and matrices are not. */ 6980 return type->vector_elements == 1 && type->matrix_columns == 1; 6981 case GLSL_TYPE_SAMPLER: 6982 case GLSL_TYPE_IMAGE: 6983 case GLSL_TYPE_ATOMIC_UINT: 6984 return true; 6985 default: 6986 return false; 6987 } 6988} 6989 6990 6991ir_rvalue * 6992ast_type_specifier::hir(exec_list *instructions, 6993 struct _mesa_glsl_parse_state *state) 6994{ 6995 if (this->default_precision == ast_precision_none && this->structure == NULL) 6996 return NULL; 6997 6998 YYLTYPE loc = this->get_location(); 6999 7000 /* If this is a precision statement, check that the type to which it is 7001 * applied is either float or int. 7002 * 7003 * From section 4.5.3 of the GLSL 1.30 spec: 7004 * "The precision statement 7005 * precision precision-qualifier type; 7006 * can be used to establish a default precision qualifier. The type 7007 * field can be either int or float [...]. Any other types or 7008 * qualifiers will result in an error. 7009 */ 7010 if (this->default_precision != ast_precision_none) { 7011 if (!state->check_precision_qualifiers_allowed(&loc)) 7012 return NULL; 7013 7014 if (this->structure != NULL) { 7015 _mesa_glsl_error(&loc, state, 7016 "precision qualifiers do not apply to structures"); 7017 return NULL; 7018 } 7019 7020 if (this->array_specifier != NULL) { 7021 _mesa_glsl_error(&loc, state, 7022 "default precision statements do not apply to " 7023 "arrays"); 7024 return NULL; 7025 } 7026 7027 const struct glsl_type *const type = 7028 state->symbols->get_type(this->type_name); 7029 if (!is_valid_default_precision_type(type)) { 7030 _mesa_glsl_error(&loc, state, 7031 "default precision statements apply only to " 7032 "float, int, and opaque types"); 7033 return NULL; 7034 } 7035 7036 if (state->es_shader) { 7037 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00 7038 * spec says: 7039 * 7040 * "Non-precision qualified declarations will use the precision 7041 * qualifier specified in the most recent precision statement 7042 * that is still in scope. The precision statement has the same 7043 * scoping rules as variable declarations. If it is declared 7044 * inside a compound statement, its effect stops at the end of 7045 * the innermost statement it was declared in. Precision 7046 * statements in nested scopes override precision statements in 7047 * outer scopes. Multiple precision statements for the same basic 7048 * type can appear inside the same scope, with later statements 7049 * overriding earlier statements within that scope." 7050 * 7051 * Default precision specifications follow the same scope rules as 7052 * variables. So, we can track the state of the default precision 7053 * qualifiers in the symbol table, and the rules will just work. This 7054 * is a slight abuse of the symbol table, but it has the semantics 7055 * that we want. 7056 */ 7057 state->symbols->add_default_precision_qualifier(this->type_name, 7058 this->default_precision); 7059 } 7060 7061 /* FINISHME: Translate precision statements into IR. */ 7062 return NULL; 7063 } 7064 7065 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that 7066 * process_record_constructor() can do type-checking on C-style initializer 7067 * expressions of structs, but ast_struct_specifier should only be translated 7068 * to HIR if it is declaring the type of a structure. 7069 * 7070 * The ->is_declaration field is false for initializers of variables 7071 * declared separately from the struct's type definition. 7072 * 7073 * struct S { ... }; (is_declaration = true) 7074 * struct T { ... } t = { ... }; (is_declaration = true) 7075 * S s = { ... }; (is_declaration = false) 7076 */ 7077 if (this->structure != NULL && this->structure->is_declaration) 7078 return this->structure->hir(instructions, state); 7079 7080 return NULL; 7081} 7082 7083 7084/** 7085 * Process a structure or interface block tree into an array of structure fields 7086 * 7087 * After parsing, where there are some syntax differnces, structures and 7088 * interface blocks are almost identical. They are similar enough that the 7089 * AST for each can be processed the same way into a set of 7090 * \c glsl_struct_field to describe the members. 7091 * 7092 * If we're processing an interface block, var_mode should be the type of the 7093 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or 7094 * ir_var_shader_storage). If we're processing a structure, var_mode should be 7095 * ir_var_auto. 7096 * 7097 * \return 7098 * The number of fields processed. A pointer to the array structure fields is 7099 * stored in \c *fields_ret. 7100 */ 7101static unsigned 7102ast_process_struct_or_iface_block_members(exec_list *instructions, 7103 struct _mesa_glsl_parse_state *state, 7104 exec_list *declarations, 7105 glsl_struct_field **fields_ret, 7106 bool is_interface, 7107 enum glsl_matrix_layout matrix_layout, 7108 bool allow_reserved_names, 7109 ir_variable_mode var_mode, 7110 ast_type_qualifier *layout, 7111 unsigned block_stream, 7112 unsigned block_xfb_buffer, 7113 unsigned block_xfb_offset, 7114 unsigned expl_location, 7115 unsigned expl_align) 7116{ 7117 unsigned decl_count = 0; 7118 unsigned next_offset = 0; 7119 7120 /* Make an initial pass over the list of fields to determine how 7121 * many there are. Each element in this list is an ast_declarator_list. 7122 * This means that we actually need to count the number of elements in the 7123 * 'declarations' list in each of the elements. 7124 */ 7125 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) { 7126 decl_count += decl_list->declarations.length(); 7127 } 7128 7129 /* Allocate storage for the fields and process the field 7130 * declarations. As the declarations are processed, try to also convert 7131 * the types to HIR. This ensures that structure definitions embedded in 7132 * other structure definitions or in interface blocks are processed. 7133 */ 7134 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field, 7135 decl_count); 7136 7137 bool first_member = true; 7138 bool first_member_has_explicit_location = false; 7139 7140 unsigned i = 0; 7141 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) { 7142 const char *type_name; 7143 YYLTYPE loc = decl_list->get_location(); 7144 7145 decl_list->type->specifier->hir(instructions, state); 7146 7147 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says: 7148 * 7149 * "Anonymous structures are not supported; so embedded structures 7150 * must have a declarator. A name given to an embedded struct is 7151 * scoped at the same level as the struct it is embedded in." 7152 * 7153 * The same section of the GLSL 1.20 spec says: 7154 * 7155 * "Anonymous structures are not supported. Embedded structures are 7156 * not supported." 7157 * 7158 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow 7159 * embedded structures in 1.10 only. 7160 */ 7161 if (state->language_version != 110 && 7162 decl_list->type->specifier->structure != NULL) 7163 _mesa_glsl_error(&loc, state, 7164 "embedded structure declarations are not allowed"); 7165 7166 const glsl_type *decl_type = 7167 decl_list->type->glsl_type(& type_name, state); 7168 7169 const struct ast_type_qualifier *const qual = 7170 &decl_list->type->qualifier; 7171 7172 /* From section 4.3.9 of the GLSL 4.40 spec: 7173 * 7174 * "[In interface blocks] opaque types are not allowed." 7175 * 7176 * It should be impossible for decl_type to be NULL here. Cases that 7177 * might naturally lead to decl_type being NULL, especially for the 7178 * is_interface case, will have resulted in compilation having 7179 * already halted due to a syntax error. 7180 */ 7181 assert(decl_type); 7182 7183 if (is_interface) { 7184 /* From section 4.3.7 of the ARB_bindless_texture spec: 7185 * 7186 * "(remove the following bullet from the last list on p. 39, 7187 * thereby permitting sampler types in interface blocks; image 7188 * types are also permitted in blocks by this extension)" 7189 * 7190 * * sampler types are not allowed 7191 */ 7192 if (decl_type->contains_atomic() || 7193 (!state->has_bindless() && decl_type->contains_opaque())) { 7194 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default " 7195 "interface block contains %s variable", 7196 state->has_bindless() ? "atomic" : "opaque"); 7197 } 7198 } else { 7199 if (decl_type->contains_atomic()) { 7200 /* From section 4.1.7.3 of the GLSL 4.40 spec: 7201 * 7202 * "Members of structures cannot be declared as atomic counter 7203 * types." 7204 */ 7205 _mesa_glsl_error(&loc, state, "atomic counter in structure"); 7206 } 7207 7208 if (!state->has_bindless() && decl_type->contains_image()) { 7209 /* FINISHME: Same problem as with atomic counters. 7210 * FINISHME: Request clarification from Khronos and add 7211 * FINISHME: spec quotation here. 7212 */ 7213 _mesa_glsl_error(&loc, state, "image in structure"); 7214 } 7215 } 7216 7217 if (qual->flags.q.explicit_binding) { 7218 _mesa_glsl_error(&loc, state, 7219 "binding layout qualifier cannot be applied " 7220 "to struct or interface block members"); 7221 } 7222 7223 if (is_interface) { 7224 if (!first_member) { 7225 if (!layout->flags.q.explicit_location && 7226 ((first_member_has_explicit_location && 7227 !qual->flags.q.explicit_location) || 7228 (!first_member_has_explicit_location && 7229 qual->flags.q.explicit_location))) { 7230 _mesa_glsl_error(&loc, state, 7231 "when block-level location layout qualifier " 7232 "is not supplied either all members must " 7233 "have a location layout qualifier or all " 7234 "members must not have a location layout " 7235 "qualifier"); 7236 } 7237 } else { 7238 first_member = false; 7239 first_member_has_explicit_location = 7240 qual->flags.q.explicit_location; 7241 } 7242 } 7243 7244 if (qual->flags.q.std140 || 7245 qual->flags.q.std430 || 7246 qual->flags.q.packed || 7247 qual->flags.q.shared) { 7248 _mesa_glsl_error(&loc, state, 7249 "uniform/shader storage block layout qualifiers " 7250 "std140, std430, packed, and shared can only be " 7251 "applied to uniform/shader storage blocks, not " 7252 "members"); 7253 } 7254 7255 if (qual->flags.q.constant) { 7256 _mesa_glsl_error(&loc, state, 7257 "const storage qualifier cannot be applied " 7258 "to struct or interface block members"); 7259 } 7260 7261 validate_memory_qualifier_for_type(state, &loc, qual, decl_type); 7262 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type); 7263 7264 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec: 7265 * 7266 * "A block member may be declared with a stream identifier, but 7267 * the specified stream must match the stream associated with the 7268 * containing block." 7269 */ 7270 if (qual->flags.q.explicit_stream) { 7271 unsigned qual_stream; 7272 if (process_qualifier_constant(state, &loc, "stream", 7273 qual->stream, &qual_stream) && 7274 qual_stream != block_stream) { 7275 _mesa_glsl_error(&loc, state, "stream layout qualifier on " 7276 "interface block member does not match " 7277 "the interface block (%u vs %u)", qual_stream, 7278 block_stream); 7279 } 7280 } 7281 7282 int xfb_buffer; 7283 unsigned explicit_xfb_buffer = 0; 7284 if (qual->flags.q.explicit_xfb_buffer) { 7285 unsigned qual_xfb_buffer; 7286 if (process_qualifier_constant(state, &loc, "xfb_buffer", 7287 qual->xfb_buffer, &qual_xfb_buffer)) { 7288 explicit_xfb_buffer = 1; 7289 if (qual_xfb_buffer != block_xfb_buffer) 7290 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on " 7291 "interface block member does not match " 7292 "the interface block (%u vs %u)", 7293 qual_xfb_buffer, block_xfb_buffer); 7294 } 7295 xfb_buffer = (int) qual_xfb_buffer; 7296 } else { 7297 if (layout) 7298 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer; 7299 xfb_buffer = (int) block_xfb_buffer; 7300 } 7301 7302 int xfb_stride = -1; 7303 if (qual->flags.q.explicit_xfb_stride) { 7304 unsigned qual_xfb_stride; 7305 if (process_qualifier_constant(state, &loc, "xfb_stride", 7306 qual->xfb_stride, &qual_xfb_stride)) { 7307 xfb_stride = (int) qual_xfb_stride; 7308 } 7309 } 7310 7311 if (qual->flags.q.uniform && qual->has_interpolation()) { 7312 _mesa_glsl_error(&loc, state, 7313 "interpolation qualifiers cannot be used " 7314 "with uniform interface blocks"); 7315 } 7316 7317 if ((qual->flags.q.uniform || !is_interface) && 7318 qual->has_auxiliary_storage()) { 7319 _mesa_glsl_error(&loc, state, 7320 "auxiliary storage qualifiers cannot be used " 7321 "in uniform blocks or structures."); 7322 } 7323 7324 if (qual->flags.q.row_major || qual->flags.q.column_major) { 7325 if (!qual->flags.q.uniform && !qual->flags.q.buffer) { 7326 _mesa_glsl_error(&loc, state, 7327 "row_major and column_major can only be " 7328 "applied to interface blocks"); 7329 } else 7330 validate_matrix_layout_for_type(state, &loc, decl_type, NULL); 7331 } 7332 7333 foreach_list_typed (ast_declaration, decl, link, 7334 &decl_list->declarations) { 7335 YYLTYPE loc = decl->get_location(); 7336 7337 if (!allow_reserved_names) 7338 validate_identifier(decl->identifier, loc, state); 7339 7340 const struct glsl_type *field_type = 7341 process_array_type(&loc, decl_type, decl->array_specifier, state); 7342 validate_array_dimensions(field_type, state, &loc); 7343 fields[i].type = field_type; 7344 fields[i].name = decl->identifier; 7345 fields[i].interpolation = 7346 interpret_interpolation_qualifier(qual, field_type, 7347 var_mode, state, &loc); 7348 fields[i].centroid = qual->flags.q.centroid ? 1 : 0; 7349 fields[i].sample = qual->flags.q.sample ? 1 : 0; 7350 fields[i].patch = qual->flags.q.patch ? 1 : 0; 7351 fields[i].precision = qual->precision; 7352 fields[i].offset = -1; 7353 fields[i].explicit_xfb_buffer = explicit_xfb_buffer; 7354 fields[i].xfb_buffer = xfb_buffer; 7355 fields[i].xfb_stride = xfb_stride; 7356 7357 if (qual->flags.q.explicit_location) { 7358 unsigned qual_location; 7359 if (process_qualifier_constant(state, &loc, "location", 7360 qual->location, &qual_location)) { 7361 fields[i].location = qual_location + 7362 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0); 7363 expl_location = fields[i].location + 7364 fields[i].type->count_attribute_slots(false); 7365 } 7366 } else { 7367 if (layout && layout->flags.q.explicit_location) { 7368 fields[i].location = expl_location; 7369 expl_location += fields[i].type->count_attribute_slots(false); 7370 } else { 7371 fields[i].location = -1; 7372 } 7373 } 7374 7375 /* Offset can only be used with std430 and std140 layouts an initial 7376 * value of 0 is used for error detection. 7377 */ 7378 unsigned align = 0; 7379 unsigned size = 0; 7380 if (layout) { 7381 bool row_major; 7382 if (qual->flags.q.row_major || 7383 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) { 7384 row_major = true; 7385 } else { 7386 row_major = false; 7387 } 7388 7389 if(layout->flags.q.std140) { 7390 align = field_type->std140_base_alignment(row_major); 7391 size = field_type->std140_size(row_major); 7392 } else if (layout->flags.q.std430) { 7393 align = field_type->std430_base_alignment(row_major); 7394 size = field_type->std430_size(row_major); 7395 } 7396 } 7397 7398 if (qual->flags.q.explicit_offset) { 7399 unsigned qual_offset; 7400 if (process_qualifier_constant(state, &loc, "offset", 7401 qual->offset, &qual_offset)) { 7402 if (align != 0 && size != 0) { 7403 if (next_offset > qual_offset) 7404 _mesa_glsl_error(&loc, state, "layout qualifier " 7405 "offset overlaps previous member"); 7406 7407 if (qual_offset % align) { 7408 _mesa_glsl_error(&loc, state, "layout qualifier offset " 7409 "must be a multiple of the base " 7410 "alignment of %s", field_type->name); 7411 } 7412 fields[i].offset = qual_offset; 7413 next_offset = glsl_align(qual_offset + size, align); 7414 } else { 7415 _mesa_glsl_error(&loc, state, "offset can only be used " 7416 "with std430 and std140 layouts"); 7417 } 7418 } 7419 } 7420 7421 if (qual->flags.q.explicit_align || expl_align != 0) { 7422 unsigned offset = fields[i].offset != -1 ? fields[i].offset : 7423 next_offset; 7424 if (align == 0 || size == 0) { 7425 _mesa_glsl_error(&loc, state, "align can only be used with " 7426 "std430 and std140 layouts"); 7427 } else if (qual->flags.q.explicit_align) { 7428 unsigned member_align; 7429 if (process_qualifier_constant(state, &loc, "align", 7430 qual->align, &member_align)) { 7431 if (member_align == 0 || 7432 member_align & (member_align - 1)) { 7433 _mesa_glsl_error(&loc, state, "align layout qualifier " 7434 "is not a power of 2"); 7435 } else { 7436 fields[i].offset = glsl_align(offset, member_align); 7437 next_offset = glsl_align(fields[i].offset + size, align); 7438 } 7439 } 7440 } else { 7441 fields[i].offset = glsl_align(offset, expl_align); 7442 next_offset = glsl_align(fields[i].offset + size, align); 7443 } 7444 } else if (!qual->flags.q.explicit_offset) { 7445 if (align != 0 && size != 0) 7446 next_offset = glsl_align(next_offset + size, align); 7447 } 7448 7449 /* From the ARB_enhanced_layouts spec: 7450 * 7451 * "The given offset applies to the first component of the first 7452 * member of the qualified entity. Then, within the qualified 7453 * entity, subsequent components are each assigned, in order, to 7454 * the next available offset aligned to a multiple of that 7455 * component's size. Aggregate types are flattened down to the 7456 * component level to get this sequence of components." 7457 */ 7458 if (qual->flags.q.explicit_xfb_offset) { 7459 unsigned xfb_offset; 7460 if (process_qualifier_constant(state, &loc, "xfb_offset", 7461 qual->offset, &xfb_offset)) { 7462 fields[i].offset = xfb_offset; 7463 block_xfb_offset = fields[i].offset + 7464 4 * field_type->component_slots(); 7465 } 7466 } else { 7467 if (layout && layout->flags.q.explicit_xfb_offset) { 7468 unsigned align = field_type->is_64bit() ? 8 : 4; 7469 fields[i].offset = glsl_align(block_xfb_offset, align); 7470 block_xfb_offset += 4 * field_type->component_slots(); 7471 } 7472 } 7473 7474 /* Propogate row- / column-major information down the fields of the 7475 * structure or interface block. Structures need this data because 7476 * the structure may contain a structure that contains ... a matrix 7477 * that need the proper layout. 7478 */ 7479 if (is_interface && layout && 7480 (layout->flags.q.uniform || layout->flags.q.buffer) && 7481 (field_type->without_array()->is_matrix() 7482 || field_type->without_array()->is_record())) { 7483 /* If no layout is specified for the field, inherit the layout 7484 * from the block. 7485 */ 7486 fields[i].matrix_layout = matrix_layout; 7487 7488 if (qual->flags.q.row_major) 7489 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; 7490 else if (qual->flags.q.column_major) 7491 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; 7492 7493 /* If we're processing an uniform or buffer block, the matrix 7494 * layout must be decided by this point. 7495 */ 7496 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR 7497 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR); 7498 } 7499 7500 /* Memory qualifiers are allowed on buffer and image variables, while 7501 * the format qualifier is only accepted for images. 7502 */ 7503 if (var_mode == ir_var_shader_storage || 7504 field_type->without_array()->is_image()) { 7505 /* For readonly and writeonly qualifiers the field definition, 7506 * if set, overwrites the layout qualifier. 7507 */ 7508 if (qual->flags.q.read_only || qual->flags.q.write_only) { 7509 fields[i].memory_read_only = qual->flags.q.read_only; 7510 fields[i].memory_write_only = qual->flags.q.write_only; 7511 } else { 7512 fields[i].memory_read_only = 7513 layout ? layout->flags.q.read_only : 0; 7514 fields[i].memory_write_only = 7515 layout ? layout->flags.q.write_only : 0; 7516 } 7517 7518 /* For other qualifiers, we set the flag if either the layout 7519 * qualifier or the field qualifier are set 7520 */ 7521 fields[i].memory_coherent = qual->flags.q.coherent || 7522 (layout && layout->flags.q.coherent); 7523 fields[i].memory_volatile = qual->flags.q._volatile || 7524 (layout && layout->flags.q._volatile); 7525 fields[i].memory_restrict = qual->flags.q.restrict_flag || 7526 (layout && layout->flags.q.restrict_flag); 7527 7528 if (field_type->without_array()->is_image()) { 7529 if (qual->flags.q.explicit_image_format) { 7530 if (qual->image_base_type != 7531 field_type->without_array()->sampled_type) { 7532 _mesa_glsl_error(&loc, state, "format qualifier doesn't " 7533 "match the base data type of the image"); 7534 } 7535 7536 fields[i].image_format = qual->image_format; 7537 } else { 7538 if (!qual->flags.q.write_only) { 7539 _mesa_glsl_error(&loc, state, "image not qualified with " 7540 "`writeonly' must have a format layout " 7541 "qualifier"); 7542 } 7543 7544 fields[i].image_format = GL_NONE; 7545 } 7546 } 7547 } 7548 7549 i++; 7550 } 7551 } 7552 7553 assert(i == decl_count); 7554 7555 *fields_ret = fields; 7556 return decl_count; 7557} 7558 7559 7560ir_rvalue * 7561ast_struct_specifier::hir(exec_list *instructions, 7562 struct _mesa_glsl_parse_state *state) 7563{ 7564 YYLTYPE loc = this->get_location(); 7565 7566 unsigned expl_location = 0; 7567 if (layout && layout->flags.q.explicit_location) { 7568 if (!process_qualifier_constant(state, &loc, "location", 7569 layout->location, &expl_location)) { 7570 return NULL; 7571 } else { 7572 expl_location = VARYING_SLOT_VAR0 + expl_location; 7573 } 7574 } 7575 7576 glsl_struct_field *fields; 7577 unsigned decl_count = 7578 ast_process_struct_or_iface_block_members(instructions, 7579 state, 7580 &this->declarations, 7581 &fields, 7582 false, 7583 GLSL_MATRIX_LAYOUT_INHERITED, 7584 false /* allow_reserved_names */, 7585 ir_var_auto, 7586 layout, 7587 0, /* for interface only */ 7588 0, /* for interface only */ 7589 0, /* for interface only */ 7590 expl_location, 7591 0 /* for interface only */); 7592 7593 validate_identifier(this->name, loc, state); 7594 7595 type = glsl_type::get_record_instance(fields, decl_count, this->name); 7596 7597 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) { 7598 const glsl_type *match = state->symbols->get_type(name); 7599 /* allow struct matching for desktop GL - older UE4 does this */ 7600 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false)) 7601 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name); 7602 else 7603 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name); 7604 } else { 7605 const glsl_type **s = reralloc(state, state->user_structures, 7606 const glsl_type *, 7607 state->num_user_structures + 1); 7608 if (s != NULL) { 7609 s[state->num_user_structures] = type; 7610 state->user_structures = s; 7611 state->num_user_structures++; 7612 } 7613 } 7614 7615 /* Structure type definitions do not have r-values. 7616 */ 7617 return NULL; 7618} 7619 7620 7621/** 7622 * Visitor class which detects whether a given interface block has been used. 7623 */ 7624class interface_block_usage_visitor : public ir_hierarchical_visitor 7625{ 7626public: 7627 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block) 7628 : mode(mode), block(block), found(false) 7629 { 7630 } 7631 7632 virtual ir_visitor_status visit(ir_dereference_variable *ir) 7633 { 7634 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) { 7635 found = true; 7636 return visit_stop; 7637 } 7638 return visit_continue; 7639 } 7640 7641 bool usage_found() const 7642 { 7643 return this->found; 7644 } 7645 7646private: 7647 ir_variable_mode mode; 7648 const glsl_type *block; 7649 bool found; 7650}; 7651 7652static bool 7653is_unsized_array_last_element(ir_variable *v) 7654{ 7655 const glsl_type *interface_type = v->get_interface_type(); 7656 int length = interface_type->length; 7657 7658 assert(v->type->is_unsized_array()); 7659 7660 /* Check if it is the last element of the interface */ 7661 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0) 7662 return true; 7663 return false; 7664} 7665 7666static void 7667apply_memory_qualifiers(ir_variable *var, glsl_struct_field field) 7668{ 7669 var->data.memory_read_only = field.memory_read_only; 7670 var->data.memory_write_only = field.memory_write_only; 7671 var->data.memory_coherent = field.memory_coherent; 7672 var->data.memory_volatile = field.memory_volatile; 7673 var->data.memory_restrict = field.memory_restrict; 7674} 7675 7676ir_rvalue * 7677ast_interface_block::hir(exec_list *instructions, 7678 struct _mesa_glsl_parse_state *state) 7679{ 7680 YYLTYPE loc = this->get_location(); 7681 7682 /* Interface blocks must be declared at global scope */ 7683 if (state->current_function != NULL) { 7684 _mesa_glsl_error(&loc, state, 7685 "Interface block `%s' must be declared " 7686 "at global scope", 7687 this->block_name); 7688 } 7689 7690 /* Validate qualifiers: 7691 * 7692 * - Layout Qualifiers as per the table in Section 4.4 7693 * ("Layout Qualifiers") of the GLSL 4.50 spec. 7694 * 7695 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the 7696 * GLSL 4.50 spec: 7697 * 7698 * "Additionally, memory qualifiers may also be used in the declaration 7699 * of shader storage blocks" 7700 * 7701 * Note the table in Section 4.4 says std430 is allowed on both uniform and 7702 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block 7703 * Layout Qualifiers) of the GLSL 4.50 spec says: 7704 * 7705 * "The std430 qualifier is supported only for shader storage blocks; 7706 * using std430 on a uniform block will result in a compile-time error." 7707 */ 7708 ast_type_qualifier allowed_blk_qualifiers; 7709 allowed_blk_qualifiers.flags.i = 0; 7710 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) { 7711 allowed_blk_qualifiers.flags.q.shared = 1; 7712 allowed_blk_qualifiers.flags.q.packed = 1; 7713 allowed_blk_qualifiers.flags.q.std140 = 1; 7714 allowed_blk_qualifiers.flags.q.row_major = 1; 7715 allowed_blk_qualifiers.flags.q.column_major = 1; 7716 allowed_blk_qualifiers.flags.q.explicit_align = 1; 7717 allowed_blk_qualifiers.flags.q.explicit_binding = 1; 7718 if (this->layout.flags.q.buffer) { 7719 allowed_blk_qualifiers.flags.q.buffer = 1; 7720 allowed_blk_qualifiers.flags.q.std430 = 1; 7721 allowed_blk_qualifiers.flags.q.coherent = 1; 7722 allowed_blk_qualifiers.flags.q._volatile = 1; 7723 allowed_blk_qualifiers.flags.q.restrict_flag = 1; 7724 allowed_blk_qualifiers.flags.q.read_only = 1; 7725 allowed_blk_qualifiers.flags.q.write_only = 1; 7726 } else { 7727 allowed_blk_qualifiers.flags.q.uniform = 1; 7728 } 7729 } else { 7730 /* Interface block */ 7731 assert(this->layout.flags.q.in || this->layout.flags.q.out); 7732 7733 allowed_blk_qualifiers.flags.q.explicit_location = 1; 7734 if (this->layout.flags.q.out) { 7735 allowed_blk_qualifiers.flags.q.out = 1; 7736 if (state->stage == MESA_SHADER_GEOMETRY || 7737 state->stage == MESA_SHADER_TESS_CTRL || 7738 state->stage == MESA_SHADER_TESS_EVAL || 7739 state->stage == MESA_SHADER_VERTEX ) { 7740 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1; 7741 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1; 7742 allowed_blk_qualifiers.flags.q.xfb_buffer = 1; 7743 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1; 7744 allowed_blk_qualifiers.flags.q.xfb_stride = 1; 7745 if (state->stage == MESA_SHADER_GEOMETRY) { 7746 allowed_blk_qualifiers.flags.q.stream = 1; 7747 allowed_blk_qualifiers.flags.q.explicit_stream = 1; 7748 } 7749 if (state->stage == MESA_SHADER_TESS_CTRL) { 7750 allowed_blk_qualifiers.flags.q.patch = 1; 7751 } 7752 } 7753 } else { 7754 allowed_blk_qualifiers.flags.q.in = 1; 7755 if (state->stage == MESA_SHADER_TESS_EVAL) { 7756 allowed_blk_qualifiers.flags.q.patch = 1; 7757 } 7758 } 7759 } 7760 7761 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers, 7762 "invalid qualifier for block", 7763 this->block_name); 7764 7765 enum glsl_interface_packing packing; 7766 if (this->layout.flags.q.std140) { 7767 packing = GLSL_INTERFACE_PACKING_STD140; 7768 } else if (this->layout.flags.q.packed) { 7769 packing = GLSL_INTERFACE_PACKING_PACKED; 7770 } else if (this->layout.flags.q.std430) { 7771 packing = GLSL_INTERFACE_PACKING_STD430; 7772 } else { 7773 /* The default layout is shared. 7774 */ 7775 packing = GLSL_INTERFACE_PACKING_SHARED; 7776 } 7777 7778 ir_variable_mode var_mode; 7779 const char *iface_type_name; 7780 if (this->layout.flags.q.in) { 7781 var_mode = ir_var_shader_in; 7782 iface_type_name = "in"; 7783 } else if (this->layout.flags.q.out) { 7784 var_mode = ir_var_shader_out; 7785 iface_type_name = "out"; 7786 } else if (this->layout.flags.q.uniform) { 7787 var_mode = ir_var_uniform; 7788 iface_type_name = "uniform"; 7789 } else if (this->layout.flags.q.buffer) { 7790 var_mode = ir_var_shader_storage; 7791 iface_type_name = "buffer"; 7792 } else { 7793 var_mode = ir_var_auto; 7794 iface_type_name = "UNKNOWN"; 7795 assert(!"interface block layout qualifier not found!"); 7796 } 7797 7798 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED; 7799 if (this->layout.flags.q.row_major) 7800 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; 7801 else if (this->layout.flags.q.column_major) 7802 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; 7803 7804 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0; 7805 exec_list declared_variables; 7806 glsl_struct_field *fields; 7807 7808 /* For blocks that accept memory qualifiers (i.e. shader storage), verify 7809 * that we don't have incompatible qualifiers 7810 */ 7811 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) { 7812 _mesa_glsl_error(&loc, state, 7813 "Interface block sets both readonly and writeonly"); 7814 } 7815 7816 unsigned qual_stream; 7817 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream, 7818 &qual_stream) || 7819 !validate_stream_qualifier(&loc, state, qual_stream)) { 7820 /* If the stream qualifier is invalid it doesn't make sense to continue 7821 * on and try to compare stream layouts on member variables against it 7822 * so just return early. 7823 */ 7824 return NULL; 7825 } 7826 7827 unsigned qual_xfb_buffer; 7828 if (!process_qualifier_constant(state, &loc, "xfb_buffer", 7829 layout.xfb_buffer, &qual_xfb_buffer) || 7830 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) { 7831 return NULL; 7832 } 7833 7834 unsigned qual_xfb_offset; 7835 if (layout.flags.q.explicit_xfb_offset) { 7836 if (!process_qualifier_constant(state, &loc, "xfb_offset", 7837 layout.offset, &qual_xfb_offset)) { 7838 return NULL; 7839 } 7840 } 7841 7842 unsigned qual_xfb_stride; 7843 if (layout.flags.q.explicit_xfb_stride) { 7844 if (!process_qualifier_constant(state, &loc, "xfb_stride", 7845 layout.xfb_stride, &qual_xfb_stride)) { 7846 return NULL; 7847 } 7848 } 7849 7850 unsigned expl_location = 0; 7851 if (layout.flags.q.explicit_location) { 7852 if (!process_qualifier_constant(state, &loc, "location", 7853 layout.location, &expl_location)) { 7854 return NULL; 7855 } else { 7856 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0 7857 : VARYING_SLOT_VAR0; 7858 } 7859 } 7860 7861 unsigned expl_align = 0; 7862 if (layout.flags.q.explicit_align) { 7863 if (!process_qualifier_constant(state, &loc, "align", 7864 layout.align, &expl_align)) { 7865 return NULL; 7866 } else { 7867 if (expl_align == 0 || expl_align & (expl_align - 1)) { 7868 _mesa_glsl_error(&loc, state, "align layout qualifier is not a " 7869 "power of 2."); 7870 return NULL; 7871 } 7872 } 7873 } 7874 7875 unsigned int num_variables = 7876 ast_process_struct_or_iface_block_members(&declared_variables, 7877 state, 7878 &this->declarations, 7879 &fields, 7880 true, 7881 matrix_layout, 7882 redeclaring_per_vertex, 7883 var_mode, 7884 &this->layout, 7885 qual_stream, 7886 qual_xfb_buffer, 7887 qual_xfb_offset, 7888 expl_location, 7889 expl_align); 7890 7891 if (!redeclaring_per_vertex) { 7892 validate_identifier(this->block_name, loc, state); 7893 7894 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec: 7895 * 7896 * "Block names have no other use within a shader beyond interface 7897 * matching; it is a compile-time error to use a block name at global 7898 * scope for anything other than as a block name." 7899 */ 7900 ir_variable *var = state->symbols->get_variable(this->block_name); 7901 if (var && !var->type->is_interface()) { 7902 _mesa_glsl_error(&loc, state, "Block name `%s' is " 7903 "already used in the scope.", 7904 this->block_name); 7905 } 7906 } 7907 7908 const glsl_type *earlier_per_vertex = NULL; 7909 if (redeclaring_per_vertex) { 7910 /* Find the previous declaration of gl_PerVertex. If we're redeclaring 7911 * the named interface block gl_in, we can find it by looking at the 7912 * previous declaration of gl_in. Otherwise we can find it by looking 7913 * at the previous decalartion of any of the built-in outputs, 7914 * e.g. gl_Position. 7915 * 7916 * Also check that the instance name and array-ness of the redeclaration 7917 * are correct. 7918 */ 7919 switch (var_mode) { 7920 case ir_var_shader_in: 7921 if (ir_variable *earlier_gl_in = 7922 state->symbols->get_variable("gl_in")) { 7923 earlier_per_vertex = earlier_gl_in->get_interface_type(); 7924 } else { 7925 _mesa_glsl_error(&loc, state, 7926 "redeclaration of gl_PerVertex input not allowed " 7927 "in the %s shader", 7928 _mesa_shader_stage_to_string(state->stage)); 7929 } 7930 if (this->instance_name == NULL || 7931 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL || 7932 !this->array_specifier->is_single_dimension()) { 7933 _mesa_glsl_error(&loc, state, 7934 "gl_PerVertex input must be redeclared as " 7935 "gl_in[]"); 7936 } 7937 break; 7938 case ir_var_shader_out: 7939 if (ir_variable *earlier_gl_Position = 7940 state->symbols->get_variable("gl_Position")) { 7941 earlier_per_vertex = earlier_gl_Position->get_interface_type(); 7942 } else if (ir_variable *earlier_gl_out = 7943 state->symbols->get_variable("gl_out")) { 7944 earlier_per_vertex = earlier_gl_out->get_interface_type(); 7945 } else { 7946 _mesa_glsl_error(&loc, state, 7947 "redeclaration of gl_PerVertex output not " 7948 "allowed in the %s shader", 7949 _mesa_shader_stage_to_string(state->stage)); 7950 } 7951 if (state->stage == MESA_SHADER_TESS_CTRL) { 7952 if (this->instance_name == NULL || 7953 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) { 7954 _mesa_glsl_error(&loc, state, 7955 "gl_PerVertex output must be redeclared as " 7956 "gl_out[]"); 7957 } 7958 } else { 7959 if (this->instance_name != NULL) { 7960 _mesa_glsl_error(&loc, state, 7961 "gl_PerVertex output may not be redeclared with " 7962 "an instance name"); 7963 } 7964 } 7965 break; 7966 default: 7967 _mesa_glsl_error(&loc, state, 7968 "gl_PerVertex must be declared as an input or an " 7969 "output"); 7970 break; 7971 } 7972 7973 if (earlier_per_vertex == NULL) { 7974 /* An error has already been reported. Bail out to avoid null 7975 * dereferences later in this function. 7976 */ 7977 return NULL; 7978 } 7979 7980 /* Copy locations from the old gl_PerVertex interface block. */ 7981 for (unsigned i = 0; i < num_variables; i++) { 7982 int j = earlier_per_vertex->field_index(fields[i].name); 7983 if (j == -1) { 7984 _mesa_glsl_error(&loc, state, 7985 "redeclaration of gl_PerVertex must be a subset " 7986 "of the built-in members of gl_PerVertex"); 7987 } else { 7988 fields[i].location = 7989 earlier_per_vertex->fields.structure[j].location; 7990 fields[i].offset = 7991 earlier_per_vertex->fields.structure[j].offset; 7992 fields[i].interpolation = 7993 earlier_per_vertex->fields.structure[j].interpolation; 7994 fields[i].centroid = 7995 earlier_per_vertex->fields.structure[j].centroid; 7996 fields[i].sample = 7997 earlier_per_vertex->fields.structure[j].sample; 7998 fields[i].patch = 7999 earlier_per_vertex->fields.structure[j].patch; 8000 fields[i].precision = 8001 earlier_per_vertex->fields.structure[j].precision; 8002 fields[i].explicit_xfb_buffer = 8003 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer; 8004 fields[i].xfb_buffer = 8005 earlier_per_vertex->fields.structure[j].xfb_buffer; 8006 fields[i].xfb_stride = 8007 earlier_per_vertex->fields.structure[j].xfb_stride; 8008 } 8009 } 8010 8011 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 8012 * spec: 8013 * 8014 * If a built-in interface block is redeclared, it must appear in 8015 * the shader before any use of any member included in the built-in 8016 * declaration, or a compilation error will result. 8017 * 8018 * This appears to be a clarification to the behaviour established for 8019 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour 8020 * regardless of GLSL version. 8021 */ 8022 interface_block_usage_visitor v(var_mode, earlier_per_vertex); 8023 v.run(instructions); 8024 if (v.usage_found()) { 8025 _mesa_glsl_error(&loc, state, 8026 "redeclaration of a built-in interface block must " 8027 "appear before any use of any member of the " 8028 "interface block"); 8029 } 8030 } 8031 8032 const glsl_type *block_type = 8033 glsl_type::get_interface_instance(fields, 8034 num_variables, 8035 packing, 8036 matrix_layout == 8037 GLSL_MATRIX_LAYOUT_ROW_MAJOR, 8038 this->block_name); 8039 8040 unsigned component_size = block_type->contains_double() ? 8 : 4; 8041 int xfb_offset = 8042 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1; 8043 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type, 8044 component_size); 8045 8046 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) { 8047 YYLTYPE loc = this->get_location(); 8048 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' " 8049 "already taken in the current scope", 8050 this->block_name, iface_type_name); 8051 } 8052 8053 /* Since interface blocks cannot contain statements, it should be 8054 * impossible for the block to generate any instructions. 8055 */ 8056 assert(declared_variables.is_empty()); 8057 8058 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: 8059 * 8060 * Geometry shader input variables get the per-vertex values written 8061 * out by vertex shader output variables of the same names. Since a 8062 * geometry shader operates on a set of vertices, each input varying 8063 * variable (or input block, see interface blocks below) needs to be 8064 * declared as an array. 8065 */ 8066 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL && 8067 var_mode == ir_var_shader_in) { 8068 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays"); 8069 } else if ((state->stage == MESA_SHADER_TESS_CTRL || 8070 state->stage == MESA_SHADER_TESS_EVAL) && 8071 !this->layout.flags.q.patch && 8072 this->array_specifier == NULL && 8073 var_mode == ir_var_shader_in) { 8074 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays"); 8075 } else if (state->stage == MESA_SHADER_TESS_CTRL && 8076 !this->layout.flags.q.patch && 8077 this->array_specifier == NULL && 8078 var_mode == ir_var_shader_out) { 8079 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays"); 8080 } 8081 8082 8083 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec 8084 * says: 8085 * 8086 * "If an instance name (instance-name) is used, then it puts all the 8087 * members inside a scope within its own name space, accessed with the 8088 * field selector ( . ) operator (analogously to structures)." 8089 */ 8090 if (this->instance_name) { 8091 if (redeclaring_per_vertex) { 8092 /* When a built-in in an unnamed interface block is redeclared, 8093 * get_variable_being_redeclared() calls 8094 * check_builtin_array_max_size() to make sure that built-in array 8095 * variables aren't redeclared to illegal sizes. But we're looking 8096 * at a redeclaration of a named built-in interface block. So we 8097 * have to manually call check_builtin_array_max_size() for all parts 8098 * of the interface that are arrays. 8099 */ 8100 for (unsigned i = 0; i < num_variables; i++) { 8101 if (fields[i].type->is_array()) { 8102 const unsigned size = fields[i].type->array_size(); 8103 check_builtin_array_max_size(fields[i].name, size, loc, state); 8104 } 8105 } 8106 } else { 8107 validate_identifier(this->instance_name, loc, state); 8108 } 8109 8110 ir_variable *var; 8111 8112 if (this->array_specifier != NULL) { 8113 const glsl_type *block_array_type = 8114 process_array_type(&loc, block_type, this->array_specifier, state); 8115 8116 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says: 8117 * 8118 * For uniform blocks declared an array, each individual array 8119 * element corresponds to a separate buffer object backing one 8120 * instance of the block. As the array size indicates the number 8121 * of buffer objects needed, uniform block array declarations 8122 * must specify an array size. 8123 * 8124 * And a few paragraphs later: 8125 * 8126 * Geometry shader input blocks must be declared as arrays and 8127 * follow the array declaration and linking rules for all 8128 * geometry shader inputs. All other input and output block 8129 * arrays must specify an array size. 8130 * 8131 * The same applies to tessellation shaders. 8132 * 8133 * The upshot of this is that the only circumstance where an 8134 * interface array size *doesn't* need to be specified is on a 8135 * geometry shader input, tessellation control shader input, 8136 * tessellation control shader output, and tessellation evaluation 8137 * shader input. 8138 */ 8139 if (block_array_type->is_unsized_array()) { 8140 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY || 8141 state->stage == MESA_SHADER_TESS_CTRL || 8142 state->stage == MESA_SHADER_TESS_EVAL; 8143 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL; 8144 8145 if (this->layout.flags.q.in) { 8146 if (!allow_inputs) 8147 _mesa_glsl_error(&loc, state, 8148 "unsized input block arrays not allowed in " 8149 "%s shader", 8150 _mesa_shader_stage_to_string(state->stage)); 8151 } else if (this->layout.flags.q.out) { 8152 if (!allow_outputs) 8153 _mesa_glsl_error(&loc, state, 8154 "unsized output block arrays not allowed in " 8155 "%s shader", 8156 _mesa_shader_stage_to_string(state->stage)); 8157 } else { 8158 /* by elimination, this is a uniform block array */ 8159 _mesa_glsl_error(&loc, state, 8160 "unsized uniform block arrays not allowed in " 8161 "%s shader", 8162 _mesa_shader_stage_to_string(state->stage)); 8163 } 8164 } 8165 8166 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec: 8167 * 8168 * * Arrays of arrays of blocks are not allowed 8169 */ 8170 if (state->es_shader && block_array_type->is_array() && 8171 block_array_type->fields.array->is_array()) { 8172 _mesa_glsl_error(&loc, state, 8173 "arrays of arrays interface blocks are " 8174 "not allowed"); 8175 } 8176 8177 var = new(state) ir_variable(block_array_type, 8178 this->instance_name, 8179 var_mode); 8180 } else { 8181 var = new(state) ir_variable(block_type, 8182 this->instance_name, 8183 var_mode); 8184 } 8185 8186 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED 8187 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; 8188 8189 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) 8190 var->data.read_only = true; 8191 8192 var->data.patch = this->layout.flags.q.patch; 8193 8194 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in) 8195 handle_geometry_shader_input_decl(state, loc, var); 8196 else if ((state->stage == MESA_SHADER_TESS_CTRL || 8197 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in) 8198 handle_tess_shader_input_decl(state, loc, var); 8199 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out) 8200 handle_tess_ctrl_shader_output_decl(state, loc, var); 8201 8202 for (unsigned i = 0; i < num_variables; i++) { 8203 if (var->data.mode == ir_var_shader_storage) 8204 apply_memory_qualifiers(var, fields[i]); 8205 } 8206 8207 if (ir_variable *earlier = 8208 state->symbols->get_variable(this->instance_name)) { 8209 if (!redeclaring_per_vertex) { 8210 _mesa_glsl_error(&loc, state, "`%s' redeclared", 8211 this->instance_name); 8212 } 8213 earlier->data.how_declared = ir_var_declared_normally; 8214 earlier->type = var->type; 8215 earlier->reinit_interface_type(block_type); 8216 delete var; 8217 } else { 8218 if (this->layout.flags.q.explicit_binding) { 8219 apply_explicit_binding(state, &loc, var, var->type, 8220 &this->layout); 8221 } 8222 8223 var->data.stream = qual_stream; 8224 if (layout.flags.q.explicit_location) { 8225 var->data.location = expl_location; 8226 var->data.explicit_location = true; 8227 } 8228 8229 state->symbols->add_variable(var); 8230 instructions->push_tail(var); 8231 } 8232 } else { 8233 /* In order to have an array size, the block must also be declared with 8234 * an instance name. 8235 */ 8236 assert(this->array_specifier == NULL); 8237 8238 for (unsigned i = 0; i < num_variables; i++) { 8239 ir_variable *var = 8240 new(state) ir_variable(fields[i].type, 8241 ralloc_strdup(state, fields[i].name), 8242 var_mode); 8243 var->data.interpolation = fields[i].interpolation; 8244 var->data.centroid = fields[i].centroid; 8245 var->data.sample = fields[i].sample; 8246 var->data.patch = fields[i].patch; 8247 var->data.stream = qual_stream; 8248 var->data.location = fields[i].location; 8249 8250 if (fields[i].location != -1) 8251 var->data.explicit_location = true; 8252 8253 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer; 8254 var->data.xfb_buffer = fields[i].xfb_buffer; 8255 8256 if (fields[i].offset != -1) 8257 var->data.explicit_xfb_offset = true; 8258 var->data.offset = fields[i].offset; 8259 8260 var->init_interface_type(block_type); 8261 8262 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) 8263 var->data.read_only = true; 8264 8265 /* Precision qualifiers do not have any meaning in Desktop GLSL */ 8266 if (state->es_shader) { 8267 var->data.precision = 8268 select_gles_precision(fields[i].precision, fields[i].type, 8269 state, &loc); 8270 } 8271 8272 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) { 8273 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED 8274 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; 8275 } else { 8276 var->data.matrix_layout = fields[i].matrix_layout; 8277 } 8278 8279 if (var->data.mode == ir_var_shader_storage) 8280 apply_memory_qualifiers(var, fields[i]); 8281 8282 /* Examine var name here since var may get deleted in the next call */ 8283 bool var_is_gl_id = is_gl_identifier(var->name); 8284 8285 if (redeclaring_per_vertex) { 8286 bool is_redeclaration; 8287 var = 8288 get_variable_being_redeclared(&var, loc, state, 8289 true /* allow_all_redeclarations */, 8290 &is_redeclaration); 8291 if (!var_is_gl_id || !is_redeclaration) { 8292 _mesa_glsl_error(&loc, state, 8293 "redeclaration of gl_PerVertex can only " 8294 "include built-in variables"); 8295 } else if (var->data.how_declared == ir_var_declared_normally) { 8296 _mesa_glsl_error(&loc, state, 8297 "`%s' has already been redeclared", 8298 var->name); 8299 } else { 8300 var->data.how_declared = ir_var_declared_in_block; 8301 var->reinit_interface_type(block_type); 8302 } 8303 continue; 8304 } 8305 8306 if (state->symbols->get_variable(var->name) != NULL) 8307 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); 8308 8309 /* Propagate the "binding" keyword into this UBO/SSBO's fields. 8310 * The UBO declaration itself doesn't get an ir_variable unless it 8311 * has an instance name. This is ugly. 8312 */ 8313 if (this->layout.flags.q.explicit_binding) { 8314 apply_explicit_binding(state, &loc, var, 8315 var->get_interface_type(), &this->layout); 8316 } 8317 8318 if (var->type->is_unsized_array()) { 8319 if (var->is_in_shader_storage_block() && 8320 is_unsized_array_last_element(var)) { 8321 var->data.from_ssbo_unsized_array = true; 8322 } else { 8323 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays": 8324 * 8325 * "If an array is declared as the last member of a shader storage 8326 * block and the size is not specified at compile-time, it is 8327 * sized at run-time. In all other cases, arrays are sized only 8328 * at compile-time." 8329 * 8330 * In desktop GLSL it is allowed to have unsized-arrays that are 8331 * not last, as long as we can determine that they are implicitly 8332 * sized. 8333 */ 8334 if (state->es_shader) { 8335 _mesa_glsl_error(&loc, state, "unsized array `%s' " 8336 "definition: only last member of a shader " 8337 "storage block can be defined as unsized " 8338 "array", fields[i].name); 8339 } 8340 } 8341 } 8342 8343 state->symbols->add_variable(var); 8344 instructions->push_tail(var); 8345 } 8346 8347 if (redeclaring_per_vertex && block_type != earlier_per_vertex) { 8348 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec: 8349 * 8350 * It is also a compilation error ... to redeclare a built-in 8351 * block and then use a member from that built-in block that was 8352 * not included in the redeclaration. 8353 * 8354 * This appears to be a clarification to the behaviour established 8355 * for gl_PerVertex by GLSL 1.50, therefore we implement this 8356 * behaviour regardless of GLSL version. 8357 * 8358 * To prevent the shader from using a member that was not included in 8359 * the redeclaration, we disable any ir_variables that are still 8360 * associated with the old declaration of gl_PerVertex (since we've 8361 * already updated all of the variables contained in the new 8362 * gl_PerVertex to point to it). 8363 * 8364 * As a side effect this will prevent 8365 * validate_intrastage_interface_blocks() from getting confused and 8366 * thinking there are conflicting definitions of gl_PerVertex in the 8367 * shader. 8368 */ 8369 foreach_in_list_safe(ir_instruction, node, instructions) { 8370 ir_variable *const var = node->as_variable(); 8371 if (var != NULL && 8372 var->get_interface_type() == earlier_per_vertex && 8373 var->data.mode == var_mode) { 8374 if (var->data.how_declared == ir_var_declared_normally) { 8375 _mesa_glsl_error(&loc, state, 8376 "redeclaration of gl_PerVertex cannot " 8377 "follow a redeclaration of `%s'", 8378 var->name); 8379 } 8380 state->symbols->disable_variable(var->name); 8381 var->remove(); 8382 } 8383 } 8384 } 8385 } 8386 8387 return NULL; 8388} 8389 8390 8391ir_rvalue * 8392ast_tcs_output_layout::hir(exec_list *instructions, 8393 struct _mesa_glsl_parse_state *state) 8394{ 8395 YYLTYPE loc = this->get_location(); 8396 8397 unsigned num_vertices; 8398 if (!state->out_qualifier->vertices-> 8399 process_qualifier_constant(state, "vertices", &num_vertices, 8400 false)) { 8401 /* return here to stop cascading incorrect error messages */ 8402 return NULL; 8403 } 8404 8405 /* If any shader outputs occurred before this declaration and specified an 8406 * array size, make sure the size they specified is consistent with the 8407 * primitive type. 8408 */ 8409 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) { 8410 _mesa_glsl_error(&loc, state, 8411 "this tessellation control shader output layout " 8412 "specifies %u vertices, but a previous output " 8413 "is declared with size %u", 8414 num_vertices, state->tcs_output_size); 8415 return NULL; 8416 } 8417 8418 state->tcs_output_vertices_specified = true; 8419 8420 /* If any shader outputs occurred before this declaration and did not 8421 * specify an array size, their size is determined now. 8422 */ 8423 foreach_in_list (ir_instruction, node, instructions) { 8424 ir_variable *var = node->as_variable(); 8425 if (var == NULL || var->data.mode != ir_var_shader_out) 8426 continue; 8427 8428 /* Note: Not all tessellation control shader output are arrays. */ 8429 if (!var->type->is_unsized_array() || var->data.patch) 8430 continue; 8431 8432 if (var->data.max_array_access >= (int)num_vertices) { 8433 _mesa_glsl_error(&loc, state, 8434 "this tessellation control shader output layout " 8435 "specifies %u vertices, but an access to element " 8436 "%u of output `%s' already exists", num_vertices, 8437 var->data.max_array_access, var->name); 8438 } else { 8439 var->type = glsl_type::get_array_instance(var->type->fields.array, 8440 num_vertices); 8441 } 8442 } 8443 8444 return NULL; 8445} 8446 8447 8448ir_rvalue * 8449ast_gs_input_layout::hir(exec_list *instructions, 8450 struct _mesa_glsl_parse_state *state) 8451{ 8452 YYLTYPE loc = this->get_location(); 8453 8454 /* Should have been prevented by the parser. */ 8455 assert(!state->gs_input_prim_type_specified 8456 || state->in_qualifier->prim_type == this->prim_type); 8457 8458 /* If any shader inputs occurred before this declaration and specified an 8459 * array size, make sure the size they specified is consistent with the 8460 * primitive type. 8461 */ 8462 unsigned num_vertices = vertices_per_prim(this->prim_type); 8463 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) { 8464 _mesa_glsl_error(&loc, state, 8465 "this geometry shader input layout implies %u vertices" 8466 " per primitive, but a previous input is declared" 8467 " with size %u", num_vertices, state->gs_input_size); 8468 return NULL; 8469 } 8470 8471 state->gs_input_prim_type_specified = true; 8472 8473 /* If any shader inputs occurred before this declaration and did not 8474 * specify an array size, their size is determined now. 8475 */ 8476 foreach_in_list(ir_instruction, node, instructions) { 8477 ir_variable *var = node->as_variable(); 8478 if (var == NULL || var->data.mode != ir_var_shader_in) 8479 continue; 8480 8481 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an 8482 * array; skip it. 8483 */ 8484 8485 if (var->type->is_unsized_array()) { 8486 if (var->data.max_array_access >= (int)num_vertices) { 8487 _mesa_glsl_error(&loc, state, 8488 "this geometry shader input layout implies %u" 8489 " vertices, but an access to element %u of input" 8490 " `%s' already exists", num_vertices, 8491 var->data.max_array_access, var->name); 8492 } else { 8493 var->type = glsl_type::get_array_instance(var->type->fields.array, 8494 num_vertices); 8495 } 8496 } 8497 } 8498 8499 return NULL; 8500} 8501 8502 8503ir_rvalue * 8504ast_cs_input_layout::hir(exec_list *instructions, 8505 struct _mesa_glsl_parse_state *state) 8506{ 8507 YYLTYPE loc = this->get_location(); 8508 8509 /* From the ARB_compute_shader specification: 8510 * 8511 * If the local size of the shader in any dimension is greater 8512 * than the maximum size supported by the implementation for that 8513 * dimension, a compile-time error results. 8514 * 8515 * It is not clear from the spec how the error should be reported if 8516 * the total size of the work group exceeds 8517 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to 8518 * report it at compile time as well. 8519 */ 8520 GLuint64 total_invocations = 1; 8521 unsigned qual_local_size[3]; 8522 for (int i = 0; i < 3; i++) { 8523 8524 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c", 8525 'x' + i); 8526 /* Infer a local_size of 1 for unspecified dimensions */ 8527 if (this->local_size[i] == NULL) { 8528 qual_local_size[i] = 1; 8529 } else if (!this->local_size[i]-> 8530 process_qualifier_constant(state, local_size_str, 8531 &qual_local_size[i], false)) { 8532 ralloc_free(local_size_str); 8533 return NULL; 8534 } 8535 ralloc_free(local_size_str); 8536 8537 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) { 8538 _mesa_glsl_error(&loc, state, 8539 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE" 8540 " (%d)", 'x' + i, 8541 state->ctx->Const.MaxComputeWorkGroupSize[i]); 8542 break; 8543 } 8544 total_invocations *= qual_local_size[i]; 8545 if (total_invocations > 8546 state->ctx->Const.MaxComputeWorkGroupInvocations) { 8547 _mesa_glsl_error(&loc, state, 8548 "product of local_sizes exceeds " 8549 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)", 8550 state->ctx->Const.MaxComputeWorkGroupInvocations); 8551 break; 8552 } 8553 } 8554 8555 /* If any compute input layout declaration preceded this one, make sure it 8556 * was consistent with this one. 8557 */ 8558 if (state->cs_input_local_size_specified) { 8559 for (int i = 0; i < 3; i++) { 8560 if (state->cs_input_local_size[i] != qual_local_size[i]) { 8561 _mesa_glsl_error(&loc, state, 8562 "compute shader input layout does not match" 8563 " previous declaration"); 8564 return NULL; 8565 } 8566 } 8567 } 8568 8569 /* The ARB_compute_variable_group_size spec says: 8570 * 8571 * If a compute shader including a *local_size_variable* qualifier also 8572 * declares a fixed local group size using the *local_size_x*, 8573 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error 8574 * results 8575 */ 8576 if (state->cs_input_local_size_variable_specified) { 8577 _mesa_glsl_error(&loc, state, 8578 "compute shader can't include both a variable and a " 8579 "fixed local group size"); 8580 return NULL; 8581 } 8582 8583 state->cs_input_local_size_specified = true; 8584 for (int i = 0; i < 3; i++) 8585 state->cs_input_local_size[i] = qual_local_size[i]; 8586 8587 /* We may now declare the built-in constant gl_WorkGroupSize (see 8588 * builtin_variable_generator::generate_constants() for why we didn't 8589 * declare it earlier). 8590 */ 8591 ir_variable *var = new(state->symbols) 8592 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto); 8593 var->data.how_declared = ir_var_declared_implicitly; 8594 var->data.read_only = true; 8595 instructions->push_tail(var); 8596 state->symbols->add_variable(var); 8597 ir_constant_data data; 8598 memset(&data, 0, sizeof(data)); 8599 for (int i = 0; i < 3; i++) 8600 data.u[i] = qual_local_size[i]; 8601 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data); 8602 var->constant_initializer = 8603 new(var) ir_constant(glsl_type::uvec3_type, &data); 8604 var->data.has_initializer = true; 8605 8606 return NULL; 8607} 8608 8609 8610static void 8611detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, 8612 exec_list *instructions) 8613{ 8614 bool gl_FragColor_assigned = false; 8615 bool gl_FragData_assigned = false; 8616 bool gl_FragSecondaryColor_assigned = false; 8617 bool gl_FragSecondaryData_assigned = false; 8618 bool user_defined_fs_output_assigned = false; 8619 ir_variable *user_defined_fs_output = NULL; 8620 8621 /* It would be nice to have proper location information. */ 8622 YYLTYPE loc; 8623 memset(&loc, 0, sizeof(loc)); 8624 8625 foreach_in_list(ir_instruction, node, instructions) { 8626 ir_variable *var = node->as_variable(); 8627 8628 if (!var || !var->data.assigned) 8629 continue; 8630 8631 if (strcmp(var->name, "gl_FragColor") == 0) 8632 gl_FragColor_assigned = true; 8633 else if (strcmp(var->name, "gl_FragData") == 0) 8634 gl_FragData_assigned = true; 8635 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0) 8636 gl_FragSecondaryColor_assigned = true; 8637 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0) 8638 gl_FragSecondaryData_assigned = true; 8639 else if (!is_gl_identifier(var->name)) { 8640 if (state->stage == MESA_SHADER_FRAGMENT && 8641 var->data.mode == ir_var_shader_out) { 8642 user_defined_fs_output_assigned = true; 8643 user_defined_fs_output = var; 8644 } 8645 } 8646 } 8647 8648 /* From the GLSL 1.30 spec: 8649 * 8650 * "If a shader statically assigns a value to gl_FragColor, it 8651 * may not assign a value to any element of gl_FragData. If a 8652 * shader statically writes a value to any element of 8653 * gl_FragData, it may not assign a value to 8654 * gl_FragColor. That is, a shader may assign values to either 8655 * gl_FragColor or gl_FragData, but not both. Multiple shaders 8656 * linked together must also consistently write just one of 8657 * these variables. Similarly, if user declared output 8658 * variables are in use (statically assigned to), then the 8659 * built-in variables gl_FragColor and gl_FragData may not be 8660 * assigned to. These incorrect usages all generate compile 8661 * time errors." 8662 */ 8663 if (gl_FragColor_assigned && gl_FragData_assigned) { 8664 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8665 "`gl_FragColor' and `gl_FragData'"); 8666 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) { 8667 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8668 "`gl_FragColor' and `%s'", 8669 user_defined_fs_output->name); 8670 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) { 8671 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8672 "`gl_FragSecondaryColorEXT' and" 8673 " `gl_FragSecondaryDataEXT'"); 8674 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) { 8675 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8676 "`gl_FragColor' and" 8677 " `gl_FragSecondaryDataEXT'"); 8678 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) { 8679 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8680 "`gl_FragData' and" 8681 " `gl_FragSecondaryColorEXT'"); 8682 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) { 8683 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8684 "`gl_FragData' and `%s'", 8685 user_defined_fs_output->name); 8686 } 8687 8688 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) && 8689 !state->EXT_blend_func_extended_enable) { 8690 _mesa_glsl_error(&loc, state, 8691 "Dual source blending requires EXT_blend_func_extended"); 8692 } 8693} 8694 8695static void 8696verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state) 8697{ 8698 YYLTYPE loc; 8699 memset(&loc, 0, sizeof(loc)); 8700 8701 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: 8702 * 8703 * "A program will fail to compile or link if any shader 8704 * or stage contains two or more functions with the same 8705 * name if the name is associated with a subroutine type." 8706 */ 8707 8708 for (int i = 0; i < state->num_subroutines; i++) { 8709 unsigned definitions = 0; 8710 ir_function *fn = state->subroutines[i]; 8711 /* Calculate number of function definitions with the same name */ 8712 foreach_in_list(ir_function_signature, sig, &fn->signatures) { 8713 if (sig->is_defined) { 8714 if (++definitions > 1) { 8715 _mesa_glsl_error(&loc, state, 8716 "%s shader contains two or more function " 8717 "definitions with name `%s', which is " 8718 "associated with a subroutine type.\n", 8719 _mesa_shader_stage_to_string(state->stage), 8720 fn->name); 8721 return; 8722 } 8723 } 8724 } 8725 } 8726} 8727 8728static void 8729remove_per_vertex_blocks(exec_list *instructions, 8730 _mesa_glsl_parse_state *state, ir_variable_mode mode) 8731{ 8732 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode, 8733 * if it exists in this shader type. 8734 */ 8735 const glsl_type *per_vertex = NULL; 8736 switch (mode) { 8737 case ir_var_shader_in: 8738 if (ir_variable *gl_in = state->symbols->get_variable("gl_in")) 8739 per_vertex = gl_in->get_interface_type(); 8740 break; 8741 case ir_var_shader_out: 8742 if (ir_variable *gl_Position = 8743 state->symbols->get_variable("gl_Position")) { 8744 per_vertex = gl_Position->get_interface_type(); 8745 } 8746 break; 8747 default: 8748 assert(!"Unexpected mode"); 8749 break; 8750 } 8751 8752 /* If we didn't find a built-in gl_PerVertex interface block, then we don't 8753 * need to do anything. 8754 */ 8755 if (per_vertex == NULL) 8756 return; 8757 8758 /* If the interface block is used by the shader, then we don't need to do 8759 * anything. 8760 */ 8761 interface_block_usage_visitor v(mode, per_vertex); 8762 v.run(instructions); 8763 if (v.usage_found()) 8764 return; 8765 8766 /* Remove any ir_variable declarations that refer to the interface block 8767 * we're removing. 8768 */ 8769 foreach_in_list_safe(ir_instruction, node, instructions) { 8770 ir_variable *const var = node->as_variable(); 8771 if (var != NULL && var->get_interface_type() == per_vertex && 8772 var->data.mode == mode) { 8773 state->symbols->disable_variable(var->name); 8774 var->remove(); 8775 } 8776 } 8777} 8778