ast_to_hir.cpp revision 993e1d59
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "glsl_symbol_table.h"
53#include "glsl_parser_extras.h"
54#include "ast.h"
55#include "compiler/glsl_types.h"
56#include "util/hash_table.h"
57#include "main/mtypes.h"
58#include "main/macros.h"
59#include "main/shaderobj.h"
60#include "ir.h"
61#include "ir_builder.h"
62#include "builtin_functions.h"
63
64using namespace ir_builder;
65
66static void
67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68                               exec_list *instructions);
69static void
70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72static void
73remove_per_vertex_blocks(exec_list *instructions,
74                         _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76/**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81{
82public:
83   read_from_write_only_variable_visitor() : found(NULL)
84   {
85   }
86
87   virtual ir_visitor_status visit(ir_dereference_variable *ir)
88   {
89      if (this->in_assignee)
90         return visit_continue;
91
92      ir_variable *var = ir->variable_referenced();
93      /* We can have memory_write_only set on both images and buffer variables,
94       * but in the former there is a distinction between reads from
95       * the variable itself (write_only) and from the memory they point to
96       * (memory_write_only), while in the case of buffer variables there is
97       * no such distinction, that is why this check here is limited to
98       * buffer variables alone.
99       */
100      if (!var || var->data.mode != ir_var_shader_storage)
101         return visit_continue;
102
103      if (var->data.memory_write_only) {
104         found = var;
105         return visit_stop;
106      }
107
108      return visit_continue;
109   }
110
111   ir_variable *get_variable() {
112      return found;
113   }
114
115   virtual ir_visitor_status visit_enter(ir_expression *ir)
116   {
117      /* .length() doesn't actually read anything */
118      if (ir->operation == ir_unop_ssbo_unsized_array_length)
119         return visit_continue_with_parent;
120
121      return visit_continue;
122   }
123
124private:
125   ir_variable *found;
126};
127
128void
129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130{
131   _mesa_glsl_initialize_variables(instructions, state);
132
133   state->symbols->separate_function_namespace = state->language_version == 110;
134
135   state->current_function = NULL;
136
137   state->toplevel_ir = instructions;
138
139   state->gs_input_prim_type_specified = false;
140   state->tcs_output_vertices_specified = false;
141   state->cs_input_local_size_specified = false;
142
143   /* Section 4.2 of the GLSL 1.20 specification states:
144    * "The built-in functions are scoped in a scope outside the global scope
145    *  users declare global variables in.  That is, a shader's global scope,
146    *  available for user-defined functions and global variables, is nested
147    *  inside the scope containing the built-in functions."
148    *
149    * Since built-in functions like ftransform() access built-in variables,
150    * it follows that those must be in the outer scope as well.
151    *
152    * We push scope here to create this nesting effect...but don't pop.
153    * This way, a shader's globals are still in the symbol table for use
154    * by the linker.
155    */
156   state->symbols->push_scope();
157
158   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159      ast->hir(instructions, state);
160
161   verify_subroutine_associated_funcs(state);
162   detect_recursion_unlinked(state, instructions);
163   detect_conflicting_assignments(state, instructions);
164
165   state->toplevel_ir = NULL;
166
167   /* Move all of the variable declarations to the front of the IR list, and
168    * reverse the order.  This has the (intended!) side effect that vertex
169    * shader inputs and fragment shader outputs will appear in the IR in the
170    * same order that they appeared in the shader code.  This results in the
171    * locations being assigned in the declared order.  Many (arguably buggy)
172    * applications depend on this behavior, and it matches what nearly all
173    * other drivers do.
174    */
175   foreach_in_list_safe(ir_instruction, node, instructions) {
176      ir_variable *const var = node->as_variable();
177
178      if (var == NULL)
179         continue;
180
181      var->remove();
182      instructions->push_head(var);
183   }
184
185   /* Figure out if gl_FragCoord is actually used in fragment shader */
186   ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187   if (var != NULL)
188      state->fs_uses_gl_fragcoord = var->data.used;
189
190   /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191    *
192    *     If multiple shaders using members of a built-in block belonging to
193    *     the same interface are linked together in the same program, they
194    *     must all redeclare the built-in block in the same way, as described
195    *     in section 4.3.7 "Interface Blocks" for interface block matching, or
196    *     a link error will result.
197    *
198    * The phrase "using members of a built-in block" implies that if two
199    * shaders are linked together and one of them *does not use* any members
200    * of the built-in block, then that shader does not need to have a matching
201    * redeclaration of the built-in block.
202    *
203    * This appears to be a clarification to the behaviour established for
204    * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205    * version.
206    *
207    * The definition of "interface" in section 4.3.7 that applies here is as
208    * follows:
209    *
210    *     The boundary between adjacent programmable pipeline stages: This
211    *     spans all the outputs in all compilation units of the first stage
212    *     and all the inputs in all compilation units of the second stage.
213    *
214    * Therefore this rule applies to both inter- and intra-stage linking.
215    *
216    * The easiest way to implement this is to check whether the shader uses
217    * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218    * remove all the relevant variable declaration from the IR, so that the
219    * linker won't see them and complain about mismatches.
220    */
221   remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222   remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224   /* Check that we don't have reads from write-only variables */
225   read_from_write_only_variable_visitor v;
226   v.run(instructions);
227   ir_variable *error_var = v.get_variable();
228   if (error_var) {
229      /* It would be nice to have proper location information, but for that
230       * we would need to check this as we process each kind of AST node
231       */
232      YYLTYPE loc;
233      memset(&loc, 0, sizeof(loc));
234      _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235                       error_var->name);
236   }
237}
238
239
240static ir_expression_operation
241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242                                  struct _mesa_glsl_parse_state *state)
243{
244   switch (to->base_type) {
245   case GLSL_TYPE_FLOAT:
246      switch (from->base_type) {
247      case GLSL_TYPE_INT: return ir_unop_i2f;
248      case GLSL_TYPE_UINT: return ir_unop_u2f;
249      default: return (ir_expression_operation)0;
250      }
251
252   case GLSL_TYPE_UINT:
253      if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
254          && !state->MESA_shader_integer_functions_enable)
255         return (ir_expression_operation)0;
256      switch (from->base_type) {
257         case GLSL_TYPE_INT: return ir_unop_i2u;
258         default: return (ir_expression_operation)0;
259      }
260
261   case GLSL_TYPE_DOUBLE:
262      if (!state->has_double())
263         return (ir_expression_operation)0;
264      switch (from->base_type) {
265      case GLSL_TYPE_INT: return ir_unop_i2d;
266      case GLSL_TYPE_UINT: return ir_unop_u2d;
267      case GLSL_TYPE_FLOAT: return ir_unop_f2d;
268      case GLSL_TYPE_INT64: return ir_unop_i642d;
269      case GLSL_TYPE_UINT64: return ir_unop_u642d;
270      default: return (ir_expression_operation)0;
271      }
272
273   case GLSL_TYPE_UINT64:
274      if (!state->has_int64())
275         return (ir_expression_operation)0;
276      switch (from->base_type) {
277      case GLSL_TYPE_INT: return ir_unop_i2u64;
278      case GLSL_TYPE_UINT: return ir_unop_u2u64;
279      case GLSL_TYPE_INT64: return ir_unop_i642u64;
280      default: return (ir_expression_operation)0;
281      }
282
283   case GLSL_TYPE_INT64:
284      if (!state->has_int64())
285         return (ir_expression_operation)0;
286      switch (from->base_type) {
287      case GLSL_TYPE_INT: return ir_unop_i2i64;
288      default: return (ir_expression_operation)0;
289      }
290
291   default: return (ir_expression_operation)0;
292   }
293}
294
295
296/**
297 * If a conversion is available, convert one operand to a different type
298 *
299 * The \c from \c ir_rvalue is converted "in place".
300 *
301 * \param to     Type that the operand it to be converted to
302 * \param from   Operand that is being converted
303 * \param state  GLSL compiler state
304 *
305 * \return
306 * If a conversion is possible (or unnecessary), \c true is returned.
307 * Otherwise \c false is returned.
308 */
309static bool
310apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
311                          struct _mesa_glsl_parse_state *state)
312{
313   void *ctx = state;
314   if (to->base_type == from->type->base_type)
315      return true;
316
317   /* Prior to GLSL 1.20, there are no implicit conversions */
318   if (!state->is_version(120, 0))
319      return false;
320
321   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
322    *
323    *    "There are no implicit array or structure conversions. For
324    *    example, an array of int cannot be implicitly converted to an
325    *    array of float.
326    */
327   if (!to->is_numeric() || !from->type->is_numeric())
328      return false;
329
330   /* We don't actually want the specific type `to`, we want a type
331    * with the same base type as `to`, but the same vector width as
332    * `from`.
333    */
334   to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
335                                from->type->matrix_columns);
336
337   ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
338   if (op) {
339      from = new(ctx) ir_expression(op, to, from, NULL);
340      return true;
341   } else {
342      return false;
343   }
344}
345
346
347static const struct glsl_type *
348arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
349                       bool multiply,
350                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
351{
352   const glsl_type *type_a = value_a->type;
353   const glsl_type *type_b = value_b->type;
354
355   /* From GLSL 1.50 spec, page 56:
356    *
357    *    "The arithmetic binary operators add (+), subtract (-),
358    *    multiply (*), and divide (/) operate on integer and
359    *    floating-point scalars, vectors, and matrices."
360    */
361   if (!type_a->is_numeric() || !type_b->is_numeric()) {
362      _mesa_glsl_error(loc, state,
363                       "operands to arithmetic operators must be numeric");
364      return glsl_type::error_type;
365   }
366
367
368   /*    "If one operand is floating-point based and the other is
369    *    not, then the conversions from Section 4.1.10 "Implicit
370    *    Conversions" are applied to the non-floating-point-based operand."
371    */
372   if (!apply_implicit_conversion(type_a, value_b, state)
373       && !apply_implicit_conversion(type_b, value_a, state)) {
374      _mesa_glsl_error(loc, state,
375                       "could not implicitly convert operands to "
376                       "arithmetic operator");
377      return glsl_type::error_type;
378   }
379   type_a = value_a->type;
380   type_b = value_b->type;
381
382   /*    "If the operands are integer types, they must both be signed or
383    *    both be unsigned."
384    *
385    * From this rule and the preceeding conversion it can be inferred that
386    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
387    * The is_numeric check above already filtered out the case where either
388    * type is not one of these, so now the base types need only be tested for
389    * equality.
390    */
391   if (type_a->base_type != type_b->base_type) {
392      _mesa_glsl_error(loc, state,
393                       "base type mismatch for arithmetic operator");
394      return glsl_type::error_type;
395   }
396
397   /*    "All arithmetic binary operators result in the same fundamental type
398    *    (signed integer, unsigned integer, or floating-point) as the
399    *    operands they operate on, after operand type conversion. After
400    *    conversion, the following cases are valid
401    *
402    *    * The two operands are scalars. In this case the operation is
403    *      applied, resulting in a scalar."
404    */
405   if (type_a->is_scalar() && type_b->is_scalar())
406      return type_a;
407
408   /*   "* One operand is a scalar, and the other is a vector or matrix.
409    *      In this case, the scalar operation is applied independently to each
410    *      component of the vector or matrix, resulting in the same size
411    *      vector or matrix."
412    */
413   if (type_a->is_scalar()) {
414      if (!type_b->is_scalar())
415         return type_b;
416   } else if (type_b->is_scalar()) {
417      return type_a;
418   }
419
420   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
421    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
422    * handled.
423    */
424   assert(!type_a->is_scalar());
425   assert(!type_b->is_scalar());
426
427   /*   "* The two operands are vectors of the same size. In this case, the
428    *      operation is done component-wise resulting in the same size
429    *      vector."
430    */
431   if (type_a->is_vector() && type_b->is_vector()) {
432      if (type_a == type_b) {
433         return type_a;
434      } else {
435         _mesa_glsl_error(loc, state,
436                          "vector size mismatch for arithmetic operator");
437         return glsl_type::error_type;
438      }
439   }
440
441   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
442    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
443    * <vector, vector> have been handled.  At least one of the operands must
444    * be matrix.  Further, since there are no integer matrix types, the base
445    * type of both operands must be float.
446    */
447   assert(type_a->is_matrix() || type_b->is_matrix());
448   assert(type_a->is_float() || type_a->is_double());
449   assert(type_b->is_float() || type_b->is_double());
450
451   /*   "* The operator is add (+), subtract (-), or divide (/), and the
452    *      operands are matrices with the same number of rows and the same
453    *      number of columns. In this case, the operation is done component-
454    *      wise resulting in the same size matrix."
455    *    * The operator is multiply (*), where both operands are matrices or
456    *      one operand is a vector and the other a matrix. A right vector
457    *      operand is treated as a column vector and a left vector operand as a
458    *      row vector. In all these cases, it is required that the number of
459    *      columns of the left operand is equal to the number of rows of the
460    *      right operand. Then, the multiply (*) operation does a linear
461    *      algebraic multiply, yielding an object that has the same number of
462    *      rows as the left operand and the same number of columns as the right
463    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
464    *      more detail how vectors and matrices are operated on."
465    */
466   if (! multiply) {
467      if (type_a == type_b)
468         return type_a;
469   } else {
470      const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
471
472      if (type == glsl_type::error_type) {
473         _mesa_glsl_error(loc, state,
474                          "size mismatch for matrix multiplication");
475      }
476
477      return type;
478   }
479
480
481   /*    "All other cases are illegal."
482    */
483   _mesa_glsl_error(loc, state, "type mismatch");
484   return glsl_type::error_type;
485}
486
487
488static const struct glsl_type *
489unary_arithmetic_result_type(const struct glsl_type *type,
490                             struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
491{
492   /* From GLSL 1.50 spec, page 57:
493    *
494    *    "The arithmetic unary operators negate (-), post- and pre-increment
495    *     and decrement (-- and ++) operate on integer or floating-point
496    *     values (including vectors and matrices). All unary operators work
497    *     component-wise on their operands. These result with the same type
498    *     they operated on."
499    */
500   if (!type->is_numeric()) {
501      _mesa_glsl_error(loc, state,
502                       "operands to arithmetic operators must be numeric");
503      return glsl_type::error_type;
504   }
505
506   return type;
507}
508
509/**
510 * \brief Return the result type of a bit-logic operation.
511 *
512 * If the given types to the bit-logic operator are invalid, return
513 * glsl_type::error_type.
514 *
515 * \param value_a LHS of bit-logic op
516 * \param value_b RHS of bit-logic op
517 */
518static const struct glsl_type *
519bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
520                      ast_operators op,
521                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
522{
523   const glsl_type *type_a = value_a->type;
524   const glsl_type *type_b = value_b->type;
525
526   if (!state->check_bitwise_operations_allowed(loc)) {
527      return glsl_type::error_type;
528   }
529
530   /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
531    *
532    *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
533    *     (|). The operands must be of type signed or unsigned integers or
534    *     integer vectors."
535    */
536   if (!type_a->is_integer_32_64()) {
537      _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
538                        ast_expression::operator_string(op));
539      return glsl_type::error_type;
540   }
541   if (!type_b->is_integer_32_64()) {
542      _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
543                       ast_expression::operator_string(op));
544      return glsl_type::error_type;
545   }
546
547   /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
548    * make sense for bitwise operations, as they don't operate on floats.
549    *
550    * GLSL 4.0 added implicit int -> uint conversions, which are relevant
551    * here.  It wasn't clear whether or not we should apply them to bitwise
552    * operations.  However, Khronos has decided that they should in future
553    * language revisions.  Applications also rely on this behavior.  We opt
554    * to apply them in general, but issue a portability warning.
555    *
556    * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
557    */
558   if (type_a->base_type != type_b->base_type) {
559      if (!apply_implicit_conversion(type_a, value_b, state)
560          && !apply_implicit_conversion(type_b, value_a, state)) {
561         _mesa_glsl_error(loc, state,
562                          "could not implicitly convert operands to "
563                          "`%s` operator",
564                          ast_expression::operator_string(op));
565         return glsl_type::error_type;
566      } else {
567         _mesa_glsl_warning(loc, state,
568                            "some implementations may not support implicit "
569                            "int -> uint conversions for `%s' operators; "
570                            "consider casting explicitly for portability",
571                            ast_expression::operator_string(op));
572      }
573      type_a = value_a->type;
574      type_b = value_b->type;
575   }
576
577   /*     "The fundamental types of the operands (signed or unsigned) must
578    *     match,"
579    */
580   if (type_a->base_type != type_b->base_type) {
581      _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
582                       "base type", ast_expression::operator_string(op));
583      return glsl_type::error_type;
584   }
585
586   /*     "The operands cannot be vectors of differing size." */
587   if (type_a->is_vector() &&
588       type_b->is_vector() &&
589       type_a->vector_elements != type_b->vector_elements) {
590      _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
591                       "different sizes", ast_expression::operator_string(op));
592      return glsl_type::error_type;
593   }
594
595   /*     "If one operand is a scalar and the other a vector, the scalar is
596    *     applied component-wise to the vector, resulting in the same type as
597    *     the vector. The fundamental types of the operands [...] will be the
598    *     resulting fundamental type."
599    */
600   if (type_a->is_scalar())
601       return type_b;
602   else
603       return type_a;
604}
605
606static const struct glsl_type *
607modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
608                    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
609{
610   const glsl_type *type_a = value_a->type;
611   const glsl_type *type_b = value_b->type;
612
613   if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614      return glsl_type::error_type;
615   }
616
617   /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618    *
619    *    "The operator modulus (%) operates on signed or unsigned integers or
620    *    integer vectors."
621    */
622   if (!type_a->is_integer_32_64()) {
623      _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624      return glsl_type::error_type;
625   }
626   if (!type_b->is_integer_32_64()) {
627      _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628      return glsl_type::error_type;
629   }
630
631   /*    "If the fundamental types in the operands do not match, then the
632    *    conversions from section 4.1.10 "Implicit Conversions" are applied
633    *    to create matching types."
634    *
635    * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636    * int -> uint conversion rules.  Prior to that, there were no implicit
637    * conversions.  So it's harmless to apply them universally - no implicit
638    * conversions will exist.  If the types don't match, we'll receive false,
639    * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640    *
641    *    "The operand types must both be signed or unsigned."
642    */
643   if (!apply_implicit_conversion(type_a, value_b, state) &&
644       !apply_implicit_conversion(type_b, value_a, state)) {
645      _mesa_glsl_error(loc, state,
646                       "could not implicitly convert operands to "
647                       "modulus (%%) operator");
648      return glsl_type::error_type;
649   }
650   type_a = value_a->type;
651   type_b = value_b->type;
652
653   /*    "The operands cannot be vectors of differing size. If one operand is
654    *    a scalar and the other vector, then the scalar is applied component-
655    *    wise to the vector, resulting in the same type as the vector. If both
656    *    are vectors of the same size, the result is computed component-wise."
657    */
658   if (type_a->is_vector()) {
659      if (!type_b->is_vector()
660          || (type_a->vector_elements == type_b->vector_elements))
661      return type_a;
662   } else
663      return type_b;
664
665   /*    "The operator modulus (%) is not defined for any other data types
666    *    (non-integer types)."
667    */
668   _mesa_glsl_error(loc, state, "type mismatch");
669   return glsl_type::error_type;
670}
671
672
673static const struct glsl_type *
674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676{
677   const glsl_type *type_a = value_a->type;
678   const glsl_type *type_b = value_b->type;
679
680   /* From GLSL 1.50 spec, page 56:
681    *    "The relational operators greater than (>), less than (<), greater
682    *    than or equal (>=), and less than or equal (<=) operate only on
683    *    scalar integer and scalar floating-point expressions."
684    */
685   if (!type_a->is_numeric()
686       || !type_b->is_numeric()
687       || !type_a->is_scalar()
688       || !type_b->is_scalar()) {
689      _mesa_glsl_error(loc, state,
690                       "operands to relational operators must be scalar and "
691                       "numeric");
692      return glsl_type::error_type;
693   }
694
695   /*    "Either the operands' types must match, or the conversions from
696    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
697    *    operand, after which the types must match."
698    */
699   if (!apply_implicit_conversion(type_a, value_b, state)
700       && !apply_implicit_conversion(type_b, value_a, state)) {
701      _mesa_glsl_error(loc, state,
702                       "could not implicitly convert operands to "
703                       "relational operator");
704      return glsl_type::error_type;
705   }
706   type_a = value_a->type;
707   type_b = value_b->type;
708
709   if (type_a->base_type != type_b->base_type) {
710      _mesa_glsl_error(loc, state, "base type mismatch");
711      return glsl_type::error_type;
712   }
713
714   /*    "The result is scalar Boolean."
715    */
716   return glsl_type::bool_type;
717}
718
719/**
720 * \brief Return the result type of a bit-shift operation.
721 *
722 * If the given types to the bit-shift operator are invalid, return
723 * glsl_type::error_type.
724 *
725 * \param type_a Type of LHS of bit-shift op
726 * \param type_b Type of RHS of bit-shift op
727 */
728static const struct glsl_type *
729shift_result_type(const struct glsl_type *type_a,
730                  const struct glsl_type *type_b,
731                  ast_operators op,
732                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733{
734   if (!state->check_bitwise_operations_allowed(loc)) {
735      return glsl_type::error_type;
736   }
737
738   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739    *
740    *     "The shift operators (<<) and (>>). For both operators, the operands
741    *     must be signed or unsigned integers or integer vectors. One operand
742    *     can be signed while the other is unsigned."
743    */
744   if (!type_a->is_integer_32_64()) {
745      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746                       "integer vector", ast_expression::operator_string(op));
747     return glsl_type::error_type;
748
749   }
750   if (!type_b->is_integer()) {
751      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752                       "integer vector", ast_expression::operator_string(op));
753     return glsl_type::error_type;
754   }
755
756   /*     "If the first operand is a scalar, the second operand has to be
757    *     a scalar as well."
758    */
759   if (type_a->is_scalar() && !type_b->is_scalar()) {
760      _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761                       "second must be scalar as well",
762                       ast_expression::operator_string(op));
763     return glsl_type::error_type;
764   }
765
766   /* If both operands are vectors, check that they have same number of
767    * elements.
768    */
769   if (type_a->is_vector() &&
770      type_b->is_vector() &&
771      type_a->vector_elements != type_b->vector_elements) {
772      _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773                       "have same number of elements",
774                       ast_expression::operator_string(op));
775     return glsl_type::error_type;
776   }
777
778   /*     "In all cases, the resulting type will be the same type as the left
779    *     operand."
780    */
781   return type_a;
782}
783
784/**
785 * Returns the innermost array index expression in an rvalue tree.
786 * This is the largest indexing level -- if an array of blocks, then
787 * it is the block index rather than an indexing expression for an
788 * array-typed member of an array of blocks.
789 */
790static ir_rvalue *
791find_innermost_array_index(ir_rvalue *rv)
792{
793   ir_dereference_array *last = NULL;
794   while (rv) {
795      if (rv->as_dereference_array()) {
796         last = rv->as_dereference_array();
797         rv = last->array;
798      } else if (rv->as_dereference_record())
799         rv = rv->as_dereference_record()->record;
800      else if (rv->as_swizzle())
801         rv = rv->as_swizzle()->val;
802      else
803         rv = NULL;
804   }
805
806   if (last)
807      return last->array_index;
808
809   return NULL;
810}
811
812/**
813 * Validates that a value can be assigned to a location with a specified type
814 *
815 * Validates that \c rhs can be assigned to some location.  If the types are
816 * not an exact match but an automatic conversion is possible, \c rhs will be
817 * converted.
818 *
819 * \return
820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821 * Otherwise the actual RHS to be assigned will be returned.  This may be
822 * \c rhs, or it may be \c rhs after some type conversion.
823 *
824 * \note
825 * In addition to being used for assignments, this function is used to
826 * type-check return values.
827 */
828static ir_rvalue *
829validate_assignment(struct _mesa_glsl_parse_state *state,
830                    YYLTYPE loc, ir_rvalue *lhs,
831                    ir_rvalue *rhs, bool is_initializer)
832{
833   /* If there is already some error in the RHS, just return it.  Anything
834    * else will lead to an avalanche of error message back to the user.
835    */
836   if (rhs->type->is_error())
837      return rhs;
838
839   /* In the Tessellation Control Shader:
840    * If a per-vertex output variable is used as an l-value, it is an error
841    * if the expression indicating the vertex number is not the identifier
842    * `gl_InvocationID`.
843    */
844   if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845      ir_variable *var = lhs->variable_referenced();
846      if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847         ir_rvalue *index = find_innermost_array_index(lhs);
848         ir_variable *index_var = index ? index->variable_referenced() : NULL;
849         if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850            _mesa_glsl_error(&loc, state,
851                             "Tessellation control shader outputs can only "
852                             "be indexed by gl_InvocationID");
853            return NULL;
854         }
855      }
856   }
857
858   /* If the types are identical, the assignment can trivially proceed.
859    */
860   if (rhs->type == lhs->type)
861      return rhs;
862
863   /* If the array element types are the same and the LHS is unsized,
864    * the assignment is okay for initializers embedded in variable
865    * declarations.
866    *
867    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868    * is handled by ir_dereference::is_lvalue.
869    */
870   const glsl_type *lhs_t = lhs->type;
871   const glsl_type *rhs_t = rhs->type;
872   bool unsized_array = false;
873   while(lhs_t->is_array()) {
874      if (rhs_t == lhs_t)
875         break; /* the rest of the inner arrays match so break out early */
876      if (!rhs_t->is_array()) {
877         unsized_array = false;
878         break; /* number of dimensions mismatch */
879      }
880      if (lhs_t->length == rhs_t->length) {
881         lhs_t = lhs_t->fields.array;
882         rhs_t = rhs_t->fields.array;
883         continue;
884      } else if (lhs_t->is_unsized_array()) {
885         unsized_array = true;
886      } else {
887         unsized_array = false;
888         break; /* sized array mismatch */
889      }
890      lhs_t = lhs_t->fields.array;
891      rhs_t = rhs_t->fields.array;
892   }
893   if (unsized_array) {
894      if (is_initializer) {
895         if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896            return rhs;
897      } else {
898         _mesa_glsl_error(&loc, state,
899                          "implicitly sized arrays cannot be assigned");
900         return NULL;
901      }
902   }
903
904   /* Check for implicit conversion in GLSL 1.20 */
905   if (apply_implicit_conversion(lhs->type, rhs, state)) {
906      if (rhs->type == lhs->type)
907         return rhs;
908   }
909
910   _mesa_glsl_error(&loc, state,
911                    "%s of type %s cannot be assigned to "
912                    "variable of type %s",
913                    is_initializer ? "initializer" : "value",
914                    rhs->type->name, lhs->type->name);
915
916   return NULL;
917}
918
919static void
920mark_whole_array_access(ir_rvalue *access)
921{
922   ir_dereference_variable *deref = access->as_dereference_variable();
923
924   if (deref && deref->var) {
925      deref->var->data.max_array_access = deref->type->length - 1;
926   }
927}
928
929static bool
930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931              const char *non_lvalue_description,
932              ir_rvalue *lhs, ir_rvalue *rhs,
933              ir_rvalue **out_rvalue, bool needs_rvalue,
934              bool is_initializer,
935              YYLTYPE lhs_loc)
936{
937   void *ctx = state;
938   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940   ir_variable *lhs_var = lhs->variable_referenced();
941   if (lhs_var)
942      lhs_var->data.assigned = true;
943
944   if (!error_emitted) {
945      if (non_lvalue_description != NULL) {
946         _mesa_glsl_error(&lhs_loc, state,
947                          "assignment to %s",
948                          non_lvalue_description);
949         error_emitted = true;
950      } else if (lhs_var != NULL && (lhs_var->data.read_only ||
951                 (lhs_var->data.mode == ir_var_shader_storage &&
952                  lhs_var->data.memory_read_only))) {
953         /* We can have memory_read_only set on both images and buffer variables,
954          * but in the former there is a distinction between assignments to
955          * the variable itself (read_only) and to the memory they point to
956          * (memory_read_only), while in the case of buffer variables there is
957          * no such distinction, that is why this check here is limited to
958          * buffer variables alone.
959          */
960         _mesa_glsl_error(&lhs_loc, state,
961                          "assignment to read-only variable '%s'",
962                          lhs_var->name);
963         error_emitted = true;
964      } else if (lhs->type->is_array() &&
965                 !state->check_version(120, 300, &lhs_loc,
966                                       "whole array assignment forbidden")) {
967         /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
968          *
969          *    "Other binary or unary expressions, non-dereferenced
970          *     arrays, function names, swizzles with repeated fields,
971          *     and constants cannot be l-values."
972          *
973          * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
974          */
975         error_emitted = true;
976      } else if (!lhs->is_lvalue(state)) {
977         _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
978         error_emitted = true;
979      }
980   }
981
982   ir_rvalue *new_rhs =
983      validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
984   if (new_rhs != NULL) {
985      rhs = new_rhs;
986
987      /* If the LHS array was not declared with a size, it takes it size from
988       * the RHS.  If the LHS is an l-value and a whole array, it must be a
989       * dereference of a variable.  Any other case would require that the LHS
990       * is either not an l-value or not a whole array.
991       */
992      if (lhs->type->is_unsized_array()) {
993         ir_dereference *const d = lhs->as_dereference();
994
995         assert(d != NULL);
996
997         ir_variable *const var = d->variable_referenced();
998
999         assert(var != NULL);
1000
1001         if (var->data.max_array_access >= rhs->type->array_size()) {
1002            /* FINISHME: This should actually log the location of the RHS. */
1003            _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1004                             "previous access",
1005                             var->data.max_array_access);
1006         }
1007
1008         var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1009                                                   rhs->type->array_size());
1010         d->type = var->type;
1011      }
1012      if (lhs->type->is_array()) {
1013         mark_whole_array_access(rhs);
1014         mark_whole_array_access(lhs);
1015      }
1016   } else {
1017     error_emitted = true;
1018   }
1019
1020   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1021    * but not post_inc) need the converted assigned value as an rvalue
1022    * to handle things like:
1023    *
1024    * i = j += 1;
1025    */
1026   if (needs_rvalue) {
1027      ir_rvalue *rvalue;
1028      if (!error_emitted) {
1029         ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1030                                                 ir_var_temporary);
1031         instructions->push_tail(var);
1032         instructions->push_tail(assign(var, rhs));
1033
1034         ir_dereference_variable *deref_var =
1035            new(ctx) ir_dereference_variable(var);
1036         instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1037         rvalue = new(ctx) ir_dereference_variable(var);
1038      } else {
1039         rvalue = ir_rvalue::error_value(ctx);
1040      }
1041      *out_rvalue = rvalue;
1042   } else {
1043      if (!error_emitted)
1044         instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1045      *out_rvalue = NULL;
1046   }
1047
1048   return error_emitted;
1049}
1050
1051static ir_rvalue *
1052get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1053{
1054   void *ctx = ralloc_parent(lvalue);
1055   ir_variable *var;
1056
1057   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1058                              ir_var_temporary);
1059   instructions->push_tail(var);
1060
1061   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1062                                                  lvalue));
1063
1064   return new(ctx) ir_dereference_variable(var);
1065}
1066
1067
1068ir_rvalue *
1069ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1070{
1071   (void) instructions;
1072   (void) state;
1073
1074   return NULL;
1075}
1076
1077bool
1078ast_node::has_sequence_subexpression() const
1079{
1080   return false;
1081}
1082
1083void
1084ast_node::set_is_lhs(bool /* new_value */)
1085{
1086}
1087
1088void
1089ast_function_expression::hir_no_rvalue(exec_list *instructions,
1090                                       struct _mesa_glsl_parse_state *state)
1091{
1092   (void)hir(instructions, state);
1093}
1094
1095void
1096ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1097                                         struct _mesa_glsl_parse_state *state)
1098{
1099   (void)hir(instructions, state);
1100}
1101
1102static ir_rvalue *
1103do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1104{
1105   int join_op;
1106   ir_rvalue *cmp = NULL;
1107
1108   if (operation == ir_binop_all_equal)
1109      join_op = ir_binop_logic_and;
1110   else
1111      join_op = ir_binop_logic_or;
1112
1113   switch (op0->type->base_type) {
1114   case GLSL_TYPE_FLOAT:
1115   case GLSL_TYPE_FLOAT16:
1116   case GLSL_TYPE_UINT:
1117   case GLSL_TYPE_INT:
1118   case GLSL_TYPE_BOOL:
1119   case GLSL_TYPE_DOUBLE:
1120   case GLSL_TYPE_UINT64:
1121   case GLSL_TYPE_INT64:
1122   case GLSL_TYPE_UINT16:
1123   case GLSL_TYPE_INT16:
1124   case GLSL_TYPE_UINT8:
1125   case GLSL_TYPE_INT8:
1126      return new(mem_ctx) ir_expression(operation, op0, op1);
1127
1128   case GLSL_TYPE_ARRAY: {
1129      for (unsigned int i = 0; i < op0->type->length; i++) {
1130         ir_rvalue *e0, *e1, *result;
1131
1132         e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1133                                                new(mem_ctx) ir_constant(i));
1134         e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1135                                                new(mem_ctx) ir_constant(i));
1136         result = do_comparison(mem_ctx, operation, e0, e1);
1137
1138         if (cmp) {
1139            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1140         } else {
1141            cmp = result;
1142         }
1143      }
1144
1145      mark_whole_array_access(op0);
1146      mark_whole_array_access(op1);
1147      break;
1148   }
1149
1150   case GLSL_TYPE_STRUCT: {
1151      for (unsigned int i = 0; i < op0->type->length; i++) {
1152         ir_rvalue *e0, *e1, *result;
1153         const char *field_name = op0->type->fields.structure[i].name;
1154
1155         e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1156                                                 field_name);
1157         e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1158                                                 field_name);
1159         result = do_comparison(mem_ctx, operation, e0, e1);
1160
1161         if (cmp) {
1162            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1163         } else {
1164            cmp = result;
1165         }
1166      }
1167      break;
1168   }
1169
1170   case GLSL_TYPE_ERROR:
1171   case GLSL_TYPE_VOID:
1172   case GLSL_TYPE_SAMPLER:
1173   case GLSL_TYPE_IMAGE:
1174   case GLSL_TYPE_INTERFACE:
1175   case GLSL_TYPE_ATOMIC_UINT:
1176   case GLSL_TYPE_SUBROUTINE:
1177   case GLSL_TYPE_FUNCTION:
1178      /* I assume a comparison of a struct containing a sampler just
1179       * ignores the sampler present in the type.
1180       */
1181      break;
1182   }
1183
1184   if (cmp == NULL)
1185      cmp = new(mem_ctx) ir_constant(true);
1186
1187   return cmp;
1188}
1189
1190/* For logical operations, we want to ensure that the operands are
1191 * scalar booleans.  If it isn't, emit an error and return a constant
1192 * boolean to avoid triggering cascading error messages.
1193 */
1194static ir_rvalue *
1195get_scalar_boolean_operand(exec_list *instructions,
1196                           struct _mesa_glsl_parse_state *state,
1197                           ast_expression *parent_expr,
1198                           int operand,
1199                           const char *operand_name,
1200                           bool *error_emitted)
1201{
1202   ast_expression *expr = parent_expr->subexpressions[operand];
1203   void *ctx = state;
1204   ir_rvalue *val = expr->hir(instructions, state);
1205
1206   if (val->type->is_boolean() && val->type->is_scalar())
1207      return val;
1208
1209   if (!*error_emitted) {
1210      YYLTYPE loc = expr->get_location();
1211      _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1212                       operand_name,
1213                       parent_expr->operator_string(parent_expr->oper));
1214      *error_emitted = true;
1215   }
1216
1217   return new(ctx) ir_constant(true);
1218}
1219
1220/**
1221 * If name refers to a builtin array whose maximum allowed size is less than
1222 * size, report an error and return true.  Otherwise return false.
1223 */
1224void
1225check_builtin_array_max_size(const char *name, unsigned size,
1226                             YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1227{
1228   if ((strcmp("gl_TexCoord", name) == 0)
1229       && (size > state->Const.MaxTextureCoords)) {
1230      /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1231       *
1232       *     "The size [of gl_TexCoord] can be at most
1233       *     gl_MaxTextureCoords."
1234       */
1235      _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1236                       "be larger than gl_MaxTextureCoords (%u)",
1237                       state->Const.MaxTextureCoords);
1238   } else if (strcmp("gl_ClipDistance", name) == 0) {
1239      state->clip_dist_size = size;
1240      if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1241         /* From section 7.1 (Vertex Shader Special Variables) of the
1242          * GLSL 1.30 spec:
1243          *
1244          *   "The gl_ClipDistance array is predeclared as unsized and
1245          *   must be sized by the shader either redeclaring it with a
1246          *   size or indexing it only with integral constant
1247          *   expressions. ... The size can be at most
1248          *   gl_MaxClipDistances."
1249          */
1250         _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1251                          "be larger than gl_MaxClipDistances (%u)",
1252                          state->Const.MaxClipPlanes);
1253      }
1254   } else if (strcmp("gl_CullDistance", name) == 0) {
1255      state->cull_dist_size = size;
1256      if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1257         /* From the ARB_cull_distance spec:
1258          *
1259          *   "The gl_CullDistance array is predeclared as unsized and
1260          *    must be sized by the shader either redeclaring it with
1261          *    a size or indexing it only with integral constant
1262          *    expressions. The size determines the number and set of
1263          *    enabled cull distances and can be at most
1264          *    gl_MaxCullDistances."
1265          */
1266         _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1267                          "be larger than gl_MaxCullDistances (%u)",
1268                          state->Const.MaxClipPlanes);
1269      }
1270   }
1271}
1272
1273/**
1274 * Create the constant 1, of a which is appropriate for incrementing and
1275 * decrementing values of the given GLSL type.  For example, if type is vec4,
1276 * this creates a constant value of 1.0 having type float.
1277 *
1278 * If the given type is invalid for increment and decrement operators, return
1279 * a floating point 1--the error will be detected later.
1280 */
1281static ir_rvalue *
1282constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1283{
1284   switch (type->base_type) {
1285   case GLSL_TYPE_UINT:
1286      return new(ctx) ir_constant((unsigned) 1);
1287   case GLSL_TYPE_INT:
1288      return new(ctx) ir_constant(1);
1289   case GLSL_TYPE_UINT64:
1290      return new(ctx) ir_constant((uint64_t) 1);
1291   case GLSL_TYPE_INT64:
1292      return new(ctx) ir_constant((int64_t) 1);
1293   default:
1294   case GLSL_TYPE_FLOAT:
1295      return new(ctx) ir_constant(1.0f);
1296   }
1297}
1298
1299ir_rvalue *
1300ast_expression::hir(exec_list *instructions,
1301                    struct _mesa_glsl_parse_state *state)
1302{
1303   return do_hir(instructions, state, true);
1304}
1305
1306void
1307ast_expression::hir_no_rvalue(exec_list *instructions,
1308                              struct _mesa_glsl_parse_state *state)
1309{
1310   do_hir(instructions, state, false);
1311}
1312
1313void
1314ast_expression::set_is_lhs(bool new_value)
1315{
1316   /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1317    * if we lack an identifier we can just skip it.
1318    */
1319   if (this->primary_expression.identifier == NULL)
1320      return;
1321
1322   this->is_lhs = new_value;
1323
1324   /* We need to go through the subexpressions tree to cover cases like
1325    * ast_field_selection
1326    */
1327   if (this->subexpressions[0] != NULL)
1328      this->subexpressions[0]->set_is_lhs(new_value);
1329}
1330
1331ir_rvalue *
1332ast_expression::do_hir(exec_list *instructions,
1333                       struct _mesa_glsl_parse_state *state,
1334                       bool needs_rvalue)
1335{
1336   void *ctx = state;
1337   static const int operations[AST_NUM_OPERATORS] = {
1338      -1,               /* ast_assign doesn't convert to ir_expression. */
1339      -1,               /* ast_plus doesn't convert to ir_expression. */
1340      ir_unop_neg,
1341      ir_binop_add,
1342      ir_binop_sub,
1343      ir_binop_mul,
1344      ir_binop_div,
1345      ir_binop_mod,
1346      ir_binop_lshift,
1347      ir_binop_rshift,
1348      ir_binop_less,
1349      ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1350      ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1351      ir_binop_gequal,
1352      ir_binop_all_equal,
1353      ir_binop_any_nequal,
1354      ir_binop_bit_and,
1355      ir_binop_bit_xor,
1356      ir_binop_bit_or,
1357      ir_unop_bit_not,
1358      ir_binop_logic_and,
1359      ir_binop_logic_xor,
1360      ir_binop_logic_or,
1361      ir_unop_logic_not,
1362
1363      /* Note: The following block of expression types actually convert
1364       * to multiple IR instructions.
1365       */
1366      ir_binop_mul,     /* ast_mul_assign */
1367      ir_binop_div,     /* ast_div_assign */
1368      ir_binop_mod,     /* ast_mod_assign */
1369      ir_binop_add,     /* ast_add_assign */
1370      ir_binop_sub,     /* ast_sub_assign */
1371      ir_binop_lshift,  /* ast_ls_assign */
1372      ir_binop_rshift,  /* ast_rs_assign */
1373      ir_binop_bit_and, /* ast_and_assign */
1374      ir_binop_bit_xor, /* ast_xor_assign */
1375      ir_binop_bit_or,  /* ast_or_assign */
1376
1377      -1,               /* ast_conditional doesn't convert to ir_expression. */
1378      ir_binop_add,     /* ast_pre_inc. */
1379      ir_binop_sub,     /* ast_pre_dec. */
1380      ir_binop_add,     /* ast_post_inc. */
1381      ir_binop_sub,     /* ast_post_dec. */
1382      -1,               /* ast_field_selection doesn't conv to ir_expression. */
1383      -1,               /* ast_array_index doesn't convert to ir_expression. */
1384      -1,               /* ast_function_call doesn't conv to ir_expression. */
1385      -1,               /* ast_identifier doesn't convert to ir_expression. */
1386      -1,               /* ast_int_constant doesn't convert to ir_expression. */
1387      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1388      -1,               /* ast_float_constant doesn't conv to ir_expression. */
1389      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1390      -1,               /* ast_sequence doesn't convert to ir_expression. */
1391      -1,               /* ast_aggregate shouldn't ever even get here. */
1392   };
1393   ir_rvalue *result = NULL;
1394   ir_rvalue *op[3];
1395   const struct glsl_type *type, *orig_type;
1396   bool error_emitted = false;
1397   YYLTYPE loc;
1398
1399   loc = this->get_location();
1400
1401   switch (this->oper) {
1402   case ast_aggregate:
1403      unreachable("ast_aggregate: Should never get here.");
1404
1405   case ast_assign: {
1406      this->subexpressions[0]->set_is_lhs(true);
1407      op[0] = this->subexpressions[0]->hir(instructions, state);
1408      op[1] = this->subexpressions[1]->hir(instructions, state);
1409
1410      error_emitted =
1411         do_assignment(instructions, state,
1412                       this->subexpressions[0]->non_lvalue_description,
1413                       op[0], op[1], &result, needs_rvalue, false,
1414                       this->subexpressions[0]->get_location());
1415      break;
1416   }
1417
1418   case ast_plus:
1419      op[0] = this->subexpressions[0]->hir(instructions, state);
1420
1421      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1422
1423      error_emitted = type->is_error();
1424
1425      result = op[0];
1426      break;
1427
1428   case ast_neg:
1429      op[0] = this->subexpressions[0]->hir(instructions, state);
1430
1431      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1432
1433      error_emitted = type->is_error();
1434
1435      result = new(ctx) ir_expression(operations[this->oper], type,
1436                                      op[0], NULL);
1437      break;
1438
1439   case ast_add:
1440   case ast_sub:
1441   case ast_mul:
1442   case ast_div:
1443      op[0] = this->subexpressions[0]->hir(instructions, state);
1444      op[1] = this->subexpressions[1]->hir(instructions, state);
1445
1446      type = arithmetic_result_type(op[0], op[1],
1447                                    (this->oper == ast_mul),
1448                                    state, & loc);
1449      error_emitted = type->is_error();
1450
1451      result = new(ctx) ir_expression(operations[this->oper], type,
1452                                      op[0], op[1]);
1453      break;
1454
1455   case ast_mod:
1456      op[0] = this->subexpressions[0]->hir(instructions, state);
1457      op[1] = this->subexpressions[1]->hir(instructions, state);
1458
1459      type = modulus_result_type(op[0], op[1], state, &loc);
1460
1461      assert(operations[this->oper] == ir_binop_mod);
1462
1463      result = new(ctx) ir_expression(operations[this->oper], type,
1464                                      op[0], op[1]);
1465      error_emitted = type->is_error();
1466      break;
1467
1468   case ast_lshift:
1469   case ast_rshift:
1470       if (!state->check_bitwise_operations_allowed(&loc)) {
1471          error_emitted = true;
1472       }
1473
1474       op[0] = this->subexpressions[0]->hir(instructions, state);
1475       op[1] = this->subexpressions[1]->hir(instructions, state);
1476       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1477                                &loc);
1478       result = new(ctx) ir_expression(operations[this->oper], type,
1479                                       op[0], op[1]);
1480       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1481       break;
1482
1483   case ast_less:
1484   case ast_greater:
1485   case ast_lequal:
1486   case ast_gequal:
1487      op[0] = this->subexpressions[0]->hir(instructions, state);
1488      op[1] = this->subexpressions[1]->hir(instructions, state);
1489
1490      type = relational_result_type(op[0], op[1], state, & loc);
1491
1492      /* The relational operators must either generate an error or result
1493       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1494       */
1495      assert(type->is_error()
1496             || (type->is_boolean() && type->is_scalar()));
1497
1498      /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1499       * the arguments and use < or >=.
1500       */
1501      if (this->oper == ast_greater || this->oper == ast_lequal) {
1502         ir_rvalue *const tmp = op[0];
1503         op[0] = op[1];
1504         op[1] = tmp;
1505      }
1506
1507      result = new(ctx) ir_expression(operations[this->oper], type,
1508                                      op[0], op[1]);
1509      error_emitted = type->is_error();
1510      break;
1511
1512   case ast_nequal:
1513   case ast_equal:
1514      op[0] = this->subexpressions[0]->hir(instructions, state);
1515      op[1] = this->subexpressions[1]->hir(instructions, state);
1516
1517      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1518       *
1519       *    "The equality operators equal (==), and not equal (!=)
1520       *    operate on all types. They result in a scalar Boolean. If
1521       *    the operand types do not match, then there must be a
1522       *    conversion from Section 4.1.10 "Implicit Conversions"
1523       *    applied to one operand that can make them match, in which
1524       *    case this conversion is done."
1525       */
1526
1527      if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1528         _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
1529                         "no operation `%1$s' exists that takes a left-hand "
1530                         "operand of type 'void' or a right operand of type "
1531                         "'void'", (this->oper == ast_equal) ? "==" : "!=");
1532         error_emitted = true;
1533      } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1534           && !apply_implicit_conversion(op[1]->type, op[0], state))
1535          || (op[0]->type != op[1]->type)) {
1536         _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1537                          "type", (this->oper == ast_equal) ? "==" : "!=");
1538         error_emitted = true;
1539      } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1540                 !state->check_version(120, 300, &loc,
1541                                       "array comparisons forbidden")) {
1542         error_emitted = true;
1543      } else if ((op[0]->type->contains_subroutine() ||
1544                  op[1]->type->contains_subroutine())) {
1545         _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1546         error_emitted = true;
1547      } else if ((op[0]->type->contains_opaque() ||
1548                  op[1]->type->contains_opaque())) {
1549         _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1550         error_emitted = true;
1551      }
1552
1553      if (error_emitted) {
1554         result = new(ctx) ir_constant(false);
1555      } else {
1556         result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1557         assert(result->type == glsl_type::bool_type);
1558      }
1559      break;
1560
1561   case ast_bit_and:
1562   case ast_bit_xor:
1563   case ast_bit_or:
1564      op[0] = this->subexpressions[0]->hir(instructions, state);
1565      op[1] = this->subexpressions[1]->hir(instructions, state);
1566      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1567      result = new(ctx) ir_expression(operations[this->oper], type,
1568                                      op[0], op[1]);
1569      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1570      break;
1571
1572   case ast_bit_not:
1573      op[0] = this->subexpressions[0]->hir(instructions, state);
1574
1575      if (!state->check_bitwise_operations_allowed(&loc)) {
1576         error_emitted = true;
1577      }
1578
1579      if (!op[0]->type->is_integer_32_64()) {
1580         _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1581         error_emitted = true;
1582      }
1583
1584      type = error_emitted ? glsl_type::error_type : op[0]->type;
1585      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1586      break;
1587
1588   case ast_logic_and: {
1589      exec_list rhs_instructions;
1590      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1591                                         "LHS", &error_emitted);
1592      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1593                                         "RHS", &error_emitted);
1594
1595      if (rhs_instructions.is_empty()) {
1596         result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1597      } else {
1598         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1599                                                       "and_tmp",
1600                                                       ir_var_temporary);
1601         instructions->push_tail(tmp);
1602
1603         ir_if *const stmt = new(ctx) ir_if(op[0]);
1604         instructions->push_tail(stmt);
1605
1606         stmt->then_instructions.append_list(&rhs_instructions);
1607         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1608         ir_assignment *const then_assign =
1609            new(ctx) ir_assignment(then_deref, op[1]);
1610         stmt->then_instructions.push_tail(then_assign);
1611
1612         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1613         ir_assignment *const else_assign =
1614            new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1615         stmt->else_instructions.push_tail(else_assign);
1616
1617         result = new(ctx) ir_dereference_variable(tmp);
1618      }
1619      break;
1620   }
1621
1622   case ast_logic_or: {
1623      exec_list rhs_instructions;
1624      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1625                                         "LHS", &error_emitted);
1626      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1627                                         "RHS", &error_emitted);
1628
1629      if (rhs_instructions.is_empty()) {
1630         result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1631      } else {
1632         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1633                                                       "or_tmp",
1634                                                       ir_var_temporary);
1635         instructions->push_tail(tmp);
1636
1637         ir_if *const stmt = new(ctx) ir_if(op[0]);
1638         instructions->push_tail(stmt);
1639
1640         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1641         ir_assignment *const then_assign =
1642            new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1643         stmt->then_instructions.push_tail(then_assign);
1644
1645         stmt->else_instructions.append_list(&rhs_instructions);
1646         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1647         ir_assignment *const else_assign =
1648            new(ctx) ir_assignment(else_deref, op[1]);
1649         stmt->else_instructions.push_tail(else_assign);
1650
1651         result = new(ctx) ir_dereference_variable(tmp);
1652      }
1653      break;
1654   }
1655
1656   case ast_logic_xor:
1657      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1658       *
1659       *    "The logical binary operators and (&&), or ( | | ), and
1660       *     exclusive or (^^). They operate only on two Boolean
1661       *     expressions and result in a Boolean expression."
1662       */
1663      op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1664                                         &error_emitted);
1665      op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1666                                         &error_emitted);
1667
1668      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1669                                      op[0], op[1]);
1670      break;
1671
1672   case ast_logic_not:
1673      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1674                                         "operand", &error_emitted);
1675
1676      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1677                                      op[0], NULL);
1678      break;
1679
1680   case ast_mul_assign:
1681   case ast_div_assign:
1682   case ast_add_assign:
1683   case ast_sub_assign: {
1684      this->subexpressions[0]->set_is_lhs(true);
1685      op[0] = this->subexpressions[0]->hir(instructions, state);
1686      op[1] = this->subexpressions[1]->hir(instructions, state);
1687
1688      orig_type = op[0]->type;
1689
1690      /* Break out if operand types were not parsed successfully. */
1691      if ((op[0]->type == glsl_type::error_type ||
1692           op[1]->type == glsl_type::error_type))
1693         break;
1694
1695      type = arithmetic_result_type(op[0], op[1],
1696                                    (this->oper == ast_mul_assign),
1697                                    state, & loc);
1698
1699      if (type != orig_type) {
1700         _mesa_glsl_error(& loc, state,
1701                          "could not implicitly convert "
1702                          "%s to %s", type->name, orig_type->name);
1703         type = glsl_type::error_type;
1704      }
1705
1706      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1707                                                   op[0], op[1]);
1708
1709      error_emitted =
1710         do_assignment(instructions, state,
1711                       this->subexpressions[0]->non_lvalue_description,
1712                       op[0]->clone(ctx, NULL), temp_rhs,
1713                       &result, needs_rvalue, false,
1714                       this->subexpressions[0]->get_location());
1715
1716      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1717       * explicitly test for this because none of the binary expression
1718       * operators allow array operands either.
1719       */
1720
1721      break;
1722   }
1723
1724   case ast_mod_assign: {
1725      this->subexpressions[0]->set_is_lhs(true);
1726      op[0] = this->subexpressions[0]->hir(instructions, state);
1727      op[1] = this->subexpressions[1]->hir(instructions, state);
1728
1729      orig_type = op[0]->type;
1730      type = modulus_result_type(op[0], op[1], state, &loc);
1731
1732      if (type != orig_type) {
1733         _mesa_glsl_error(& loc, state,
1734                          "could not implicitly convert "
1735                          "%s to %s", type->name, orig_type->name);
1736         type = glsl_type::error_type;
1737      }
1738
1739      assert(operations[this->oper] == ir_binop_mod);
1740
1741      ir_rvalue *temp_rhs;
1742      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1743                                        op[0], op[1]);
1744
1745      error_emitted =
1746         do_assignment(instructions, state,
1747                       this->subexpressions[0]->non_lvalue_description,
1748                       op[0]->clone(ctx, NULL), temp_rhs,
1749                       &result, needs_rvalue, false,
1750                       this->subexpressions[0]->get_location());
1751      break;
1752   }
1753
1754   case ast_ls_assign:
1755   case ast_rs_assign: {
1756      this->subexpressions[0]->set_is_lhs(true);
1757      op[0] = this->subexpressions[0]->hir(instructions, state);
1758      op[1] = this->subexpressions[1]->hir(instructions, state);
1759      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1760                               &loc);
1761      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1762                                                   type, op[0], op[1]);
1763      error_emitted =
1764         do_assignment(instructions, state,
1765                       this->subexpressions[0]->non_lvalue_description,
1766                       op[0]->clone(ctx, NULL), temp_rhs,
1767                       &result, needs_rvalue, false,
1768                       this->subexpressions[0]->get_location());
1769      break;
1770   }
1771
1772   case ast_and_assign:
1773   case ast_xor_assign:
1774   case ast_or_assign: {
1775      this->subexpressions[0]->set_is_lhs(true);
1776      op[0] = this->subexpressions[0]->hir(instructions, state);
1777      op[1] = this->subexpressions[1]->hir(instructions, state);
1778
1779      orig_type = op[0]->type;
1780      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1781
1782      if (type != orig_type) {
1783         _mesa_glsl_error(& loc, state,
1784                          "could not implicitly convert "
1785                          "%s to %s", type->name, orig_type->name);
1786         type = glsl_type::error_type;
1787      }
1788
1789      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1790                                                   type, op[0], op[1]);
1791      error_emitted =
1792         do_assignment(instructions, state,
1793                       this->subexpressions[0]->non_lvalue_description,
1794                       op[0]->clone(ctx, NULL), temp_rhs,
1795                       &result, needs_rvalue, false,
1796                       this->subexpressions[0]->get_location());
1797      break;
1798   }
1799
1800   case ast_conditional: {
1801      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1802       *
1803       *    "The ternary selection operator (?:). It operates on three
1804       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1805       *    first expression, which must result in a scalar Boolean."
1806       */
1807      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1808                                         "condition", &error_emitted);
1809
1810      /* The :? operator is implemented by generating an anonymous temporary
1811       * followed by an if-statement.  The last instruction in each branch of
1812       * the if-statement assigns a value to the anonymous temporary.  This
1813       * temporary is the r-value of the expression.
1814       */
1815      exec_list then_instructions;
1816      exec_list else_instructions;
1817
1818      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1819      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1820
1821      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1822       *
1823       *     "The second and third expressions can be any type, as
1824       *     long their types match, or there is a conversion in
1825       *     Section 4.1.10 "Implicit Conversions" that can be applied
1826       *     to one of the expressions to make their types match. This
1827       *     resulting matching type is the type of the entire
1828       *     expression."
1829       */
1830      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1831          && !apply_implicit_conversion(op[2]->type, op[1], state))
1832          || (op[1]->type != op[2]->type)) {
1833         YYLTYPE loc = this->subexpressions[1]->get_location();
1834
1835         _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1836                          "operator must have matching types");
1837         error_emitted = true;
1838         type = glsl_type::error_type;
1839      } else {
1840         type = op[1]->type;
1841      }
1842
1843      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1844       *
1845       *    "The second and third expressions must be the same type, but can
1846       *    be of any type other than an array."
1847       */
1848      if (type->is_array() &&
1849          !state->check_version(120, 300, &loc,
1850                                "second and third operands of ?: operator "
1851                                "cannot be arrays")) {
1852         error_emitted = true;
1853      }
1854
1855      /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1856       *
1857       *  "Except for array indexing, structure member selection, and
1858       *   parentheses, opaque variables are not allowed to be operands in
1859       *   expressions; such use results in a compile-time error."
1860       */
1861      if (type->contains_opaque()) {
1862         if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1863            _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1864                             "operands of the ?: operator", type->name);
1865            error_emitted = true;
1866         }
1867      }
1868
1869      ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1870
1871      if (then_instructions.is_empty()
1872          && else_instructions.is_empty()
1873          && cond_val != NULL) {
1874         result = cond_val->value.b[0] ? op[1] : op[2];
1875      } else {
1876         /* The copy to conditional_tmp reads the whole array. */
1877         if (type->is_array()) {
1878            mark_whole_array_access(op[1]);
1879            mark_whole_array_access(op[2]);
1880         }
1881
1882         ir_variable *const tmp =
1883            new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1884         instructions->push_tail(tmp);
1885
1886         ir_if *const stmt = new(ctx) ir_if(op[0]);
1887         instructions->push_tail(stmt);
1888
1889         then_instructions.move_nodes_to(& stmt->then_instructions);
1890         ir_dereference *const then_deref =
1891            new(ctx) ir_dereference_variable(tmp);
1892         ir_assignment *const then_assign =
1893            new(ctx) ir_assignment(then_deref, op[1]);
1894         stmt->then_instructions.push_tail(then_assign);
1895
1896         else_instructions.move_nodes_to(& stmt->else_instructions);
1897         ir_dereference *const else_deref =
1898            new(ctx) ir_dereference_variable(tmp);
1899         ir_assignment *const else_assign =
1900            new(ctx) ir_assignment(else_deref, op[2]);
1901         stmt->else_instructions.push_tail(else_assign);
1902
1903         result = new(ctx) ir_dereference_variable(tmp);
1904      }
1905      break;
1906   }
1907
1908   case ast_pre_inc:
1909   case ast_pre_dec: {
1910      this->non_lvalue_description = (this->oper == ast_pre_inc)
1911         ? "pre-increment operation" : "pre-decrement operation";
1912
1913      op[0] = this->subexpressions[0]->hir(instructions, state);
1914      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1915
1916      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1917
1918      ir_rvalue *temp_rhs;
1919      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1920                                        op[0], op[1]);
1921
1922      error_emitted =
1923         do_assignment(instructions, state,
1924                       this->subexpressions[0]->non_lvalue_description,
1925                       op[0]->clone(ctx, NULL), temp_rhs,
1926                       &result, needs_rvalue, false,
1927                       this->subexpressions[0]->get_location());
1928      break;
1929   }
1930
1931   case ast_post_inc:
1932   case ast_post_dec: {
1933      this->non_lvalue_description = (this->oper == ast_post_inc)
1934         ? "post-increment operation" : "post-decrement operation";
1935      op[0] = this->subexpressions[0]->hir(instructions, state);
1936      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1937
1938      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1939
1940      if (error_emitted) {
1941         result = ir_rvalue::error_value(ctx);
1942         break;
1943      }
1944
1945      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1946
1947      ir_rvalue *temp_rhs;
1948      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1949                                        op[0], op[1]);
1950
1951      /* Get a temporary of a copy of the lvalue before it's modified.
1952       * This may get thrown away later.
1953       */
1954      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1955
1956      ir_rvalue *junk_rvalue;
1957      error_emitted =
1958         do_assignment(instructions, state,
1959                       this->subexpressions[0]->non_lvalue_description,
1960                       op[0]->clone(ctx, NULL), temp_rhs,
1961                       &junk_rvalue, false, false,
1962                       this->subexpressions[0]->get_location());
1963
1964      break;
1965   }
1966
1967   case ast_field_selection:
1968      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1969      break;
1970
1971   case ast_array_index: {
1972      YYLTYPE index_loc = subexpressions[1]->get_location();
1973
1974      /* Getting if an array is being used uninitialized is beyond what we get
1975       * from ir_value.data.assigned. Setting is_lhs as true would force to
1976       * not raise a uninitialized warning when using an array
1977       */
1978      subexpressions[0]->set_is_lhs(true);
1979      op[0] = subexpressions[0]->hir(instructions, state);
1980      op[1] = subexpressions[1]->hir(instructions, state);
1981
1982      result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1983                                            loc, index_loc);
1984
1985      if (result->type->is_error())
1986         error_emitted = true;
1987
1988      break;
1989   }
1990
1991   case ast_unsized_array_dim:
1992      unreachable("ast_unsized_array_dim: Should never get here.");
1993
1994   case ast_function_call:
1995      /* Should *NEVER* get here.  ast_function_call should always be handled
1996       * by ast_function_expression::hir.
1997       */
1998      unreachable("ast_function_call: handled elsewhere ");
1999
2000   case ast_identifier: {
2001      /* ast_identifier can appear several places in a full abstract syntax
2002       * tree.  This particular use must be at location specified in the grammar
2003       * as 'variable_identifier'.
2004       */
2005      ir_variable *var =
2006         state->symbols->get_variable(this->primary_expression.identifier);
2007
2008      if (var == NULL) {
2009         /* the identifier might be a subroutine name */
2010         char *sub_name;
2011         sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2012         var = state->symbols->get_variable(sub_name);
2013         ralloc_free(sub_name);
2014      }
2015
2016      if (var != NULL) {
2017         var->data.used = true;
2018         result = new(ctx) ir_dereference_variable(var);
2019
2020         if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2021             && !this->is_lhs
2022             && result->variable_referenced()->data.assigned != true
2023             && !is_gl_identifier(var->name)) {
2024            _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2025                               this->primary_expression.identifier);
2026         }
2027
2028         /* From the EXT_shader_framebuffer_fetch spec:
2029          *
2030          *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2031          *    enabled in addition, it's an error to use gl_LastFragData if it
2032          *    hasn't been explicitly redeclared with layout(noncoherent)."
2033          */
2034         if (var->data.fb_fetch_output && var->data.memory_coherent &&
2035             !state->EXT_shader_framebuffer_fetch_enable) {
2036            _mesa_glsl_error(&loc, state,
2037                             "invalid use of framebuffer fetch output not "
2038                             "qualified with layout(noncoherent)");
2039         }
2040
2041      } else {
2042         _mesa_glsl_error(& loc, state, "`%s' undeclared",
2043                          this->primary_expression.identifier);
2044
2045         result = ir_rvalue::error_value(ctx);
2046         error_emitted = true;
2047      }
2048      break;
2049   }
2050
2051   case ast_int_constant:
2052      result = new(ctx) ir_constant(this->primary_expression.int_constant);
2053      break;
2054
2055   case ast_uint_constant:
2056      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2057      break;
2058
2059   case ast_float_constant:
2060      result = new(ctx) ir_constant(this->primary_expression.float_constant);
2061      break;
2062
2063   case ast_bool_constant:
2064      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2065      break;
2066
2067   case ast_double_constant:
2068      result = new(ctx) ir_constant(this->primary_expression.double_constant);
2069      break;
2070
2071   case ast_uint64_constant:
2072      result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2073      break;
2074
2075   case ast_int64_constant:
2076      result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2077      break;
2078
2079   case ast_sequence: {
2080      /* It should not be possible to generate a sequence in the AST without
2081       * any expressions in it.
2082       */
2083      assert(!this->expressions.is_empty());
2084
2085      /* The r-value of a sequence is the last expression in the sequence.  If
2086       * the other expressions in the sequence do not have side-effects (and
2087       * therefore add instructions to the instruction list), they get dropped
2088       * on the floor.
2089       */
2090      exec_node *previous_tail = NULL;
2091      YYLTYPE previous_operand_loc = loc;
2092
2093      foreach_list_typed (ast_node, ast, link, &this->expressions) {
2094         /* If one of the operands of comma operator does not generate any
2095          * code, we want to emit a warning.  At each pass through the loop
2096          * previous_tail will point to the last instruction in the stream
2097          * *before* processing the previous operand.  Naturally,
2098          * instructions->get_tail_raw() will point to the last instruction in
2099          * the stream *after* processing the previous operand.  If the two
2100          * pointers match, then the previous operand had no effect.
2101          *
2102          * The warning behavior here differs slightly from GCC.  GCC will
2103          * only emit a warning if none of the left-hand operands have an
2104          * effect.  However, it will emit a warning for each.  I believe that
2105          * there are some cases in C (especially with GCC extensions) where
2106          * it is useful to have an intermediate step in a sequence have no
2107          * effect, but I don't think these cases exist in GLSL.  Either way,
2108          * it would be a giant hassle to replicate that behavior.
2109          */
2110         if (previous_tail == instructions->get_tail_raw()) {
2111            _mesa_glsl_warning(&previous_operand_loc, state,
2112                               "left-hand operand of comma expression has "
2113                               "no effect");
2114         }
2115
2116         /* The tail is directly accessed instead of using the get_tail()
2117          * method for performance reasons.  get_tail() has extra code to
2118          * return NULL when the list is empty.  We don't care about that
2119          * here, so using get_tail_raw() is fine.
2120          */
2121         previous_tail = instructions->get_tail_raw();
2122         previous_operand_loc = ast->get_location();
2123
2124         result = ast->hir(instructions, state);
2125      }
2126
2127      /* Any errors should have already been emitted in the loop above.
2128       */
2129      error_emitted = true;
2130      break;
2131   }
2132   }
2133   type = NULL; /* use result->type, not type. */
2134   assert(result != NULL || !needs_rvalue);
2135
2136   if (result && result->type->is_error() && !error_emitted)
2137      _mesa_glsl_error(& loc, state, "type mismatch");
2138
2139   return result;
2140}
2141
2142bool
2143ast_expression::has_sequence_subexpression() const
2144{
2145   switch (this->oper) {
2146   case ast_plus:
2147   case ast_neg:
2148   case ast_bit_not:
2149   case ast_logic_not:
2150   case ast_pre_inc:
2151   case ast_pre_dec:
2152   case ast_post_inc:
2153   case ast_post_dec:
2154      return this->subexpressions[0]->has_sequence_subexpression();
2155
2156   case ast_assign:
2157   case ast_add:
2158   case ast_sub:
2159   case ast_mul:
2160   case ast_div:
2161   case ast_mod:
2162   case ast_lshift:
2163   case ast_rshift:
2164   case ast_less:
2165   case ast_greater:
2166   case ast_lequal:
2167   case ast_gequal:
2168   case ast_nequal:
2169   case ast_equal:
2170   case ast_bit_and:
2171   case ast_bit_xor:
2172   case ast_bit_or:
2173   case ast_logic_and:
2174   case ast_logic_or:
2175   case ast_logic_xor:
2176   case ast_array_index:
2177   case ast_mul_assign:
2178   case ast_div_assign:
2179   case ast_add_assign:
2180   case ast_sub_assign:
2181   case ast_mod_assign:
2182   case ast_ls_assign:
2183   case ast_rs_assign:
2184   case ast_and_assign:
2185   case ast_xor_assign:
2186   case ast_or_assign:
2187      return this->subexpressions[0]->has_sequence_subexpression() ||
2188             this->subexpressions[1]->has_sequence_subexpression();
2189
2190   case ast_conditional:
2191      return this->subexpressions[0]->has_sequence_subexpression() ||
2192             this->subexpressions[1]->has_sequence_subexpression() ||
2193             this->subexpressions[2]->has_sequence_subexpression();
2194
2195   case ast_sequence:
2196      return true;
2197
2198   case ast_field_selection:
2199   case ast_identifier:
2200   case ast_int_constant:
2201   case ast_uint_constant:
2202   case ast_float_constant:
2203   case ast_bool_constant:
2204   case ast_double_constant:
2205   case ast_int64_constant:
2206   case ast_uint64_constant:
2207      return false;
2208
2209   case ast_aggregate:
2210      return false;
2211
2212   case ast_function_call:
2213      unreachable("should be handled by ast_function_expression::hir");
2214
2215   case ast_unsized_array_dim:
2216      unreachable("ast_unsized_array_dim: Should never get here.");
2217   }
2218
2219   return false;
2220}
2221
2222ir_rvalue *
2223ast_expression_statement::hir(exec_list *instructions,
2224                              struct _mesa_glsl_parse_state *state)
2225{
2226   /* It is possible to have expression statements that don't have an
2227    * expression.  This is the solitary semicolon:
2228    *
2229    * for (i = 0; i < 5; i++)
2230    *     ;
2231    *
2232    * In this case the expression will be NULL.  Test for NULL and don't do
2233    * anything in that case.
2234    */
2235   if (expression != NULL)
2236      expression->hir_no_rvalue(instructions, state);
2237
2238   /* Statements do not have r-values.
2239    */
2240   return NULL;
2241}
2242
2243
2244ir_rvalue *
2245ast_compound_statement::hir(exec_list *instructions,
2246                            struct _mesa_glsl_parse_state *state)
2247{
2248   if (new_scope)
2249      state->symbols->push_scope();
2250
2251   foreach_list_typed (ast_node, ast, link, &this->statements)
2252      ast->hir(instructions, state);
2253
2254   if (new_scope)
2255      state->symbols->pop_scope();
2256
2257   /* Compound statements do not have r-values.
2258    */
2259   return NULL;
2260}
2261
2262/**
2263 * Evaluate the given exec_node (which should be an ast_node representing
2264 * a single array dimension) and return its integer value.
2265 */
2266static unsigned
2267process_array_size(exec_node *node,
2268                   struct _mesa_glsl_parse_state *state)
2269{
2270   void *mem_ctx = state;
2271
2272   exec_list dummy_instructions;
2273
2274   ast_node *array_size = exec_node_data(ast_node, node, link);
2275
2276   /**
2277    * Dimensions other than the outermost dimension can by unsized if they
2278    * are immediately sized by a constructor or initializer.
2279    */
2280   if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2281      return 0;
2282
2283   ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2284   YYLTYPE loc = array_size->get_location();
2285
2286   if (ir == NULL) {
2287      _mesa_glsl_error(& loc, state,
2288                       "array size could not be resolved");
2289      return 0;
2290   }
2291
2292   if (!ir->type->is_integer()) {
2293      _mesa_glsl_error(& loc, state,
2294                       "array size must be integer type");
2295      return 0;
2296   }
2297
2298   if (!ir->type->is_scalar()) {
2299      _mesa_glsl_error(& loc, state,
2300                       "array size must be scalar type");
2301      return 0;
2302   }
2303
2304   ir_constant *const size = ir->constant_expression_value(mem_ctx);
2305   if (size == NULL ||
2306       (state->is_version(120, 300) &&
2307        array_size->has_sequence_subexpression())) {
2308      _mesa_glsl_error(& loc, state, "array size must be a "
2309                       "constant valued expression");
2310      return 0;
2311   }
2312
2313   if (size->value.i[0] <= 0) {
2314      _mesa_glsl_error(& loc, state, "array size must be > 0");
2315      return 0;
2316   }
2317
2318   assert(size->type == ir->type);
2319
2320   /* If the array size is const (and we've verified that
2321    * it is) then no instructions should have been emitted
2322    * when we converted it to HIR. If they were emitted,
2323    * then either the array size isn't const after all, or
2324    * we are emitting unnecessary instructions.
2325    */
2326   assert(dummy_instructions.is_empty());
2327
2328   return size->value.u[0];
2329}
2330
2331static const glsl_type *
2332process_array_type(YYLTYPE *loc, const glsl_type *base,
2333                   ast_array_specifier *array_specifier,
2334                   struct _mesa_glsl_parse_state *state)
2335{
2336   const glsl_type *array_type = base;
2337
2338   if (array_specifier != NULL) {
2339      if (base->is_array()) {
2340
2341         /* From page 19 (page 25) of the GLSL 1.20 spec:
2342          *
2343          * "Only one-dimensional arrays may be declared."
2344          */
2345         if (!state->check_arrays_of_arrays_allowed(loc)) {
2346            return glsl_type::error_type;
2347         }
2348      }
2349
2350      for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2351           !node->is_head_sentinel(); node = node->prev) {
2352         unsigned array_size = process_array_size(node, state);
2353         array_type = glsl_type::get_array_instance(array_type, array_size);
2354      }
2355   }
2356
2357   return array_type;
2358}
2359
2360static bool
2361precision_qualifier_allowed(const glsl_type *type)
2362{
2363   /* Precision qualifiers apply to floating point, integer and opaque
2364    * types.
2365    *
2366    * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2367    *    "Any floating point or any integer declaration can have the type
2368    *    preceded by one of these precision qualifiers [...] Literal
2369    *    constants do not have precision qualifiers. Neither do Boolean
2370    *    variables.
2371    *
2372    * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2373    * spec also says:
2374    *
2375    *     "Precision qualifiers are added for code portability with OpenGL
2376    *     ES, not for functionality. They have the same syntax as in OpenGL
2377    *     ES."
2378    *
2379    * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2380    *
2381    *     "uniform lowp sampler2D sampler;
2382    *     highp vec2 coord;
2383    *     ...
2384    *     lowp vec4 col = texture2D (sampler, coord);
2385    *                                            // texture2D returns lowp"
2386    *
2387    * From this, we infer that GLSL 1.30 (and later) should allow precision
2388    * qualifiers on sampler types just like float and integer types.
2389    */
2390   const glsl_type *const t = type->without_array();
2391
2392   return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2393          !t->is_record();
2394}
2395
2396const glsl_type *
2397ast_type_specifier::glsl_type(const char **name,
2398                              struct _mesa_glsl_parse_state *state) const
2399{
2400   const struct glsl_type *type;
2401
2402   if (this->type != NULL)
2403      type = this->type;
2404   else if (structure)
2405      type = structure->type;
2406   else
2407      type = state->symbols->get_type(this->type_name);
2408   *name = this->type_name;
2409
2410   YYLTYPE loc = this->get_location();
2411   type = process_array_type(&loc, type, this->array_specifier, state);
2412
2413   return type;
2414}
2415
2416/**
2417 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2418 *
2419 * "The precision statement
2420 *
2421 *    precision precision-qualifier type;
2422 *
2423 *  can be used to establish a default precision qualifier. The type field can
2424 *  be either int or float or any of the sampler types, (...) If type is float,
2425 *  the directive applies to non-precision-qualified floating point type
2426 *  (scalar, vector, and matrix) declarations. If type is int, the directive
2427 *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2428 *  and unsigned) declarations."
2429 *
2430 * We use the symbol table to keep the values of the default precisions for
2431 * each 'type' in each scope and we use the 'type' string from the precision
2432 * statement as key in the symbol table. When we want to retrieve the default
2433 * precision associated with a given glsl_type we need to know the type string
2434 * associated with it. This is what this function returns.
2435 */
2436static const char *
2437get_type_name_for_precision_qualifier(const glsl_type *type)
2438{
2439   switch (type->base_type) {
2440   case GLSL_TYPE_FLOAT:
2441      return "float";
2442   case GLSL_TYPE_UINT:
2443   case GLSL_TYPE_INT:
2444      return "int";
2445   case GLSL_TYPE_ATOMIC_UINT:
2446      return "atomic_uint";
2447   case GLSL_TYPE_IMAGE:
2448   /* fallthrough */
2449   case GLSL_TYPE_SAMPLER: {
2450      const unsigned type_idx =
2451         type->sampler_array + 2 * type->sampler_shadow;
2452      const unsigned offset = type->is_sampler() ? 0 : 4;
2453      assert(type_idx < 4);
2454      switch (type->sampled_type) {
2455      case GLSL_TYPE_FLOAT:
2456         switch (type->sampler_dimensionality) {
2457         case GLSL_SAMPLER_DIM_1D: {
2458            assert(type->is_sampler());
2459            static const char *const names[4] = {
2460              "sampler1D", "sampler1DArray",
2461              "sampler1DShadow", "sampler1DArrayShadow"
2462            };
2463            return names[type_idx];
2464         }
2465         case GLSL_SAMPLER_DIM_2D: {
2466            static const char *const names[8] = {
2467              "sampler2D", "sampler2DArray",
2468              "sampler2DShadow", "sampler2DArrayShadow",
2469              "image2D", "image2DArray", NULL, NULL
2470            };
2471            return names[offset + type_idx];
2472         }
2473         case GLSL_SAMPLER_DIM_3D: {
2474            static const char *const names[8] = {
2475              "sampler3D", NULL, NULL, NULL,
2476              "image3D", NULL, NULL, NULL
2477            };
2478            return names[offset + type_idx];
2479         }
2480         case GLSL_SAMPLER_DIM_CUBE: {
2481            static const char *const names[8] = {
2482              "samplerCube", "samplerCubeArray",
2483              "samplerCubeShadow", "samplerCubeArrayShadow",
2484              "imageCube", NULL, NULL, NULL
2485            };
2486            return names[offset + type_idx];
2487         }
2488         case GLSL_SAMPLER_DIM_MS: {
2489            assert(type->is_sampler());
2490            static const char *const names[4] = {
2491              "sampler2DMS", "sampler2DMSArray", NULL, NULL
2492            };
2493            return names[type_idx];
2494         }
2495         case GLSL_SAMPLER_DIM_RECT: {
2496            assert(type->is_sampler());
2497            static const char *const names[4] = {
2498              "samplerRect", NULL, "samplerRectShadow", NULL
2499            };
2500            return names[type_idx];
2501         }
2502         case GLSL_SAMPLER_DIM_BUF: {
2503            static const char *const names[8] = {
2504              "samplerBuffer", NULL, NULL, NULL,
2505              "imageBuffer", NULL, NULL, NULL
2506            };
2507            return names[offset + type_idx];
2508         }
2509         case GLSL_SAMPLER_DIM_EXTERNAL: {
2510            assert(type->is_sampler());
2511            static const char *const names[4] = {
2512              "samplerExternalOES", NULL, NULL, NULL
2513            };
2514            return names[type_idx];
2515         }
2516         default:
2517            unreachable("Unsupported sampler/image dimensionality");
2518         } /* sampler/image float dimensionality */
2519         break;
2520      case GLSL_TYPE_INT:
2521         switch (type->sampler_dimensionality) {
2522         case GLSL_SAMPLER_DIM_1D: {
2523            assert(type->is_sampler());
2524            static const char *const names[4] = {
2525              "isampler1D", "isampler1DArray", NULL, NULL
2526            };
2527            return names[type_idx];
2528         }
2529         case GLSL_SAMPLER_DIM_2D: {
2530            static const char *const names[8] = {
2531              "isampler2D", "isampler2DArray", NULL, NULL,
2532              "iimage2D", "iimage2DArray", NULL, NULL
2533            };
2534            return names[offset + type_idx];
2535         }
2536         case GLSL_SAMPLER_DIM_3D: {
2537            static const char *const names[8] = {
2538              "isampler3D", NULL, NULL, NULL,
2539              "iimage3D", NULL, NULL, NULL
2540            };
2541            return names[offset + type_idx];
2542         }
2543         case GLSL_SAMPLER_DIM_CUBE: {
2544            static const char *const names[8] = {
2545              "isamplerCube", "isamplerCubeArray", NULL, NULL,
2546              "iimageCube", NULL, NULL, NULL
2547            };
2548            return names[offset + type_idx];
2549         }
2550         case GLSL_SAMPLER_DIM_MS: {
2551            assert(type->is_sampler());
2552            static const char *const names[4] = {
2553              "isampler2DMS", "isampler2DMSArray", NULL, NULL
2554            };
2555            return names[type_idx];
2556         }
2557         case GLSL_SAMPLER_DIM_RECT: {
2558            assert(type->is_sampler());
2559            static const char *const names[4] = {
2560              "isamplerRect", NULL, "isamplerRectShadow", NULL
2561            };
2562            return names[type_idx];
2563         }
2564         case GLSL_SAMPLER_DIM_BUF: {
2565            static const char *const names[8] = {
2566              "isamplerBuffer", NULL, NULL, NULL,
2567              "iimageBuffer", NULL, NULL, NULL
2568            };
2569            return names[offset + type_idx];
2570         }
2571         default:
2572            unreachable("Unsupported isampler/iimage dimensionality");
2573         } /* sampler/image int dimensionality */
2574         break;
2575      case GLSL_TYPE_UINT:
2576         switch (type->sampler_dimensionality) {
2577         case GLSL_SAMPLER_DIM_1D: {
2578            assert(type->is_sampler());
2579            static const char *const names[4] = {
2580              "usampler1D", "usampler1DArray", NULL, NULL
2581            };
2582            return names[type_idx];
2583         }
2584         case GLSL_SAMPLER_DIM_2D: {
2585            static const char *const names[8] = {
2586              "usampler2D", "usampler2DArray", NULL, NULL,
2587              "uimage2D", "uimage2DArray", NULL, NULL
2588            };
2589            return names[offset + type_idx];
2590         }
2591         case GLSL_SAMPLER_DIM_3D: {
2592            static const char *const names[8] = {
2593              "usampler3D", NULL, NULL, NULL,
2594              "uimage3D", NULL, NULL, NULL
2595            };
2596            return names[offset + type_idx];
2597         }
2598         case GLSL_SAMPLER_DIM_CUBE: {
2599            static const char *const names[8] = {
2600              "usamplerCube", "usamplerCubeArray", NULL, NULL,
2601              "uimageCube", NULL, NULL, NULL
2602            };
2603            return names[offset + type_idx];
2604         }
2605         case GLSL_SAMPLER_DIM_MS: {
2606            assert(type->is_sampler());
2607            static const char *const names[4] = {
2608              "usampler2DMS", "usampler2DMSArray", NULL, NULL
2609            };
2610            return names[type_idx];
2611         }
2612         case GLSL_SAMPLER_DIM_RECT: {
2613            assert(type->is_sampler());
2614            static const char *const names[4] = {
2615              "usamplerRect", NULL, "usamplerRectShadow", NULL
2616            };
2617            return names[type_idx];
2618         }
2619         case GLSL_SAMPLER_DIM_BUF: {
2620            static const char *const names[8] = {
2621              "usamplerBuffer", NULL, NULL, NULL,
2622              "uimageBuffer", NULL, NULL, NULL
2623            };
2624            return names[offset + type_idx];
2625         }
2626         default:
2627            unreachable("Unsupported usampler/uimage dimensionality");
2628         } /* sampler/image uint dimensionality */
2629         break;
2630      default:
2631         unreachable("Unsupported sampler/image type");
2632      } /* sampler/image type */
2633      break;
2634   } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2635   break;
2636   default:
2637      unreachable("Unsupported type");
2638   } /* base type */
2639}
2640
2641static unsigned
2642select_gles_precision(unsigned qual_precision,
2643                      const glsl_type *type,
2644                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2645{
2646   /* Precision qualifiers do not have any meaning in Desktop GLSL.
2647    * In GLES we take the precision from the type qualifier if present,
2648    * otherwise, if the type of the variable allows precision qualifiers at
2649    * all, we look for the default precision qualifier for that type in the
2650    * current scope.
2651    */
2652   assert(state->es_shader);
2653
2654   unsigned precision = GLSL_PRECISION_NONE;
2655   if (qual_precision) {
2656      precision = qual_precision;
2657   } else if (precision_qualifier_allowed(type)) {
2658      const char *type_name =
2659         get_type_name_for_precision_qualifier(type->without_array());
2660      assert(type_name != NULL);
2661
2662      precision =
2663         state->symbols->get_default_precision_qualifier(type_name);
2664      if (precision == ast_precision_none) {
2665         _mesa_glsl_error(loc, state,
2666                          "No precision specified in this scope for type `%s'",
2667                          type->name);
2668      }
2669   }
2670
2671
2672   /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2673    *
2674    *    "The default precision of all atomic types is highp. It is an error to
2675    *    declare an atomic type with a different precision or to specify the
2676    *    default precision for an atomic type to be lowp or mediump."
2677    */
2678   if (type->is_atomic_uint() && precision != ast_precision_high) {
2679      _mesa_glsl_error(loc, state,
2680                       "atomic_uint can only have highp precision qualifier");
2681   }
2682
2683   return precision;
2684}
2685
2686const glsl_type *
2687ast_fully_specified_type::glsl_type(const char **name,
2688                                    struct _mesa_glsl_parse_state *state) const
2689{
2690   return this->specifier->glsl_type(name, state);
2691}
2692
2693/**
2694 * Determine whether a toplevel variable declaration declares a varying.  This
2695 * function operates by examining the variable's mode and the shader target,
2696 * so it correctly identifies linkage variables regardless of whether they are
2697 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2698 *
2699 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2700 * this function will produce undefined results.
2701 */
2702static bool
2703is_varying_var(ir_variable *var, gl_shader_stage target)
2704{
2705   switch (target) {
2706   case MESA_SHADER_VERTEX:
2707      return var->data.mode == ir_var_shader_out;
2708   case MESA_SHADER_FRAGMENT:
2709      return var->data.mode == ir_var_shader_in;
2710   default:
2711      return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2712   }
2713}
2714
2715static bool
2716is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2717{
2718   if (is_varying_var(var, state->stage))
2719      return true;
2720
2721   /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2722    * "Only variables output from a vertex shader can be candidates
2723    * for invariance".
2724    */
2725   if (!state->is_version(130, 0))
2726      return false;
2727
2728   /*
2729    * Later specs remove this language - so allowed invariant
2730    * on fragment shader outputs as well.
2731    */
2732   if (state->stage == MESA_SHADER_FRAGMENT &&
2733       var->data.mode == ir_var_shader_out)
2734      return true;
2735   return false;
2736}
2737
2738/**
2739 * Matrix layout qualifiers are only allowed on certain types
2740 */
2741static void
2742validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2743                                YYLTYPE *loc,
2744                                const glsl_type *type,
2745                                ir_variable *var)
2746{
2747   if (var && !var->is_in_buffer_block()) {
2748      /* Layout qualifiers may only apply to interface blocks and fields in
2749       * them.
2750       */
2751      _mesa_glsl_error(loc, state,
2752                       "uniform block layout qualifiers row_major and "
2753                       "column_major may not be applied to variables "
2754                       "outside of uniform blocks");
2755   } else if (!type->without_array()->is_matrix()) {
2756      /* The OpenGL ES 3.0 conformance tests did not originally allow
2757       * matrix layout qualifiers on non-matrices.  However, the OpenGL
2758       * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2759       * amended to specifically allow these layouts on all types.  Emit
2760       * a warning so that people know their code may not be portable.
2761       */
2762      _mesa_glsl_warning(loc, state,
2763                         "uniform block layout qualifiers row_major and "
2764                         "column_major applied to non-matrix types may "
2765                         "be rejected by older compilers");
2766   }
2767}
2768
2769static bool
2770validate_xfb_buffer_qualifier(YYLTYPE *loc,
2771                              struct _mesa_glsl_parse_state *state,
2772                              unsigned xfb_buffer) {
2773   if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2774      _mesa_glsl_error(loc, state,
2775                       "invalid xfb_buffer specified %d is larger than "
2776                       "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2777                       xfb_buffer,
2778                       state->Const.MaxTransformFeedbackBuffers - 1);
2779      return false;
2780   }
2781
2782   return true;
2783}
2784
2785/* From the ARB_enhanced_layouts spec:
2786 *
2787 *    "Variables and block members qualified with *xfb_offset* can be
2788 *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2789 *    The offset must be a multiple of the size of the first component of
2790 *    the first qualified variable or block member, or a compile-time error
2791 *    results.  Further, if applied to an aggregate containing a double,
2792 *    the offset must also be a multiple of 8, and the space taken in the
2793 *    buffer will be a multiple of 8.
2794 */
2795static bool
2796validate_xfb_offset_qualifier(YYLTYPE *loc,
2797                              struct _mesa_glsl_parse_state *state,
2798                              int xfb_offset, const glsl_type *type,
2799                              unsigned component_size) {
2800  const glsl_type *t_without_array = type->without_array();
2801
2802   if (xfb_offset != -1 && type->is_unsized_array()) {
2803      _mesa_glsl_error(loc, state,
2804                       "xfb_offset can't be used with unsized arrays.");
2805      return false;
2806   }
2807
2808   /* Make sure nested structs don't contain unsized arrays, and validate
2809    * any xfb_offsets on interface members.
2810    */
2811   if (t_without_array->is_record() || t_without_array->is_interface())
2812      for (unsigned int i = 0; i < t_without_array->length; i++) {
2813         const glsl_type *member_t = t_without_array->fields.structure[i].type;
2814
2815         /* When the interface block doesn't have an xfb_offset qualifier then
2816          * we apply the component size rules at the member level.
2817          */
2818         if (xfb_offset == -1)
2819            component_size = member_t->contains_double() ? 8 : 4;
2820
2821         int xfb_offset = t_without_array->fields.structure[i].offset;
2822         validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2823                                       component_size);
2824      }
2825
2826  /* Nested structs or interface block without offset may not have had an
2827   * offset applied yet so return.
2828   */
2829   if (xfb_offset == -1) {
2830     return true;
2831   }
2832
2833   if (xfb_offset % component_size) {
2834      _mesa_glsl_error(loc, state,
2835                       "invalid qualifier xfb_offset=%d must be a multiple "
2836                       "of the first component size of the first qualified "
2837                       "variable or block member. Or double if an aggregate "
2838                       "that contains a double (%d).",
2839                       xfb_offset, component_size);
2840      return false;
2841   }
2842
2843   return true;
2844}
2845
2846static bool
2847validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2848                          unsigned stream)
2849{
2850   if (stream >= state->ctx->Const.MaxVertexStreams) {
2851      _mesa_glsl_error(loc, state,
2852                       "invalid stream specified %d is larger than "
2853                       "MAX_VERTEX_STREAMS - 1 (%d).",
2854                       stream, state->ctx->Const.MaxVertexStreams - 1);
2855      return false;
2856   }
2857
2858   return true;
2859}
2860
2861static void
2862apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2863                       YYLTYPE *loc,
2864                       ir_variable *var,
2865                       const glsl_type *type,
2866                       const ast_type_qualifier *qual)
2867{
2868   if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2869      _mesa_glsl_error(loc, state,
2870                       "the \"binding\" qualifier only applies to uniforms and "
2871                       "shader storage buffer objects");
2872      return;
2873   }
2874
2875   unsigned qual_binding;
2876   if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2877                                   &qual_binding)) {
2878      return;
2879   }
2880
2881   const struct gl_context *const ctx = state->ctx;
2882   unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2883   unsigned max_index = qual_binding + elements - 1;
2884   const glsl_type *base_type = type->without_array();
2885
2886   if (base_type->is_interface()) {
2887      /* UBOs.  From page 60 of the GLSL 4.20 specification:
2888       * "If the binding point for any uniform block instance is less than zero,
2889       *  or greater than or equal to the implementation-dependent maximum
2890       *  number of uniform buffer bindings, a compilation error will occur.
2891       *  When the binding identifier is used with a uniform block instanced as
2892       *  an array of size N, all elements of the array from binding through
2893       *  binding + N – 1 must be within this range."
2894       *
2895       * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2896       */
2897      if (qual->flags.q.uniform &&
2898         max_index >= ctx->Const.MaxUniformBufferBindings) {
2899         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2900                          "the maximum number of UBO binding points (%d)",
2901                          qual_binding, elements,
2902                          ctx->Const.MaxUniformBufferBindings);
2903         return;
2904      }
2905
2906      /* SSBOs. From page 67 of the GLSL 4.30 specification:
2907       * "If the binding point for any uniform or shader storage block instance
2908       *  is less than zero, or greater than or equal to the
2909       *  implementation-dependent maximum number of uniform buffer bindings, a
2910       *  compile-time error will occur. When the binding identifier is used
2911       *  with a uniform or shader storage block instanced as an array of size
2912       *  N, all elements of the array from binding through binding + N – 1 must
2913       *  be within this range."
2914       */
2915      if (qual->flags.q.buffer &&
2916         max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2917         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2918                          "the maximum number of SSBO binding points (%d)",
2919                          qual_binding, elements,
2920                          ctx->Const.MaxShaderStorageBufferBindings);
2921         return;
2922      }
2923   } else if (base_type->is_sampler()) {
2924      /* Samplers.  From page 63 of the GLSL 4.20 specification:
2925       * "If the binding is less than zero, or greater than or equal to the
2926       *  implementation-dependent maximum supported number of units, a
2927       *  compilation error will occur. When the binding identifier is used
2928       *  with an array of size N, all elements of the array from binding
2929       *  through binding + N - 1 must be within this range."
2930       */
2931      unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2932
2933      if (max_index >= limit) {
2934         _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2935                          "exceeds the maximum number of texture image units "
2936                          "(%u)", qual_binding, elements, limit);
2937
2938         return;
2939      }
2940   } else if (base_type->contains_atomic()) {
2941      assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2942      if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2943         _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2944                          "maximum number of atomic counter buffer bindings "
2945                          "(%u)", qual_binding,
2946                          ctx->Const.MaxAtomicBufferBindings);
2947
2948         return;
2949      }
2950   } else if ((state->is_version(420, 310) ||
2951               state->ARB_shading_language_420pack_enable) &&
2952              base_type->is_image()) {
2953      assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2954      if (max_index >= ctx->Const.MaxImageUnits) {
2955         _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2956                          "maximum number of image units (%d)", max_index,
2957                          ctx->Const.MaxImageUnits);
2958         return;
2959      }
2960
2961   } else {
2962      _mesa_glsl_error(loc, state,
2963                       "the \"binding\" qualifier only applies to uniform "
2964                       "blocks, storage blocks, opaque variables, or arrays "
2965                       "thereof");
2966      return;
2967   }
2968
2969   var->data.explicit_binding = true;
2970   var->data.binding = qual_binding;
2971
2972   return;
2973}
2974
2975static void
2976validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2977                                           YYLTYPE *loc,
2978                                           const glsl_interp_mode interpolation,
2979                                           const struct glsl_type *var_type,
2980                                           ir_variable_mode mode)
2981{
2982   if (state->stage != MESA_SHADER_FRAGMENT ||
2983       interpolation == INTERP_MODE_FLAT ||
2984       mode != ir_var_shader_in)
2985      return;
2986
2987   /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
2988    * so must integer vertex outputs.
2989    *
2990    * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2991    *    "Fragment shader inputs that are signed or unsigned integers or
2992    *    integer vectors must be qualified with the interpolation qualifier
2993    *    flat."
2994    *
2995    * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2996    *    "Fragment shader inputs that are, or contain, signed or unsigned
2997    *    integers or integer vectors must be qualified with the
2998    *    interpolation qualifier flat."
2999    *
3000    * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3001    *    "Vertex shader outputs that are, or contain, signed or unsigned
3002    *    integers or integer vectors must be qualified with the
3003    *    interpolation qualifier flat."
3004    *
3005    * Note that prior to GLSL 1.50, this requirement applied to vertex
3006    * outputs rather than fragment inputs.  That creates problems in the
3007    * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3008    * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3009    * apply the restriction to both vertex outputs and fragment inputs.
3010    *
3011    * Note also that the desktop GLSL specs are missing the text "or
3012    * contain"; this is presumably an oversight, since there is no
3013    * reasonable way to interpolate a fragment shader input that contains
3014    * an integer. See Khronos bug #15671.
3015    */
3016   if (state->is_version(130, 300)
3017       && var_type->contains_integer()) {
3018      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3019                       "an integer, then it must be qualified with 'flat'");
3020   }
3021
3022   /* Double fragment inputs must be qualified with 'flat'.
3023    *
3024    * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3025    *    "This extension does not support interpolation of double-precision
3026    *    values; doubles used as fragment shader inputs must be qualified as
3027    *    "flat"."
3028    *
3029    * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3030    *    "Fragment shader inputs that are signed or unsigned integers, integer
3031    *    vectors, or any double-precision floating-point type must be
3032    *    qualified with the interpolation qualifier flat."
3033    *
3034    * Note that the GLSL specs are missing the text "or contain"; this is
3035    * presumably an oversight. See Khronos bug #15671.
3036    *
3037    * The 'double' type does not exist in GLSL ES so far.
3038    */
3039   if (state->has_double()
3040       && var_type->contains_double()) {
3041      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3042                       "a double, then it must be qualified with 'flat'");
3043   }
3044
3045   /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3046    *
3047    * From section 4.3.4 of the ARB_bindless_texture spec:
3048    *
3049    *    "(modify last paragraph, p. 35, allowing samplers and images as
3050    *     fragment shader inputs) ... Fragment inputs can only be signed and
3051    *     unsigned integers and integer vectors, floating point scalars,
3052    *     floating-point vectors, matrices, sampler and image types, or arrays
3053    *     or structures of these.  Fragment shader inputs that are signed or
3054    *     unsigned integers, integer vectors, or any double-precision floating-
3055    *     point type, or any sampler or image type must be qualified with the
3056    *     interpolation qualifier "flat"."
3057    */
3058   if (state->has_bindless()
3059       && (var_type->contains_sampler() || var_type->contains_image())) {
3060      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3061                       "a bindless sampler (or image), then it must be "
3062                       "qualified with 'flat'");
3063   }
3064}
3065
3066static void
3067validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3068                                 YYLTYPE *loc,
3069                                 const glsl_interp_mode interpolation,
3070                                 const struct ast_type_qualifier *qual,
3071                                 const struct glsl_type *var_type,
3072                                 ir_variable_mode mode)
3073{
3074   /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3075    * not to vertex shader inputs nor fragment shader outputs.
3076    *
3077    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3078    *    "Outputs from a vertex shader (out) and inputs to a fragment
3079    *    shader (in) can be further qualified with one or more of these
3080    *    interpolation qualifiers"
3081    *    ...
3082    *    "These interpolation qualifiers may only precede the qualifiers in,
3083    *    centroid in, out, or centroid out in a declaration. They do not apply
3084    *    to the deprecated storage qualifiers varying or centroid
3085    *    varying. They also do not apply to inputs into a vertex shader or
3086    *    outputs from a fragment shader."
3087    *
3088    * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3089    *    "Outputs from a shader (out) and inputs to a shader (in) can be
3090    *    further qualified with one of these interpolation qualifiers."
3091    *    ...
3092    *    "These interpolation qualifiers may only precede the qualifiers
3093    *    in, centroid in, out, or centroid out in a declaration. They do
3094    *    not apply to inputs into a vertex shader or outputs from a
3095    *    fragment shader."
3096    */
3097   if (state->is_version(130, 300)
3098       && interpolation != INTERP_MODE_NONE) {
3099      const char *i = interpolation_string(interpolation);
3100      if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3101         _mesa_glsl_error(loc, state,
3102                          "interpolation qualifier `%s' can only be applied to "
3103                          "shader inputs or outputs.", i);
3104
3105      switch (state->stage) {
3106      case MESA_SHADER_VERTEX:
3107         if (mode == ir_var_shader_in) {
3108            _mesa_glsl_error(loc, state,
3109                             "interpolation qualifier '%s' cannot be applied to "
3110                             "vertex shader inputs", i);
3111         }
3112         break;
3113      case MESA_SHADER_FRAGMENT:
3114         if (mode == ir_var_shader_out) {
3115            _mesa_glsl_error(loc, state,
3116                             "interpolation qualifier '%s' cannot be applied to "
3117                             "fragment shader outputs", i);
3118         }
3119         break;
3120      default:
3121         break;
3122      }
3123   }
3124
3125   /* Interpolation qualifiers cannot be applied to 'centroid' and
3126    * 'centroid varying'.
3127    *
3128    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3129    *    "interpolation qualifiers may only precede the qualifiers in,
3130    *    centroid in, out, or centroid out in a declaration. They do not apply
3131    *    to the deprecated storage qualifiers varying or centroid varying."
3132    *
3133    * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3134    */
3135   if (state->is_version(130, 0)
3136       && interpolation != INTERP_MODE_NONE
3137       && qual->flags.q.varying) {
3138
3139      const char *i = interpolation_string(interpolation);
3140      const char *s;
3141      if (qual->flags.q.centroid)
3142         s = "centroid varying";
3143      else
3144         s = "varying";
3145
3146      _mesa_glsl_error(loc, state,
3147                       "qualifier '%s' cannot be applied to the "
3148                       "deprecated storage qualifier '%s'", i, s);
3149   }
3150
3151   validate_fragment_flat_interpolation_input(state, loc, interpolation,
3152                                              var_type, mode);
3153}
3154
3155static glsl_interp_mode
3156interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3157                                  const struct glsl_type *var_type,
3158                                  ir_variable_mode mode,
3159                                  struct _mesa_glsl_parse_state *state,
3160                                  YYLTYPE *loc)
3161{
3162   glsl_interp_mode interpolation;
3163   if (qual->flags.q.flat)
3164      interpolation = INTERP_MODE_FLAT;
3165   else if (qual->flags.q.noperspective)
3166      interpolation = INTERP_MODE_NOPERSPECTIVE;
3167   else if (qual->flags.q.smooth)
3168      interpolation = INTERP_MODE_SMOOTH;
3169   else
3170      interpolation = INTERP_MODE_NONE;
3171
3172   validate_interpolation_qualifier(state, loc,
3173                                    interpolation,
3174                                    qual, var_type, mode);
3175
3176   return interpolation;
3177}
3178
3179
3180static void
3181apply_explicit_location(const struct ast_type_qualifier *qual,
3182                        ir_variable *var,
3183                        struct _mesa_glsl_parse_state *state,
3184                        YYLTYPE *loc)
3185{
3186   bool fail = false;
3187
3188   unsigned qual_location;
3189   if (!process_qualifier_constant(state, loc, "location", qual->location,
3190                                   &qual_location)) {
3191      return;
3192   }
3193
3194   /* Checks for GL_ARB_explicit_uniform_location. */
3195   if (qual->flags.q.uniform) {
3196      if (!state->check_explicit_uniform_location_allowed(loc, var))
3197         return;
3198
3199      const struct gl_context *const ctx = state->ctx;
3200      unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3201
3202      if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3203         _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3204                          ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3205                          ctx->Const.MaxUserAssignableUniformLocations);
3206         return;
3207      }
3208
3209      var->data.explicit_location = true;
3210      var->data.location = qual_location;
3211      return;
3212   }
3213
3214   /* Between GL_ARB_explicit_attrib_location an
3215    * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3216    * stage can be assigned explicit locations.  The checking here associates
3217    * the correct extension with the correct stage's input / output:
3218    *
3219    *                     input            output
3220    *                     -----            ------
3221    * vertex              explicit_loc     sso
3222    * tess control        sso              sso
3223    * tess eval           sso              sso
3224    * geometry            sso              sso
3225    * fragment            sso              explicit_loc
3226    */
3227   switch (state->stage) {
3228   case MESA_SHADER_VERTEX:
3229      if (var->data.mode == ir_var_shader_in) {
3230         if (!state->check_explicit_attrib_location_allowed(loc, var))
3231            return;
3232
3233         break;
3234      }
3235
3236      if (var->data.mode == ir_var_shader_out) {
3237         if (!state->check_separate_shader_objects_allowed(loc, var))
3238            return;
3239
3240         break;
3241      }
3242
3243      fail = true;
3244      break;
3245
3246   case MESA_SHADER_TESS_CTRL:
3247   case MESA_SHADER_TESS_EVAL:
3248   case MESA_SHADER_GEOMETRY:
3249      if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3250         if (!state->check_separate_shader_objects_allowed(loc, var))
3251            return;
3252
3253         break;
3254      }
3255
3256      fail = true;
3257      break;
3258
3259   case MESA_SHADER_FRAGMENT:
3260      if (var->data.mode == ir_var_shader_in) {
3261         if (!state->check_separate_shader_objects_allowed(loc, var))
3262            return;
3263
3264         break;
3265      }
3266
3267      if (var->data.mode == ir_var_shader_out) {
3268         if (!state->check_explicit_attrib_location_allowed(loc, var))
3269            return;
3270
3271         break;
3272      }
3273
3274      fail = true;
3275      break;
3276
3277   case MESA_SHADER_COMPUTE:
3278      _mesa_glsl_error(loc, state,
3279                       "compute shader variables cannot be given "
3280                       "explicit locations");
3281      return;
3282   default:
3283      fail = true;
3284      break;
3285   };
3286
3287   if (fail) {
3288      _mesa_glsl_error(loc, state,
3289                       "%s cannot be given an explicit location in %s shader",
3290                       mode_string(var),
3291      _mesa_shader_stage_to_string(state->stage));
3292   } else {
3293      var->data.explicit_location = true;
3294
3295      switch (state->stage) {
3296      case MESA_SHADER_VERTEX:
3297         var->data.location = (var->data.mode == ir_var_shader_in)
3298            ? (qual_location + VERT_ATTRIB_GENERIC0)
3299            : (qual_location + VARYING_SLOT_VAR0);
3300         break;
3301
3302      case MESA_SHADER_TESS_CTRL:
3303      case MESA_SHADER_TESS_EVAL:
3304      case MESA_SHADER_GEOMETRY:
3305         if (var->data.patch)
3306            var->data.location = qual_location + VARYING_SLOT_PATCH0;
3307         else
3308            var->data.location = qual_location + VARYING_SLOT_VAR0;
3309         break;
3310
3311      case MESA_SHADER_FRAGMENT:
3312         var->data.location = (var->data.mode == ir_var_shader_out)
3313            ? (qual_location + FRAG_RESULT_DATA0)
3314            : (qual_location + VARYING_SLOT_VAR0);
3315         break;
3316      default:
3317         assert(!"Unexpected shader type");
3318         break;
3319      }
3320
3321      /* Check if index was set for the uniform instead of the function */
3322      if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3323         _mesa_glsl_error(loc, state, "an index qualifier can only be "
3324                          "used with subroutine functions");
3325         return;
3326      }
3327
3328      unsigned qual_index;
3329      if (qual->flags.q.explicit_index &&
3330          process_qualifier_constant(state, loc, "index", qual->index,
3331                                     &qual_index)) {
3332         /* From the GLSL 4.30 specification, section 4.4.2 (Output
3333          * Layout Qualifiers):
3334          *
3335          * "It is also a compile-time error if a fragment shader
3336          *  sets a layout index to less than 0 or greater than 1."
3337          *
3338          * Older specifications don't mandate a behavior; we take
3339          * this as a clarification and always generate the error.
3340          */
3341         if (qual_index > 1) {
3342            _mesa_glsl_error(loc, state,
3343                             "explicit index may only be 0 or 1");
3344         } else {
3345            var->data.explicit_index = true;
3346            var->data.index = qual_index;
3347         }
3348      }
3349   }
3350}
3351
3352static bool
3353validate_storage_for_sampler_image_types(ir_variable *var,
3354                                         struct _mesa_glsl_parse_state *state,
3355                                         YYLTYPE *loc)
3356{
3357   /* From section 4.1.7 of the GLSL 4.40 spec:
3358    *
3359    *    "[Opaque types] can only be declared as function
3360    *     parameters or uniform-qualified variables."
3361    *
3362    * From section 4.1.7 of the ARB_bindless_texture spec:
3363    *
3364    *    "Samplers may be declared as shader inputs and outputs, as uniform
3365    *     variables, as temporary variables, and as function parameters."
3366    *
3367    * From section 4.1.X of the ARB_bindless_texture spec:
3368    *
3369    *    "Images may be declared as shader inputs and outputs, as uniform
3370    *     variables, as temporary variables, and as function parameters."
3371    */
3372   if (state->has_bindless()) {
3373      if (var->data.mode != ir_var_auto &&
3374          var->data.mode != ir_var_uniform &&
3375          var->data.mode != ir_var_shader_in &&
3376          var->data.mode != ir_var_shader_out &&
3377          var->data.mode != ir_var_function_in &&
3378          var->data.mode != ir_var_function_out &&
3379          var->data.mode != ir_var_function_inout) {
3380         _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3381                         "only be declared as shader inputs and outputs, as "
3382                         "uniform variables, as temporary variables and as "
3383                         "function parameters");
3384         return false;
3385      }
3386   } else {
3387      if (var->data.mode != ir_var_uniform &&
3388          var->data.mode != ir_var_function_in) {
3389         _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3390                          "declared as function parameters or "
3391                          "uniform-qualified global variables");
3392         return false;
3393      }
3394   }
3395   return true;
3396}
3397
3398static bool
3399validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3400                                   YYLTYPE *loc,
3401                                   const struct ast_type_qualifier *qual,
3402                                   const glsl_type *type)
3403{
3404   /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3405    *
3406    * "Memory qualifiers are only supported in the declarations of image
3407    *  variables, buffer variables, and shader storage blocks; it is an error
3408    *  to use such qualifiers in any other declarations.
3409    */
3410   if (!type->is_image() && !qual->flags.q.buffer) {
3411      if (qual->flags.q.read_only ||
3412          qual->flags.q.write_only ||
3413          qual->flags.q.coherent ||
3414          qual->flags.q._volatile ||
3415          qual->flags.q.restrict_flag) {
3416         _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3417                          "in the declarations of image variables, buffer "
3418                          "variables, and shader storage blocks");
3419         return false;
3420      }
3421   }
3422   return true;
3423}
3424
3425static bool
3426validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3427                                         YYLTYPE *loc,
3428                                         const struct ast_type_qualifier *qual,
3429                                         const glsl_type *type)
3430{
3431   /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3432    *
3433    * "Format layout qualifiers can be used on image variable declarations
3434    *  (those declared with a basic type  having “image ” in its keyword)."
3435    */
3436   if (!type->is_image() && qual->flags.q.explicit_image_format) {
3437      _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3438                       "applied to images");
3439      return false;
3440   }
3441   return true;
3442}
3443
3444static void
3445apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3446                                  ir_variable *var,
3447                                  struct _mesa_glsl_parse_state *state,
3448                                  YYLTYPE *loc)
3449{
3450   const glsl_type *base_type = var->type->without_array();
3451
3452   if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3453       !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3454      return;
3455
3456   if (!base_type->is_image())
3457      return;
3458
3459   if (!validate_storage_for_sampler_image_types(var, state, loc))
3460      return;
3461
3462   var->data.memory_read_only |= qual->flags.q.read_only;
3463   var->data.memory_write_only |= qual->flags.q.write_only;
3464   var->data.memory_coherent |= qual->flags.q.coherent;
3465   var->data.memory_volatile |= qual->flags.q._volatile;
3466   var->data.memory_restrict |= qual->flags.q.restrict_flag;
3467
3468   if (qual->flags.q.explicit_image_format) {
3469      if (var->data.mode == ir_var_function_in) {
3470         _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3471                          "image function parameters");
3472      }
3473
3474      if (qual->image_base_type != base_type->sampled_type) {
3475         _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3476                          "data type of the image");
3477      }
3478
3479      var->data.image_format = qual->image_format;
3480   } else {
3481      if (var->data.mode == ir_var_uniform) {
3482         if (state->es_shader) {
3483            _mesa_glsl_error(loc, state, "all image uniforms must have a "
3484                             "format layout qualifier");
3485         } else if (!qual->flags.q.write_only) {
3486            _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3487                             "`writeonly' must have a format layout qualifier");
3488         }
3489      }
3490      var->data.image_format = GL_NONE;
3491   }
3492
3493   /* From page 70 of the GLSL ES 3.1 specification:
3494    *
3495    * "Except for image variables qualified with the format qualifiers r32f,
3496    *  r32i, and r32ui, image variables must specify either memory qualifier
3497    *  readonly or the memory qualifier writeonly."
3498    */
3499   if (state->es_shader &&
3500       var->data.image_format != GL_R32F &&
3501       var->data.image_format != GL_R32I &&
3502       var->data.image_format != GL_R32UI &&
3503       !var->data.memory_read_only &&
3504       !var->data.memory_write_only) {
3505      _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3506                       "r32i or r32ui must be qualified `readonly' or "
3507                       "`writeonly'");
3508   }
3509}
3510
3511static inline const char*
3512get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3513{
3514   if (origin_upper_left && pixel_center_integer)
3515      return "origin_upper_left, pixel_center_integer";
3516   else if (origin_upper_left)
3517      return "origin_upper_left";
3518   else if (pixel_center_integer)
3519      return "pixel_center_integer";
3520   else
3521      return " ";
3522}
3523
3524static inline bool
3525is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3526                                       const struct ast_type_qualifier *qual)
3527{
3528   /* If gl_FragCoord was previously declared, and the qualifiers were
3529    * different in any way, return true.
3530    */
3531   if (state->fs_redeclares_gl_fragcoord) {
3532      return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3533         || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3534   }
3535
3536   return false;
3537}
3538
3539static inline void
3540validate_array_dimensions(const glsl_type *t,
3541                          struct _mesa_glsl_parse_state *state,
3542                          YYLTYPE *loc) {
3543   if (t->is_array()) {
3544      t = t->fields.array;
3545      while (t->is_array()) {
3546         if (t->is_unsized_array()) {
3547            _mesa_glsl_error(loc, state,
3548                             "only the outermost array dimension can "
3549                             "be unsized",
3550                             t->name);
3551            break;
3552         }
3553         t = t->fields.array;
3554      }
3555   }
3556}
3557
3558static void
3559apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3560                                     ir_variable *var,
3561                                     struct _mesa_glsl_parse_state *state,
3562                                     YYLTYPE *loc)
3563{
3564   bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3565                               qual->flags.q.bindless_image ||
3566                               qual->flags.q.bound_sampler ||
3567                               qual->flags.q.bound_image;
3568
3569   /* The ARB_bindless_texture spec says:
3570    *
3571    * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3572    *  spec"
3573    *
3574    * "If these layout qualifiers are applied to other types of default block
3575    *  uniforms, or variables with non-uniform storage, a compile-time error
3576    *  will be generated."
3577    */
3578   if (has_local_qualifiers && !qual->flags.q.uniform) {
3579      _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3580                       "can only be applied to default block uniforms or "
3581                       "variables with uniform storage");
3582      return;
3583   }
3584
3585   /* The ARB_bindless_texture spec doesn't state anything in this situation,
3586    * but it makes sense to only allow bindless_sampler/bound_sampler for
3587    * sampler types, and respectively bindless_image/bound_image for image
3588    * types.
3589    */
3590   if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3591       !var->type->contains_sampler()) {
3592      _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3593                       "be applied to sampler types");
3594      return;
3595   }
3596
3597   if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3598       !var->type->contains_image()) {
3599      _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3600                       "applied to image types");
3601      return;
3602   }
3603
3604   /* The bindless_sampler/bindless_image (and respectively
3605    * bound_sampler/bound_image) layout qualifiers can be set at global and at
3606    * local scope.
3607    */
3608   if (var->type->contains_sampler() || var->type->contains_image()) {
3609      var->data.bindless = qual->flags.q.bindless_sampler ||
3610                           qual->flags.q.bindless_image ||
3611                           state->bindless_sampler_specified ||
3612                           state->bindless_image_specified;
3613
3614      var->data.bound = qual->flags.q.bound_sampler ||
3615                        qual->flags.q.bound_image ||
3616                        state->bound_sampler_specified ||
3617                        state->bound_image_specified;
3618   }
3619}
3620
3621static void
3622apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3623                                   ir_variable *var,
3624                                   struct _mesa_glsl_parse_state *state,
3625                                   YYLTYPE *loc)
3626{
3627   if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3628
3629      /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3630       *
3631       *    "Within any shader, the first redeclarations of gl_FragCoord
3632       *     must appear before any use of gl_FragCoord."
3633       *
3634       * Generate a compiler error if above condition is not met by the
3635       * fragment shader.
3636       */
3637      ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3638      if (earlier != NULL &&
3639          earlier->data.used &&
3640          !state->fs_redeclares_gl_fragcoord) {
3641         _mesa_glsl_error(loc, state,
3642                          "gl_FragCoord used before its first redeclaration "
3643                          "in fragment shader");
3644      }
3645
3646      /* Make sure all gl_FragCoord redeclarations specify the same layout
3647       * qualifiers.
3648       */
3649      if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3650         const char *const qual_string =
3651            get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3652                                        qual->flags.q.pixel_center_integer);
3653
3654         const char *const state_string =
3655            get_layout_qualifier_string(state->fs_origin_upper_left,
3656                                        state->fs_pixel_center_integer);
3657
3658         _mesa_glsl_error(loc, state,
3659                          "gl_FragCoord redeclared with different layout "
3660                          "qualifiers (%s) and (%s) ",
3661                          state_string,
3662                          qual_string);
3663      }
3664      state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3665      state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3666      state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3667         !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3668      state->fs_redeclares_gl_fragcoord =
3669         state->fs_origin_upper_left ||
3670         state->fs_pixel_center_integer ||
3671         state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3672   }
3673
3674   var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3675   var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3676   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3677       && (strcmp(var->name, "gl_FragCoord") != 0)) {
3678      const char *const qual_string = (qual->flags.q.origin_upper_left)
3679         ? "origin_upper_left" : "pixel_center_integer";
3680
3681      _mesa_glsl_error(loc, state,
3682                       "layout qualifier `%s' can only be applied to "
3683                       "fragment shader input `gl_FragCoord'",
3684                       qual_string);
3685   }
3686
3687   if (qual->flags.q.explicit_location) {
3688      apply_explicit_location(qual, var, state, loc);
3689
3690      if (qual->flags.q.explicit_component) {
3691         unsigned qual_component;
3692         if (process_qualifier_constant(state, loc, "component",
3693                                        qual->component, &qual_component)) {
3694            const glsl_type *type = var->type->without_array();
3695            unsigned components = type->component_slots();
3696
3697            if (type->is_matrix() || type->is_record()) {
3698               _mesa_glsl_error(loc, state, "component layout qualifier "
3699                                "cannot be applied to a matrix, a structure, "
3700                                "a block, or an array containing any of "
3701                                "these.");
3702            } else if (components > 4 && type->is_64bit()) {
3703               _mesa_glsl_error(loc, state, "component layout qualifier "
3704                                "cannot be applied to dvec%u.",
3705                                components / 2);
3706            } else if (qual_component != 0 &&
3707                (qual_component + components - 1) > 3) {
3708               _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3709                                (qual_component + components - 1));
3710            } else if (qual_component == 1 && type->is_64bit()) {
3711               /* We don't bother checking for 3 as it should be caught by the
3712                * overflow check above.
3713                */
3714               _mesa_glsl_error(loc, state, "doubles cannot begin at "
3715                                "component 1 or 3");
3716            } else {
3717               var->data.explicit_component = true;
3718               var->data.location_frac = qual_component;
3719            }
3720         }
3721      }
3722   } else if (qual->flags.q.explicit_index) {
3723      if (!qual->subroutine_list)
3724         _mesa_glsl_error(loc, state,
3725                          "explicit index requires explicit location");
3726   } else if (qual->flags.q.explicit_component) {
3727      _mesa_glsl_error(loc, state,
3728                       "explicit component requires explicit location");
3729   }
3730
3731   if (qual->flags.q.explicit_binding) {
3732      apply_explicit_binding(state, loc, var, var->type, qual);
3733   }
3734
3735   if (state->stage == MESA_SHADER_GEOMETRY &&
3736       qual->flags.q.out && qual->flags.q.stream) {
3737      unsigned qual_stream;
3738      if (process_qualifier_constant(state, loc, "stream", qual->stream,
3739                                     &qual_stream) &&
3740          validate_stream_qualifier(loc, state, qual_stream)) {
3741         var->data.stream = qual_stream;
3742      }
3743   }
3744
3745   if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3746      unsigned qual_xfb_buffer;
3747      if (process_qualifier_constant(state, loc, "xfb_buffer",
3748                                     qual->xfb_buffer, &qual_xfb_buffer) &&
3749          validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3750         var->data.xfb_buffer = qual_xfb_buffer;
3751         if (qual->flags.q.explicit_xfb_buffer)
3752            var->data.explicit_xfb_buffer = true;
3753      }
3754   }
3755
3756   if (qual->flags.q.explicit_xfb_offset) {
3757      unsigned qual_xfb_offset;
3758      unsigned component_size = var->type->contains_double() ? 8 : 4;
3759
3760      if (process_qualifier_constant(state, loc, "xfb_offset",
3761                                     qual->offset, &qual_xfb_offset) &&
3762          validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3763                                        var->type, component_size)) {
3764         var->data.offset = qual_xfb_offset;
3765         var->data.explicit_xfb_offset = true;
3766      }
3767   }
3768
3769   if (qual->flags.q.explicit_xfb_stride) {
3770      unsigned qual_xfb_stride;
3771      if (process_qualifier_constant(state, loc, "xfb_stride",
3772                                     qual->xfb_stride, &qual_xfb_stride)) {
3773         var->data.xfb_stride = qual_xfb_stride;
3774         var->data.explicit_xfb_stride = true;
3775      }
3776   }
3777
3778   if (var->type->contains_atomic()) {
3779      if (var->data.mode == ir_var_uniform) {
3780         if (var->data.explicit_binding) {
3781            unsigned *offset =
3782               &state->atomic_counter_offsets[var->data.binding];
3783
3784            if (*offset % ATOMIC_COUNTER_SIZE)
3785               _mesa_glsl_error(loc, state,
3786                                "misaligned atomic counter offset");
3787
3788            var->data.offset = *offset;
3789            *offset += var->type->atomic_size();
3790
3791         } else {
3792            _mesa_glsl_error(loc, state,
3793                             "atomic counters require explicit binding point");
3794         }
3795      } else if (var->data.mode != ir_var_function_in) {
3796         _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3797                          "function parameters or uniform-qualified "
3798                          "global variables");
3799      }
3800   }
3801
3802   if (var->type->contains_sampler() &&
3803       !validate_storage_for_sampler_image_types(var, state, loc))
3804      return;
3805
3806   /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3807    * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3808    * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3809    * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3810    * These extensions and all following extensions that add the 'layout'
3811    * keyword have been modified to require the use of 'in' or 'out'.
3812    *
3813    * The following extension do not allow the deprecated keywords:
3814    *
3815    *    GL_AMD_conservative_depth
3816    *    GL_ARB_conservative_depth
3817    *    GL_ARB_gpu_shader5
3818    *    GL_ARB_separate_shader_objects
3819    *    GL_ARB_tessellation_shader
3820    *    GL_ARB_transform_feedback3
3821    *    GL_ARB_uniform_buffer_object
3822    *
3823    * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3824    * allow layout with the deprecated keywords.
3825    */
3826   const bool relaxed_layout_qualifier_checking =
3827      state->ARB_fragment_coord_conventions_enable;
3828
3829   const bool uses_deprecated_qualifier = qual->flags.q.attribute
3830      || qual->flags.q.varying;
3831   if (qual->has_layout() && uses_deprecated_qualifier) {
3832      if (relaxed_layout_qualifier_checking) {
3833         _mesa_glsl_warning(loc, state,
3834                            "`layout' qualifier may not be used with "
3835                            "`attribute' or `varying'");
3836      } else {
3837         _mesa_glsl_error(loc, state,
3838                          "`layout' qualifier may not be used with "
3839                          "`attribute' or `varying'");
3840      }
3841   }
3842
3843   /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3844    * AMD_conservative_depth.
3845    */
3846   if (qual->flags.q.depth_type
3847       && !state->is_version(420, 0)
3848       && !state->AMD_conservative_depth_enable
3849       && !state->ARB_conservative_depth_enable) {
3850       _mesa_glsl_error(loc, state,
3851                        "extension GL_AMD_conservative_depth or "
3852                        "GL_ARB_conservative_depth must be enabled "
3853                        "to use depth layout qualifiers");
3854   } else if (qual->flags.q.depth_type
3855              && strcmp(var->name, "gl_FragDepth") != 0) {
3856       _mesa_glsl_error(loc, state,
3857                        "depth layout qualifiers can be applied only to "
3858                        "gl_FragDepth");
3859   }
3860
3861   switch (qual->depth_type) {
3862   case ast_depth_any:
3863      var->data.depth_layout = ir_depth_layout_any;
3864      break;
3865   case ast_depth_greater:
3866      var->data.depth_layout = ir_depth_layout_greater;
3867      break;
3868   case ast_depth_less:
3869      var->data.depth_layout = ir_depth_layout_less;
3870      break;
3871   case ast_depth_unchanged:
3872      var->data.depth_layout = ir_depth_layout_unchanged;
3873      break;
3874   default:
3875      var->data.depth_layout = ir_depth_layout_none;
3876      break;
3877   }
3878
3879   if (qual->flags.q.std140 ||
3880       qual->flags.q.std430 ||
3881       qual->flags.q.packed ||
3882       qual->flags.q.shared) {
3883      _mesa_glsl_error(loc, state,
3884                       "uniform and shader storage block layout qualifiers "
3885                       "std140, std430, packed, and shared can only be "
3886                       "applied to uniform or shader storage blocks, not "
3887                       "members");
3888   }
3889
3890   if (qual->flags.q.row_major || qual->flags.q.column_major) {
3891      validate_matrix_layout_for_type(state, loc, var->type, var);
3892   }
3893
3894   /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3895    * Inputs):
3896    *
3897    *  "Fragment shaders also allow the following layout qualifier on in only
3898    *   (not with variable declarations)
3899    *     layout-qualifier-id
3900    *        early_fragment_tests
3901    *   [...]"
3902    */
3903   if (qual->flags.q.early_fragment_tests) {
3904      _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3905                       "valid in fragment shader input layout declaration.");
3906   }
3907
3908   if (qual->flags.q.inner_coverage) {
3909      _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3910                       "valid in fragment shader input layout declaration.");
3911   }
3912
3913   if (qual->flags.q.post_depth_coverage) {
3914      _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3915                       "valid in fragment shader input layout declaration.");
3916   }
3917
3918   if (state->has_bindless())
3919      apply_bindless_qualifier_to_variable(qual, var, state, loc);
3920
3921   if (qual->flags.q.pixel_interlock_ordered ||
3922       qual->flags.q.pixel_interlock_unordered ||
3923       qual->flags.q.sample_interlock_ordered ||
3924       qual->flags.q.sample_interlock_unordered) {
3925      _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3926                       "pixel_interlock_ordered, pixel_interlock_unordered, "
3927                       "sample_interlock_ordered and sample_interlock_unordered, "
3928                       "only valid in fragment shader input layout declaration.");
3929   }
3930}
3931
3932static void
3933apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3934                                 ir_variable *var,
3935                                 struct _mesa_glsl_parse_state *state,
3936                                 YYLTYPE *loc,
3937                                 bool is_parameter)
3938{
3939   STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3940
3941   if (qual->flags.q.invariant) {
3942      if (var->data.used) {
3943         _mesa_glsl_error(loc, state,
3944                          "variable `%s' may not be redeclared "
3945                          "`invariant' after being used",
3946                          var->name);
3947      } else {
3948         var->data.explicit_invariant = true;
3949         var->data.invariant = true;
3950      }
3951   }
3952
3953   if (qual->flags.q.precise) {
3954      if (var->data.used) {
3955         _mesa_glsl_error(loc, state,
3956                          "variable `%s' may not be redeclared "
3957                          "`precise' after being used",
3958                          var->name);
3959      } else {
3960         var->data.precise = 1;
3961      }
3962   }
3963
3964   if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3965      _mesa_glsl_error(loc, state,
3966                       "`subroutine' may only be applied to uniforms, "
3967                       "subroutine type declarations, or function definitions");
3968   }
3969
3970   if (qual->flags.q.constant || qual->flags.q.attribute
3971       || qual->flags.q.uniform
3972       || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3973      var->data.read_only = 1;
3974
3975   if (qual->flags.q.centroid)
3976      var->data.centroid = 1;
3977
3978   if (qual->flags.q.sample)
3979      var->data.sample = 1;
3980
3981   /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3982   if (state->es_shader) {
3983      var->data.precision =
3984         select_gles_precision(qual->precision, var->type, state, loc);
3985   }
3986
3987   if (qual->flags.q.patch)
3988      var->data.patch = 1;
3989
3990   if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3991      var->type = glsl_type::error_type;
3992      _mesa_glsl_error(loc, state,
3993                       "`attribute' variables may not be declared in the "
3994                       "%s shader",
3995                       _mesa_shader_stage_to_string(state->stage));
3996   }
3997
3998   /* Disallow layout qualifiers which may only appear on layout declarations. */
3999   if (qual->flags.q.prim_type) {
4000      _mesa_glsl_error(loc, state,
4001                       "Primitive type may only be specified on GS input or output "
4002                       "layout declaration, not on variables.");
4003   }
4004
4005   /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4006    *
4007    *     "However, the const qualifier cannot be used with out or inout."
4008    *
4009    * The same section of the GLSL 4.40 spec further clarifies this saying:
4010    *
4011    *     "The const qualifier cannot be used with out or inout, or a
4012    *     compile-time error results."
4013    */
4014   if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4015      _mesa_glsl_error(loc, state,
4016                       "`const' may not be applied to `out' or `inout' "
4017                       "function parameters");
4018   }
4019
4020   /* If there is no qualifier that changes the mode of the variable, leave
4021    * the setting alone.
4022    */
4023   assert(var->data.mode != ir_var_temporary);
4024   if (qual->flags.q.in && qual->flags.q.out)
4025      var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4026   else if (qual->flags.q.in)
4027      var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4028   else if (qual->flags.q.attribute
4029            || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4030      var->data.mode = ir_var_shader_in;
4031   else if (qual->flags.q.out)
4032      var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4033   else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4034      var->data.mode = ir_var_shader_out;
4035   else if (qual->flags.q.uniform)
4036      var->data.mode = ir_var_uniform;
4037   else if (qual->flags.q.buffer)
4038      var->data.mode = ir_var_shader_storage;
4039   else if (qual->flags.q.shared_storage)
4040      var->data.mode = ir_var_shader_shared;
4041
4042   if (!is_parameter && state->has_framebuffer_fetch() &&
4043       state->stage == MESA_SHADER_FRAGMENT) {
4044      if (state->is_version(130, 300))
4045         var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4046      else
4047         var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4048   }
4049
4050   if (var->data.fb_fetch_output) {
4051      var->data.assigned = true;
4052      var->data.memory_coherent = !qual->flags.q.non_coherent;
4053
4054      /* From the EXT_shader_framebuffer_fetch spec:
4055       *
4056       *   "It is an error to declare an inout fragment output not qualified
4057       *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4058       *    extension hasn't been enabled."
4059       */
4060      if (var->data.memory_coherent &&
4061          !state->EXT_shader_framebuffer_fetch_enable)
4062         _mesa_glsl_error(loc, state,
4063                          "invalid declaration of framebuffer fetch output not "
4064                          "qualified with layout(noncoherent)");
4065
4066   } else {
4067      /* From the EXT_shader_framebuffer_fetch spec:
4068       *
4069       *   "Fragment outputs declared inout may specify the following layout
4070       *    qualifier: [...] noncoherent"
4071       */
4072      if (qual->flags.q.non_coherent)
4073         _mesa_glsl_error(loc, state,
4074                          "invalid layout(noncoherent) qualifier not part of "
4075                          "framebuffer fetch output declaration");
4076   }
4077
4078   if (!is_parameter && is_varying_var(var, state->stage)) {
4079      /* User-defined ins/outs are not permitted in compute shaders. */
4080      if (state->stage == MESA_SHADER_COMPUTE) {
4081         _mesa_glsl_error(loc, state,
4082                          "user-defined input and output variables are not "
4083                          "permitted in compute shaders");
4084      }
4085
4086      /* This variable is being used to link data between shader stages (in
4087       * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4088       * that is allowed for such purposes.
4089       *
4090       * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4091       *
4092       *     "The varying qualifier can be used only with the data types
4093       *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4094       *     these."
4095       *
4096       * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4097       * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4098       *
4099       *     "Fragment inputs can only be signed and unsigned integers and
4100       *     integer vectors, float, floating-point vectors, matrices, or
4101       *     arrays of these. Structures cannot be input.
4102       *
4103       * Similar text exists in the section on vertex shader outputs.
4104       *
4105       * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4106       * 3.00 spec allows structs as well.  Varying structs are also allowed
4107       * in GLSL 1.50.
4108       *
4109       * From section 4.3.4 of the ARB_bindless_texture spec:
4110       *
4111       *     "(modify third paragraph of the section to allow sampler and image
4112       *     types) ...  Vertex shader inputs can only be float,
4113       *     single-precision floating-point scalars, single-precision
4114       *     floating-point vectors, matrices, signed and unsigned integers
4115       *     and integer vectors, sampler and image types."
4116       *
4117       * From section 4.3.6 of the ARB_bindless_texture spec:
4118       *
4119       *     "Output variables can only be floating-point scalars,
4120       *     floating-point vectors, matrices, signed or unsigned integers or
4121       *     integer vectors, sampler or image types, or arrays or structures
4122       *     of any these."
4123       */
4124      switch (var->type->without_array()->base_type) {
4125      case GLSL_TYPE_FLOAT:
4126         /* Ok in all GLSL versions */
4127         break;
4128      case GLSL_TYPE_UINT:
4129      case GLSL_TYPE_INT:
4130         if (state->is_version(130, 300))
4131            break;
4132         _mesa_glsl_error(loc, state,
4133                          "varying variables must be of base type float in %s",
4134                          state->get_version_string());
4135         break;
4136      case GLSL_TYPE_STRUCT:
4137         if (state->is_version(150, 300))
4138            break;
4139         _mesa_glsl_error(loc, state,
4140                          "varying variables may not be of type struct");
4141         break;
4142      case GLSL_TYPE_DOUBLE:
4143      case GLSL_TYPE_UINT64:
4144      case GLSL_TYPE_INT64:
4145         break;
4146      case GLSL_TYPE_SAMPLER:
4147      case GLSL_TYPE_IMAGE:
4148         if (state->has_bindless())
4149            break;
4150         /* fallthrough */
4151      default:
4152         _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4153         break;
4154      }
4155   }
4156
4157   if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4158      var->data.explicit_invariant = true;
4159      var->data.invariant = true;
4160   }
4161
4162   var->data.interpolation =
4163      interpret_interpolation_qualifier(qual, var->type,
4164                                        (ir_variable_mode) var->data.mode,
4165                                        state, loc);
4166
4167   /* Does the declaration use the deprecated 'attribute' or 'varying'
4168    * keywords?
4169    */
4170   const bool uses_deprecated_qualifier = qual->flags.q.attribute
4171      || qual->flags.q.varying;
4172
4173
4174   /* Validate auxiliary storage qualifiers */
4175
4176   /* From section 4.3.4 of the GLSL 1.30 spec:
4177    *    "It is an error to use centroid in in a vertex shader."
4178    *
4179    * From section 4.3.4 of the GLSL ES 3.00 spec:
4180    *    "It is an error to use centroid in or interpolation qualifiers in
4181    *    a vertex shader input."
4182    */
4183
4184   /* Section 4.3.6 of the GLSL 1.30 specification states:
4185    * "It is an error to use centroid out in a fragment shader."
4186    *
4187    * The GL_ARB_shading_language_420pack extension specification states:
4188    * "It is an error to use auxiliary storage qualifiers or interpolation
4189    *  qualifiers on an output in a fragment shader."
4190    */
4191   if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4192      _mesa_glsl_error(loc, state,
4193                       "sample qualifier may only be used on `in` or `out` "
4194                       "variables between shader stages");
4195   }
4196   if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4197      _mesa_glsl_error(loc, state,
4198                       "centroid qualifier may only be used with `in', "
4199                       "`out' or `varying' variables between shader stages");
4200   }
4201
4202   if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4203      _mesa_glsl_error(loc, state,
4204                       "the shared storage qualifiers can only be used with "
4205                       "compute shaders");
4206   }
4207
4208   apply_image_qualifier_to_variable(qual, var, state, loc);
4209}
4210
4211/**
4212 * Get the variable that is being redeclared by this declaration or if it
4213 * does not exist, the current declared variable.
4214 *
4215 * Semantic checks to verify the validity of the redeclaration are also
4216 * performed.  If semantic checks fail, compilation error will be emitted via
4217 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4218 *
4219 * \returns
4220 * A pointer to an existing variable in the current scope if the declaration
4221 * is a redeclaration, current variable otherwise. \c is_declared boolean
4222 * will return \c true if the declaration is a redeclaration, \c false
4223 * otherwise.
4224 */
4225static ir_variable *
4226get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4227                              struct _mesa_glsl_parse_state *state,
4228                              bool allow_all_redeclarations,
4229                              bool *is_redeclaration)
4230{
4231   ir_variable *var = *var_ptr;
4232
4233   /* Check if this declaration is actually a re-declaration, either to
4234    * resize an array or add qualifiers to an existing variable.
4235    *
4236    * This is allowed for variables in the current scope, or when at
4237    * global scope (for built-ins in the implicit outer scope).
4238    */
4239   ir_variable *earlier = state->symbols->get_variable(var->name);
4240   if (earlier == NULL ||
4241       (state->current_function != NULL &&
4242       !state->symbols->name_declared_this_scope(var->name))) {
4243      *is_redeclaration = false;
4244      return var;
4245   }
4246
4247   *is_redeclaration = true;
4248
4249   /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4250    *
4251    * "It is legal to declare an array without a size and then
4252    *  later re-declare the same name as an array of the same
4253    *  type and specify a size."
4254    */
4255   if (earlier->type->is_unsized_array() && var->type->is_array()
4256       && (var->type->fields.array == earlier->type->fields.array)) {
4257      /* FINISHME: This doesn't match the qualifiers on the two
4258       * FINISHME: declarations.  It's not 100% clear whether this is
4259       * FINISHME: required or not.
4260       */
4261
4262      const int size = var->type->array_size();
4263      check_builtin_array_max_size(var->name, size, loc, state);
4264      if ((size > 0) && (size <= earlier->data.max_array_access)) {
4265         _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4266                          "previous access",
4267                          earlier->data.max_array_access);
4268      }
4269
4270      earlier->type = var->type;
4271      delete var;
4272      var = NULL;
4273      *var_ptr = NULL;
4274   } else if ((state->ARB_fragment_coord_conventions_enable ||
4275              state->is_version(150, 0))
4276              && strcmp(var->name, "gl_FragCoord") == 0
4277              && earlier->type == var->type
4278              && var->data.mode == ir_var_shader_in) {
4279      /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4280       * qualifiers.
4281       */
4282      earlier->data.origin_upper_left = var->data.origin_upper_left;
4283      earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4284
4285      /* According to section 4.3.7 of the GLSL 1.30 spec,
4286       * the following built-in varaibles can be redeclared with an
4287       * interpolation qualifier:
4288       *    * gl_FrontColor
4289       *    * gl_BackColor
4290       *    * gl_FrontSecondaryColor
4291       *    * gl_BackSecondaryColor
4292       *    * gl_Color
4293       *    * gl_SecondaryColor
4294       */
4295   } else if (state->is_version(130, 0)
4296              && (strcmp(var->name, "gl_FrontColor") == 0
4297                  || strcmp(var->name, "gl_BackColor") == 0
4298                  || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4299                  || strcmp(var->name, "gl_BackSecondaryColor") == 0
4300                  || strcmp(var->name, "gl_Color") == 0
4301                  || strcmp(var->name, "gl_SecondaryColor") == 0)
4302              && earlier->type == var->type
4303              && earlier->data.mode == var->data.mode) {
4304      earlier->data.interpolation = var->data.interpolation;
4305
4306      /* Layout qualifiers for gl_FragDepth. */
4307   } else if ((state->is_version(420, 0) ||
4308               state->AMD_conservative_depth_enable ||
4309               state->ARB_conservative_depth_enable)
4310              && strcmp(var->name, "gl_FragDepth") == 0
4311              && earlier->type == var->type
4312              && earlier->data.mode == var->data.mode) {
4313
4314      /** From the AMD_conservative_depth spec:
4315       *     Within any shader, the first redeclarations of gl_FragDepth
4316       *     must appear before any use of gl_FragDepth.
4317       */
4318      if (earlier->data.used) {
4319         _mesa_glsl_error(&loc, state,
4320                          "the first redeclaration of gl_FragDepth "
4321                          "must appear before any use of gl_FragDepth");
4322      }
4323
4324      /* Prevent inconsistent redeclaration of depth layout qualifier. */
4325      if (earlier->data.depth_layout != ir_depth_layout_none
4326          && earlier->data.depth_layout != var->data.depth_layout) {
4327            _mesa_glsl_error(&loc, state,
4328                             "gl_FragDepth: depth layout is declared here "
4329                             "as '%s, but it was previously declared as "
4330                             "'%s'",
4331                             depth_layout_string(var->data.depth_layout),
4332                             depth_layout_string(earlier->data.depth_layout));
4333      }
4334
4335      earlier->data.depth_layout = var->data.depth_layout;
4336
4337   } else if (state->has_framebuffer_fetch() &&
4338              strcmp(var->name, "gl_LastFragData") == 0 &&
4339              var->type == earlier->type &&
4340              var->data.mode == ir_var_auto) {
4341      /* According to the EXT_shader_framebuffer_fetch spec:
4342       *
4343       *   "By default, gl_LastFragData is declared with the mediump precision
4344       *    qualifier. This can be changed by redeclaring the corresponding
4345       *    variables with the desired precision qualifier."
4346       *
4347       *   "Fragment shaders may specify the following layout qualifier only for
4348       *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4349       */
4350      earlier->data.precision = var->data.precision;
4351      earlier->data.memory_coherent = var->data.memory_coherent;
4352
4353   } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4354              state->allow_builtin_variable_redeclaration) {
4355      /* Allow verbatim redeclarations of built-in variables. Not explicitly
4356       * valid, but some applications do it.
4357       */
4358      if (earlier->data.mode != var->data.mode &&
4359          !(earlier->data.mode == ir_var_system_value &&
4360            var->data.mode == ir_var_shader_in)) {
4361         _mesa_glsl_error(&loc, state,
4362                          "redeclaration of `%s' with incorrect qualifiers",
4363                          var->name);
4364      } else if (earlier->type != var->type) {
4365         _mesa_glsl_error(&loc, state,
4366                          "redeclaration of `%s' has incorrect type",
4367                          var->name);
4368      }
4369   } else if (allow_all_redeclarations) {
4370      if (earlier->data.mode != var->data.mode) {
4371         _mesa_glsl_error(&loc, state,
4372                          "redeclaration of `%s' with incorrect qualifiers",
4373                          var->name);
4374      } else if (earlier->type != var->type) {
4375         _mesa_glsl_error(&loc, state,
4376                          "redeclaration of `%s' has incorrect type",
4377                          var->name);
4378      }
4379   } else {
4380      _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4381   }
4382
4383   return earlier;
4384}
4385
4386/**
4387 * Generate the IR for an initializer in a variable declaration
4388 */
4389static ir_rvalue *
4390process_initializer(ir_variable *var, ast_declaration *decl,
4391                    ast_fully_specified_type *type,
4392                    exec_list *initializer_instructions,
4393                    struct _mesa_glsl_parse_state *state)
4394{
4395   void *mem_ctx = state;
4396   ir_rvalue *result = NULL;
4397
4398   YYLTYPE initializer_loc = decl->initializer->get_location();
4399
4400   /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4401    *
4402    *    "All uniform variables are read-only and are initialized either
4403    *    directly by an application via API commands, or indirectly by
4404    *    OpenGL."
4405    */
4406   if (var->data.mode == ir_var_uniform) {
4407      state->check_version(120, 0, &initializer_loc,
4408                           "cannot initialize uniform %s",
4409                           var->name);
4410   }
4411
4412   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4413    *
4414    *    "Buffer variables cannot have initializers."
4415    */
4416   if (var->data.mode == ir_var_shader_storage) {
4417      _mesa_glsl_error(&initializer_loc, state,
4418                       "cannot initialize buffer variable %s",
4419                       var->name);
4420   }
4421
4422   /* From section 4.1.7 of the GLSL 4.40 spec:
4423    *
4424    *    "Opaque variables [...] are initialized only through the
4425    *     OpenGL API; they cannot be declared with an initializer in a
4426    *     shader."
4427    *
4428    * From section 4.1.7 of the ARB_bindless_texture spec:
4429    *
4430    *    "Samplers may be declared as shader inputs and outputs, as uniform
4431    *     variables, as temporary variables, and as function parameters."
4432    *
4433    * From section 4.1.X of the ARB_bindless_texture spec:
4434    *
4435    *    "Images may be declared as shader inputs and outputs, as uniform
4436    *     variables, as temporary variables, and as function parameters."
4437    */
4438   if (var->type->contains_atomic() ||
4439       (!state->has_bindless() && var->type->contains_opaque())) {
4440      _mesa_glsl_error(&initializer_loc, state,
4441                       "cannot initialize %s variable %s",
4442                       var->name, state->has_bindless() ? "atomic" : "opaque");
4443   }
4444
4445   if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4446      _mesa_glsl_error(&initializer_loc, state,
4447                       "cannot initialize %s shader input / %s %s",
4448                       _mesa_shader_stage_to_string(state->stage),
4449                       (state->stage == MESA_SHADER_VERTEX)
4450                       ? "attribute" : "varying",
4451                       var->name);
4452   }
4453
4454   if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4455      _mesa_glsl_error(&initializer_loc, state,
4456                       "cannot initialize %s shader output %s",
4457                       _mesa_shader_stage_to_string(state->stage),
4458                       var->name);
4459   }
4460
4461   /* If the initializer is an ast_aggregate_initializer, recursively store
4462    * type information from the LHS into it, so that its hir() function can do
4463    * type checking.
4464    */
4465   if (decl->initializer->oper == ast_aggregate)
4466      _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4467
4468   ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4469   ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4470
4471   /* Calculate the constant value if this is a const or uniform
4472    * declaration.
4473    *
4474    * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4475    *
4476    *     "Declarations of globals without a storage qualifier, or with
4477    *     just the const qualifier, may include initializers, in which case
4478    *     they will be initialized before the first line of main() is
4479    *     executed.  Such initializers must be a constant expression."
4480    *
4481    * The same section of the GLSL ES 3.00.4 spec has similar language.
4482    */
4483   if (type->qualifier.flags.q.constant
4484       || type->qualifier.flags.q.uniform
4485       || (state->es_shader && state->current_function == NULL)) {
4486      ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4487                                               lhs, rhs, true);
4488      if (new_rhs != NULL) {
4489         rhs = new_rhs;
4490
4491         /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4492          * says:
4493          *
4494          *     "A constant expression is one of
4495          *
4496          *        ...
4497          *
4498          *        - an expression formed by an operator on operands that are
4499          *          all constant expressions, including getting an element of
4500          *          a constant array, or a field of a constant structure, or
4501          *          components of a constant vector.  However, the sequence
4502          *          operator ( , ) and the assignment operators ( =, +=, ...)
4503          *          are not included in the operators that can create a
4504          *          constant expression."
4505          *
4506          * Section 12.43 (Sequence operator and constant expressions) says:
4507          *
4508          *     "Should the following construct be allowed?
4509          *
4510          *         float a[2,3];
4511          *
4512          *     The expression within the brackets uses the sequence operator
4513          *     (',') and returns the integer 3 so the construct is declaring
4514          *     a single-dimensional array of size 3.  In some languages, the
4515          *     construct declares a two-dimensional array.  It would be
4516          *     preferable to make this construct illegal to avoid confusion.
4517          *
4518          *     One possibility is to change the definition of the sequence
4519          *     operator so that it does not return a constant-expression and
4520          *     hence cannot be used to declare an array size.
4521          *
4522          *     RESOLUTION: The result of a sequence operator is not a
4523          *     constant-expression."
4524          *
4525          * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4526          * contains language almost identical to the section 4.3.3 in the
4527          * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4528          * versions.
4529          */
4530         ir_constant *constant_value =
4531            rhs->constant_expression_value(mem_ctx);
4532
4533         if (!constant_value ||
4534             (state->is_version(430, 300) &&
4535              decl->initializer->has_sequence_subexpression())) {
4536            const char *const variable_mode =
4537               (type->qualifier.flags.q.constant)
4538               ? "const"
4539               : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4540
4541            /* If ARB_shading_language_420pack is enabled, initializers of
4542             * const-qualified local variables do not have to be constant
4543             * expressions. Const-qualified global variables must still be
4544             * initialized with constant expressions.
4545             */
4546            if (!state->has_420pack()
4547                || state->current_function == NULL) {
4548               _mesa_glsl_error(& initializer_loc, state,
4549                                "initializer of %s variable `%s' must be a "
4550                                "constant expression",
4551                                variable_mode,
4552                                decl->identifier);
4553               if (var->type->is_numeric()) {
4554                  /* Reduce cascading errors. */
4555                  var->constant_value = type->qualifier.flags.q.constant
4556                     ? ir_constant::zero(state, var->type) : NULL;
4557               }
4558            }
4559         } else {
4560            rhs = constant_value;
4561            var->constant_value = type->qualifier.flags.q.constant
4562               ? constant_value : NULL;
4563         }
4564      } else {
4565         if (var->type->is_numeric()) {
4566            /* Reduce cascading errors. */
4567            rhs = var->constant_value = type->qualifier.flags.q.constant
4568               ? ir_constant::zero(state, var->type) : NULL;
4569         }
4570      }
4571   }
4572
4573   if (rhs && !rhs->type->is_error()) {
4574      bool temp = var->data.read_only;
4575      if (type->qualifier.flags.q.constant)
4576         var->data.read_only = false;
4577
4578      /* Never emit code to initialize a uniform.
4579       */
4580      const glsl_type *initializer_type;
4581      bool error_emitted = false;
4582      if (!type->qualifier.flags.q.uniform) {
4583         error_emitted =
4584            do_assignment(initializer_instructions, state,
4585                          NULL, lhs, rhs,
4586                          &result, true, true,
4587                          type->get_location());
4588         initializer_type = result->type;
4589      } else
4590         initializer_type = rhs->type;
4591
4592      if (!error_emitted) {
4593         var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4594         var->data.has_initializer = true;
4595
4596         /* If the declared variable is an unsized array, it must inherrit
4597         * its full type from the initializer.  A declaration such as
4598         *
4599         *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4600         *
4601         * becomes
4602         *
4603         *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4604         *
4605         * The assignment generated in the if-statement (below) will also
4606         * automatically handle this case for non-uniforms.
4607         *
4608         * If the declared variable is not an array, the types must
4609         * already match exactly.  As a result, the type assignment
4610         * here can be done unconditionally.  For non-uniforms the call
4611         * to do_assignment can change the type of the initializer (via
4612         * the implicit conversion rules).  For uniforms the initializer
4613         * must be a constant expression, and the type of that expression
4614         * was validated above.
4615         */
4616         var->type = initializer_type;
4617      }
4618
4619      var->data.read_only = temp;
4620   }
4621
4622   return result;
4623}
4624
4625static void
4626validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4627                                       YYLTYPE loc, ir_variable *var,
4628                                       unsigned num_vertices,
4629                                       unsigned *size,
4630                                       const char *var_category)
4631{
4632   if (var->type->is_unsized_array()) {
4633      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4634       *
4635       *   All geometry shader input unsized array declarations will be
4636       *   sized by an earlier input layout qualifier, when present, as per
4637       *   the following table.
4638       *
4639       * Followed by a table mapping each allowed input layout qualifier to
4640       * the corresponding input length.
4641       *
4642       * Similarly for tessellation control shader outputs.
4643       */
4644      if (num_vertices != 0)
4645         var->type = glsl_type::get_array_instance(var->type->fields.array,
4646                                                   num_vertices);
4647   } else {
4648      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4649       * includes the following examples of compile-time errors:
4650       *
4651       *   // code sequence within one shader...
4652       *   in vec4 Color1[];    // size unknown
4653       *   ...Color1.length()...// illegal, length() unknown
4654       *   in vec4 Color2[2];   // size is 2
4655       *   ...Color1.length()...// illegal, Color1 still has no size
4656       *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4657       *   layout(lines) in;    // legal, input size is 2, matching
4658       *   in vec4 Color4[3];   // illegal, contradicts layout
4659       *   ...
4660       *
4661       * To detect the case illustrated by Color3, we verify that the size of
4662       * an explicitly-sized array matches the size of any previously declared
4663       * explicitly-sized array.  To detect the case illustrated by Color4, we
4664       * verify that the size of an explicitly-sized array is consistent with
4665       * any previously declared input layout.
4666       */
4667      if (num_vertices != 0 && var->type->length != num_vertices) {
4668         _mesa_glsl_error(&loc, state,
4669                          "%s size contradicts previously declared layout "
4670                          "(size is %u, but layout requires a size of %u)",
4671                          var_category, var->type->length, num_vertices);
4672      } else if (*size != 0 && var->type->length != *size) {
4673         _mesa_glsl_error(&loc, state,
4674                          "%s sizes are inconsistent (size is %u, but a "
4675                          "previous declaration has size %u)",
4676                          var_category, var->type->length, *size);
4677      } else {
4678         *size = var->type->length;
4679      }
4680   }
4681}
4682
4683static void
4684handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4685                                    YYLTYPE loc, ir_variable *var)
4686{
4687   unsigned num_vertices = 0;
4688
4689   if (state->tcs_output_vertices_specified) {
4690      if (!state->out_qualifier->vertices->
4691             process_qualifier_constant(state, "vertices",
4692                                        &num_vertices, false)) {
4693         return;
4694      }
4695
4696      if (num_vertices > state->Const.MaxPatchVertices) {
4697         _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4698                          "GL_MAX_PATCH_VERTICES", num_vertices);
4699         return;
4700      }
4701   }
4702
4703   if (!var->type->is_array() && !var->data.patch) {
4704      _mesa_glsl_error(&loc, state,
4705                       "tessellation control shader outputs must be arrays");
4706
4707      /* To avoid cascading failures, short circuit the checks below. */
4708      return;
4709   }
4710
4711   if (var->data.patch)
4712      return;
4713
4714   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4715                                          &state->tcs_output_size,
4716                                          "tessellation control shader output");
4717}
4718
4719/**
4720 * Do additional processing necessary for tessellation control/evaluation shader
4721 * input declarations. This covers both interface block arrays and bare input
4722 * variables.
4723 */
4724static void
4725handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4726                              YYLTYPE loc, ir_variable *var)
4727{
4728   if (!var->type->is_array() && !var->data.patch) {
4729      _mesa_glsl_error(&loc, state,
4730                       "per-vertex tessellation shader inputs must be arrays");
4731      /* Avoid cascading failures. */
4732      return;
4733   }
4734
4735   if (var->data.patch)
4736      return;
4737
4738   /* The ARB_tessellation_shader spec says:
4739    *
4740    *    "Declaring an array size is optional.  If no size is specified, it
4741    *     will be taken from the implementation-dependent maximum patch size
4742    *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4743    *     maximum patch size; otherwise, a compile or link error will occur."
4744    *
4745    * This text appears twice, once for TCS inputs, and again for TES inputs.
4746    */
4747   if (var->type->is_unsized_array()) {
4748      var->type = glsl_type::get_array_instance(var->type->fields.array,
4749            state->Const.MaxPatchVertices);
4750   } else if (var->type->length != state->Const.MaxPatchVertices) {
4751      _mesa_glsl_error(&loc, state,
4752                       "per-vertex tessellation shader input arrays must be "
4753                       "sized to gl_MaxPatchVertices (%d).",
4754                       state->Const.MaxPatchVertices);
4755   }
4756}
4757
4758
4759/**
4760 * Do additional processing necessary for geometry shader input declarations
4761 * (this covers both interface blocks arrays and bare input variables).
4762 */
4763static void
4764handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4765                                  YYLTYPE loc, ir_variable *var)
4766{
4767   unsigned num_vertices = 0;
4768
4769   if (state->gs_input_prim_type_specified) {
4770      num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4771   }
4772
4773   /* Geometry shader input variables must be arrays.  Caller should have
4774    * reported an error for this.
4775    */
4776   if (!var->type->is_array()) {
4777      assert(state->error);
4778
4779      /* To avoid cascading failures, short circuit the checks below. */
4780      return;
4781   }
4782
4783   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4784                                          &state->gs_input_size,
4785                                          "geometry shader input");
4786}
4787
4788static void
4789validate_identifier(const char *identifier, YYLTYPE loc,
4790                    struct _mesa_glsl_parse_state *state)
4791{
4792   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4793    *
4794    *   "Identifiers starting with "gl_" are reserved for use by
4795    *   OpenGL, and may not be declared in a shader as either a
4796    *   variable or a function."
4797    */
4798   if (is_gl_identifier(identifier)) {
4799      _mesa_glsl_error(&loc, state,
4800                       "identifier `%s' uses reserved `gl_' prefix",
4801                       identifier);
4802   } else if (strstr(identifier, "__")) {
4803      /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4804       * spec:
4805       *
4806       *     "In addition, all identifiers containing two
4807       *      consecutive underscores (__) are reserved as
4808       *      possible future keywords."
4809       *
4810       * The intention is that names containing __ are reserved for internal
4811       * use by the implementation, and names prefixed with GL_ are reserved
4812       * for use by Khronos.  Names simply containing __ are dangerous to use,
4813       * but should be allowed.
4814       *
4815       * A future version of the GLSL specification will clarify this.
4816       */
4817      _mesa_glsl_warning(&loc, state,
4818                         "identifier `%s' uses reserved `__' string",
4819                         identifier);
4820   }
4821}
4822
4823ir_rvalue *
4824ast_declarator_list::hir(exec_list *instructions,
4825                         struct _mesa_glsl_parse_state *state)
4826{
4827   void *ctx = state;
4828   const struct glsl_type *decl_type;
4829   const char *type_name = NULL;
4830   ir_rvalue *result = NULL;
4831   YYLTYPE loc = this->get_location();
4832
4833   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4834    *
4835    *     "To ensure that a particular output variable is invariant, it is
4836    *     necessary to use the invariant qualifier. It can either be used to
4837    *     qualify a previously declared variable as being invariant
4838    *
4839    *         invariant gl_Position; // make existing gl_Position be invariant"
4840    *
4841    * In these cases the parser will set the 'invariant' flag in the declarator
4842    * list, and the type will be NULL.
4843    */
4844   if (this->invariant) {
4845      assert(this->type == NULL);
4846
4847      if (state->current_function != NULL) {
4848         _mesa_glsl_error(& loc, state,
4849                          "all uses of `invariant' keyword must be at global "
4850                          "scope");
4851      }
4852
4853      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4854         assert(decl->array_specifier == NULL);
4855         assert(decl->initializer == NULL);
4856
4857         ir_variable *const earlier =
4858            state->symbols->get_variable(decl->identifier);
4859         if (earlier == NULL) {
4860            _mesa_glsl_error(& loc, state,
4861                             "undeclared variable `%s' cannot be marked "
4862                             "invariant", decl->identifier);
4863         } else if (!is_allowed_invariant(earlier, state)) {
4864            _mesa_glsl_error(&loc, state,
4865                             "`%s' cannot be marked invariant; interfaces between "
4866                             "shader stages only.", decl->identifier);
4867         } else if (earlier->data.used) {
4868            _mesa_glsl_error(& loc, state,
4869                            "variable `%s' may not be redeclared "
4870                            "`invariant' after being used",
4871                            earlier->name);
4872         } else {
4873            earlier->data.explicit_invariant = true;
4874            earlier->data.invariant = true;
4875         }
4876      }
4877
4878      /* Invariant redeclarations do not have r-values.
4879       */
4880      return NULL;
4881   }
4882
4883   if (this->precise) {
4884      assert(this->type == NULL);
4885
4886      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4887         assert(decl->array_specifier == NULL);
4888         assert(decl->initializer == NULL);
4889
4890         ir_variable *const earlier =
4891            state->symbols->get_variable(decl->identifier);
4892         if (earlier == NULL) {
4893            _mesa_glsl_error(& loc, state,
4894                             "undeclared variable `%s' cannot be marked "
4895                             "precise", decl->identifier);
4896         } else if (state->current_function != NULL &&
4897                    !state->symbols->name_declared_this_scope(decl->identifier)) {
4898            /* Note: we have to check if we're in a function, since
4899             * builtins are treated as having come from another scope.
4900             */
4901            _mesa_glsl_error(& loc, state,
4902                             "variable `%s' from an outer scope may not be "
4903                             "redeclared `precise' in this scope",
4904                             earlier->name);
4905         } else if (earlier->data.used) {
4906            _mesa_glsl_error(& loc, state,
4907                             "variable `%s' may not be redeclared "
4908                             "`precise' after being used",
4909                             earlier->name);
4910         } else {
4911            earlier->data.precise = true;
4912         }
4913      }
4914
4915      /* Precise redeclarations do not have r-values either. */
4916      return NULL;
4917   }
4918
4919   assert(this->type != NULL);
4920   assert(!this->invariant);
4921   assert(!this->precise);
4922
4923   /* The type specifier may contain a structure definition.  Process that
4924    * before any of the variable declarations.
4925    */
4926   (void) this->type->specifier->hir(instructions, state);
4927
4928   decl_type = this->type->glsl_type(& type_name, state);
4929
4930   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4931    *    "Buffer variables may only be declared inside interface blocks
4932    *    (section 4.3.9 “Interface Blocks”), which are then referred to as
4933    *    shader storage blocks. It is a compile-time error to declare buffer
4934    *    variables at global scope (outside a block)."
4935    */
4936   if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4937      _mesa_glsl_error(&loc, state,
4938                       "buffer variables cannot be declared outside "
4939                       "interface blocks");
4940   }
4941
4942   /* An offset-qualified atomic counter declaration sets the default
4943    * offset for the next declaration within the same atomic counter
4944    * buffer.
4945    */
4946   if (decl_type && decl_type->contains_atomic()) {
4947      if (type->qualifier.flags.q.explicit_binding &&
4948          type->qualifier.flags.q.explicit_offset) {
4949         unsigned qual_binding;
4950         unsigned qual_offset;
4951         if (process_qualifier_constant(state, &loc, "binding",
4952                                        type->qualifier.binding,
4953                                        &qual_binding)
4954             && process_qualifier_constant(state, &loc, "offset",
4955                                        type->qualifier.offset,
4956                                        &qual_offset)) {
4957            state->atomic_counter_offsets[qual_binding] = qual_offset;
4958         }
4959      }
4960
4961      ast_type_qualifier allowed_atomic_qual_mask;
4962      allowed_atomic_qual_mask.flags.i = 0;
4963      allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4964      allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4965      allowed_atomic_qual_mask.flags.q.uniform = 1;
4966
4967      type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4968                                     "invalid layout qualifier for",
4969                                     "atomic_uint");
4970   }
4971
4972   if (this->declarations.is_empty()) {
4973      /* If there is no structure involved in the program text, there are two
4974       * possible scenarios:
4975       *
4976       * - The program text contained something like 'vec4;'.  This is an
4977       *   empty declaration.  It is valid but weird.  Emit a warning.
4978       *
4979       * - The program text contained something like 'S;' and 'S' is not the
4980       *   name of a known structure type.  This is both invalid and weird.
4981       *   Emit an error.
4982       *
4983       * - The program text contained something like 'mediump float;'
4984       *   when the programmer probably meant 'precision mediump
4985       *   float;' Emit a warning with a description of what they
4986       *   probably meant to do.
4987       *
4988       * Note that if decl_type is NULL and there is a structure involved,
4989       * there must have been some sort of error with the structure.  In this
4990       * case we assume that an error was already generated on this line of
4991       * code for the structure.  There is no need to generate an additional,
4992       * confusing error.
4993       */
4994      assert(this->type->specifier->structure == NULL || decl_type != NULL
4995             || state->error);
4996
4997      if (decl_type == NULL) {
4998         _mesa_glsl_error(&loc, state,
4999                          "invalid type `%s' in empty declaration",
5000                          type_name);
5001      } else {
5002         if (decl_type->is_array()) {
5003            /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5004             * spec:
5005             *
5006             *    "... any declaration that leaves the size undefined is
5007             *    disallowed as this would add complexity and there are no
5008             *    use-cases."
5009             */
5010            if (state->es_shader && decl_type->is_unsized_array()) {
5011               _mesa_glsl_error(&loc, state, "array size must be explicitly "
5012                                "or implicitly defined");
5013            }
5014
5015            /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5016             *
5017             *    "The combinations of types and qualifiers that cause
5018             *    compile-time or link-time errors are the same whether or not
5019             *    the declaration is empty."
5020             */
5021            validate_array_dimensions(decl_type, state, &loc);
5022         }
5023
5024         if (decl_type->is_atomic_uint()) {
5025            /* Empty atomic counter declarations are allowed and useful
5026             * to set the default offset qualifier.
5027             */
5028            return NULL;
5029         } else if (this->type->qualifier.precision != ast_precision_none) {
5030            if (this->type->specifier->structure != NULL) {
5031               _mesa_glsl_error(&loc, state,
5032                                "precision qualifiers can't be applied "
5033                                "to structures");
5034            } else {
5035               static const char *const precision_names[] = {
5036                  "highp",
5037                  "highp",
5038                  "mediump",
5039                  "lowp"
5040               };
5041
5042               _mesa_glsl_warning(&loc, state,
5043                                  "empty declaration with precision "
5044                                  "qualifier, to set the default precision, "
5045                                  "use `precision %s %s;'",
5046                                  precision_names[this->type->
5047                                     qualifier.precision],
5048                                  type_name);
5049            }
5050         } else if (this->type->specifier->structure == NULL) {
5051            _mesa_glsl_warning(&loc, state, "empty declaration");
5052         }
5053      }
5054   }
5055
5056   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5057      const struct glsl_type *var_type;
5058      ir_variable *var;
5059      const char *identifier = decl->identifier;
5060      /* FINISHME: Emit a warning if a variable declaration shadows a
5061       * FINISHME: declaration at a higher scope.
5062       */
5063
5064      if ((decl_type == NULL) || decl_type->is_void()) {
5065         if (type_name != NULL) {
5066            _mesa_glsl_error(& loc, state,
5067                             "invalid type `%s' in declaration of `%s'",
5068                             type_name, decl->identifier);
5069         } else {
5070            _mesa_glsl_error(& loc, state,
5071                             "invalid type in declaration of `%s'",
5072                             decl->identifier);
5073         }
5074         continue;
5075      }
5076
5077      if (this->type->qualifier.is_subroutine_decl()) {
5078         const glsl_type *t;
5079         const char *name;
5080
5081         t = state->symbols->get_type(this->type->specifier->type_name);
5082         if (!t)
5083            _mesa_glsl_error(& loc, state,
5084                             "invalid type in declaration of `%s'",
5085                             decl->identifier);
5086         name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5087
5088         identifier = name;
5089
5090      }
5091      var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5092                                    state);
5093
5094      var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5095
5096      /* The 'varying in' and 'varying out' qualifiers can only be used with
5097       * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5098       * yet.
5099       */
5100      if (this->type->qualifier.flags.q.varying) {
5101         if (this->type->qualifier.flags.q.in) {
5102            _mesa_glsl_error(& loc, state,
5103                             "`varying in' qualifier in declaration of "
5104                             "`%s' only valid for geometry shaders using "
5105                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5106                             decl->identifier);
5107         } else if (this->type->qualifier.flags.q.out) {
5108            _mesa_glsl_error(& loc, state,
5109                             "`varying out' qualifier in declaration of "
5110                             "`%s' only valid for geometry shaders using "
5111                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5112                             decl->identifier);
5113         }
5114      }
5115
5116      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5117       *
5118       *     "Global variables can only use the qualifiers const,
5119       *     attribute, uniform, or varying. Only one may be
5120       *     specified.
5121       *
5122       *     Local variables can only use the qualifier const."
5123       *
5124       * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5125       * any extension that adds the 'layout' keyword.
5126       */
5127      if (!state->is_version(130, 300)
5128          && !state->has_explicit_attrib_location()
5129          && !state->has_separate_shader_objects()
5130          && !state->ARB_fragment_coord_conventions_enable) {
5131         if (this->type->qualifier.flags.q.out) {
5132            _mesa_glsl_error(& loc, state,
5133                             "`out' qualifier in declaration of `%s' "
5134                             "only valid for function parameters in %s",
5135                             decl->identifier, state->get_version_string());
5136         }
5137         if (this->type->qualifier.flags.q.in) {
5138            _mesa_glsl_error(& loc, state,
5139                             "`in' qualifier in declaration of `%s' "
5140                             "only valid for function parameters in %s",
5141                             decl->identifier, state->get_version_string());
5142         }
5143         /* FINISHME: Test for other invalid qualifiers. */
5144      }
5145
5146      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5147                                       & loc, false);
5148      apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5149                                         &loc);
5150
5151      if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5152          && (var->type->is_numeric() || var->type->is_boolean())
5153          && state->zero_init) {
5154         const ir_constant_data data = { { 0 } };
5155         var->data.has_initializer = true;
5156         var->constant_initializer = new(var) ir_constant(var->type, &data);
5157      }
5158
5159      if (this->type->qualifier.flags.q.invariant) {
5160         if (!is_allowed_invariant(var, state)) {
5161            _mesa_glsl_error(&loc, state,
5162                             "`%s' cannot be marked invariant; interfaces between "
5163                             "shader stages only", var->name);
5164         }
5165      }
5166
5167      if (state->current_function != NULL) {
5168         const char *mode = NULL;
5169         const char *extra = "";
5170
5171         /* There is no need to check for 'inout' here because the parser will
5172          * only allow that in function parameter lists.
5173          */
5174         if (this->type->qualifier.flags.q.attribute) {
5175            mode = "attribute";
5176         } else if (this->type->qualifier.is_subroutine_decl()) {
5177            mode = "subroutine uniform";
5178         } else if (this->type->qualifier.flags.q.uniform) {
5179            mode = "uniform";
5180         } else if (this->type->qualifier.flags.q.varying) {
5181            mode = "varying";
5182         } else if (this->type->qualifier.flags.q.in) {
5183            mode = "in";
5184            extra = " or in function parameter list";
5185         } else if (this->type->qualifier.flags.q.out) {
5186            mode = "out";
5187            extra = " or in function parameter list";
5188         }
5189
5190         if (mode) {
5191            _mesa_glsl_error(& loc, state,
5192                             "%s variable `%s' must be declared at "
5193                             "global scope%s",
5194                             mode, var->name, extra);
5195         }
5196      } else if (var->data.mode == ir_var_shader_in) {
5197         var->data.read_only = true;
5198
5199         if (state->stage == MESA_SHADER_VERTEX) {
5200            bool error_emitted = false;
5201
5202            /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5203             *
5204             *    "Vertex shader inputs can only be float, floating-point
5205             *    vectors, matrices, signed and unsigned integers and integer
5206             *    vectors. Vertex shader inputs can also form arrays of these
5207             *    types, but not structures."
5208             *
5209             * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5210             *
5211             *    "Vertex shader inputs can only be float, floating-point
5212             *    vectors, matrices, signed and unsigned integers and integer
5213             *    vectors. They cannot be arrays or structures."
5214             *
5215             * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5216             *
5217             *    "The attribute qualifier can be used only with float,
5218             *    floating-point vectors, and matrices. Attribute variables
5219             *    cannot be declared as arrays or structures."
5220             *
5221             * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5222             *
5223             *    "Vertex shader inputs can only be float, floating-point
5224             *    vectors, matrices, signed and unsigned integers and integer
5225             *    vectors. Vertex shader inputs cannot be arrays or
5226             *    structures."
5227             *
5228             * From section 4.3.4 of the ARB_bindless_texture spec:
5229             *
5230             *    "(modify third paragraph of the section to allow sampler and
5231             *    image types) ...  Vertex shader inputs can only be float,
5232             *    single-precision floating-point scalars, single-precision
5233             *    floating-point vectors, matrices, signed and unsigned
5234             *    integers and integer vectors, sampler and image types."
5235             */
5236            const glsl_type *check_type = var->type->without_array();
5237
5238            switch (check_type->base_type) {
5239            case GLSL_TYPE_FLOAT:
5240            break;
5241            case GLSL_TYPE_UINT64:
5242            case GLSL_TYPE_INT64:
5243               break;
5244            case GLSL_TYPE_UINT:
5245            case GLSL_TYPE_INT:
5246               if (state->is_version(120, 300))
5247                  break;
5248            case GLSL_TYPE_DOUBLE:
5249               if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5250                  break;
5251            case GLSL_TYPE_SAMPLER:
5252               if (check_type->is_sampler() && state->has_bindless())
5253                  break;
5254            case GLSL_TYPE_IMAGE:
5255               if (check_type->is_image() && state->has_bindless())
5256                  break;
5257            /* FALLTHROUGH */
5258            default:
5259               _mesa_glsl_error(& loc, state,
5260                                "vertex shader input / attribute cannot have "
5261                                "type %s`%s'",
5262                                var->type->is_array() ? "array of " : "",
5263                                check_type->name);
5264               error_emitted = true;
5265            }
5266
5267            if (!error_emitted && var->type->is_array() &&
5268                !state->check_version(150, 0, &loc,
5269                                      "vertex shader input / attribute "
5270                                      "cannot have array type")) {
5271               error_emitted = true;
5272            }
5273         } else if (state->stage == MESA_SHADER_GEOMETRY) {
5274            /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5275             *
5276             *     Geometry shader input variables get the per-vertex values
5277             *     written out by vertex shader output variables of the same
5278             *     names. Since a geometry shader operates on a set of
5279             *     vertices, each input varying variable (or input block, see
5280             *     interface blocks below) needs to be declared as an array.
5281             */
5282            if (!var->type->is_array()) {
5283               _mesa_glsl_error(&loc, state,
5284                                "geometry shader inputs must be arrays");
5285            }
5286
5287            handle_geometry_shader_input_decl(state, loc, var);
5288         } else if (state->stage == MESA_SHADER_FRAGMENT) {
5289            /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5290             *
5291             *     It is a compile-time error to declare a fragment shader
5292             *     input with, or that contains, any of the following types:
5293             *
5294             *     * A boolean type
5295             *     * An opaque type
5296             *     * An array of arrays
5297             *     * An array of structures
5298             *     * A structure containing an array
5299             *     * A structure containing a structure
5300             */
5301            if (state->es_shader) {
5302               const glsl_type *check_type = var->type->without_array();
5303               if (check_type->is_boolean() ||
5304                   check_type->contains_opaque()) {
5305                  _mesa_glsl_error(&loc, state,
5306                                   "fragment shader input cannot have type %s",
5307                                   check_type->name);
5308               }
5309               if (var->type->is_array() &&
5310                   var->type->fields.array->is_array()) {
5311                  _mesa_glsl_error(&loc, state,
5312                                   "%s shader output "
5313                                   "cannot have an array of arrays",
5314                                   _mesa_shader_stage_to_string(state->stage));
5315               }
5316               if (var->type->is_array() &&
5317                   var->type->fields.array->is_record()) {
5318                  _mesa_glsl_error(&loc, state,
5319                                   "fragment shader input "
5320                                   "cannot have an array of structs");
5321               }
5322               if (var->type->is_record()) {
5323                  for (unsigned i = 0; i < var->type->length; i++) {
5324                     if (var->type->fields.structure[i].type->is_array() ||
5325                         var->type->fields.structure[i].type->is_record())
5326                        _mesa_glsl_error(&loc, state,
5327                                         "fragment shader input cannot have "
5328                                         "a struct that contains an "
5329                                         "array or struct");
5330                  }
5331               }
5332            }
5333         } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5334                    state->stage == MESA_SHADER_TESS_EVAL) {
5335            handle_tess_shader_input_decl(state, loc, var);
5336         }
5337      } else if (var->data.mode == ir_var_shader_out) {
5338         const glsl_type *check_type = var->type->without_array();
5339
5340         /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5341          *
5342          *     It is a compile-time error to declare a fragment shader output
5343          *     that contains any of the following:
5344          *
5345          *     * A Boolean type (bool, bvec2 ...)
5346          *     * A double-precision scalar or vector (double, dvec2 ...)
5347          *     * An opaque type
5348          *     * Any matrix type
5349          *     * A structure
5350          */
5351         if (state->stage == MESA_SHADER_FRAGMENT) {
5352            if (check_type->is_record() || check_type->is_matrix())
5353               _mesa_glsl_error(&loc, state,
5354                                "fragment shader output "
5355                                "cannot have struct or matrix type");
5356            switch (check_type->base_type) {
5357            case GLSL_TYPE_UINT:
5358            case GLSL_TYPE_INT:
5359            case GLSL_TYPE_FLOAT:
5360               break;
5361            default:
5362               _mesa_glsl_error(&loc, state,
5363                                "fragment shader output cannot have "
5364                                "type %s", check_type->name);
5365            }
5366         }
5367
5368         /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5369          *
5370          *     It is a compile-time error to declare a vertex shader output
5371          *     with, or that contains, any of the following types:
5372          *
5373          *     * A boolean type
5374          *     * An opaque type
5375          *     * An array of arrays
5376          *     * An array of structures
5377          *     * A structure containing an array
5378          *     * A structure containing a structure
5379          *
5380          *     It is a compile-time error to declare a fragment shader output
5381          *     with, or that contains, any of the following types:
5382          *
5383          *     * A boolean type
5384          *     * An opaque type
5385          *     * A matrix
5386          *     * A structure
5387          *     * An array of array
5388          *
5389          * ES 3.20 updates this to apply to tessellation and geometry shaders
5390          * as well.  Because there are per-vertex arrays in the new stages,
5391          * it strikes the "array of..." rules and replaces them with these:
5392          *
5393          *     * For per-vertex-arrayed variables (applies to tessellation
5394          *       control, tessellation evaluation and geometry shaders):
5395          *
5396          *       * Per-vertex-arrayed arrays of arrays
5397          *       * Per-vertex-arrayed arrays of structures
5398          *
5399          *     * For non-per-vertex-arrayed variables:
5400          *
5401          *       * An array of arrays
5402          *       * An array of structures
5403          *
5404          * which basically says to unwrap the per-vertex aspect and apply
5405          * the old rules.
5406          */
5407         if (state->es_shader) {
5408            if (var->type->is_array() &&
5409                var->type->fields.array->is_array()) {
5410               _mesa_glsl_error(&loc, state,
5411                                "%s shader output "
5412                                "cannot have an array of arrays",
5413                                _mesa_shader_stage_to_string(state->stage));
5414            }
5415            if (state->stage <= MESA_SHADER_GEOMETRY) {
5416               const glsl_type *type = var->type;
5417
5418               if (state->stage == MESA_SHADER_TESS_CTRL &&
5419                   !var->data.patch && var->type->is_array()) {
5420                  type = var->type->fields.array;
5421               }
5422
5423               if (type->is_array() && type->fields.array->is_record()) {
5424                  _mesa_glsl_error(&loc, state,
5425                                   "%s shader output cannot have "
5426                                   "an array of structs",
5427                                   _mesa_shader_stage_to_string(state->stage));
5428               }
5429               if (type->is_record()) {
5430                  for (unsigned i = 0; i < type->length; i++) {
5431                     if (type->fields.structure[i].type->is_array() ||
5432                         type->fields.structure[i].type->is_record())
5433                        _mesa_glsl_error(&loc, state,
5434                                         "%s shader output cannot have a "
5435                                         "struct that contains an "
5436                                         "array or struct",
5437                                         _mesa_shader_stage_to_string(state->stage));
5438                  }
5439               }
5440            }
5441         }
5442
5443         if (state->stage == MESA_SHADER_TESS_CTRL) {
5444            handle_tess_ctrl_shader_output_decl(state, loc, var);
5445         }
5446      } else if (var->type->contains_subroutine()) {
5447         /* declare subroutine uniforms as hidden */
5448         var->data.how_declared = ir_var_hidden;
5449      }
5450
5451      /* From section 4.3.4 of the GLSL 4.00 spec:
5452       *    "Input variables may not be declared using the patch in qualifier
5453       *    in tessellation control or geometry shaders."
5454       *
5455       * From section 4.3.6 of the GLSL 4.00 spec:
5456       *    "It is an error to use patch out in a vertex, tessellation
5457       *    evaluation, or geometry shader."
5458       *
5459       * This doesn't explicitly forbid using them in a fragment shader, but
5460       * that's probably just an oversight.
5461       */
5462      if (state->stage != MESA_SHADER_TESS_EVAL
5463          && this->type->qualifier.flags.q.patch
5464          && this->type->qualifier.flags.q.in) {
5465
5466         _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5467                          "tessellation evaluation shader");
5468      }
5469
5470      if (state->stage != MESA_SHADER_TESS_CTRL
5471          && this->type->qualifier.flags.q.patch
5472          && this->type->qualifier.flags.q.out) {
5473
5474         _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5475                          "tessellation control shader");
5476      }
5477
5478      /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5479       */
5480      if (this->type->qualifier.precision != ast_precision_none) {
5481         state->check_precision_qualifiers_allowed(&loc);
5482      }
5483
5484      if (this->type->qualifier.precision != ast_precision_none &&
5485          !precision_qualifier_allowed(var->type)) {
5486         _mesa_glsl_error(&loc, state,
5487                          "precision qualifiers apply only to floating point"
5488                          ", integer and opaque types");
5489      }
5490
5491      /* From section 4.1.7 of the GLSL 4.40 spec:
5492       *
5493       *    "[Opaque types] can only be declared as function
5494       *     parameters or uniform-qualified variables."
5495       *
5496       * From section 4.1.7 of the ARB_bindless_texture spec:
5497       *
5498       *    "Samplers may be declared as shader inputs and outputs, as uniform
5499       *     variables, as temporary variables, and as function parameters."
5500       *
5501       * From section 4.1.X of the ARB_bindless_texture spec:
5502       *
5503       *    "Images may be declared as shader inputs and outputs, as uniform
5504       *     variables, as temporary variables, and as function parameters."
5505       */
5506      if (!this->type->qualifier.flags.q.uniform &&
5507          (var_type->contains_atomic() ||
5508           (!state->has_bindless() && var_type->contains_opaque()))) {
5509         _mesa_glsl_error(&loc, state,
5510                          "%s variables must be declared uniform",
5511                          state->has_bindless() ? "atomic" : "opaque");
5512      }
5513
5514      /* Process the initializer and add its instructions to a temporary
5515       * list.  This list will be added to the instruction stream (below) after
5516       * the declaration is added.  This is done because in some cases (such as
5517       * redeclarations) the declaration may not actually be added to the
5518       * instruction stream.
5519       */
5520      exec_list initializer_instructions;
5521
5522      /* Examine var name here since var may get deleted in the next call */
5523      bool var_is_gl_id = is_gl_identifier(var->name);
5524
5525      bool is_redeclaration;
5526      var = get_variable_being_redeclared(&var, decl->get_location(), state,
5527                                          false /* allow_all_redeclarations */,
5528                                          &is_redeclaration);
5529      if (is_redeclaration) {
5530         if (var_is_gl_id &&
5531             var->data.how_declared == ir_var_declared_in_block) {
5532            _mesa_glsl_error(&loc, state,
5533                             "`%s' has already been redeclared using "
5534                             "gl_PerVertex", var->name);
5535         }
5536         var->data.how_declared = ir_var_declared_normally;
5537      }
5538
5539      if (decl->initializer != NULL) {
5540         result = process_initializer(var,
5541                                      decl, this->type,
5542                                      &initializer_instructions, state);
5543      } else {
5544         validate_array_dimensions(var_type, state, &loc);
5545      }
5546
5547      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5548       *
5549       *     "It is an error to write to a const variable outside of
5550       *      its declaration, so they must be initialized when
5551       *      declared."
5552       */
5553      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5554         _mesa_glsl_error(& loc, state,
5555                          "const declaration of `%s' must be initialized",
5556                          decl->identifier);
5557      }
5558
5559      if (state->es_shader) {
5560         const glsl_type *const t = var->type;
5561
5562         /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5563          *
5564          * The GL_OES_tessellation_shader spec says about inputs:
5565          *
5566          *    "Declaring an array size is optional. If no size is specified,
5567          *     it will be taken from the implementation-dependent maximum
5568          *     patch size (gl_MaxPatchVertices)."
5569          *
5570          * and about TCS outputs:
5571          *
5572          *    "If no size is specified, it will be taken from output patch
5573          *     size declared in the shader."
5574          *
5575          * The GL_OES_geometry_shader spec says:
5576          *
5577          *    "All geometry shader input unsized array declarations will be
5578          *     sized by an earlier input primitive layout qualifier, when
5579          *     present, as per the following table."
5580          */
5581         const bool implicitly_sized =
5582            (var->data.mode == ir_var_shader_in &&
5583             state->stage >= MESA_SHADER_TESS_CTRL &&
5584             state->stage <= MESA_SHADER_GEOMETRY) ||
5585            (var->data.mode == ir_var_shader_out &&
5586             state->stage == MESA_SHADER_TESS_CTRL);
5587
5588         if (t->is_unsized_array() && !implicitly_sized)
5589            /* Section 10.17 of the GLSL ES 1.00 specification states that
5590             * unsized array declarations have been removed from the language.
5591             * Arrays that are sized using an initializer are still explicitly
5592             * sized.  However, GLSL ES 1.00 does not allow array
5593             * initializers.  That is only allowed in GLSL ES 3.00.
5594             *
5595             * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5596             *
5597             *     "An array type can also be formed without specifying a size
5598             *     if the definition includes an initializer:
5599             *
5600             *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5601             *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5602             *
5603             *         float a[5];
5604             *         float b[] = a;"
5605             */
5606            _mesa_glsl_error(& loc, state,
5607                             "unsized array declarations are not allowed in "
5608                             "GLSL ES");
5609      }
5610
5611      /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5612       *
5613       *    "It is a compile-time error to declare an unsized array of
5614       *     atomic_uint"
5615       */
5616      if (var->type->is_unsized_array() &&
5617          var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5618         _mesa_glsl_error(& loc, state,
5619                          "Unsized array of atomic_uint is not allowed");
5620      }
5621
5622      /* If the declaration is not a redeclaration, there are a few additional
5623       * semantic checks that must be applied.  In addition, variable that was
5624       * created for the declaration should be added to the IR stream.
5625       */
5626      if (!is_redeclaration) {
5627         validate_identifier(decl->identifier, loc, state);
5628
5629         /* Add the variable to the symbol table.  Note that the initializer's
5630          * IR was already processed earlier (though it hasn't been emitted
5631          * yet), without the variable in scope.
5632          *
5633          * This differs from most C-like languages, but it follows the GLSL
5634          * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5635          * spec:
5636          *
5637          *     "Within a declaration, the scope of a name starts immediately
5638          *     after the initializer if present or immediately after the name
5639          *     being declared if not."
5640          */
5641         if (!state->symbols->add_variable(var)) {
5642            YYLTYPE loc = this->get_location();
5643            _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5644                             "current scope", decl->identifier);
5645            continue;
5646         }
5647
5648         /* Push the variable declaration to the top.  It means that all the
5649          * variable declarations will appear in a funny last-to-first order,
5650          * but otherwise we run into trouble if a function is prototyped, a
5651          * global var is decled, then the function is defined with usage of
5652          * the global var.  See glslparsertest's CorrectModule.frag.
5653          */
5654         instructions->push_head(var);
5655      }
5656
5657      instructions->append_list(&initializer_instructions);
5658   }
5659
5660
5661   /* Generally, variable declarations do not have r-values.  However,
5662    * one is used for the declaration in
5663    *
5664    * while (bool b = some_condition()) {
5665    *   ...
5666    * }
5667    *
5668    * so we return the rvalue from the last seen declaration here.
5669    */
5670   return result;
5671}
5672
5673
5674ir_rvalue *
5675ast_parameter_declarator::hir(exec_list *instructions,
5676                              struct _mesa_glsl_parse_state *state)
5677{
5678   void *ctx = state;
5679   const struct glsl_type *type;
5680   const char *name = NULL;
5681   YYLTYPE loc = this->get_location();
5682
5683   type = this->type->glsl_type(& name, state);
5684
5685   if (type == NULL) {
5686      if (name != NULL) {
5687         _mesa_glsl_error(& loc, state,
5688                          "invalid type `%s' in declaration of `%s'",
5689                          name, this->identifier);
5690      } else {
5691         _mesa_glsl_error(& loc, state,
5692                          "invalid type in declaration of `%s'",
5693                          this->identifier);
5694      }
5695
5696      type = glsl_type::error_type;
5697   }
5698
5699   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5700    *
5701    *    "Functions that accept no input arguments need not use void in the
5702    *    argument list because prototypes (or definitions) are required and
5703    *    therefore there is no ambiguity when an empty argument list "( )" is
5704    *    declared. The idiom "(void)" as a parameter list is provided for
5705    *    convenience."
5706    *
5707    * Placing this check here prevents a void parameter being set up
5708    * for a function, which avoids tripping up checks for main taking
5709    * parameters and lookups of an unnamed symbol.
5710    */
5711   if (type->is_void()) {
5712      if (this->identifier != NULL)
5713         _mesa_glsl_error(& loc, state,
5714                          "named parameter cannot have type `void'");
5715
5716      is_void = true;
5717      return NULL;
5718   }
5719
5720   if (formal_parameter && (this->identifier == NULL)) {
5721      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5722      return NULL;
5723   }
5724
5725   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
5726    * call already handled the "vec4[..] foo" case.
5727    */
5728   type = process_array_type(&loc, type, this->array_specifier, state);
5729
5730   if (!type->is_error() && type->is_unsized_array()) {
5731      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5732                       "a declared size");
5733      type = glsl_type::error_type;
5734   }
5735
5736   is_void = false;
5737   ir_variable *var = new(ctx)
5738      ir_variable(type, this->identifier, ir_var_function_in);
5739
5740   /* Apply any specified qualifiers to the parameter declaration.  Note that
5741    * for function parameters the default mode is 'in'.
5742    */
5743   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5744                                    true);
5745
5746   /* From section 4.1.7 of the GLSL 4.40 spec:
5747    *
5748    *   "Opaque variables cannot be treated as l-values; hence cannot
5749    *    be used as out or inout function parameters, nor can they be
5750    *    assigned into."
5751    *
5752    * From section 4.1.7 of the ARB_bindless_texture spec:
5753    *
5754    *   "Samplers can be used as l-values, so can be assigned into and used
5755    *    as "out" and "inout" function parameters."
5756    *
5757    * From section 4.1.X of the ARB_bindless_texture spec:
5758    *
5759    *   "Images can be used as l-values, so can be assigned into and used as
5760    *    "out" and "inout" function parameters."
5761    */
5762   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5763       && (type->contains_atomic() ||
5764           (!state->has_bindless() && type->contains_opaque()))) {
5765      _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5766                       "contain %s variables",
5767                       state->has_bindless() ? "atomic" : "opaque");
5768      type = glsl_type::error_type;
5769   }
5770
5771   /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5772    *
5773    *    "When calling a function, expressions that do not evaluate to
5774    *     l-values cannot be passed to parameters declared as out or inout."
5775    *
5776    * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5777    *
5778    *    "Other binary or unary expressions, non-dereferenced arrays,
5779    *     function names, swizzles with repeated fields, and constants
5780    *     cannot be l-values."
5781    *
5782    * So for GLSL 1.10, passing an array as an out or inout parameter is not
5783    * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
5784    */
5785   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5786       && type->is_array()
5787       && !state->check_version(120, 100, &loc,
5788                                "arrays cannot be out or inout parameters")) {
5789      type = glsl_type::error_type;
5790   }
5791
5792   instructions->push_tail(var);
5793
5794   /* Parameter declarations do not have r-values.
5795    */
5796   return NULL;
5797}
5798
5799
5800void
5801ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5802                                            bool formal,
5803                                            exec_list *ir_parameters,
5804                                            _mesa_glsl_parse_state *state)
5805{
5806   ast_parameter_declarator *void_param = NULL;
5807   unsigned count = 0;
5808
5809   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5810      param->formal_parameter = formal;
5811      param->hir(ir_parameters, state);
5812
5813      if (param->is_void)
5814         void_param = param;
5815
5816      count++;
5817   }
5818
5819   if ((void_param != NULL) && (count > 1)) {
5820      YYLTYPE loc = void_param->get_location();
5821
5822      _mesa_glsl_error(& loc, state,
5823                       "`void' parameter must be only parameter");
5824   }
5825}
5826
5827
5828void
5829emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5830{
5831   /* IR invariants disallow function declarations or definitions
5832    * nested within other function definitions.  But there is no
5833    * requirement about the relative order of function declarations
5834    * and definitions with respect to one another.  So simply insert
5835    * the new ir_function block at the end of the toplevel instruction
5836    * list.
5837    */
5838   state->toplevel_ir->push_tail(f);
5839}
5840
5841
5842ir_rvalue *
5843ast_function::hir(exec_list *instructions,
5844                  struct _mesa_glsl_parse_state *state)
5845{
5846   void *ctx = state;
5847   ir_function *f = NULL;
5848   ir_function_signature *sig = NULL;
5849   exec_list hir_parameters;
5850   YYLTYPE loc = this->get_location();
5851
5852   const char *const name = identifier;
5853
5854   /* New functions are always added to the top-level IR instruction stream,
5855    * so this instruction list pointer is ignored.  See also emit_function
5856    * (called below).
5857    */
5858   (void) instructions;
5859
5860   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5861    *
5862    *   "Function declarations (prototypes) cannot occur inside of functions;
5863    *   they must be at global scope, or for the built-in functions, outside
5864    *   the global scope."
5865    *
5866    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5867    *
5868    *   "User defined functions may only be defined within the global scope."
5869    *
5870    * Note that this language does not appear in GLSL 1.10.
5871    */
5872   if ((state->current_function != NULL) &&
5873       state->is_version(120, 100)) {
5874      YYLTYPE loc = this->get_location();
5875      _mesa_glsl_error(&loc, state,
5876                       "declaration of function `%s' not allowed within "
5877                       "function body", name);
5878   }
5879
5880   validate_identifier(name, this->get_location(), state);
5881
5882   /* Convert the list of function parameters to HIR now so that they can be
5883    * used below to compare this function's signature with previously seen
5884    * signatures for functions with the same name.
5885    */
5886   ast_parameter_declarator::parameters_to_hir(& this->parameters,
5887                                               is_definition,
5888                                               & hir_parameters, state);
5889
5890   const char *return_type_name;
5891   const glsl_type *return_type =
5892      this->return_type->glsl_type(& return_type_name, state);
5893
5894   if (!return_type) {
5895      YYLTYPE loc = this->get_location();
5896      _mesa_glsl_error(&loc, state,
5897                       "function `%s' has undeclared return type `%s'",
5898                       name, return_type_name);
5899      return_type = glsl_type::error_type;
5900   }
5901
5902   /* ARB_shader_subroutine states:
5903    *  "Subroutine declarations cannot be prototyped. It is an error to prepend
5904    *   subroutine(...) to a function declaration."
5905    */
5906   if (this->return_type->qualifier.subroutine_list && !is_definition) {
5907      YYLTYPE loc = this->get_location();
5908      _mesa_glsl_error(&loc, state,
5909                       "function declaration `%s' cannot have subroutine prepended",
5910                       name);
5911   }
5912
5913   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5914    * "No qualifier is allowed on the return type of a function."
5915    */
5916   if (this->return_type->has_qualifiers(state)) {
5917      YYLTYPE loc = this->get_location();
5918      _mesa_glsl_error(& loc, state,
5919                       "function `%s' return type has qualifiers", name);
5920   }
5921
5922   /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5923    *
5924    *     "Arrays are allowed as arguments and as the return type. In both
5925    *     cases, the array must be explicitly sized."
5926    */
5927   if (return_type->is_unsized_array()) {
5928      YYLTYPE loc = this->get_location();
5929      _mesa_glsl_error(& loc, state,
5930                       "function `%s' return type array must be explicitly "
5931                       "sized", name);
5932   }
5933
5934   /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5935    *
5936    *     "Arrays are allowed as arguments, but not as the return type. [...]
5937    *      The return type can also be a structure if the structure does not
5938    *      contain an array."
5939    */
5940   if (state->language_version == 100 && return_type->contains_array()) {
5941      YYLTYPE loc = this->get_location();
5942      _mesa_glsl_error(& loc, state,
5943                       "function `%s' return type contains an array", name);
5944   }
5945
5946   /* From section 4.1.7 of the GLSL 4.40 spec:
5947    *
5948    *    "[Opaque types] can only be declared as function parameters
5949    *     or uniform-qualified variables."
5950    *
5951    * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5952    * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5953    * (Images)", this should be allowed.
5954    */
5955   if (return_type->contains_atomic() ||
5956       (!state->has_bindless() && return_type->contains_opaque())) {
5957      YYLTYPE loc = this->get_location();
5958      _mesa_glsl_error(&loc, state,
5959                       "function `%s' return type can't contain an %s type",
5960                       name, state->has_bindless() ? "atomic" : "opaque");
5961   }
5962
5963   /**/
5964   if (return_type->is_subroutine()) {
5965      YYLTYPE loc = this->get_location();
5966      _mesa_glsl_error(&loc, state,
5967                       "function `%s' return type can't be a subroutine type",
5968                       name);
5969   }
5970
5971
5972   /* Create an ir_function if one doesn't already exist. */
5973   f = state->symbols->get_function(name);
5974   if (f == NULL) {
5975      f = new(ctx) ir_function(name);
5976      if (!this->return_type->qualifier.is_subroutine_decl()) {
5977         if (!state->symbols->add_function(f)) {
5978            /* This function name shadows a non-function use of the same name. */
5979            YYLTYPE loc = this->get_location();
5980            _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5981                             "non-function", name);
5982            return NULL;
5983         }
5984      }
5985      emit_function(state, f);
5986   }
5987
5988   /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5989    *
5990    * "A shader cannot redefine or overload built-in functions."
5991    *
5992    * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5993    *
5994    * "User code can overload the built-in functions but cannot redefine
5995    * them."
5996    */
5997   if (state->es_shader) {
5998      /* Local shader has no exact candidates; check the built-ins. */
5999      _mesa_glsl_initialize_builtin_functions();
6000      if (state->language_version >= 300 &&
6001          _mesa_glsl_has_builtin_function(state, name)) {
6002         YYLTYPE loc = this->get_location();
6003         _mesa_glsl_error(& loc, state,
6004                          "A shader cannot redefine or overload built-in "
6005                          "function `%s' in GLSL ES 3.00", name);
6006         return NULL;
6007      }
6008
6009      if (state->language_version == 100) {
6010         ir_function_signature *sig =
6011            _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6012         if (sig && sig->is_builtin()) {
6013            _mesa_glsl_error(& loc, state,
6014                             "A shader cannot redefine built-in "
6015                             "function `%s' in GLSL ES 1.00", name);
6016         }
6017      }
6018   }
6019
6020   /* Verify that this function's signature either doesn't match a previously
6021    * seen signature for a function with the same name, or, if a match is found,
6022    * that the previously seen signature does not have an associated definition.
6023    */
6024   if (state->es_shader || f->has_user_signature()) {
6025      sig = f->exact_matching_signature(state, &hir_parameters);
6026      if (sig != NULL) {
6027         const char *badvar = sig->qualifiers_match(&hir_parameters);
6028         if (badvar != NULL) {
6029            YYLTYPE loc = this->get_location();
6030
6031            _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6032                             "qualifiers don't match prototype", name, badvar);
6033         }
6034
6035         if (sig->return_type != return_type) {
6036            YYLTYPE loc = this->get_location();
6037
6038            _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6039                             "match prototype", name);
6040         }
6041
6042         if (sig->is_defined) {
6043            if (is_definition) {
6044               YYLTYPE loc = this->get_location();
6045               _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6046            } else {
6047               /* We just encountered a prototype that exactly matches a
6048                * function that's already been defined.  This is redundant,
6049                * and we should ignore it.
6050                */
6051               return NULL;
6052            }
6053         } else if (state->language_version == 100 && !is_definition) {
6054            /* From the GLSL 1.00 spec, section 4.2.7:
6055             *
6056             *     "A particular variable, structure or function declaration
6057             *      may occur at most once within a scope with the exception
6058             *      that a single function prototype plus the corresponding
6059             *      function definition are allowed."
6060             */
6061            YYLTYPE loc = this->get_location();
6062            _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6063         }
6064      }
6065   }
6066
6067   /* Verify the return type of main() */
6068   if (strcmp(name, "main") == 0) {
6069      if (! return_type->is_void()) {
6070         YYLTYPE loc = this->get_location();
6071
6072         _mesa_glsl_error(& loc, state, "main() must return void");
6073      }
6074
6075      if (!hir_parameters.is_empty()) {
6076         YYLTYPE loc = this->get_location();
6077
6078         _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6079      }
6080   }
6081
6082   /* Finish storing the information about this new function in its signature.
6083    */
6084   if (sig == NULL) {
6085      sig = new(ctx) ir_function_signature(return_type);
6086      f->add_signature(sig);
6087   }
6088
6089   sig->replace_parameters(&hir_parameters);
6090   signature = sig;
6091
6092   if (this->return_type->qualifier.subroutine_list) {
6093      int idx;
6094
6095      if (this->return_type->qualifier.flags.q.explicit_index) {
6096         unsigned qual_index;
6097         if (process_qualifier_constant(state, &loc, "index",
6098                                        this->return_type->qualifier.index,
6099                                        &qual_index)) {
6100            if (!state->has_explicit_uniform_location()) {
6101               _mesa_glsl_error(&loc, state, "subroutine index requires "
6102                                "GL_ARB_explicit_uniform_location or "
6103                                "GLSL 4.30");
6104            } else if (qual_index >= MAX_SUBROUTINES) {
6105               _mesa_glsl_error(&loc, state,
6106                                "invalid subroutine index (%d) index must "
6107                                "be a number between 0 and "
6108                                "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6109                                MAX_SUBROUTINES - 1);
6110            } else {
6111               f->subroutine_index = qual_index;
6112            }
6113         }
6114      }
6115
6116      f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6117      f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6118                                         f->num_subroutine_types);
6119      idx = 0;
6120      foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6121         const struct glsl_type *type;
6122         /* the subroutine type must be already declared */
6123         type = state->symbols->get_type(decl->identifier);
6124         if (!type) {
6125            _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6126         }
6127
6128         for (int i = 0; i < state->num_subroutine_types; i++) {
6129            ir_function *fn = state->subroutine_types[i];
6130            ir_function_signature *tsig = NULL;
6131
6132            if (strcmp(fn->name, decl->identifier))
6133               continue;
6134
6135            tsig = fn->matching_signature(state, &sig->parameters,
6136                                          false);
6137            if (!tsig) {
6138               _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6139            } else {
6140               if (tsig->return_type != sig->return_type) {
6141                  _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6142               }
6143            }
6144         }
6145         f->subroutine_types[idx++] = type;
6146      }
6147      state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6148                                                    ir_function *,
6149                                                    state->num_subroutines + 1);
6150      state->subroutines[state->num_subroutines] = f;
6151      state->num_subroutines++;
6152
6153   }
6154
6155   if (this->return_type->qualifier.is_subroutine_decl()) {
6156      if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6157         _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6158         return NULL;
6159      }
6160      state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6161                                                         ir_function *,
6162                                                         state->num_subroutine_types + 1);
6163      state->subroutine_types[state->num_subroutine_types] = f;
6164      state->num_subroutine_types++;
6165
6166      f->is_subroutine = true;
6167   }
6168
6169   /* Function declarations (prototypes) do not have r-values.
6170    */
6171   return NULL;
6172}
6173
6174
6175ir_rvalue *
6176ast_function_definition::hir(exec_list *instructions,
6177                             struct _mesa_glsl_parse_state *state)
6178{
6179   prototype->is_definition = true;
6180   prototype->hir(instructions, state);
6181
6182   ir_function_signature *signature = prototype->signature;
6183   if (signature == NULL)
6184      return NULL;
6185
6186   assert(state->current_function == NULL);
6187   state->current_function = signature;
6188   state->found_return = false;
6189
6190   /* Duplicate parameters declared in the prototype as concrete variables.
6191    * Add these to the symbol table.
6192    */
6193   state->symbols->push_scope();
6194   foreach_in_list(ir_variable, var, &signature->parameters) {
6195      assert(var->as_variable() != NULL);
6196
6197      /* The only way a parameter would "exist" is if two parameters have
6198       * the same name.
6199       */
6200      if (state->symbols->name_declared_this_scope(var->name)) {
6201         YYLTYPE loc = this->get_location();
6202
6203         _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6204      } else {
6205         state->symbols->add_variable(var);
6206      }
6207   }
6208
6209   /* Convert the body of the function to HIR. */
6210   this->body->hir(&signature->body, state);
6211   signature->is_defined = true;
6212
6213   state->symbols->pop_scope();
6214
6215   assert(state->current_function == signature);
6216   state->current_function = NULL;
6217
6218   if (!signature->return_type->is_void() && !state->found_return) {
6219      YYLTYPE loc = this->get_location();
6220      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6221                       "%s, but no return statement",
6222                       signature->function_name(),
6223                       signature->return_type->name);
6224   }
6225
6226   /* Function definitions do not have r-values.
6227    */
6228   return NULL;
6229}
6230
6231
6232ir_rvalue *
6233ast_jump_statement::hir(exec_list *instructions,
6234                        struct _mesa_glsl_parse_state *state)
6235{
6236   void *ctx = state;
6237
6238   switch (mode) {
6239   case ast_return: {
6240      ir_return *inst;
6241      assert(state->current_function);
6242
6243      if (opt_return_value) {
6244         ir_rvalue *ret = opt_return_value->hir(instructions, state);
6245
6246         /* The value of the return type can be NULL if the shader says
6247          * 'return foo();' and foo() is a function that returns void.
6248          *
6249          * NOTE: The GLSL spec doesn't say that this is an error.  The type
6250          * of the return value is void.  If the return type of the function is
6251          * also void, then this should compile without error.  Seriously.
6252          */
6253         const glsl_type *const ret_type =
6254            (ret == NULL) ? glsl_type::void_type : ret->type;
6255
6256         /* Implicit conversions are not allowed for return values prior to
6257          * ARB_shading_language_420pack.
6258          */
6259         if (state->current_function->return_type != ret_type) {
6260            YYLTYPE loc = this->get_location();
6261
6262            if (state->has_420pack()) {
6263               if (!apply_implicit_conversion(state->current_function->return_type,
6264                                              ret, state)) {
6265                  _mesa_glsl_error(& loc, state,
6266                                   "could not implicitly convert return value "
6267                                   "to %s, in function `%s'",
6268                                   state->current_function->return_type->name,
6269                                   state->current_function->function_name());
6270               }
6271            } else {
6272               _mesa_glsl_error(& loc, state,
6273                                "`return' with wrong type %s, in function `%s' "
6274                                "returning %s",
6275                                ret_type->name,
6276                                state->current_function->function_name(),
6277                                state->current_function->return_type->name);
6278            }
6279         } else if (state->current_function->return_type->base_type ==
6280                    GLSL_TYPE_VOID) {
6281            YYLTYPE loc = this->get_location();
6282
6283            /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6284             * specs add a clarification:
6285             *
6286             *    "A void function can only use return without a return argument, even if
6287             *     the return argument has void type. Return statements only accept values:
6288             *
6289             *         void func1() { }
6290             *         void func2() { return func1(); } // illegal return statement"
6291             */
6292            _mesa_glsl_error(& loc, state,
6293                             "void functions can only use `return' without a "
6294                             "return argument");
6295         }
6296
6297         inst = new(ctx) ir_return(ret);
6298      } else {
6299         if (state->current_function->return_type->base_type !=
6300             GLSL_TYPE_VOID) {
6301            YYLTYPE loc = this->get_location();
6302
6303            _mesa_glsl_error(& loc, state,
6304                             "`return' with no value, in function %s returning "
6305                             "non-void",
6306            state->current_function->function_name());
6307         }
6308         inst = new(ctx) ir_return;
6309      }
6310
6311      state->found_return = true;
6312      instructions->push_tail(inst);
6313      break;
6314   }
6315
6316   case ast_discard:
6317      if (state->stage != MESA_SHADER_FRAGMENT) {
6318         YYLTYPE loc = this->get_location();
6319
6320         _mesa_glsl_error(& loc, state,
6321                          "`discard' may only appear in a fragment shader");
6322      }
6323      instructions->push_tail(new(ctx) ir_discard);
6324      break;
6325
6326   case ast_break:
6327   case ast_continue:
6328      if (mode == ast_continue &&
6329          state->loop_nesting_ast == NULL) {
6330         YYLTYPE loc = this->get_location();
6331
6332         _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6333      } else if (mode == ast_break &&
6334         state->loop_nesting_ast == NULL &&
6335         state->switch_state.switch_nesting_ast == NULL) {
6336         YYLTYPE loc = this->get_location();
6337
6338         _mesa_glsl_error(& loc, state,
6339                          "break may only appear in a loop or a switch");
6340      } else {
6341         /* For a loop, inline the for loop expression again, since we don't
6342          * know where near the end of the loop body the normal copy of it is
6343          * going to be placed.  Same goes for the condition for a do-while
6344          * loop.
6345          */
6346         if (state->loop_nesting_ast != NULL &&
6347             mode == ast_continue && !state->switch_state.is_switch_innermost) {
6348            if (state->loop_nesting_ast->rest_expression) {
6349               state->loop_nesting_ast->rest_expression->hir(instructions,
6350                                                             state);
6351            }
6352            if (state->loop_nesting_ast->mode ==
6353                ast_iteration_statement::ast_do_while) {
6354               state->loop_nesting_ast->condition_to_hir(instructions, state);
6355            }
6356         }
6357
6358         if (state->switch_state.is_switch_innermost &&
6359             mode == ast_continue) {
6360            /* Set 'continue_inside' to true. */
6361            ir_rvalue *const true_val = new (ctx) ir_constant(true);
6362            ir_dereference_variable *deref_continue_inside_var =
6363               new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6364            instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6365                                                           true_val));
6366
6367            /* Break out from the switch, continue for the loop will
6368             * be called right after switch. */
6369            ir_loop_jump *const jump =
6370               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6371            instructions->push_tail(jump);
6372
6373         } else if (state->switch_state.is_switch_innermost &&
6374             mode == ast_break) {
6375            /* Force break out of switch by inserting a break. */
6376            ir_loop_jump *const jump =
6377               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6378            instructions->push_tail(jump);
6379         } else {
6380            ir_loop_jump *const jump =
6381               new(ctx) ir_loop_jump((mode == ast_break)
6382                  ? ir_loop_jump::jump_break
6383                  : ir_loop_jump::jump_continue);
6384            instructions->push_tail(jump);
6385         }
6386      }
6387
6388      break;
6389   }
6390
6391   /* Jump instructions do not have r-values.
6392    */
6393   return NULL;
6394}
6395
6396
6397ir_rvalue *
6398ast_selection_statement::hir(exec_list *instructions,
6399                             struct _mesa_glsl_parse_state *state)
6400{
6401   void *ctx = state;
6402
6403   ir_rvalue *const condition = this->condition->hir(instructions, state);
6404
6405   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6406    *
6407    *    "Any expression whose type evaluates to a Boolean can be used as the
6408    *    conditional expression bool-expression. Vector types are not accepted
6409    *    as the expression to if."
6410    *
6411    * The checks are separated so that higher quality diagnostics can be
6412    * generated for cases where both rules are violated.
6413    */
6414   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6415      YYLTYPE loc = this->condition->get_location();
6416
6417      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6418                       "boolean");
6419   }
6420
6421   ir_if *const stmt = new(ctx) ir_if(condition);
6422
6423   if (then_statement != NULL) {
6424      state->symbols->push_scope();
6425      then_statement->hir(& stmt->then_instructions, state);
6426      state->symbols->pop_scope();
6427   }
6428
6429   if (else_statement != NULL) {
6430      state->symbols->push_scope();
6431      else_statement->hir(& stmt->else_instructions, state);
6432      state->symbols->pop_scope();
6433   }
6434
6435   instructions->push_tail(stmt);
6436
6437   /* if-statements do not have r-values.
6438    */
6439   return NULL;
6440}
6441
6442
6443struct case_label {
6444   /** Value of the case label. */
6445   unsigned value;
6446
6447   /** Does this label occur after the default? */
6448   bool after_default;
6449
6450   /**
6451    * AST for the case label.
6452    *
6453    * This is only used to generate error messages for duplicate labels.
6454    */
6455   ast_expression *ast;
6456};
6457
6458/* Used for detection of duplicate case values, compare
6459 * given contents directly.
6460 */
6461static bool
6462compare_case_value(const void *a, const void *b)
6463{
6464   return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6465}
6466
6467
6468/* Used for detection of duplicate case values, just
6469 * returns key contents as is.
6470 */
6471static unsigned
6472key_contents(const void *key)
6473{
6474   return ((struct case_label *) key)->value;
6475}
6476
6477
6478ir_rvalue *
6479ast_switch_statement::hir(exec_list *instructions,
6480                          struct _mesa_glsl_parse_state *state)
6481{
6482   void *ctx = state;
6483
6484   ir_rvalue *const test_expression =
6485      this->test_expression->hir(instructions, state);
6486
6487   /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6488    *
6489    *    "The type of init-expression in a switch statement must be a
6490    *     scalar integer."
6491    */
6492   if (!test_expression->type->is_scalar() ||
6493       !test_expression->type->is_integer()) {
6494      YYLTYPE loc = this->test_expression->get_location();
6495
6496      _mesa_glsl_error(& loc,
6497                       state,
6498                       "switch-statement expression must be scalar "
6499                       "integer");
6500      return NULL;
6501   }
6502
6503   /* Track the switch-statement nesting in a stack-like manner.
6504    */
6505   struct glsl_switch_state saved = state->switch_state;
6506
6507   state->switch_state.is_switch_innermost = true;
6508   state->switch_state.switch_nesting_ast = this;
6509   state->switch_state.labels_ht =
6510         _mesa_hash_table_create(NULL, key_contents,
6511                                 compare_case_value);
6512   state->switch_state.previous_default = NULL;
6513
6514   /* Initalize is_fallthru state to false.
6515    */
6516   ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6517   state->switch_state.is_fallthru_var =
6518      new(ctx) ir_variable(glsl_type::bool_type,
6519                           "switch_is_fallthru_tmp",
6520                           ir_var_temporary);
6521   instructions->push_tail(state->switch_state.is_fallthru_var);
6522
6523   ir_dereference_variable *deref_is_fallthru_var =
6524      new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6525   instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6526                                                  is_fallthru_val));
6527
6528   /* Initialize continue_inside state to false.
6529    */
6530   state->switch_state.continue_inside =
6531      new(ctx) ir_variable(glsl_type::bool_type,
6532                           "continue_inside_tmp",
6533                           ir_var_temporary);
6534   instructions->push_tail(state->switch_state.continue_inside);
6535
6536   ir_rvalue *const false_val = new (ctx) ir_constant(false);
6537   ir_dereference_variable *deref_continue_inside_var =
6538      new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6539   instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6540                                                  false_val));
6541
6542   state->switch_state.run_default =
6543      new(ctx) ir_variable(glsl_type::bool_type,
6544                             "run_default_tmp",
6545                             ir_var_temporary);
6546   instructions->push_tail(state->switch_state.run_default);
6547
6548   /* Loop around the switch is used for flow control. */
6549   ir_loop * loop = new(ctx) ir_loop();
6550   instructions->push_tail(loop);
6551
6552   /* Cache test expression.
6553    */
6554   test_to_hir(&loop->body_instructions, state);
6555
6556   /* Emit code for body of switch stmt.
6557    */
6558   body->hir(&loop->body_instructions, state);
6559
6560   /* Insert a break at the end to exit loop. */
6561   ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6562   loop->body_instructions.push_tail(jump);
6563
6564   /* If we are inside loop, check if continue got called inside switch. */
6565   if (state->loop_nesting_ast != NULL) {
6566      ir_dereference_variable *deref_continue_inside =
6567         new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6568      ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6569      ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6570
6571      if (state->loop_nesting_ast != NULL) {
6572         if (state->loop_nesting_ast->rest_expression) {
6573            state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6574                                                          state);
6575         }
6576         if (state->loop_nesting_ast->mode ==
6577             ast_iteration_statement::ast_do_while) {
6578            state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6579         }
6580      }
6581      irif->then_instructions.push_tail(jump);
6582      instructions->push_tail(irif);
6583   }
6584
6585   _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6586
6587   state->switch_state = saved;
6588
6589   /* Switch statements do not have r-values. */
6590   return NULL;
6591}
6592
6593
6594void
6595ast_switch_statement::test_to_hir(exec_list *instructions,
6596                                  struct _mesa_glsl_parse_state *state)
6597{
6598   void *ctx = state;
6599
6600   /* set to true to avoid a duplicate "use of uninitialized variable" warning
6601    * on the switch test case. The first one would be already raised when
6602    * getting the test_expression at ast_switch_statement::hir
6603    */
6604   test_expression->set_is_lhs(true);
6605   /* Cache value of test expression. */
6606   ir_rvalue *const test_val = test_expression->hir(instructions, state);
6607
6608   state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6609                                                       "switch_test_tmp",
6610                                                       ir_var_temporary);
6611   ir_dereference_variable *deref_test_var =
6612      new(ctx) ir_dereference_variable(state->switch_state.test_var);
6613
6614   instructions->push_tail(state->switch_state.test_var);
6615   instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6616}
6617
6618
6619ir_rvalue *
6620ast_switch_body::hir(exec_list *instructions,
6621                     struct _mesa_glsl_parse_state *state)
6622{
6623   if (stmts != NULL)
6624      stmts->hir(instructions, state);
6625
6626   /* Switch bodies do not have r-values. */
6627   return NULL;
6628}
6629
6630ir_rvalue *
6631ast_case_statement_list::hir(exec_list *instructions,
6632                             struct _mesa_glsl_parse_state *state)
6633{
6634   exec_list default_case, after_default, tmp;
6635
6636   foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6637      case_stmt->hir(&tmp, state);
6638
6639      /* Default case. */
6640      if (state->switch_state.previous_default && default_case.is_empty()) {
6641         default_case.append_list(&tmp);
6642         continue;
6643      }
6644
6645      /* If default case found, append 'after_default' list. */
6646      if (!default_case.is_empty())
6647         after_default.append_list(&tmp);
6648      else
6649         instructions->append_list(&tmp);
6650   }
6651
6652   /* Handle the default case. This is done here because default might not be
6653    * the last case. We need to add checks against following cases first to see
6654    * if default should be chosen or not.
6655    */
6656   if (!default_case.is_empty()) {
6657      ir_factory body(instructions, state);
6658
6659      ir_expression *cmp = NULL;
6660
6661      hash_table_foreach(state->switch_state.labels_ht, entry) {
6662         const struct case_label *const l = (struct case_label *) entry->data;
6663
6664         /* If the switch init-value is the value of one of the labels that
6665          * occurs after the default case, disable execution of the default
6666          * case.
6667          */
6668         if (l->after_default) {
6669            ir_constant *const cnst =
6670               state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6671               ? body.constant(unsigned(l->value))
6672               : body.constant(int(l->value));
6673
6674            cmp = cmp == NULL
6675               ? equal(cnst, state->switch_state.test_var)
6676               : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6677         }
6678      }
6679
6680      if (cmp != NULL)
6681         body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6682      else
6683         body.emit(assign(state->switch_state.run_default, body.constant(true)));
6684
6685      /* Append default case and all cases after it. */
6686      instructions->append_list(&default_case);
6687      instructions->append_list(&after_default);
6688   }
6689
6690   /* Case statements do not have r-values. */
6691   return NULL;
6692}
6693
6694ir_rvalue *
6695ast_case_statement::hir(exec_list *instructions,
6696                        struct _mesa_glsl_parse_state *state)
6697{
6698   labels->hir(instructions, state);
6699
6700   /* Guard case statements depending on fallthru state. */
6701   ir_dereference_variable *const deref_fallthru_guard =
6702      new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6703   ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6704
6705   foreach_list_typed (ast_node, stmt, link, & this->stmts)
6706      stmt->hir(& test_fallthru->then_instructions, state);
6707
6708   instructions->push_tail(test_fallthru);
6709
6710   /* Case statements do not have r-values. */
6711   return NULL;
6712}
6713
6714
6715ir_rvalue *
6716ast_case_label_list::hir(exec_list *instructions,
6717                         struct _mesa_glsl_parse_state *state)
6718{
6719   foreach_list_typed (ast_case_label, label, link, & this->labels)
6720      label->hir(instructions, state);
6721
6722   /* Case labels do not have r-values. */
6723   return NULL;
6724}
6725
6726ir_rvalue *
6727ast_case_label::hir(exec_list *instructions,
6728                    struct _mesa_glsl_parse_state *state)
6729{
6730   ir_factory body(instructions, state);
6731
6732   ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6733
6734   /* If not default case, ... */
6735   if (this->test_value != NULL) {
6736      /* Conditionally set fallthru state based on
6737       * comparison of cached test expression value to case label.
6738       */
6739      ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6740      ir_constant *label_const =
6741         label_rval->constant_expression_value(body.mem_ctx);
6742
6743      if (!label_const) {
6744         YYLTYPE loc = this->test_value->get_location();
6745
6746         _mesa_glsl_error(& loc, state,
6747                          "switch statement case label must be a "
6748                          "constant expression");
6749
6750         /* Stuff a dummy value in to allow processing to continue. */
6751         label_const = body.constant(0);
6752      } else {
6753         hash_entry *entry =
6754               _mesa_hash_table_search(state->switch_state.labels_ht,
6755                                       &label_const->value.u[0]);
6756
6757         if (entry) {
6758            const struct case_label *const l =
6759               (struct case_label *) entry->data;
6760            const ast_expression *const previous_label = l->ast;
6761            YYLTYPE loc = this->test_value->get_location();
6762
6763            _mesa_glsl_error(& loc, state, "duplicate case value");
6764
6765            loc = previous_label->get_location();
6766            _mesa_glsl_error(& loc, state, "this is the previous case label");
6767         } else {
6768            struct case_label *l = ralloc(state->switch_state.labels_ht,
6769                                          struct case_label);
6770
6771            l->value = label_const->value.u[0];
6772            l->after_default = state->switch_state.previous_default != NULL;
6773            l->ast = this->test_value;
6774
6775            _mesa_hash_table_insert(state->switch_state.labels_ht,
6776                                    &label_const->value.u[0],
6777                                    l);
6778         }
6779      }
6780
6781      /* Create an r-value version of the ir_constant label here (after we may
6782       * have created a fake one in error cases) that can be passed to
6783       * apply_implicit_conversion below.
6784       */
6785      ir_rvalue *label = label_const;
6786
6787      ir_rvalue *deref_test_var =
6788         new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6789
6790      /*
6791       * From GLSL 4.40 specification section 6.2 ("Selection"):
6792       *
6793       *     "The type of the init-expression value in a switch statement must
6794       *     be a scalar int or uint. The type of the constant-expression value
6795       *     in a case label also must be a scalar int or uint. When any pair
6796       *     of these values is tested for "equal value" and the types do not
6797       *     match, an implicit conversion will be done to convert the int to a
6798       *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
6799       *     is done."
6800       */
6801      if (label->type != state->switch_state.test_var->type) {
6802         YYLTYPE loc = this->test_value->get_location();
6803
6804         const glsl_type *type_a = label->type;
6805         const glsl_type *type_b = state->switch_state.test_var->type;
6806
6807         /* Check if int->uint implicit conversion is supported. */
6808         bool integer_conversion_supported =
6809            glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6810                                                           state);
6811
6812         if ((!type_a->is_integer() || !type_b->is_integer()) ||
6813              !integer_conversion_supported) {
6814            _mesa_glsl_error(&loc, state, "type mismatch with switch "
6815                             "init-expression and case label (%s != %s)",
6816                             type_a->name, type_b->name);
6817         } else {
6818            /* Conversion of the case label. */
6819            if (type_a->base_type == GLSL_TYPE_INT) {
6820               if (!apply_implicit_conversion(glsl_type::uint_type,
6821                                              label, state))
6822                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
6823            } else {
6824               /* Conversion of the init-expression value. */
6825               if (!apply_implicit_conversion(glsl_type::uint_type,
6826                                              deref_test_var, state))
6827                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
6828            }
6829         }
6830
6831         /* If the implicit conversion was allowed, the types will already be
6832          * the same.  If the implicit conversion wasn't allowed, smash the
6833          * type of the label anyway.  This will prevent the expression
6834          * constructor (below) from failing an assertion.
6835          */
6836         label->type = deref_test_var->type;
6837      }
6838
6839      body.emit(assign(fallthru_var,
6840                       logic_or(fallthru_var, equal(label, deref_test_var))));
6841   } else { /* default case */
6842      if (state->switch_state.previous_default) {
6843         YYLTYPE loc = this->get_location();
6844         _mesa_glsl_error(& loc, state,
6845                          "multiple default labels in one switch");
6846
6847         loc = state->switch_state.previous_default->get_location();
6848         _mesa_glsl_error(& loc, state, "this is the first default label");
6849      }
6850      state->switch_state.previous_default = this;
6851
6852      /* Set fallthru condition on 'run_default' bool. */
6853      body.emit(assign(fallthru_var,
6854                       logic_or(fallthru_var,
6855                                state->switch_state.run_default)));
6856   }
6857
6858   /* Case statements do not have r-values. */
6859   return NULL;
6860}
6861
6862void
6863ast_iteration_statement::condition_to_hir(exec_list *instructions,
6864                                          struct _mesa_glsl_parse_state *state)
6865{
6866   void *ctx = state;
6867
6868   if (condition != NULL) {
6869      ir_rvalue *const cond =
6870         condition->hir(instructions, state);
6871
6872      if ((cond == NULL)
6873          || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6874         YYLTYPE loc = condition->get_location();
6875
6876         _mesa_glsl_error(& loc, state,
6877                          "loop condition must be scalar boolean");
6878      } else {
6879         /* As the first code in the loop body, generate a block that looks
6880          * like 'if (!condition) break;' as the loop termination condition.
6881          */
6882         ir_rvalue *const not_cond =
6883            new(ctx) ir_expression(ir_unop_logic_not, cond);
6884
6885         ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6886
6887         ir_jump *const break_stmt =
6888            new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6889
6890         if_stmt->then_instructions.push_tail(break_stmt);
6891         instructions->push_tail(if_stmt);
6892      }
6893   }
6894}
6895
6896
6897ir_rvalue *
6898ast_iteration_statement::hir(exec_list *instructions,
6899                             struct _mesa_glsl_parse_state *state)
6900{
6901   void *ctx = state;
6902
6903   /* For-loops and while-loops start a new scope, but do-while loops do not.
6904    */
6905   if (mode != ast_do_while)
6906      state->symbols->push_scope();
6907
6908   if (init_statement != NULL)
6909      init_statement->hir(instructions, state);
6910
6911   ir_loop *const stmt = new(ctx) ir_loop();
6912   instructions->push_tail(stmt);
6913
6914   /* Track the current loop nesting. */
6915   ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6916
6917   state->loop_nesting_ast = this;
6918
6919   /* Likewise, indicate that following code is closest to a loop,
6920    * NOT closest to a switch.
6921    */
6922   bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6923   state->switch_state.is_switch_innermost = false;
6924
6925   if (mode != ast_do_while)
6926      condition_to_hir(&stmt->body_instructions, state);
6927
6928   if (body != NULL)
6929      body->hir(& stmt->body_instructions, state);
6930
6931   if (rest_expression != NULL)
6932      rest_expression->hir(& stmt->body_instructions, state);
6933
6934   if (mode == ast_do_while)
6935      condition_to_hir(&stmt->body_instructions, state);
6936
6937   if (mode != ast_do_while)
6938      state->symbols->pop_scope();
6939
6940   /* Restore previous nesting before returning. */
6941   state->loop_nesting_ast = nesting_ast;
6942   state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6943
6944   /* Loops do not have r-values.
6945    */
6946   return NULL;
6947}
6948
6949
6950/**
6951 * Determine if the given type is valid for establishing a default precision
6952 * qualifier.
6953 *
6954 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6955 *
6956 *     "The precision statement
6957 *
6958 *         precision precision-qualifier type;
6959 *
6960 *     can be used to establish a default precision qualifier. The type field
6961 *     can be either int or float or any of the sampler types, and the
6962 *     precision-qualifier can be lowp, mediump, or highp."
6963 *
6964 * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
6965 * qualifiers on sampler types, but this seems like an oversight (since the
6966 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6967 * shaders).  So we allow int, float, and all sampler types regardless of GLSL
6968 * version.
6969 */
6970static bool
6971is_valid_default_precision_type(const struct glsl_type *const type)
6972{
6973   if (type == NULL)
6974      return false;
6975
6976   switch (type->base_type) {
6977   case GLSL_TYPE_INT:
6978   case GLSL_TYPE_FLOAT:
6979      /* "int" and "float" are valid, but vectors and matrices are not. */
6980      return type->vector_elements == 1 && type->matrix_columns == 1;
6981   case GLSL_TYPE_SAMPLER:
6982   case GLSL_TYPE_IMAGE:
6983   case GLSL_TYPE_ATOMIC_UINT:
6984      return true;
6985   default:
6986      return false;
6987   }
6988}
6989
6990
6991ir_rvalue *
6992ast_type_specifier::hir(exec_list *instructions,
6993                        struct _mesa_glsl_parse_state *state)
6994{
6995   if (this->default_precision == ast_precision_none && this->structure == NULL)
6996      return NULL;
6997
6998   YYLTYPE loc = this->get_location();
6999
7000   /* If this is a precision statement, check that the type to which it is
7001    * applied is either float or int.
7002    *
7003    * From section 4.5.3 of the GLSL 1.30 spec:
7004    *    "The precision statement
7005    *       precision precision-qualifier type;
7006    *    can be used to establish a default precision qualifier. The type
7007    *    field can be either int or float [...].  Any other types or
7008    *    qualifiers will result in an error.
7009    */
7010   if (this->default_precision != ast_precision_none) {
7011      if (!state->check_precision_qualifiers_allowed(&loc))
7012         return NULL;
7013
7014      if (this->structure != NULL) {
7015         _mesa_glsl_error(&loc, state,
7016                          "precision qualifiers do not apply to structures");
7017         return NULL;
7018      }
7019
7020      if (this->array_specifier != NULL) {
7021         _mesa_glsl_error(&loc, state,
7022                          "default precision statements do not apply to "
7023                          "arrays");
7024         return NULL;
7025      }
7026
7027      const struct glsl_type *const type =
7028         state->symbols->get_type(this->type_name);
7029      if (!is_valid_default_precision_type(type)) {
7030         _mesa_glsl_error(&loc, state,
7031                          "default precision statements apply only to "
7032                          "float, int, and opaque types");
7033         return NULL;
7034      }
7035
7036      if (state->es_shader) {
7037         /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7038          * spec says:
7039          *
7040          *     "Non-precision qualified declarations will use the precision
7041          *     qualifier specified in the most recent precision statement
7042          *     that is still in scope. The precision statement has the same
7043          *     scoping rules as variable declarations. If it is declared
7044          *     inside a compound statement, its effect stops at the end of
7045          *     the innermost statement it was declared in. Precision
7046          *     statements in nested scopes override precision statements in
7047          *     outer scopes. Multiple precision statements for the same basic
7048          *     type can appear inside the same scope, with later statements
7049          *     overriding earlier statements within that scope."
7050          *
7051          * Default precision specifications follow the same scope rules as
7052          * variables.  So, we can track the state of the default precision
7053          * qualifiers in the symbol table, and the rules will just work.  This
7054          * is a slight abuse of the symbol table, but it has the semantics
7055          * that we want.
7056          */
7057         state->symbols->add_default_precision_qualifier(this->type_name,
7058                                                         this->default_precision);
7059      }
7060
7061      /* FINISHME: Translate precision statements into IR. */
7062      return NULL;
7063   }
7064
7065   /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7066    * process_record_constructor() can do type-checking on C-style initializer
7067    * expressions of structs, but ast_struct_specifier should only be translated
7068    * to HIR if it is declaring the type of a structure.
7069    *
7070    * The ->is_declaration field is false for initializers of variables
7071    * declared separately from the struct's type definition.
7072    *
7073    *    struct S { ... };              (is_declaration = true)
7074    *    struct T { ... } t = { ... };  (is_declaration = true)
7075    *    S s = { ... };                 (is_declaration = false)
7076    */
7077   if (this->structure != NULL && this->structure->is_declaration)
7078      return this->structure->hir(instructions, state);
7079
7080   return NULL;
7081}
7082
7083
7084/**
7085 * Process a structure or interface block tree into an array of structure fields
7086 *
7087 * After parsing, where there are some syntax differnces, structures and
7088 * interface blocks are almost identical.  They are similar enough that the
7089 * AST for each can be processed the same way into a set of
7090 * \c glsl_struct_field to describe the members.
7091 *
7092 * If we're processing an interface block, var_mode should be the type of the
7093 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7094 * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7095 * ir_var_auto.
7096 *
7097 * \return
7098 * The number of fields processed.  A pointer to the array structure fields is
7099 * stored in \c *fields_ret.
7100 */
7101static unsigned
7102ast_process_struct_or_iface_block_members(exec_list *instructions,
7103                                          struct _mesa_glsl_parse_state *state,
7104                                          exec_list *declarations,
7105                                          glsl_struct_field **fields_ret,
7106                                          bool is_interface,
7107                                          enum glsl_matrix_layout matrix_layout,
7108                                          bool allow_reserved_names,
7109                                          ir_variable_mode var_mode,
7110                                          ast_type_qualifier *layout,
7111                                          unsigned block_stream,
7112                                          unsigned block_xfb_buffer,
7113                                          unsigned block_xfb_offset,
7114                                          unsigned expl_location,
7115                                          unsigned expl_align)
7116{
7117   unsigned decl_count = 0;
7118   unsigned next_offset = 0;
7119
7120   /* Make an initial pass over the list of fields to determine how
7121    * many there are.  Each element in this list is an ast_declarator_list.
7122    * This means that we actually need to count the number of elements in the
7123    * 'declarations' list in each of the elements.
7124    */
7125   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7126      decl_count += decl_list->declarations.length();
7127   }
7128
7129   /* Allocate storage for the fields and process the field
7130    * declarations.  As the declarations are processed, try to also convert
7131    * the types to HIR.  This ensures that structure definitions embedded in
7132    * other structure definitions or in interface blocks are processed.
7133    */
7134   glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7135                                                   decl_count);
7136
7137   bool first_member = true;
7138   bool first_member_has_explicit_location = false;
7139
7140   unsigned i = 0;
7141   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7142      const char *type_name;
7143      YYLTYPE loc = decl_list->get_location();
7144
7145      decl_list->type->specifier->hir(instructions, state);
7146
7147      /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7148       *
7149       *    "Anonymous structures are not supported; so embedded structures
7150       *    must have a declarator. A name given to an embedded struct is
7151       *    scoped at the same level as the struct it is embedded in."
7152       *
7153       * The same section of the  GLSL 1.20 spec says:
7154       *
7155       *    "Anonymous structures are not supported. Embedded structures are
7156       *    not supported."
7157       *
7158       * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7159       * embedded structures in 1.10 only.
7160       */
7161      if (state->language_version != 110 &&
7162          decl_list->type->specifier->structure != NULL)
7163         _mesa_glsl_error(&loc, state,
7164                          "embedded structure declarations are not allowed");
7165
7166      const glsl_type *decl_type =
7167         decl_list->type->glsl_type(& type_name, state);
7168
7169      const struct ast_type_qualifier *const qual =
7170         &decl_list->type->qualifier;
7171
7172      /* From section 4.3.9 of the GLSL 4.40 spec:
7173       *
7174       *    "[In interface blocks] opaque types are not allowed."
7175       *
7176       * It should be impossible for decl_type to be NULL here.  Cases that
7177       * might naturally lead to decl_type being NULL, especially for the
7178       * is_interface case, will have resulted in compilation having
7179       * already halted due to a syntax error.
7180       */
7181      assert(decl_type);
7182
7183      if (is_interface) {
7184         /* From section 4.3.7 of the ARB_bindless_texture spec:
7185          *
7186          *    "(remove the following bullet from the last list on p. 39,
7187          *     thereby permitting sampler types in interface blocks; image
7188          *     types are also permitted in blocks by this extension)"
7189          *
7190          *     * sampler types are not allowed
7191          */
7192         if (decl_type->contains_atomic() ||
7193             (!state->has_bindless() && decl_type->contains_opaque())) {
7194            _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7195                             "interface block contains %s variable",
7196                             state->has_bindless() ? "atomic" : "opaque");
7197         }
7198      } else {
7199         if (decl_type->contains_atomic()) {
7200            /* From section 4.1.7.3 of the GLSL 4.40 spec:
7201             *
7202             *    "Members of structures cannot be declared as atomic counter
7203             *     types."
7204             */
7205            _mesa_glsl_error(&loc, state, "atomic counter in structure");
7206         }
7207
7208         if (!state->has_bindless() && decl_type->contains_image()) {
7209            /* FINISHME: Same problem as with atomic counters.
7210             * FINISHME: Request clarification from Khronos and add
7211             * FINISHME: spec quotation here.
7212             */
7213            _mesa_glsl_error(&loc, state, "image in structure");
7214         }
7215      }
7216
7217      if (qual->flags.q.explicit_binding) {
7218         _mesa_glsl_error(&loc, state,
7219                          "binding layout qualifier cannot be applied "
7220                          "to struct or interface block members");
7221      }
7222
7223      if (is_interface) {
7224         if (!first_member) {
7225            if (!layout->flags.q.explicit_location &&
7226                ((first_member_has_explicit_location &&
7227                  !qual->flags.q.explicit_location) ||
7228                 (!first_member_has_explicit_location &&
7229                  qual->flags.q.explicit_location))) {
7230               _mesa_glsl_error(&loc, state,
7231                                "when block-level location layout qualifier "
7232                                "is not supplied either all members must "
7233                                "have a location layout qualifier or all "
7234                                "members must not have a location layout "
7235                                "qualifier");
7236            }
7237         } else {
7238            first_member = false;
7239            first_member_has_explicit_location =
7240               qual->flags.q.explicit_location;
7241         }
7242      }
7243
7244      if (qual->flags.q.std140 ||
7245          qual->flags.q.std430 ||
7246          qual->flags.q.packed ||
7247          qual->flags.q.shared) {
7248         _mesa_glsl_error(&loc, state,
7249                          "uniform/shader storage block layout qualifiers "
7250                          "std140, std430, packed, and shared can only be "
7251                          "applied to uniform/shader storage blocks, not "
7252                          "members");
7253      }
7254
7255      if (qual->flags.q.constant) {
7256         _mesa_glsl_error(&loc, state,
7257                          "const storage qualifier cannot be applied "
7258                          "to struct or interface block members");
7259      }
7260
7261      validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7262      validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7263
7264      /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7265       *
7266       *   "A block member may be declared with a stream identifier, but
7267       *   the specified stream must match the stream associated with the
7268       *   containing block."
7269       */
7270      if (qual->flags.q.explicit_stream) {
7271         unsigned qual_stream;
7272         if (process_qualifier_constant(state, &loc, "stream",
7273                                        qual->stream, &qual_stream) &&
7274             qual_stream != block_stream) {
7275            _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7276                             "interface block member does not match "
7277                             "the interface block (%u vs %u)", qual_stream,
7278                             block_stream);
7279         }
7280      }
7281
7282      int xfb_buffer;
7283      unsigned explicit_xfb_buffer = 0;
7284      if (qual->flags.q.explicit_xfb_buffer) {
7285         unsigned qual_xfb_buffer;
7286         if (process_qualifier_constant(state, &loc, "xfb_buffer",
7287                                        qual->xfb_buffer, &qual_xfb_buffer)) {
7288            explicit_xfb_buffer = 1;
7289            if (qual_xfb_buffer != block_xfb_buffer)
7290               _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7291                                "interface block member does not match "
7292                                "the interface block (%u vs %u)",
7293                                qual_xfb_buffer, block_xfb_buffer);
7294         }
7295         xfb_buffer = (int) qual_xfb_buffer;
7296      } else {
7297         if (layout)
7298            explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7299         xfb_buffer = (int) block_xfb_buffer;
7300      }
7301
7302      int xfb_stride = -1;
7303      if (qual->flags.q.explicit_xfb_stride) {
7304         unsigned qual_xfb_stride;
7305         if (process_qualifier_constant(state, &loc, "xfb_stride",
7306                                        qual->xfb_stride, &qual_xfb_stride)) {
7307            xfb_stride = (int) qual_xfb_stride;
7308         }
7309      }
7310
7311      if (qual->flags.q.uniform && qual->has_interpolation()) {
7312         _mesa_glsl_error(&loc, state,
7313                          "interpolation qualifiers cannot be used "
7314                          "with uniform interface blocks");
7315      }
7316
7317      if ((qual->flags.q.uniform || !is_interface) &&
7318          qual->has_auxiliary_storage()) {
7319         _mesa_glsl_error(&loc, state,
7320                          "auxiliary storage qualifiers cannot be used "
7321                          "in uniform blocks or structures.");
7322      }
7323
7324      if (qual->flags.q.row_major || qual->flags.q.column_major) {
7325         if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7326            _mesa_glsl_error(&loc, state,
7327                             "row_major and column_major can only be "
7328                             "applied to interface blocks");
7329         } else
7330            validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7331      }
7332
7333      foreach_list_typed (ast_declaration, decl, link,
7334                          &decl_list->declarations) {
7335         YYLTYPE loc = decl->get_location();
7336
7337         if (!allow_reserved_names)
7338            validate_identifier(decl->identifier, loc, state);
7339
7340         const struct glsl_type *field_type =
7341            process_array_type(&loc, decl_type, decl->array_specifier, state);
7342         validate_array_dimensions(field_type, state, &loc);
7343         fields[i].type = field_type;
7344         fields[i].name = decl->identifier;
7345         fields[i].interpolation =
7346            interpret_interpolation_qualifier(qual, field_type,
7347                                              var_mode, state, &loc);
7348         fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7349         fields[i].sample = qual->flags.q.sample ? 1 : 0;
7350         fields[i].patch = qual->flags.q.patch ? 1 : 0;
7351         fields[i].precision = qual->precision;
7352         fields[i].offset = -1;
7353         fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7354         fields[i].xfb_buffer = xfb_buffer;
7355         fields[i].xfb_stride = xfb_stride;
7356
7357         if (qual->flags.q.explicit_location) {
7358            unsigned qual_location;
7359            if (process_qualifier_constant(state, &loc, "location",
7360                                           qual->location, &qual_location)) {
7361               fields[i].location = qual_location +
7362                  (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7363               expl_location = fields[i].location +
7364                  fields[i].type->count_attribute_slots(false);
7365            }
7366         } else {
7367            if (layout && layout->flags.q.explicit_location) {
7368               fields[i].location = expl_location;
7369               expl_location += fields[i].type->count_attribute_slots(false);
7370            } else {
7371               fields[i].location = -1;
7372            }
7373         }
7374
7375         /* Offset can only be used with std430 and std140 layouts an initial
7376          * value of 0 is used for error detection.
7377          */
7378         unsigned align = 0;
7379         unsigned size = 0;
7380         if (layout) {
7381            bool row_major;
7382            if (qual->flags.q.row_major ||
7383                matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7384               row_major = true;
7385            } else {
7386               row_major = false;
7387            }
7388
7389            if(layout->flags.q.std140) {
7390               align = field_type->std140_base_alignment(row_major);
7391               size = field_type->std140_size(row_major);
7392            } else if (layout->flags.q.std430) {
7393               align = field_type->std430_base_alignment(row_major);
7394               size = field_type->std430_size(row_major);
7395            }
7396         }
7397
7398         if (qual->flags.q.explicit_offset) {
7399            unsigned qual_offset;
7400            if (process_qualifier_constant(state, &loc, "offset",
7401                                           qual->offset, &qual_offset)) {
7402               if (align != 0 && size != 0) {
7403                   if (next_offset > qual_offset)
7404                      _mesa_glsl_error(&loc, state, "layout qualifier "
7405                                       "offset overlaps previous member");
7406
7407                  if (qual_offset % align) {
7408                     _mesa_glsl_error(&loc, state, "layout qualifier offset "
7409                                      "must be a multiple of the base "
7410                                      "alignment of %s", field_type->name);
7411                  }
7412                  fields[i].offset = qual_offset;
7413                  next_offset = glsl_align(qual_offset + size, align);
7414               } else {
7415                  _mesa_glsl_error(&loc, state, "offset can only be used "
7416                                   "with std430 and std140 layouts");
7417               }
7418            }
7419         }
7420
7421         if (qual->flags.q.explicit_align || expl_align != 0) {
7422            unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7423               next_offset;
7424            if (align == 0 || size == 0) {
7425               _mesa_glsl_error(&loc, state, "align can only be used with "
7426                                "std430 and std140 layouts");
7427            } else if (qual->flags.q.explicit_align) {
7428               unsigned member_align;
7429               if (process_qualifier_constant(state, &loc, "align",
7430                                              qual->align, &member_align)) {
7431                  if (member_align == 0 ||
7432                      member_align & (member_align - 1)) {
7433                     _mesa_glsl_error(&loc, state, "align layout qualifier "
7434                                      "is not a power of 2");
7435                  } else {
7436                     fields[i].offset = glsl_align(offset, member_align);
7437                     next_offset = glsl_align(fields[i].offset + size, align);
7438                  }
7439               }
7440            } else {
7441               fields[i].offset = glsl_align(offset, expl_align);
7442               next_offset = glsl_align(fields[i].offset + size, align);
7443            }
7444         } else if (!qual->flags.q.explicit_offset) {
7445            if (align != 0 && size != 0)
7446               next_offset = glsl_align(next_offset + size, align);
7447         }
7448
7449         /* From the ARB_enhanced_layouts spec:
7450          *
7451          *    "The given offset applies to the first component of the first
7452          *    member of the qualified entity.  Then, within the qualified
7453          *    entity, subsequent components are each assigned, in order, to
7454          *    the next available offset aligned to a multiple of that
7455          *    component's size.  Aggregate types are flattened down to the
7456          *    component level to get this sequence of components."
7457          */
7458         if (qual->flags.q.explicit_xfb_offset) {
7459            unsigned xfb_offset;
7460            if (process_qualifier_constant(state, &loc, "xfb_offset",
7461                                           qual->offset, &xfb_offset)) {
7462               fields[i].offset = xfb_offset;
7463               block_xfb_offset = fields[i].offset +
7464                  4 * field_type->component_slots();
7465            }
7466         } else {
7467            if (layout && layout->flags.q.explicit_xfb_offset) {
7468               unsigned align = field_type->is_64bit() ? 8 : 4;
7469               fields[i].offset = glsl_align(block_xfb_offset, align);
7470               block_xfb_offset += 4 * field_type->component_slots();
7471            }
7472         }
7473
7474         /* Propogate row- / column-major information down the fields of the
7475          * structure or interface block.  Structures need this data because
7476          * the structure may contain a structure that contains ... a matrix
7477          * that need the proper layout.
7478          */
7479         if (is_interface && layout &&
7480             (layout->flags.q.uniform || layout->flags.q.buffer) &&
7481             (field_type->without_array()->is_matrix()
7482              || field_type->without_array()->is_record())) {
7483            /* If no layout is specified for the field, inherit the layout
7484             * from the block.
7485             */
7486            fields[i].matrix_layout = matrix_layout;
7487
7488            if (qual->flags.q.row_major)
7489               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7490            else if (qual->flags.q.column_major)
7491               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7492
7493            /* If we're processing an uniform or buffer block, the matrix
7494             * layout must be decided by this point.
7495             */
7496            assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7497                   || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7498         }
7499
7500         /* Memory qualifiers are allowed on buffer and image variables, while
7501          * the format qualifier is only accepted for images.
7502          */
7503         if (var_mode == ir_var_shader_storage ||
7504             field_type->without_array()->is_image()) {
7505            /* For readonly and writeonly qualifiers the field definition,
7506             * if set, overwrites the layout qualifier.
7507             */
7508            if (qual->flags.q.read_only || qual->flags.q.write_only) {
7509               fields[i].memory_read_only = qual->flags.q.read_only;
7510               fields[i].memory_write_only = qual->flags.q.write_only;
7511            } else {
7512               fields[i].memory_read_only =
7513                  layout ? layout->flags.q.read_only : 0;
7514               fields[i].memory_write_only =
7515                  layout ? layout->flags.q.write_only : 0;
7516            }
7517
7518            /* For other qualifiers, we set the flag if either the layout
7519             * qualifier or the field qualifier are set
7520             */
7521            fields[i].memory_coherent = qual->flags.q.coherent ||
7522                                        (layout && layout->flags.q.coherent);
7523            fields[i].memory_volatile = qual->flags.q._volatile ||
7524                                        (layout && layout->flags.q._volatile);
7525            fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7526                                        (layout && layout->flags.q.restrict_flag);
7527
7528            if (field_type->without_array()->is_image()) {
7529               if (qual->flags.q.explicit_image_format) {
7530                  if (qual->image_base_type !=
7531                      field_type->without_array()->sampled_type) {
7532                     _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7533                                      "match the base data type of the image");
7534                  }
7535
7536                  fields[i].image_format = qual->image_format;
7537               } else {
7538                  if (!qual->flags.q.write_only) {
7539                     _mesa_glsl_error(&loc, state, "image not qualified with "
7540                                      "`writeonly' must have a format layout "
7541                                      "qualifier");
7542                  }
7543
7544                  fields[i].image_format = GL_NONE;
7545               }
7546            }
7547         }
7548
7549         i++;
7550      }
7551   }
7552
7553   assert(i == decl_count);
7554
7555   *fields_ret = fields;
7556   return decl_count;
7557}
7558
7559
7560ir_rvalue *
7561ast_struct_specifier::hir(exec_list *instructions,
7562                          struct _mesa_glsl_parse_state *state)
7563{
7564   YYLTYPE loc = this->get_location();
7565
7566   unsigned expl_location = 0;
7567   if (layout && layout->flags.q.explicit_location) {
7568      if (!process_qualifier_constant(state, &loc, "location",
7569                                      layout->location, &expl_location)) {
7570         return NULL;
7571      } else {
7572         expl_location = VARYING_SLOT_VAR0 + expl_location;
7573      }
7574   }
7575
7576   glsl_struct_field *fields;
7577   unsigned decl_count =
7578      ast_process_struct_or_iface_block_members(instructions,
7579                                                state,
7580                                                &this->declarations,
7581                                                &fields,
7582                                                false,
7583                                                GLSL_MATRIX_LAYOUT_INHERITED,
7584                                                false /* allow_reserved_names */,
7585                                                ir_var_auto,
7586                                                layout,
7587                                                0, /* for interface only */
7588                                                0, /* for interface only */
7589                                                0, /* for interface only */
7590                                                expl_location,
7591                                                0 /* for interface only */);
7592
7593   validate_identifier(this->name, loc, state);
7594
7595   type = glsl_type::get_record_instance(fields, decl_count, this->name);
7596
7597   if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7598      const glsl_type *match = state->symbols->get_type(name);
7599      /* allow struct matching for desktop GL - older UE4 does this */
7600      if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7601         _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7602      else
7603         _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7604   } else {
7605      const glsl_type **s = reralloc(state, state->user_structures,
7606                                     const glsl_type *,
7607                                     state->num_user_structures + 1);
7608      if (s != NULL) {
7609         s[state->num_user_structures] = type;
7610         state->user_structures = s;
7611         state->num_user_structures++;
7612      }
7613   }
7614
7615   /* Structure type definitions do not have r-values.
7616    */
7617   return NULL;
7618}
7619
7620
7621/**
7622 * Visitor class which detects whether a given interface block has been used.
7623 */
7624class interface_block_usage_visitor : public ir_hierarchical_visitor
7625{
7626public:
7627   interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7628      : mode(mode), block(block), found(false)
7629   {
7630   }
7631
7632   virtual ir_visitor_status visit(ir_dereference_variable *ir)
7633   {
7634      if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7635         found = true;
7636         return visit_stop;
7637      }
7638      return visit_continue;
7639   }
7640
7641   bool usage_found() const
7642   {
7643      return this->found;
7644   }
7645
7646private:
7647   ir_variable_mode mode;
7648   const glsl_type *block;
7649   bool found;
7650};
7651
7652static bool
7653is_unsized_array_last_element(ir_variable *v)
7654{
7655   const glsl_type *interface_type = v->get_interface_type();
7656   int length = interface_type->length;
7657
7658   assert(v->type->is_unsized_array());
7659
7660   /* Check if it is the last element of the interface */
7661   if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7662      return true;
7663   return false;
7664}
7665
7666static void
7667apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7668{
7669   var->data.memory_read_only = field.memory_read_only;
7670   var->data.memory_write_only = field.memory_write_only;
7671   var->data.memory_coherent = field.memory_coherent;
7672   var->data.memory_volatile = field.memory_volatile;
7673   var->data.memory_restrict = field.memory_restrict;
7674}
7675
7676ir_rvalue *
7677ast_interface_block::hir(exec_list *instructions,
7678                         struct _mesa_glsl_parse_state *state)
7679{
7680   YYLTYPE loc = this->get_location();
7681
7682   /* Interface blocks must be declared at global scope */
7683   if (state->current_function != NULL) {
7684      _mesa_glsl_error(&loc, state,
7685                       "Interface block `%s' must be declared "
7686                       "at global scope",
7687                       this->block_name);
7688   }
7689
7690   /* Validate qualifiers:
7691    *
7692    * - Layout Qualifiers as per the table in Section 4.4
7693    *   ("Layout Qualifiers") of the GLSL 4.50 spec.
7694    *
7695    * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7696    *   GLSL 4.50 spec:
7697    *
7698    *     "Additionally, memory qualifiers may also be used in the declaration
7699    *      of shader storage blocks"
7700    *
7701    * Note the table in Section 4.4 says std430 is allowed on both uniform and
7702    * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7703    * Layout Qualifiers) of the GLSL 4.50 spec says:
7704    *
7705    *    "The std430 qualifier is supported only for shader storage blocks;
7706    *    using std430 on a uniform block will result in a compile-time error."
7707    */
7708   ast_type_qualifier allowed_blk_qualifiers;
7709   allowed_blk_qualifiers.flags.i = 0;
7710   if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7711      allowed_blk_qualifiers.flags.q.shared = 1;
7712      allowed_blk_qualifiers.flags.q.packed = 1;
7713      allowed_blk_qualifiers.flags.q.std140 = 1;
7714      allowed_blk_qualifiers.flags.q.row_major = 1;
7715      allowed_blk_qualifiers.flags.q.column_major = 1;
7716      allowed_blk_qualifiers.flags.q.explicit_align = 1;
7717      allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7718      if (this->layout.flags.q.buffer) {
7719         allowed_blk_qualifiers.flags.q.buffer = 1;
7720         allowed_blk_qualifiers.flags.q.std430 = 1;
7721         allowed_blk_qualifiers.flags.q.coherent = 1;
7722         allowed_blk_qualifiers.flags.q._volatile = 1;
7723         allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7724         allowed_blk_qualifiers.flags.q.read_only = 1;
7725         allowed_blk_qualifiers.flags.q.write_only = 1;
7726      } else {
7727         allowed_blk_qualifiers.flags.q.uniform = 1;
7728      }
7729   } else {
7730      /* Interface block */
7731      assert(this->layout.flags.q.in || this->layout.flags.q.out);
7732
7733      allowed_blk_qualifiers.flags.q.explicit_location = 1;
7734      if (this->layout.flags.q.out) {
7735         allowed_blk_qualifiers.flags.q.out = 1;
7736         if (state->stage == MESA_SHADER_GEOMETRY ||
7737          state->stage == MESA_SHADER_TESS_CTRL ||
7738          state->stage == MESA_SHADER_TESS_EVAL ||
7739          state->stage == MESA_SHADER_VERTEX ) {
7740            allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7741            allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7742            allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7743            allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7744            allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7745            if (state->stage == MESA_SHADER_GEOMETRY) {
7746               allowed_blk_qualifiers.flags.q.stream = 1;
7747               allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7748            }
7749            if (state->stage == MESA_SHADER_TESS_CTRL) {
7750               allowed_blk_qualifiers.flags.q.patch = 1;
7751            }
7752         }
7753      } else {
7754         allowed_blk_qualifiers.flags.q.in = 1;
7755         if (state->stage == MESA_SHADER_TESS_EVAL) {
7756            allowed_blk_qualifiers.flags.q.patch = 1;
7757         }
7758      }
7759   }
7760
7761   this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7762                               "invalid qualifier for block",
7763                               this->block_name);
7764
7765   enum glsl_interface_packing packing;
7766   if (this->layout.flags.q.std140) {
7767      packing = GLSL_INTERFACE_PACKING_STD140;
7768   } else if (this->layout.flags.q.packed) {
7769      packing = GLSL_INTERFACE_PACKING_PACKED;
7770   } else if (this->layout.flags.q.std430) {
7771      packing = GLSL_INTERFACE_PACKING_STD430;
7772   } else {
7773      /* The default layout is shared.
7774       */
7775      packing = GLSL_INTERFACE_PACKING_SHARED;
7776   }
7777
7778   ir_variable_mode var_mode;
7779   const char *iface_type_name;
7780   if (this->layout.flags.q.in) {
7781      var_mode = ir_var_shader_in;
7782      iface_type_name = "in";
7783   } else if (this->layout.flags.q.out) {
7784      var_mode = ir_var_shader_out;
7785      iface_type_name = "out";
7786   } else if (this->layout.flags.q.uniform) {
7787      var_mode = ir_var_uniform;
7788      iface_type_name = "uniform";
7789   } else if (this->layout.flags.q.buffer) {
7790      var_mode = ir_var_shader_storage;
7791      iface_type_name = "buffer";
7792   } else {
7793      var_mode = ir_var_auto;
7794      iface_type_name = "UNKNOWN";
7795      assert(!"interface block layout qualifier not found!");
7796   }
7797
7798   enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7799   if (this->layout.flags.q.row_major)
7800      matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7801   else if (this->layout.flags.q.column_major)
7802      matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7803
7804   bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7805   exec_list declared_variables;
7806   glsl_struct_field *fields;
7807
7808   /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7809    * that we don't have incompatible qualifiers
7810    */
7811   if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7812      _mesa_glsl_error(&loc, state,
7813                       "Interface block sets both readonly and writeonly");
7814   }
7815
7816   unsigned qual_stream;
7817   if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7818                                   &qual_stream) ||
7819       !validate_stream_qualifier(&loc, state, qual_stream)) {
7820      /* If the stream qualifier is invalid it doesn't make sense to continue
7821       * on and try to compare stream layouts on member variables against it
7822       * so just return early.
7823       */
7824      return NULL;
7825   }
7826
7827   unsigned qual_xfb_buffer;
7828   if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7829                                   layout.xfb_buffer, &qual_xfb_buffer) ||
7830       !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7831      return NULL;
7832   }
7833
7834   unsigned qual_xfb_offset;
7835   if (layout.flags.q.explicit_xfb_offset) {
7836      if (!process_qualifier_constant(state, &loc, "xfb_offset",
7837                                      layout.offset, &qual_xfb_offset)) {
7838         return NULL;
7839      }
7840   }
7841
7842   unsigned qual_xfb_stride;
7843   if (layout.flags.q.explicit_xfb_stride) {
7844      if (!process_qualifier_constant(state, &loc, "xfb_stride",
7845                                      layout.xfb_stride, &qual_xfb_stride)) {
7846         return NULL;
7847      }
7848   }
7849
7850   unsigned expl_location = 0;
7851   if (layout.flags.q.explicit_location) {
7852      if (!process_qualifier_constant(state, &loc, "location",
7853                                      layout.location, &expl_location)) {
7854         return NULL;
7855      } else {
7856         expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7857                                                     : VARYING_SLOT_VAR0;
7858      }
7859   }
7860
7861   unsigned expl_align = 0;
7862   if (layout.flags.q.explicit_align) {
7863      if (!process_qualifier_constant(state, &loc, "align",
7864                                      layout.align, &expl_align)) {
7865         return NULL;
7866      } else {
7867         if (expl_align == 0 || expl_align & (expl_align - 1)) {
7868            _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7869                             "power of 2.");
7870            return NULL;
7871         }
7872      }
7873   }
7874
7875   unsigned int num_variables =
7876      ast_process_struct_or_iface_block_members(&declared_variables,
7877                                                state,
7878                                                &this->declarations,
7879                                                &fields,
7880                                                true,
7881                                                matrix_layout,
7882                                                redeclaring_per_vertex,
7883                                                var_mode,
7884                                                &this->layout,
7885                                                qual_stream,
7886                                                qual_xfb_buffer,
7887                                                qual_xfb_offset,
7888                                                expl_location,
7889                                                expl_align);
7890
7891   if (!redeclaring_per_vertex) {
7892      validate_identifier(this->block_name, loc, state);
7893
7894      /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7895       *
7896       *     "Block names have no other use within a shader beyond interface
7897       *     matching; it is a compile-time error to use a block name at global
7898       *     scope for anything other than as a block name."
7899       */
7900      ir_variable *var = state->symbols->get_variable(this->block_name);
7901      if (var && !var->type->is_interface()) {
7902         _mesa_glsl_error(&loc, state, "Block name `%s' is "
7903                          "already used in the scope.",
7904                          this->block_name);
7905      }
7906   }
7907
7908   const glsl_type *earlier_per_vertex = NULL;
7909   if (redeclaring_per_vertex) {
7910      /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
7911       * the named interface block gl_in, we can find it by looking at the
7912       * previous declaration of gl_in.  Otherwise we can find it by looking
7913       * at the previous decalartion of any of the built-in outputs,
7914       * e.g. gl_Position.
7915       *
7916       * Also check that the instance name and array-ness of the redeclaration
7917       * are correct.
7918       */
7919      switch (var_mode) {
7920      case ir_var_shader_in:
7921         if (ir_variable *earlier_gl_in =
7922             state->symbols->get_variable("gl_in")) {
7923            earlier_per_vertex = earlier_gl_in->get_interface_type();
7924         } else {
7925            _mesa_glsl_error(&loc, state,
7926                             "redeclaration of gl_PerVertex input not allowed "
7927                             "in the %s shader",
7928                             _mesa_shader_stage_to_string(state->stage));
7929         }
7930         if (this->instance_name == NULL ||
7931             strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7932             !this->array_specifier->is_single_dimension()) {
7933            _mesa_glsl_error(&loc, state,
7934                             "gl_PerVertex input must be redeclared as "
7935                             "gl_in[]");
7936         }
7937         break;
7938      case ir_var_shader_out:
7939         if (ir_variable *earlier_gl_Position =
7940             state->symbols->get_variable("gl_Position")) {
7941            earlier_per_vertex = earlier_gl_Position->get_interface_type();
7942         } else if (ir_variable *earlier_gl_out =
7943               state->symbols->get_variable("gl_out")) {
7944            earlier_per_vertex = earlier_gl_out->get_interface_type();
7945         } else {
7946            _mesa_glsl_error(&loc, state,
7947                             "redeclaration of gl_PerVertex output not "
7948                             "allowed in the %s shader",
7949                             _mesa_shader_stage_to_string(state->stage));
7950         }
7951         if (state->stage == MESA_SHADER_TESS_CTRL) {
7952            if (this->instance_name == NULL ||
7953                strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7954               _mesa_glsl_error(&loc, state,
7955                                "gl_PerVertex output must be redeclared as "
7956                                "gl_out[]");
7957            }
7958         } else {
7959            if (this->instance_name != NULL) {
7960               _mesa_glsl_error(&loc, state,
7961                                "gl_PerVertex output may not be redeclared with "
7962                                "an instance name");
7963            }
7964         }
7965         break;
7966      default:
7967         _mesa_glsl_error(&loc, state,
7968                          "gl_PerVertex must be declared as an input or an "
7969                          "output");
7970         break;
7971      }
7972
7973      if (earlier_per_vertex == NULL) {
7974         /* An error has already been reported.  Bail out to avoid null
7975          * dereferences later in this function.
7976          */
7977         return NULL;
7978      }
7979
7980      /* Copy locations from the old gl_PerVertex interface block. */
7981      for (unsigned i = 0; i < num_variables; i++) {
7982         int j = earlier_per_vertex->field_index(fields[i].name);
7983         if (j == -1) {
7984            _mesa_glsl_error(&loc, state,
7985                             "redeclaration of gl_PerVertex must be a subset "
7986                             "of the built-in members of gl_PerVertex");
7987         } else {
7988            fields[i].location =
7989               earlier_per_vertex->fields.structure[j].location;
7990            fields[i].offset =
7991               earlier_per_vertex->fields.structure[j].offset;
7992            fields[i].interpolation =
7993               earlier_per_vertex->fields.structure[j].interpolation;
7994            fields[i].centroid =
7995               earlier_per_vertex->fields.structure[j].centroid;
7996            fields[i].sample =
7997               earlier_per_vertex->fields.structure[j].sample;
7998            fields[i].patch =
7999               earlier_per_vertex->fields.structure[j].patch;
8000            fields[i].precision =
8001               earlier_per_vertex->fields.structure[j].precision;
8002            fields[i].explicit_xfb_buffer =
8003               earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8004            fields[i].xfb_buffer =
8005               earlier_per_vertex->fields.structure[j].xfb_buffer;
8006            fields[i].xfb_stride =
8007               earlier_per_vertex->fields.structure[j].xfb_stride;
8008         }
8009      }
8010
8011      /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8012       * spec:
8013       *
8014       *     If a built-in interface block is redeclared, it must appear in
8015       *     the shader before any use of any member included in the built-in
8016       *     declaration, or a compilation error will result.
8017       *
8018       * This appears to be a clarification to the behaviour established for
8019       * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8020       * regardless of GLSL version.
8021       */
8022      interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8023      v.run(instructions);
8024      if (v.usage_found()) {
8025         _mesa_glsl_error(&loc, state,
8026                          "redeclaration of a built-in interface block must "
8027                          "appear before any use of any member of the "
8028                          "interface block");
8029      }
8030   }
8031
8032   const glsl_type *block_type =
8033      glsl_type::get_interface_instance(fields,
8034                                        num_variables,
8035                                        packing,
8036                                        matrix_layout ==
8037                                           GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8038                                        this->block_name);
8039
8040   unsigned component_size = block_type->contains_double() ? 8 : 4;
8041   int xfb_offset =
8042      layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8043   validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8044                                 component_size);
8045
8046   if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8047      YYLTYPE loc = this->get_location();
8048      _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8049                       "already taken in the current scope",
8050                       this->block_name, iface_type_name);
8051   }
8052
8053   /* Since interface blocks cannot contain statements, it should be
8054    * impossible for the block to generate any instructions.
8055    */
8056   assert(declared_variables.is_empty());
8057
8058   /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8059    *
8060    *     Geometry shader input variables get the per-vertex values written
8061    *     out by vertex shader output variables of the same names. Since a
8062    *     geometry shader operates on a set of vertices, each input varying
8063    *     variable (or input block, see interface blocks below) needs to be
8064    *     declared as an array.
8065    */
8066   if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8067       var_mode == ir_var_shader_in) {
8068      _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8069   } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8070               state->stage == MESA_SHADER_TESS_EVAL) &&
8071              !this->layout.flags.q.patch &&
8072              this->array_specifier == NULL &&
8073              var_mode == ir_var_shader_in) {
8074      _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8075   } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8076              !this->layout.flags.q.patch &&
8077              this->array_specifier == NULL &&
8078              var_mode == ir_var_shader_out) {
8079      _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8080   }
8081
8082
8083   /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8084    * says:
8085    *
8086    *     "If an instance name (instance-name) is used, then it puts all the
8087    *     members inside a scope within its own name space, accessed with the
8088    *     field selector ( . ) operator (analogously to structures)."
8089    */
8090   if (this->instance_name) {
8091      if (redeclaring_per_vertex) {
8092         /* When a built-in in an unnamed interface block is redeclared,
8093          * get_variable_being_redeclared() calls
8094          * check_builtin_array_max_size() to make sure that built-in array
8095          * variables aren't redeclared to illegal sizes.  But we're looking
8096          * at a redeclaration of a named built-in interface block.  So we
8097          * have to manually call check_builtin_array_max_size() for all parts
8098          * of the interface that are arrays.
8099          */
8100         for (unsigned i = 0; i < num_variables; i++) {
8101            if (fields[i].type->is_array()) {
8102               const unsigned size = fields[i].type->array_size();
8103               check_builtin_array_max_size(fields[i].name, size, loc, state);
8104            }
8105         }
8106      } else {
8107         validate_identifier(this->instance_name, loc, state);
8108      }
8109
8110      ir_variable *var;
8111
8112      if (this->array_specifier != NULL) {
8113         const glsl_type *block_array_type =
8114            process_array_type(&loc, block_type, this->array_specifier, state);
8115
8116         /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8117          *
8118          *     For uniform blocks declared an array, each individual array
8119          *     element corresponds to a separate buffer object backing one
8120          *     instance of the block. As the array size indicates the number
8121          *     of buffer objects needed, uniform block array declarations
8122          *     must specify an array size.
8123          *
8124          * And a few paragraphs later:
8125          *
8126          *     Geometry shader input blocks must be declared as arrays and
8127          *     follow the array declaration and linking rules for all
8128          *     geometry shader inputs. All other input and output block
8129          *     arrays must specify an array size.
8130          *
8131          * The same applies to tessellation shaders.
8132          *
8133          * The upshot of this is that the only circumstance where an
8134          * interface array size *doesn't* need to be specified is on a
8135          * geometry shader input, tessellation control shader input,
8136          * tessellation control shader output, and tessellation evaluation
8137          * shader input.
8138          */
8139         if (block_array_type->is_unsized_array()) {
8140            bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8141                                state->stage == MESA_SHADER_TESS_CTRL ||
8142                                state->stage == MESA_SHADER_TESS_EVAL;
8143            bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8144
8145            if (this->layout.flags.q.in) {
8146               if (!allow_inputs)
8147                  _mesa_glsl_error(&loc, state,
8148                                   "unsized input block arrays not allowed in "
8149                                   "%s shader",
8150                                   _mesa_shader_stage_to_string(state->stage));
8151            } else if (this->layout.flags.q.out) {
8152               if (!allow_outputs)
8153                  _mesa_glsl_error(&loc, state,
8154                                   "unsized output block arrays not allowed in "
8155                                   "%s shader",
8156                                   _mesa_shader_stage_to_string(state->stage));
8157            } else {
8158               /* by elimination, this is a uniform block array */
8159               _mesa_glsl_error(&loc, state,
8160                                "unsized uniform block arrays not allowed in "
8161                                "%s shader",
8162                                _mesa_shader_stage_to_string(state->stage));
8163            }
8164         }
8165
8166         /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8167          *
8168          *     * Arrays of arrays of blocks are not allowed
8169          */
8170         if (state->es_shader && block_array_type->is_array() &&
8171             block_array_type->fields.array->is_array()) {
8172            _mesa_glsl_error(&loc, state,
8173                             "arrays of arrays interface blocks are "
8174                             "not allowed");
8175         }
8176
8177         var = new(state) ir_variable(block_array_type,
8178                                      this->instance_name,
8179                                      var_mode);
8180      } else {
8181         var = new(state) ir_variable(block_type,
8182                                      this->instance_name,
8183                                      var_mode);
8184      }
8185
8186      var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8187         ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8188
8189      if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8190         var->data.read_only = true;
8191
8192      var->data.patch = this->layout.flags.q.patch;
8193
8194      if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8195         handle_geometry_shader_input_decl(state, loc, var);
8196      else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8197           state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8198         handle_tess_shader_input_decl(state, loc, var);
8199      else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8200         handle_tess_ctrl_shader_output_decl(state, loc, var);
8201
8202      for (unsigned i = 0; i < num_variables; i++) {
8203         if (var->data.mode == ir_var_shader_storage)
8204            apply_memory_qualifiers(var, fields[i]);
8205      }
8206
8207      if (ir_variable *earlier =
8208          state->symbols->get_variable(this->instance_name)) {
8209         if (!redeclaring_per_vertex) {
8210            _mesa_glsl_error(&loc, state, "`%s' redeclared",
8211                             this->instance_name);
8212         }
8213         earlier->data.how_declared = ir_var_declared_normally;
8214         earlier->type = var->type;
8215         earlier->reinit_interface_type(block_type);
8216         delete var;
8217      } else {
8218         if (this->layout.flags.q.explicit_binding) {
8219            apply_explicit_binding(state, &loc, var, var->type,
8220                                   &this->layout);
8221         }
8222
8223         var->data.stream = qual_stream;
8224         if (layout.flags.q.explicit_location) {
8225            var->data.location = expl_location;
8226            var->data.explicit_location = true;
8227         }
8228
8229         state->symbols->add_variable(var);
8230         instructions->push_tail(var);
8231      }
8232   } else {
8233      /* In order to have an array size, the block must also be declared with
8234       * an instance name.
8235       */
8236      assert(this->array_specifier == NULL);
8237
8238      for (unsigned i = 0; i < num_variables; i++) {
8239         ir_variable *var =
8240            new(state) ir_variable(fields[i].type,
8241                                   ralloc_strdup(state, fields[i].name),
8242                                   var_mode);
8243         var->data.interpolation = fields[i].interpolation;
8244         var->data.centroid = fields[i].centroid;
8245         var->data.sample = fields[i].sample;
8246         var->data.patch = fields[i].patch;
8247         var->data.stream = qual_stream;
8248         var->data.location = fields[i].location;
8249
8250         if (fields[i].location != -1)
8251            var->data.explicit_location = true;
8252
8253         var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8254         var->data.xfb_buffer = fields[i].xfb_buffer;
8255
8256         if (fields[i].offset != -1)
8257            var->data.explicit_xfb_offset = true;
8258         var->data.offset = fields[i].offset;
8259
8260         var->init_interface_type(block_type);
8261
8262         if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8263            var->data.read_only = true;
8264
8265         /* Precision qualifiers do not have any meaning in Desktop GLSL */
8266         if (state->es_shader) {
8267            var->data.precision =
8268               select_gles_precision(fields[i].precision, fields[i].type,
8269                                     state, &loc);
8270         }
8271
8272         if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8273            var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8274               ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8275         } else {
8276            var->data.matrix_layout = fields[i].matrix_layout;
8277         }
8278
8279         if (var->data.mode == ir_var_shader_storage)
8280            apply_memory_qualifiers(var, fields[i]);
8281
8282         /* Examine var name here since var may get deleted in the next call */
8283         bool var_is_gl_id = is_gl_identifier(var->name);
8284
8285         if (redeclaring_per_vertex) {
8286            bool is_redeclaration;
8287            var =
8288               get_variable_being_redeclared(&var, loc, state,
8289                                             true /* allow_all_redeclarations */,
8290                                             &is_redeclaration);
8291            if (!var_is_gl_id || !is_redeclaration) {
8292               _mesa_glsl_error(&loc, state,
8293                                "redeclaration of gl_PerVertex can only "
8294                                "include built-in variables");
8295            } else if (var->data.how_declared == ir_var_declared_normally) {
8296               _mesa_glsl_error(&loc, state,
8297                                "`%s' has already been redeclared",
8298                                var->name);
8299            } else {
8300               var->data.how_declared = ir_var_declared_in_block;
8301               var->reinit_interface_type(block_type);
8302            }
8303            continue;
8304         }
8305
8306         if (state->symbols->get_variable(var->name) != NULL)
8307            _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8308
8309         /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8310          * The UBO declaration itself doesn't get an ir_variable unless it
8311          * has an instance name.  This is ugly.
8312          */
8313         if (this->layout.flags.q.explicit_binding) {
8314            apply_explicit_binding(state, &loc, var,
8315                                   var->get_interface_type(), &this->layout);
8316         }
8317
8318         if (var->type->is_unsized_array()) {
8319            if (var->is_in_shader_storage_block() &&
8320                is_unsized_array_last_element(var)) {
8321               var->data.from_ssbo_unsized_array = true;
8322            } else {
8323               /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8324                *
8325                * "If an array is declared as the last member of a shader storage
8326                * block and the size is not specified at compile-time, it is
8327                * sized at run-time. In all other cases, arrays are sized only
8328                * at compile-time."
8329                *
8330                * In desktop GLSL it is allowed to have unsized-arrays that are
8331                * not last, as long as we can determine that they are implicitly
8332                * sized.
8333                */
8334               if (state->es_shader) {
8335                  _mesa_glsl_error(&loc, state, "unsized array `%s' "
8336                                   "definition: only last member of a shader "
8337                                   "storage block can be defined as unsized "
8338                                   "array", fields[i].name);
8339               }
8340            }
8341         }
8342
8343         state->symbols->add_variable(var);
8344         instructions->push_tail(var);
8345      }
8346
8347      if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8348         /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8349          *
8350          *     It is also a compilation error ... to redeclare a built-in
8351          *     block and then use a member from that built-in block that was
8352          *     not included in the redeclaration.
8353          *
8354          * This appears to be a clarification to the behaviour established
8355          * for gl_PerVertex by GLSL 1.50, therefore we implement this
8356          * behaviour regardless of GLSL version.
8357          *
8358          * To prevent the shader from using a member that was not included in
8359          * the redeclaration, we disable any ir_variables that are still
8360          * associated with the old declaration of gl_PerVertex (since we've
8361          * already updated all of the variables contained in the new
8362          * gl_PerVertex to point to it).
8363          *
8364          * As a side effect this will prevent
8365          * validate_intrastage_interface_blocks() from getting confused and
8366          * thinking there are conflicting definitions of gl_PerVertex in the
8367          * shader.
8368          */
8369         foreach_in_list_safe(ir_instruction, node, instructions) {
8370            ir_variable *const var = node->as_variable();
8371            if (var != NULL &&
8372                var->get_interface_type() == earlier_per_vertex &&
8373                var->data.mode == var_mode) {
8374               if (var->data.how_declared == ir_var_declared_normally) {
8375                  _mesa_glsl_error(&loc, state,
8376                                   "redeclaration of gl_PerVertex cannot "
8377                                   "follow a redeclaration of `%s'",
8378                                   var->name);
8379               }
8380               state->symbols->disable_variable(var->name);
8381               var->remove();
8382            }
8383         }
8384      }
8385   }
8386
8387   return NULL;
8388}
8389
8390
8391ir_rvalue *
8392ast_tcs_output_layout::hir(exec_list *instructions,
8393                           struct _mesa_glsl_parse_state *state)
8394{
8395   YYLTYPE loc = this->get_location();
8396
8397   unsigned num_vertices;
8398   if (!state->out_qualifier->vertices->
8399          process_qualifier_constant(state, "vertices", &num_vertices,
8400                                     false)) {
8401      /* return here to stop cascading incorrect error messages */
8402     return NULL;
8403   }
8404
8405   /* If any shader outputs occurred before this declaration and specified an
8406    * array size, make sure the size they specified is consistent with the
8407    * primitive type.
8408    */
8409   if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8410      _mesa_glsl_error(&loc, state,
8411                       "this tessellation control shader output layout "
8412                       "specifies %u vertices, but a previous output "
8413                       "is declared with size %u",
8414                       num_vertices, state->tcs_output_size);
8415      return NULL;
8416   }
8417
8418   state->tcs_output_vertices_specified = true;
8419
8420   /* If any shader outputs occurred before this declaration and did not
8421    * specify an array size, their size is determined now.
8422    */
8423   foreach_in_list (ir_instruction, node, instructions) {
8424      ir_variable *var = node->as_variable();
8425      if (var == NULL || var->data.mode != ir_var_shader_out)
8426         continue;
8427
8428      /* Note: Not all tessellation control shader output are arrays. */
8429      if (!var->type->is_unsized_array() || var->data.patch)
8430         continue;
8431
8432      if (var->data.max_array_access >= (int)num_vertices) {
8433         _mesa_glsl_error(&loc, state,
8434                          "this tessellation control shader output layout "
8435                          "specifies %u vertices, but an access to element "
8436                          "%u of output `%s' already exists", num_vertices,
8437                          var->data.max_array_access, var->name);
8438      } else {
8439         var->type = glsl_type::get_array_instance(var->type->fields.array,
8440                                                   num_vertices);
8441      }
8442   }
8443
8444   return NULL;
8445}
8446
8447
8448ir_rvalue *
8449ast_gs_input_layout::hir(exec_list *instructions,
8450                         struct _mesa_glsl_parse_state *state)
8451{
8452   YYLTYPE loc = this->get_location();
8453
8454   /* Should have been prevented by the parser. */
8455   assert(!state->gs_input_prim_type_specified
8456          || state->in_qualifier->prim_type == this->prim_type);
8457
8458   /* If any shader inputs occurred before this declaration and specified an
8459    * array size, make sure the size they specified is consistent with the
8460    * primitive type.
8461    */
8462   unsigned num_vertices = vertices_per_prim(this->prim_type);
8463   if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8464      _mesa_glsl_error(&loc, state,
8465                       "this geometry shader input layout implies %u vertices"
8466                       " per primitive, but a previous input is declared"
8467                       " with size %u", num_vertices, state->gs_input_size);
8468      return NULL;
8469   }
8470
8471   state->gs_input_prim_type_specified = true;
8472
8473   /* If any shader inputs occurred before this declaration and did not
8474    * specify an array size, their size is determined now.
8475    */
8476   foreach_in_list(ir_instruction, node, instructions) {
8477      ir_variable *var = node->as_variable();
8478      if (var == NULL || var->data.mode != ir_var_shader_in)
8479         continue;
8480
8481      /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8482       * array; skip it.
8483       */
8484
8485      if (var->type->is_unsized_array()) {
8486         if (var->data.max_array_access >= (int)num_vertices) {
8487            _mesa_glsl_error(&loc, state,
8488                             "this geometry shader input layout implies %u"
8489                             " vertices, but an access to element %u of input"
8490                             " `%s' already exists", num_vertices,
8491                             var->data.max_array_access, var->name);
8492         } else {
8493            var->type = glsl_type::get_array_instance(var->type->fields.array,
8494                                                      num_vertices);
8495         }
8496      }
8497   }
8498
8499   return NULL;
8500}
8501
8502
8503ir_rvalue *
8504ast_cs_input_layout::hir(exec_list *instructions,
8505                         struct _mesa_glsl_parse_state *state)
8506{
8507   YYLTYPE loc = this->get_location();
8508
8509   /* From the ARB_compute_shader specification:
8510    *
8511    *     If the local size of the shader in any dimension is greater
8512    *     than the maximum size supported by the implementation for that
8513    *     dimension, a compile-time error results.
8514    *
8515    * It is not clear from the spec how the error should be reported if
8516    * the total size of the work group exceeds
8517    * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8518    * report it at compile time as well.
8519    */
8520   GLuint64 total_invocations = 1;
8521   unsigned qual_local_size[3];
8522   for (int i = 0; i < 3; i++) {
8523
8524      char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8525                                             'x' + i);
8526      /* Infer a local_size of 1 for unspecified dimensions */
8527      if (this->local_size[i] == NULL) {
8528         qual_local_size[i] = 1;
8529      } else if (!this->local_size[i]->
8530             process_qualifier_constant(state, local_size_str,
8531                                        &qual_local_size[i], false)) {
8532         ralloc_free(local_size_str);
8533         return NULL;
8534      }
8535      ralloc_free(local_size_str);
8536
8537      if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8538         _mesa_glsl_error(&loc, state,
8539                          "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8540                          " (%d)", 'x' + i,
8541                          state->ctx->Const.MaxComputeWorkGroupSize[i]);
8542         break;
8543      }
8544      total_invocations *= qual_local_size[i];
8545      if (total_invocations >
8546          state->ctx->Const.MaxComputeWorkGroupInvocations) {
8547         _mesa_glsl_error(&loc, state,
8548                          "product of local_sizes exceeds "
8549                          "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8550                          state->ctx->Const.MaxComputeWorkGroupInvocations);
8551         break;
8552      }
8553   }
8554
8555   /* If any compute input layout declaration preceded this one, make sure it
8556    * was consistent with this one.
8557    */
8558   if (state->cs_input_local_size_specified) {
8559      for (int i = 0; i < 3; i++) {
8560         if (state->cs_input_local_size[i] != qual_local_size[i]) {
8561            _mesa_glsl_error(&loc, state,
8562                             "compute shader input layout does not match"
8563                             " previous declaration");
8564            return NULL;
8565         }
8566      }
8567   }
8568
8569   /* The ARB_compute_variable_group_size spec says:
8570    *
8571    *     If a compute shader including a *local_size_variable* qualifier also
8572    *     declares a fixed local group size using the *local_size_x*,
8573    *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8574    *     results
8575    */
8576   if (state->cs_input_local_size_variable_specified) {
8577      _mesa_glsl_error(&loc, state,
8578                       "compute shader can't include both a variable and a "
8579                       "fixed local group size");
8580      return NULL;
8581   }
8582
8583   state->cs_input_local_size_specified = true;
8584   for (int i = 0; i < 3; i++)
8585      state->cs_input_local_size[i] = qual_local_size[i];
8586
8587   /* We may now declare the built-in constant gl_WorkGroupSize (see
8588    * builtin_variable_generator::generate_constants() for why we didn't
8589    * declare it earlier).
8590    */
8591   ir_variable *var = new(state->symbols)
8592      ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8593   var->data.how_declared = ir_var_declared_implicitly;
8594   var->data.read_only = true;
8595   instructions->push_tail(var);
8596   state->symbols->add_variable(var);
8597   ir_constant_data data;
8598   memset(&data, 0, sizeof(data));
8599   for (int i = 0; i < 3; i++)
8600      data.u[i] = qual_local_size[i];
8601   var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8602   var->constant_initializer =
8603      new(var) ir_constant(glsl_type::uvec3_type, &data);
8604   var->data.has_initializer = true;
8605
8606   return NULL;
8607}
8608
8609
8610static void
8611detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8612                               exec_list *instructions)
8613{
8614   bool gl_FragColor_assigned = false;
8615   bool gl_FragData_assigned = false;
8616   bool gl_FragSecondaryColor_assigned = false;
8617   bool gl_FragSecondaryData_assigned = false;
8618   bool user_defined_fs_output_assigned = false;
8619   ir_variable *user_defined_fs_output = NULL;
8620
8621   /* It would be nice to have proper location information. */
8622   YYLTYPE loc;
8623   memset(&loc, 0, sizeof(loc));
8624
8625   foreach_in_list(ir_instruction, node, instructions) {
8626      ir_variable *var = node->as_variable();
8627
8628      if (!var || !var->data.assigned)
8629         continue;
8630
8631      if (strcmp(var->name, "gl_FragColor") == 0)
8632         gl_FragColor_assigned = true;
8633      else if (strcmp(var->name, "gl_FragData") == 0)
8634         gl_FragData_assigned = true;
8635        else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8636         gl_FragSecondaryColor_assigned = true;
8637        else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8638         gl_FragSecondaryData_assigned = true;
8639      else if (!is_gl_identifier(var->name)) {
8640         if (state->stage == MESA_SHADER_FRAGMENT &&
8641             var->data.mode == ir_var_shader_out) {
8642            user_defined_fs_output_assigned = true;
8643            user_defined_fs_output = var;
8644         }
8645      }
8646   }
8647
8648   /* From the GLSL 1.30 spec:
8649    *
8650    *     "If a shader statically assigns a value to gl_FragColor, it
8651    *      may not assign a value to any element of gl_FragData. If a
8652    *      shader statically writes a value to any element of
8653    *      gl_FragData, it may not assign a value to
8654    *      gl_FragColor. That is, a shader may assign values to either
8655    *      gl_FragColor or gl_FragData, but not both. Multiple shaders
8656    *      linked together must also consistently write just one of
8657    *      these variables.  Similarly, if user declared output
8658    *      variables are in use (statically assigned to), then the
8659    *      built-in variables gl_FragColor and gl_FragData may not be
8660    *      assigned to. These incorrect usages all generate compile
8661    *      time errors."
8662    */
8663   if (gl_FragColor_assigned && gl_FragData_assigned) {
8664      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8665                       "`gl_FragColor' and `gl_FragData'");
8666   } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8667      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8668                       "`gl_FragColor' and `%s'",
8669                       user_defined_fs_output->name);
8670   } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8671      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8672                       "`gl_FragSecondaryColorEXT' and"
8673                       " `gl_FragSecondaryDataEXT'");
8674   } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8675      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8676                       "`gl_FragColor' and"
8677                       " `gl_FragSecondaryDataEXT'");
8678   } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8679      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8680                       "`gl_FragData' and"
8681                       " `gl_FragSecondaryColorEXT'");
8682   } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8683      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8684                       "`gl_FragData' and `%s'",
8685                       user_defined_fs_output->name);
8686   }
8687
8688   if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8689       !state->EXT_blend_func_extended_enable) {
8690      _mesa_glsl_error(&loc, state,
8691                       "Dual source blending requires EXT_blend_func_extended");
8692   }
8693}
8694
8695static void
8696verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8697{
8698   YYLTYPE loc;
8699   memset(&loc, 0, sizeof(loc));
8700
8701   /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8702    *
8703    *   "A program will fail to compile or link if any shader
8704    *    or stage contains two or more functions with the same
8705    *    name if the name is associated with a subroutine type."
8706    */
8707
8708   for (int i = 0; i < state->num_subroutines; i++) {
8709      unsigned definitions = 0;
8710      ir_function *fn = state->subroutines[i];
8711      /* Calculate number of function definitions with the same name */
8712      foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8713         if (sig->is_defined) {
8714            if (++definitions > 1) {
8715               _mesa_glsl_error(&loc, state,
8716                     "%s shader contains two or more function "
8717                     "definitions with name `%s', which is "
8718                     "associated with a subroutine type.\n",
8719                     _mesa_shader_stage_to_string(state->stage),
8720                     fn->name);
8721               return;
8722            }
8723         }
8724      }
8725   }
8726}
8727
8728static void
8729remove_per_vertex_blocks(exec_list *instructions,
8730                         _mesa_glsl_parse_state *state, ir_variable_mode mode)
8731{
8732   /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8733    * if it exists in this shader type.
8734    */
8735   const glsl_type *per_vertex = NULL;
8736   switch (mode) {
8737   case ir_var_shader_in:
8738      if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8739         per_vertex = gl_in->get_interface_type();
8740      break;
8741   case ir_var_shader_out:
8742      if (ir_variable *gl_Position =
8743          state->symbols->get_variable("gl_Position")) {
8744         per_vertex = gl_Position->get_interface_type();
8745      }
8746      break;
8747   default:
8748      assert(!"Unexpected mode");
8749      break;
8750   }
8751
8752   /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8753    * need to do anything.
8754    */
8755   if (per_vertex == NULL)
8756      return;
8757
8758   /* If the interface block is used by the shader, then we don't need to do
8759    * anything.
8760    */
8761   interface_block_usage_visitor v(mode, per_vertex);
8762   v.run(instructions);
8763   if (v.usage_found())
8764      return;
8765
8766   /* Remove any ir_variable declarations that refer to the interface block
8767    * we're removing.
8768    */
8769   foreach_in_list_safe(ir_instruction, node, instructions) {
8770      ir_variable *const var = node->as_variable();
8771      if (var != NULL && var->get_interface_type() == per_vertex &&
8772          var->data.mode == mode) {
8773         state->symbols->disable_variable(var->name);
8774         var->remove();
8775      }
8776   }
8777}
8778