1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28#include "nir.h"
29#include "nir_builder.h"
30#include "nir_vla.h"
31
32/*
33 * This file implements an out-of-SSA pass as described in "Revisiting
34 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
35 * Boissinot et al.
36 */
37
38struct from_ssa_state {
39   nir_builder builder;
40   void *dead_ctx;
41   struct exec_list dead_instrs;
42   bool phi_webs_only;
43   struct hash_table *merge_node_table;
44   nir_instr *instr;
45   bool progress;
46};
47
48/* Returns if def @a comes after def @b.
49 *
50 * The core observation that makes the Boissinot algorithm efficient
51 * is that, given two properly sorted sets, we can check for
52 * interference in these sets via a linear walk. This is accomplished
53 * by doing single combined walk over union of the two sets in DFS
54 * order. It doesn't matter what DFS we do so long as we're
55 * consistent. Fortunately, the dominance algorithm we ran prior to
56 * this pass did such a walk and recorded the pre- and post-indices in
57 * the blocks.
58 *
59 * We treat SSA undefs as always coming before other instruction types.
60 */
61static bool
62def_after(nir_ssa_def *a, nir_ssa_def *b)
63{
64   if (a->parent_instr->type == nir_instr_type_ssa_undef)
65      return false;
66
67   if (b->parent_instr->type == nir_instr_type_ssa_undef)
68      return true;
69
70   /* If they're in the same block, we can rely on whichever instruction
71    * comes first in the block.
72    */
73   if (a->parent_instr->block == b->parent_instr->block)
74      return a->parent_instr->index > b->parent_instr->index;
75
76   /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */
77   return a->parent_instr->block->dom_pre_index >
78          b->parent_instr->block->dom_pre_index;
79}
80
81/* Returns true if a dominates b */
82static bool
83ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
84{
85   if (a->parent_instr->type == nir_instr_type_ssa_undef) {
86      /* SSA undefs always dominate */
87      return true;
88   } if (def_after(a, b)) {
89      return false;
90   } else if (a->parent_instr->block == b->parent_instr->block) {
91      return def_after(b, a);
92   } else {
93      return nir_block_dominates(a->parent_instr->block,
94                                 b->parent_instr->block);
95   }
96}
97
98
99/* The following data structure, which I have named merge_set is a way of
100 * representing a set registers of non-interfering registers.  This is
101 * based on the concept of a "dominance forest" presented in "Fast Copy
102 * Coalescing and Live-Range Identification" by Budimlic et al. but the
103 * implementation concept is taken from  "Revisiting Out-of-SSA Translation
104 * for Correctness, Code Quality, and Efficiency" by Boissinot et al.
105 *
106 * Each SSA definition is associated with a merge_node and the association
107 * is represented by a combination of a hash table and the "def" parameter
108 * in the merge_node structure.  The merge_set stores a linked list of
109 * merge_nodes, ordered by a pre-order DFS walk of the dominance tree.  (Since
110 * the liveness analysis pass indexes the SSA values in dominance order for
111 * us, this is an easy thing to keep up.)  It is assumed that no pair of the
112 * nodes in a given set interfere.  Merging two sets or checking for
113 * interference can be done in a single linear-time merge-sort walk of the
114 * two lists of nodes.
115 */
116struct merge_set;
117
118typedef struct {
119   struct exec_node node;
120   struct merge_set *set;
121   nir_ssa_def *def;
122} merge_node;
123
124typedef struct merge_set {
125   struct exec_list nodes;
126   unsigned size;
127   bool divergent;
128   nir_register *reg;
129} merge_set;
130
131#if 0
132static void
133merge_set_dump(merge_set *set, FILE *fp)
134{
135   nir_ssa_def *dom[set->size];
136   int dom_idx = -1;
137
138   foreach_list_typed(merge_node, node, node, &set->nodes) {
139      while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
140         dom_idx--;
141
142      for (int i = 0; i <= dom_idx; i++)
143         fprintf(fp, "  ");
144
145      fprintf(fp, "ssa_%d\n", node->def->index);
146
147      dom[++dom_idx] = node->def;
148   }
149}
150#endif
151
152static merge_node *
153get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
154{
155   struct hash_entry *entry =
156      _mesa_hash_table_search(state->merge_node_table, def);
157   if (entry)
158      return entry->data;
159
160   merge_set *set = ralloc(state->dead_ctx, merge_set);
161   exec_list_make_empty(&set->nodes);
162   set->size = 1;
163   set->divergent = def->divergent;
164   set->reg = NULL;
165
166   merge_node *node = ralloc(state->dead_ctx, merge_node);
167   node->set = set;
168   node->def = def;
169   exec_list_push_head(&set->nodes, &node->node);
170
171   _mesa_hash_table_insert(state->merge_node_table, def, node);
172
173   return node;
174}
175
176static bool
177merge_nodes_interfere(merge_node *a, merge_node *b)
178{
179   /* There's no need to check for interference within the same set,
180    * because we assume, that sets themselves are already
181    * interference-free.
182    */
183   if (a->set == b->set)
184      return false;
185
186   return nir_ssa_defs_interfere(a->def, b->def);
187}
188
189/* Merges b into a
190 *
191 * This algorithm uses def_after to ensure that the sets always stay in the
192 * same order as the pre-order DFS done by the liveness algorithm.
193 */
194static merge_set *
195merge_merge_sets(merge_set *a, merge_set *b)
196{
197   struct exec_node *an = exec_list_get_head(&a->nodes);
198   struct exec_node *bn = exec_list_get_head(&b->nodes);
199   while (!exec_node_is_tail_sentinel(bn)) {
200      merge_node *a_node = exec_node_data(merge_node, an, node);
201      merge_node *b_node = exec_node_data(merge_node, bn, node);
202
203      if (exec_node_is_tail_sentinel(an) ||
204          def_after(a_node->def, b_node->def)) {
205         struct exec_node *next = bn->next;
206         exec_node_remove(bn);
207         exec_node_insert_node_before(an, bn);
208         exec_node_data(merge_node, bn, node)->set = a;
209         bn = next;
210      } else {
211         an = an->next;
212      }
213   }
214
215   a->size += b->size;
216   b->size = 0;
217   a->divergent |= b->divergent;
218
219   return a;
220}
221
222/* Checks for any interference between two merge sets
223 *
224 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
225 * Translation for Correctness, Code Quality, and Efficiency" by
226 * Boissinot et al.
227 */
228static bool
229merge_sets_interfere(merge_set *a, merge_set *b)
230{
231   /* List of all the nodes which dominate the current node, in dominance
232    * order.
233    */
234   NIR_VLA(merge_node *, dom, a->size + b->size);
235   int dom_idx = -1;
236
237   struct exec_node *an = exec_list_get_head(&a->nodes);
238   struct exec_node *bn = exec_list_get_head(&b->nodes);
239   while (!exec_node_is_tail_sentinel(an) ||
240          !exec_node_is_tail_sentinel(bn)) {
241
242      /* We walk the union of the two sets in the same order as the pre-order
243       * DFS done by liveness analysis.
244       */
245      merge_node *current;
246      if (exec_node_is_tail_sentinel(an)) {
247         current = exec_node_data(merge_node, bn, node);
248         bn = bn->next;
249      } else if (exec_node_is_tail_sentinel(bn)) {
250         current = exec_node_data(merge_node, an, node);
251         an = an->next;
252      } else {
253         merge_node *a_node = exec_node_data(merge_node, an, node);
254         merge_node *b_node = exec_node_data(merge_node, bn, node);
255
256         if (def_after(b_node->def, a_node->def)) {
257            current = a_node;
258            an = an->next;
259         } else {
260            current = b_node;
261            bn = bn->next;
262         }
263      }
264
265      /* Because our walk is a pre-order DFS, we can maintain the list of
266       * dominating nodes as a simple stack, pushing every node onto the list
267       * after we visit it and popping any non-dominating nodes off before we
268       * visit the current node.
269       */
270      while (dom_idx >= 0 &&
271             !ssa_def_dominates(dom[dom_idx]->def, current->def))
272         dom_idx--;
273
274      /* There are three invariants of this algorithm that are important here:
275       *
276       *  1. There is no interference within either set a or set b.
277       *  2. None of the nodes processed up until this point interfere.
278       *  3. All the dominators of `current` have been processed
279       *
280       * Because of these invariants, we only need to check the current node
281       * against its minimal dominator.  If any other node N in the union
282       * interferes with current, then N must dominate current because we are
283       * in SSA form.  If N dominates current then it must also dominate our
284       * minimal dominator dom[dom_idx].  Since N is live at current it must
285       * also be live at the minimal dominator which means N interferes with
286       * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above,
287       * the algorithm would have already terminated.  Therefore, if we got
288       * here, the only node that can possibly interfere with current is the
289       * minimal dominator dom[dom_idx].
290       *
291       * This is what allows us to do a interference check of the union of the
292       * two sets with a single linear-time walk.
293       */
294      if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
295         return true;
296
297      dom[++dom_idx] = current;
298   }
299
300   return false;
301}
302
303static bool
304add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx)
305{
306   bool need_end_copy = false;
307   if (block->successors[0]) {
308      nir_instr *instr = nir_block_first_instr(block->successors[0]);
309      if (instr && instr->type == nir_instr_type_phi)
310         need_end_copy = true;
311   }
312
313   if (block->successors[1]) {
314      nir_instr *instr = nir_block_first_instr(block->successors[1]);
315      if (instr && instr->type == nir_instr_type_phi)
316         need_end_copy = true;
317   }
318
319   if (need_end_copy) {
320      /* If one of our successors has at least one phi node, we need to
321       * create a parallel copy at the end of the block but before the jump
322       * (if there is one).
323       */
324      nir_parallel_copy_instr *pcopy =
325         nir_parallel_copy_instr_create(shader);
326
327      nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
328   }
329
330   return true;
331}
332
333static nir_parallel_copy_instr *
334get_parallel_copy_at_end_of_block(nir_block *block)
335{
336   nir_instr *last_instr = nir_block_last_instr(block);
337   if (last_instr == NULL)
338      return NULL;
339
340   /* The last instruction may be a jump in which case the parallel copy is
341    * right before it.
342    */
343   if (last_instr->type == nir_instr_type_jump)
344      last_instr = nir_instr_prev(last_instr);
345
346   if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
347      return nir_instr_as_parallel_copy(last_instr);
348   else
349      return NULL;
350}
351
352/** Isolate phi nodes with parallel copies
353 *
354 * In order to solve the dependency problems with the sources and
355 * destinations of phi nodes, we first isolate them by adding parallel
356 * copies to the beginnings and ends of basic blocks.  For every block with
357 * phi nodes, we add a parallel copy immediately following the last phi
358 * node that copies the destinations of all of the phi nodes to new SSA
359 * values.  We also add a parallel copy to the end of every block that has
360 * a successor with phi nodes that, for each phi node in each successor,
361 * copies the corresponding sorce of the phi node and adjust the phi to
362 * used the destination of the parallel copy.
363 *
364 * In SSA form, each value has exactly one definition.  What this does is
365 * ensure that each value used in a phi also has exactly one use.  The
366 * destinations of phis are only used by the parallel copy immediately
367 * following the phi nodes and.  Thanks to the parallel copy at the end of
368 * the predecessor block, the sources of phi nodes are are the only use of
369 * that value.  This allows us to immediately assign all the sources and
370 * destinations of any given phi node to the same register without worrying
371 * about interference at all.  We do coalescing to get rid of the parallel
372 * copies where possible.
373 *
374 * Before this pass can be run, we have to iterate over the blocks with
375 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
376 * the ends of blocks exist.  We can create the ones at the beginnings as
377 * we go, but the ones at the ends of blocks need to be created ahead of
378 * time because of potential back-edges in the CFG.
379 */
380static bool
381isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx)
382{
383   nir_instr *last_phi_instr = NULL;
384   nir_foreach_instr(instr, block) {
385      /* Phi nodes only ever come at the start of a block */
386      if (instr->type != nir_instr_type_phi)
387         break;
388
389      last_phi_instr = instr;
390   }
391
392   /* If we don't have any phis, then there's nothing for us to do. */
393   if (last_phi_instr == NULL)
394      return true;
395
396   /* If we have phi nodes, we need to create a parallel copy at the
397    * start of this block but after the phi nodes.
398    */
399   nir_parallel_copy_instr *block_pcopy =
400      nir_parallel_copy_instr_create(shader);
401   nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
402
403   nir_foreach_instr(instr, block) {
404      /* Phi nodes only ever come at the start of a block */
405      if (instr->type != nir_instr_type_phi)
406         break;
407
408      nir_phi_instr *phi = nir_instr_as_phi(instr);
409      assert(phi->dest.is_ssa);
410      nir_foreach_phi_src(src, phi) {
411         nir_parallel_copy_instr *pcopy =
412            get_parallel_copy_at_end_of_block(src->pred);
413         assert(pcopy);
414
415         nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
416                                                  nir_parallel_copy_entry);
417         nir_ssa_dest_init(&pcopy->instr, &entry->dest,
418                           phi->dest.ssa.num_components,
419                           phi->dest.ssa.bit_size, NULL);
420         entry->dest.ssa.divergent = nir_src_is_divergent(src->src);
421         exec_list_push_tail(&pcopy->entries, &entry->node);
422
423         assert(src->src.is_ssa);
424         nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
425
426         nir_instr_rewrite_src(&phi->instr, &src->src,
427                               nir_src_for_ssa(&entry->dest.ssa));
428      }
429
430      nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
431                                               nir_parallel_copy_entry);
432      nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
433                        phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
434                        NULL);
435      entry->dest.ssa.divergent = phi->dest.ssa.divergent;
436      exec_list_push_tail(&block_pcopy->entries, &entry->node);
437
438      nir_ssa_def_rewrite_uses(&phi->dest.ssa,
439                               &entry->dest.ssa);
440
441      nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
442                            nir_src_for_ssa(&phi->dest.ssa));
443   }
444
445   return true;
446}
447
448static bool
449coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
450{
451   nir_foreach_instr(instr, block) {
452      /* Phi nodes only ever come at the start of a block */
453      if (instr->type != nir_instr_type_phi)
454         break;
455
456      nir_phi_instr *phi = nir_instr_as_phi(instr);
457
458      assert(phi->dest.is_ssa);
459      merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
460
461      nir_foreach_phi_src(src, phi) {
462         assert(src->src.is_ssa);
463         merge_node *src_node = get_merge_node(src->src.ssa, state);
464         if (src_node->set != dest_node->set)
465            merge_merge_sets(dest_node->set, src_node->set);
466      }
467   }
468
469   return true;
470}
471
472static void
473aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
474                                 struct from_ssa_state *state)
475{
476   nir_foreach_parallel_copy_entry(entry, pcopy) {
477      if (!entry->src.is_ssa)
478         continue;
479
480      /* Since load_const instructions are SSA only, we can't replace their
481       * destinations with registers and, therefore, can't coalesce them.
482       */
483      if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
484         continue;
485
486      /* Don't try and coalesce these */
487      if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
488         continue;
489
490      merge_node *src_node = get_merge_node(entry->src.ssa, state);
491      merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
492
493      if (src_node->set == dest_node->set)
494         continue;
495
496      /* TODO: We can probably do better here but for now we should be safe if
497       * we just don't coalesce things with different divergence.
498       */
499      if (dest_node->set->divergent != src_node->set->divergent)
500         continue;
501
502      if (!merge_sets_interfere(src_node->set, dest_node->set))
503         merge_merge_sets(src_node->set, dest_node->set);
504   }
505}
506
507static bool
508aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
509{
510   nir_parallel_copy_instr *start_pcopy = NULL;
511   nir_foreach_instr(instr, block) {
512      /* Phi nodes only ever come at the start of a block */
513      if (instr->type != nir_instr_type_phi) {
514         if (instr->type != nir_instr_type_parallel_copy)
515            break; /* The parallel copy must be right after the phis */
516
517         start_pcopy = nir_instr_as_parallel_copy(instr);
518
519         aggressive_coalesce_parallel_copy(start_pcopy, state);
520
521         break;
522      }
523   }
524
525   nir_parallel_copy_instr *end_pcopy =
526      get_parallel_copy_at_end_of_block(block);
527
528   if (end_pcopy && end_pcopy != start_pcopy)
529      aggressive_coalesce_parallel_copy(end_pcopy, state);
530
531   return true;
532}
533
534static nir_register *
535create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl)
536{
537   nir_register *reg = nir_local_reg_create(impl);
538
539   reg->num_components = def->num_components;
540   reg->bit_size = def->bit_size;
541   reg->num_array_elems = 0;
542
543   return reg;
544}
545
546static bool
547rewrite_ssa_def(nir_ssa_def *def, void *void_state)
548{
549   struct from_ssa_state *state = void_state;
550   nir_register *reg;
551
552   struct hash_entry *entry =
553      _mesa_hash_table_search(state->merge_node_table, def);
554   if (entry) {
555      /* In this case, we're part of a phi web.  Use the web's register. */
556      merge_node *node = (merge_node *)entry->data;
557
558      /* If it doesn't have a register yet, create one.  Note that all of
559       * the things in the merge set should be the same so it doesn't
560       * matter which node's definition we use.
561       */
562      if (node->set->reg == NULL) {
563         node->set->reg = create_reg_for_ssa_def(def, state->builder.impl);
564         node->set->reg->divergent = node->set->divergent;
565      }
566
567      reg = node->set->reg;
568   } else {
569      if (state->phi_webs_only)
570         return true;
571
572      /* We leave load_const SSA values alone.  They act as immediates to
573       * the backend.  If it got coalesced into a phi, that's ok.
574       */
575      if (def->parent_instr->type == nir_instr_type_load_const)
576         return true;
577
578      reg = create_reg_for_ssa_def(def, state->builder.impl);
579   }
580
581   nir_ssa_def_rewrite_uses_src(def, nir_src_for_reg(reg));
582   assert(nir_ssa_def_is_unused(def));
583
584   if (def->parent_instr->type == nir_instr_type_ssa_undef) {
585      /* If it's an ssa_undef instruction, remove it since we know we just got
586       * rid of all its uses.
587       */
588      nir_instr *parent_instr = def->parent_instr;
589      nir_instr_remove(parent_instr);
590      exec_list_push_tail(&state->dead_instrs, &parent_instr->node);
591      state->progress = true;
592      return true;
593   }
594
595   assert(def->parent_instr->type != nir_instr_type_load_const);
596
597   /* At this point we know a priori that this SSA def is part of a
598    * nir_dest.  We can use exec_node_data to get the dest pointer.
599    */
600   nir_dest *dest = exec_node_data(nir_dest, def, ssa);
601
602   nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
603   state->progress = true;
604   return true;
605}
606
607/* Resolves ssa definitions to registers.  While we're at it, we also
608 * remove phi nodes.
609 */
610static void
611resolve_registers_block(nir_block *block, struct from_ssa_state *state)
612{
613   nir_foreach_instr_safe(instr, block) {
614      state->instr = instr;
615      nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
616
617      if (instr->type == nir_instr_type_phi) {
618         nir_instr_remove(instr);
619         exec_list_push_tail(&state->dead_instrs, &instr->node);
620         state->progress = true;
621      }
622   }
623   state->instr = NULL;
624}
625
626static void
627emit_copy(nir_builder *b, nir_src src, nir_src dest_src)
628{
629   assert(!dest_src.is_ssa &&
630          dest_src.reg.indirect == NULL &&
631          dest_src.reg.base_offset == 0);
632
633   assert(!nir_src_is_divergent(src) || nir_src_is_divergent(dest_src));
634
635   if (src.is_ssa)
636      assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
637   else
638      assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
639
640   nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov);
641   nir_src_copy(&mov->src[0].src, &src);
642   mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
643   mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
644
645   nir_builder_instr_insert(b, &mov->instr);
646}
647
648/* Resolves a single parallel copy operation into a sequence of movs
649 *
650 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
651 * Correctness, Code Quality, and Efficiency" by Boissinot et al.
652 * However, I never got the algorithm to work as written, so this version
653 * is slightly modified.
654 *
655 * The algorithm works by playing this little shell game with the values.
656 * We start by recording where every source value is and which source value
657 * each destination value should receive.  We then grab any copy whose
658 * destination is "empty", i.e. not used as a source, and do the following:
659 *  - Find where its source value currently lives
660 *  - Emit the move instruction
661 *  - Set the location of the source value to the destination
662 *  - Mark the location containing the source value
663 *  - Mark the destination as no longer needing to be copied
664 *
665 * When we run out of "empty" destinations, we have a cycle and so we
666 * create a temporary register, copy to that register, and mark the value
667 * we copied as living in that temporary.  Now, the cycle is broken, so we
668 * can continue with the above steps.
669 */
670static void
671resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
672                      struct from_ssa_state *state)
673{
674   unsigned num_copies = 0;
675   nir_foreach_parallel_copy_entry(entry, pcopy) {
676      /* Sources may be SSA */
677      if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
678         continue;
679
680      num_copies++;
681   }
682
683   if (num_copies == 0) {
684      /* Hooray, we don't need any copies! */
685      nir_instr_remove(&pcopy->instr);
686      exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
687      return;
688   }
689
690   /* The register/source corresponding to the given index */
691   NIR_VLA_ZERO(nir_src, values, num_copies * 2);
692
693   /* The current location of a given piece of data.  We will use -1 for "null" */
694   NIR_VLA_FILL(int, loc, num_copies * 2, -1);
695
696   /* The piece of data that the given piece of data is to be copied from.  We will use -1 for "null" */
697   NIR_VLA_FILL(int, pred, num_copies * 2, -1);
698
699   /* The destinations we have yet to properly fill */
700   NIR_VLA(int, to_do, num_copies * 2);
701   int to_do_idx = -1;
702
703   state->builder.cursor = nir_before_instr(&pcopy->instr);
704
705   /* Now we set everything up:
706    *  - All values get assigned a temporary index
707    *  - Current locations are set from sources
708    *  - Predicessors are recorded from sources and destinations
709    */
710   int num_vals = 0;
711   nir_foreach_parallel_copy_entry(entry, pcopy) {
712      /* Sources may be SSA */
713      if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
714         continue;
715
716      int src_idx = -1;
717      for (int i = 0; i < num_vals; ++i) {
718         if (nir_srcs_equal(values[i], entry->src))
719            src_idx = i;
720      }
721      if (src_idx < 0) {
722         src_idx = num_vals++;
723         values[src_idx] = entry->src;
724      }
725
726      nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
727
728      int dest_idx = -1;
729      for (int i = 0; i < num_vals; ++i) {
730         if (nir_srcs_equal(values[i], dest_src)) {
731            /* Each destination of a parallel copy instruction should be
732             * unique.  A destination may get used as a source, so we still
733             * have to walk the list.  However, the predecessor should not,
734             * at this point, be set yet, so we should have -1 here.
735             */
736            assert(pred[i] == -1);
737            dest_idx = i;
738         }
739      }
740      if (dest_idx < 0) {
741         dest_idx = num_vals++;
742         values[dest_idx] = dest_src;
743      }
744
745      loc[src_idx] = src_idx;
746      pred[dest_idx] = src_idx;
747
748      to_do[++to_do_idx] = dest_idx;
749   }
750
751   /* Currently empty destinations we can go ahead and fill */
752   NIR_VLA(int, ready, num_copies * 2);
753   int ready_idx = -1;
754
755   /* Mark the ones that are ready for copying.  We know an index is a
756    * destination if it has a predecessor and it's ready for copying if
757    * it's not marked as containing data.
758    */
759   for (int i = 0; i < num_vals; i++) {
760      if (pred[i] != -1 && loc[i] == -1)
761         ready[++ready_idx] = i;
762   }
763
764   while (to_do_idx >= 0) {
765      while (ready_idx >= 0) {
766         int b = ready[ready_idx--];
767         int a = pred[b];
768         emit_copy(&state->builder, values[loc[a]], values[b]);
769
770         /* b has been filled, mark it as not needing to be copied */
771         pred[b] = -1;
772
773         /* The next bit only applies if the source and destination have the
774          * same divergence.  If they differ (it must be convergent ->
775          * divergent), then we can't guarantee we won't need the convergent
776          * version of again.
777          */
778         if (nir_src_is_divergent(values[a]) ==
779             nir_src_is_divergent(values[b])) {
780            /* If any other copies want a they can find it at b but only if the
781             * two have the same divergence.
782             */
783            loc[a] = b;
784
785            /* If a needs to be filled... */
786            if (pred[a] != -1) {
787               /* If any other copies want a they can find it at b */
788               loc[a] = b;
789
790               /* It's ready for copying now */
791               ready[++ready_idx] = a;
792            }
793         }
794      }
795      int b = to_do[to_do_idx--];
796      if (pred[b] == -1)
797         continue;
798
799      /* If we got here, then we don't have any more trivial copies that we
800       * can do.  We have to break a cycle, so we create a new temporary
801       * register for that purpose.  Normally, if going out of SSA after
802       * register allocation, you would want to avoid creating temporary
803       * registers.  However, we are going out of SSA before register
804       * allocation, so we would rather not create extra register
805       * dependencies for the backend to deal with.  If it wants, the
806       * backend can coalesce the (possibly multiple) temporaries.
807       */
808      assert(num_vals < num_copies * 2);
809      nir_register *reg = nir_local_reg_create(state->builder.impl);
810      reg->num_array_elems = 0;
811      if (values[b].is_ssa) {
812         reg->num_components = values[b].ssa->num_components;
813         reg->bit_size = values[b].ssa->bit_size;
814      } else {
815         reg->num_components = values[b].reg.reg->num_components;
816         reg->bit_size = values[b].reg.reg->bit_size;
817      }
818      reg->divergent = nir_src_is_divergent(values[b]);
819      values[num_vals].is_ssa = false;
820      values[num_vals].reg.reg = reg;
821
822      emit_copy(&state->builder, values[b], values[num_vals]);
823      loc[b] = num_vals;
824      ready[++ready_idx] = b;
825      num_vals++;
826   }
827
828   nir_instr_remove(&pcopy->instr);
829   exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
830}
831
832/* Resolves the parallel copies in a block.  Each block can have at most
833 * two:  One at the beginning, right after all the phi noces, and one at
834 * the end (or right before the final jump if it exists).
835 */
836static bool
837resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
838{
839   /* At this point, we have removed all of the phi nodes.  If a parallel
840    * copy existed right after the phi nodes in this block, it is now the
841    * first instruction.
842    */
843   nir_instr *first_instr = nir_block_first_instr(block);
844   if (first_instr == NULL)
845      return true; /* Empty, nothing to do. */
846
847   if (first_instr->type == nir_instr_type_parallel_copy) {
848      nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
849
850      resolve_parallel_copy(pcopy, state);
851   }
852
853   /* It's possible that the above code already cleaned up the end parallel
854    * copy.  However, doing so removed it form the instructions list so we
855    * won't find it here.  Therefore, it's safe to go ahead and just look
856    * for one and clean it up if it exists.
857    */
858   nir_parallel_copy_instr *end_pcopy =
859      get_parallel_copy_at_end_of_block(block);
860   if (end_pcopy)
861      resolve_parallel_copy(end_pcopy, state);
862
863   return true;
864}
865
866static bool
867nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
868{
869   nir_shader *shader = impl->function->shader;
870
871   struct from_ssa_state state;
872
873   nir_builder_init(&state.builder, impl);
874   state.dead_ctx = ralloc_context(NULL);
875   state.phi_webs_only = phi_webs_only;
876   state.merge_node_table = _mesa_pointer_hash_table_create(NULL);
877   state.progress = false;
878   exec_list_make_empty(&state.dead_instrs);
879
880   nir_foreach_block(block, impl) {
881      add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx);
882   }
883
884   nir_foreach_block(block, impl) {
885      isolate_phi_nodes_block(shader, block, state.dead_ctx);
886   }
887
888   /* Mark metadata as dirty before we ask for liveness analysis */
889   nir_metadata_preserve(impl, nir_metadata_block_index |
890                               nir_metadata_dominance);
891
892   nir_metadata_require(impl, nir_metadata_instr_index |
893                              nir_metadata_live_ssa_defs |
894                              nir_metadata_dominance);
895
896   nir_foreach_block(block, impl) {
897      coalesce_phi_nodes_block(block, &state);
898   }
899
900   nir_foreach_block(block, impl) {
901      aggressive_coalesce_block(block, &state);
902   }
903
904   nir_foreach_block(block, impl) {
905      resolve_registers_block(block, &state);
906   }
907
908   nir_foreach_block(block, impl) {
909      resolve_parallel_copies_block(block, &state);
910   }
911
912   nir_metadata_preserve(impl, nir_metadata_block_index |
913                               nir_metadata_dominance);
914
915   /* Clean up dead instructions and the hash tables */
916   nir_instr_free_list(&state.dead_instrs);
917   _mesa_hash_table_destroy(state.merge_node_table, NULL);
918   ralloc_free(state.dead_ctx);
919   return state.progress;
920}
921
922bool
923nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
924{
925   bool progress = false;
926
927   nir_foreach_function(function, shader) {
928      if (function->impl)
929         progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only);
930   }
931
932   return progress;
933}
934
935
936static void
937place_phi_read(nir_builder *b, nir_register *reg,
938               nir_ssa_def *def, nir_block *block, struct set *visited_blocks)
939{
940  /* Search already visited blocks to avoid back edges in tree */
941  if (_mesa_set_search(visited_blocks, block) == NULL) {
942      /* Try to go up the single-successor tree */
943      bool all_single_successors = true;
944      set_foreach(block->predecessors, entry) {
945         nir_block *pred = (nir_block *)entry->key;
946         if (pred->successors[0] && pred->successors[1]) {
947            all_single_successors = false;
948            break;
949         }
950      }
951
952      if (all_single_successors) {
953         /* All predecessors of this block have exactly one successor and it
954          * is this block so they must eventually lead here without
955          * intersecting each other.  Place the reads in the predecessors
956          * instead of this block.
957          */
958         _mesa_set_add(visited_blocks, block);
959
960         set_foreach(block->predecessors, entry) {
961            place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks);
962         }
963         return;
964      }
965   }
966
967   b->cursor = nir_after_block_before_jump(block);
968   nir_store_reg(b, reg, def, ~0);
969}
970
971/** Lower all of the phi nodes in a block to movs to and from a register
972 *
973 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
974 * single block to convert all of its phis to a register and some movs.
975 * The code that is generated, while not optimal for actual codegen in a
976 * back-end, is easy to generate, correct, and will turn into the same set of
977 * phis after you call regs_to_ssa and do some copy propagation.
978 *
979 * The one intelligent thing this pass does is that it places the moves from
980 * the phi sources as high up the predecessor tree as possible instead of in
981 * the exact predecessor.  This means that, in particular, it will crawl into
982 * the deepest nesting of any if-ladders.  In order to ensure that doing so is
983 * safe, it stops as soon as one of the predecessors has multiple successors.
984 */
985bool
986nir_lower_phis_to_regs_block(nir_block *block)
987{
988   nir_builder b;
989   nir_builder_init(&b, nir_cf_node_get_function(&block->cf_node));
990   struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer,
991                                                 _mesa_key_pointer_equal);
992
993   bool progress = false;
994   nir_foreach_instr_safe(instr, block) {
995      if (instr->type != nir_instr_type_phi)
996         break;
997
998      nir_phi_instr *phi = nir_instr_as_phi(instr);
999      assert(phi->dest.is_ssa);
1000
1001      nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, b.impl);
1002
1003      b.cursor = nir_after_instr(&phi->instr);
1004      nir_ssa_def *def = nir_load_reg(&b, reg);
1005
1006      nir_ssa_def_rewrite_uses(&phi->dest.ssa, def);
1007
1008      nir_foreach_phi_src(src, phi) {
1009         assert(src->src.is_ssa);
1010         _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block);
1011         place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks);
1012         _mesa_set_clear(visited_blocks, NULL);
1013      }
1014
1015      nir_instr_remove(&phi->instr);
1016
1017      progress = true;
1018   }
1019
1020   _mesa_set_destroy(visited_blocks, NULL);
1021
1022   return progress;
1023}
1024
1025struct ssa_def_to_reg_state {
1026   nir_function_impl *impl;
1027   bool progress;
1028};
1029
1030static bool
1031dest_replace_ssa_with_reg(nir_dest *dest, void *void_state)
1032{
1033   struct ssa_def_to_reg_state *state = void_state;
1034
1035   if (!dest->is_ssa)
1036      return true;
1037
1038   nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl);
1039
1040   nir_ssa_def_rewrite_uses_src(&dest->ssa, nir_src_for_reg(reg));
1041
1042   nir_instr *instr = dest->ssa.parent_instr;
1043   *dest = nir_dest_for_reg(reg);
1044   dest->reg.parent_instr = instr;
1045   list_addtail(&dest->reg.def_link, &reg->defs);
1046
1047   state->progress = true;
1048
1049   return true;
1050}
1051
1052static bool
1053ssa_def_is_local_to_block(nir_ssa_def *def, UNUSED void *state)
1054{
1055   nir_block *block = def->parent_instr->block;
1056   nir_foreach_use(use_src, def) {
1057      if (use_src->parent_instr->block != block ||
1058          use_src->parent_instr->type == nir_instr_type_phi) {
1059         return false;
1060      }
1061   }
1062
1063   if (!list_is_empty(&def->if_uses))
1064      return false;
1065
1066   return true;
1067}
1068
1069/** Lower all of the SSA defs in a block to registers
1070 *
1071 * This performs the very simple operation of blindly replacing all of the SSA
1072 * defs in the given block with registers.  If not used carefully, this may
1073 * result in phi nodes with register sources which is technically invalid.
1074 * Fortunately, the register-based into-SSA pass handles them anyway.
1075 */
1076bool
1077nir_lower_ssa_defs_to_regs_block(nir_block *block)
1078{
1079   nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
1080   nir_shader *shader = impl->function->shader;
1081
1082   struct ssa_def_to_reg_state state = {
1083      .impl = impl,
1084      .progress = false,
1085   };
1086
1087   nir_foreach_instr(instr, block) {
1088      if (instr->type == nir_instr_type_ssa_undef) {
1089         /* Undefs are just a read of something never written. */
1090         nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
1091         nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl);
1092         nir_ssa_def_rewrite_uses_src(&undef->def, nir_src_for_reg(reg));
1093      } else if (instr->type == nir_instr_type_load_const) {
1094         /* Constant loads are SSA-only, we need to insert a move */
1095         nir_load_const_instr *load = nir_instr_as_load_const(instr);
1096         nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl);
1097         nir_ssa_def_rewrite_uses_src(&load->def, nir_src_for_reg(reg));
1098
1099         nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
1100         mov->src[0].src = nir_src_for_ssa(&load->def);
1101         mov->dest.dest = nir_dest_for_reg(reg);
1102         mov->dest.write_mask = (1 << reg->num_components) - 1;
1103         nir_instr_insert(nir_after_instr(&load->instr), &mov->instr);
1104      } else if (nir_foreach_ssa_def(instr, ssa_def_is_local_to_block, NULL)) {
1105         /* If the SSA def produced by this instruction is only in the block
1106          * in which it is defined and is not used by ifs or phis, then we
1107          * don't have a reason to convert it to a register.
1108          */
1109      } else {
1110         nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state);
1111      }
1112   }
1113
1114   return state.progress;
1115}
1116