1/* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Jason Ekstrand (jason@jlekstrand.net) 25 * 26 */ 27 28#include "nir.h" 29#include "nir_builder.h" 30#include "nir_vla.h" 31 32/* 33 * This file implements an out-of-SSA pass as described in "Revisiting 34 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by 35 * Boissinot et al. 36 */ 37 38struct from_ssa_state { 39 nir_builder builder; 40 void *dead_ctx; 41 struct exec_list dead_instrs; 42 bool phi_webs_only; 43 struct hash_table *merge_node_table; 44 nir_instr *instr; 45 bool progress; 46}; 47 48/* Returns if def @a comes after def @b. 49 * 50 * The core observation that makes the Boissinot algorithm efficient 51 * is that, given two properly sorted sets, we can check for 52 * interference in these sets via a linear walk. This is accomplished 53 * by doing single combined walk over union of the two sets in DFS 54 * order. It doesn't matter what DFS we do so long as we're 55 * consistent. Fortunately, the dominance algorithm we ran prior to 56 * this pass did such a walk and recorded the pre- and post-indices in 57 * the blocks. 58 * 59 * We treat SSA undefs as always coming before other instruction types. 60 */ 61static bool 62def_after(nir_ssa_def *a, nir_ssa_def *b) 63{ 64 if (a->parent_instr->type == nir_instr_type_ssa_undef) 65 return false; 66 67 if (b->parent_instr->type == nir_instr_type_ssa_undef) 68 return true; 69 70 /* If they're in the same block, we can rely on whichever instruction 71 * comes first in the block. 72 */ 73 if (a->parent_instr->block == b->parent_instr->block) 74 return a->parent_instr->index > b->parent_instr->index; 75 76 /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */ 77 return a->parent_instr->block->dom_pre_index > 78 b->parent_instr->block->dom_pre_index; 79} 80 81/* Returns true if a dominates b */ 82static bool 83ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b) 84{ 85 if (a->parent_instr->type == nir_instr_type_ssa_undef) { 86 /* SSA undefs always dominate */ 87 return true; 88 } if (def_after(a, b)) { 89 return false; 90 } else if (a->parent_instr->block == b->parent_instr->block) { 91 return def_after(b, a); 92 } else { 93 return nir_block_dominates(a->parent_instr->block, 94 b->parent_instr->block); 95 } 96} 97 98 99/* The following data structure, which I have named merge_set is a way of 100 * representing a set registers of non-interfering registers. This is 101 * based on the concept of a "dominance forest" presented in "Fast Copy 102 * Coalescing and Live-Range Identification" by Budimlic et al. but the 103 * implementation concept is taken from "Revisiting Out-of-SSA Translation 104 * for Correctness, Code Quality, and Efficiency" by Boissinot et al. 105 * 106 * Each SSA definition is associated with a merge_node and the association 107 * is represented by a combination of a hash table and the "def" parameter 108 * in the merge_node structure. The merge_set stores a linked list of 109 * merge_nodes, ordered by a pre-order DFS walk of the dominance tree. (Since 110 * the liveness analysis pass indexes the SSA values in dominance order for 111 * us, this is an easy thing to keep up.) It is assumed that no pair of the 112 * nodes in a given set interfere. Merging two sets or checking for 113 * interference can be done in a single linear-time merge-sort walk of the 114 * two lists of nodes. 115 */ 116struct merge_set; 117 118typedef struct { 119 struct exec_node node; 120 struct merge_set *set; 121 nir_ssa_def *def; 122} merge_node; 123 124typedef struct merge_set { 125 struct exec_list nodes; 126 unsigned size; 127 bool divergent; 128 nir_register *reg; 129} merge_set; 130 131#if 0 132static void 133merge_set_dump(merge_set *set, FILE *fp) 134{ 135 nir_ssa_def *dom[set->size]; 136 int dom_idx = -1; 137 138 foreach_list_typed(merge_node, node, node, &set->nodes) { 139 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) 140 dom_idx--; 141 142 for (int i = 0; i <= dom_idx; i++) 143 fprintf(fp, " "); 144 145 fprintf(fp, "ssa_%d\n", node->def->index); 146 147 dom[++dom_idx] = node->def; 148 } 149} 150#endif 151 152static merge_node * 153get_merge_node(nir_ssa_def *def, struct from_ssa_state *state) 154{ 155 struct hash_entry *entry = 156 _mesa_hash_table_search(state->merge_node_table, def); 157 if (entry) 158 return entry->data; 159 160 merge_set *set = ralloc(state->dead_ctx, merge_set); 161 exec_list_make_empty(&set->nodes); 162 set->size = 1; 163 set->divergent = def->divergent; 164 set->reg = NULL; 165 166 merge_node *node = ralloc(state->dead_ctx, merge_node); 167 node->set = set; 168 node->def = def; 169 exec_list_push_head(&set->nodes, &node->node); 170 171 _mesa_hash_table_insert(state->merge_node_table, def, node); 172 173 return node; 174} 175 176static bool 177merge_nodes_interfere(merge_node *a, merge_node *b) 178{ 179 /* There's no need to check for interference within the same set, 180 * because we assume, that sets themselves are already 181 * interference-free. 182 */ 183 if (a->set == b->set) 184 return false; 185 186 return nir_ssa_defs_interfere(a->def, b->def); 187} 188 189/* Merges b into a 190 * 191 * This algorithm uses def_after to ensure that the sets always stay in the 192 * same order as the pre-order DFS done by the liveness algorithm. 193 */ 194static merge_set * 195merge_merge_sets(merge_set *a, merge_set *b) 196{ 197 struct exec_node *an = exec_list_get_head(&a->nodes); 198 struct exec_node *bn = exec_list_get_head(&b->nodes); 199 while (!exec_node_is_tail_sentinel(bn)) { 200 merge_node *a_node = exec_node_data(merge_node, an, node); 201 merge_node *b_node = exec_node_data(merge_node, bn, node); 202 203 if (exec_node_is_tail_sentinel(an) || 204 def_after(a_node->def, b_node->def)) { 205 struct exec_node *next = bn->next; 206 exec_node_remove(bn); 207 exec_node_insert_node_before(an, bn); 208 exec_node_data(merge_node, bn, node)->set = a; 209 bn = next; 210 } else { 211 an = an->next; 212 } 213 } 214 215 a->size += b->size; 216 b->size = 0; 217 a->divergent |= b->divergent; 218 219 return a; 220} 221 222/* Checks for any interference between two merge sets 223 * 224 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA 225 * Translation for Correctness, Code Quality, and Efficiency" by 226 * Boissinot et al. 227 */ 228static bool 229merge_sets_interfere(merge_set *a, merge_set *b) 230{ 231 /* List of all the nodes which dominate the current node, in dominance 232 * order. 233 */ 234 NIR_VLA(merge_node *, dom, a->size + b->size); 235 int dom_idx = -1; 236 237 struct exec_node *an = exec_list_get_head(&a->nodes); 238 struct exec_node *bn = exec_list_get_head(&b->nodes); 239 while (!exec_node_is_tail_sentinel(an) || 240 !exec_node_is_tail_sentinel(bn)) { 241 242 /* We walk the union of the two sets in the same order as the pre-order 243 * DFS done by liveness analysis. 244 */ 245 merge_node *current; 246 if (exec_node_is_tail_sentinel(an)) { 247 current = exec_node_data(merge_node, bn, node); 248 bn = bn->next; 249 } else if (exec_node_is_tail_sentinel(bn)) { 250 current = exec_node_data(merge_node, an, node); 251 an = an->next; 252 } else { 253 merge_node *a_node = exec_node_data(merge_node, an, node); 254 merge_node *b_node = exec_node_data(merge_node, bn, node); 255 256 if (def_after(b_node->def, a_node->def)) { 257 current = a_node; 258 an = an->next; 259 } else { 260 current = b_node; 261 bn = bn->next; 262 } 263 } 264 265 /* Because our walk is a pre-order DFS, we can maintain the list of 266 * dominating nodes as a simple stack, pushing every node onto the list 267 * after we visit it and popping any non-dominating nodes off before we 268 * visit the current node. 269 */ 270 while (dom_idx >= 0 && 271 !ssa_def_dominates(dom[dom_idx]->def, current->def)) 272 dom_idx--; 273 274 /* There are three invariants of this algorithm that are important here: 275 * 276 * 1. There is no interference within either set a or set b. 277 * 2. None of the nodes processed up until this point interfere. 278 * 3. All the dominators of `current` have been processed 279 * 280 * Because of these invariants, we only need to check the current node 281 * against its minimal dominator. If any other node N in the union 282 * interferes with current, then N must dominate current because we are 283 * in SSA form. If N dominates current then it must also dominate our 284 * minimal dominator dom[dom_idx]. Since N is live at current it must 285 * also be live at the minimal dominator which means N interferes with 286 * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above, 287 * the algorithm would have already terminated. Therefore, if we got 288 * here, the only node that can possibly interfere with current is the 289 * minimal dominator dom[dom_idx]. 290 * 291 * This is what allows us to do a interference check of the union of the 292 * two sets with a single linear-time walk. 293 */ 294 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) 295 return true; 296 297 dom[++dom_idx] = current; 298 } 299 300 return false; 301} 302 303static bool 304add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx) 305{ 306 bool need_end_copy = false; 307 if (block->successors[0]) { 308 nir_instr *instr = nir_block_first_instr(block->successors[0]); 309 if (instr && instr->type == nir_instr_type_phi) 310 need_end_copy = true; 311 } 312 313 if (block->successors[1]) { 314 nir_instr *instr = nir_block_first_instr(block->successors[1]); 315 if (instr && instr->type == nir_instr_type_phi) 316 need_end_copy = true; 317 } 318 319 if (need_end_copy) { 320 /* If one of our successors has at least one phi node, we need to 321 * create a parallel copy at the end of the block but before the jump 322 * (if there is one). 323 */ 324 nir_parallel_copy_instr *pcopy = 325 nir_parallel_copy_instr_create(shader); 326 327 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr); 328 } 329 330 return true; 331} 332 333static nir_parallel_copy_instr * 334get_parallel_copy_at_end_of_block(nir_block *block) 335{ 336 nir_instr *last_instr = nir_block_last_instr(block); 337 if (last_instr == NULL) 338 return NULL; 339 340 /* The last instruction may be a jump in which case the parallel copy is 341 * right before it. 342 */ 343 if (last_instr->type == nir_instr_type_jump) 344 last_instr = nir_instr_prev(last_instr); 345 346 if (last_instr && last_instr->type == nir_instr_type_parallel_copy) 347 return nir_instr_as_parallel_copy(last_instr); 348 else 349 return NULL; 350} 351 352/** Isolate phi nodes with parallel copies 353 * 354 * In order to solve the dependency problems with the sources and 355 * destinations of phi nodes, we first isolate them by adding parallel 356 * copies to the beginnings and ends of basic blocks. For every block with 357 * phi nodes, we add a parallel copy immediately following the last phi 358 * node that copies the destinations of all of the phi nodes to new SSA 359 * values. We also add a parallel copy to the end of every block that has 360 * a successor with phi nodes that, for each phi node in each successor, 361 * copies the corresponding sorce of the phi node and adjust the phi to 362 * used the destination of the parallel copy. 363 * 364 * In SSA form, each value has exactly one definition. What this does is 365 * ensure that each value used in a phi also has exactly one use. The 366 * destinations of phis are only used by the parallel copy immediately 367 * following the phi nodes and. Thanks to the parallel copy at the end of 368 * the predecessor block, the sources of phi nodes are are the only use of 369 * that value. This allows us to immediately assign all the sources and 370 * destinations of any given phi node to the same register without worrying 371 * about interference at all. We do coalescing to get rid of the parallel 372 * copies where possible. 373 * 374 * Before this pass can be run, we have to iterate over the blocks with 375 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at 376 * the ends of blocks exist. We can create the ones at the beginnings as 377 * we go, but the ones at the ends of blocks need to be created ahead of 378 * time because of potential back-edges in the CFG. 379 */ 380static bool 381isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx) 382{ 383 nir_instr *last_phi_instr = NULL; 384 nir_foreach_instr(instr, block) { 385 /* Phi nodes only ever come at the start of a block */ 386 if (instr->type != nir_instr_type_phi) 387 break; 388 389 last_phi_instr = instr; 390 } 391 392 /* If we don't have any phis, then there's nothing for us to do. */ 393 if (last_phi_instr == NULL) 394 return true; 395 396 /* If we have phi nodes, we need to create a parallel copy at the 397 * start of this block but after the phi nodes. 398 */ 399 nir_parallel_copy_instr *block_pcopy = 400 nir_parallel_copy_instr_create(shader); 401 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr); 402 403 nir_foreach_instr(instr, block) { 404 /* Phi nodes only ever come at the start of a block */ 405 if (instr->type != nir_instr_type_phi) 406 break; 407 408 nir_phi_instr *phi = nir_instr_as_phi(instr); 409 assert(phi->dest.is_ssa); 410 nir_foreach_phi_src(src, phi) { 411 nir_parallel_copy_instr *pcopy = 412 get_parallel_copy_at_end_of_block(src->pred); 413 assert(pcopy); 414 415 nir_parallel_copy_entry *entry = rzalloc(dead_ctx, 416 nir_parallel_copy_entry); 417 nir_ssa_dest_init(&pcopy->instr, &entry->dest, 418 phi->dest.ssa.num_components, 419 phi->dest.ssa.bit_size, NULL); 420 entry->dest.ssa.divergent = nir_src_is_divergent(src->src); 421 exec_list_push_tail(&pcopy->entries, &entry->node); 422 423 assert(src->src.is_ssa); 424 nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src); 425 426 nir_instr_rewrite_src(&phi->instr, &src->src, 427 nir_src_for_ssa(&entry->dest.ssa)); 428 } 429 430 nir_parallel_copy_entry *entry = rzalloc(dead_ctx, 431 nir_parallel_copy_entry); 432 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest, 433 phi->dest.ssa.num_components, phi->dest.ssa.bit_size, 434 NULL); 435 entry->dest.ssa.divergent = phi->dest.ssa.divergent; 436 exec_list_push_tail(&block_pcopy->entries, &entry->node); 437 438 nir_ssa_def_rewrite_uses(&phi->dest.ssa, 439 &entry->dest.ssa); 440 441 nir_instr_rewrite_src(&block_pcopy->instr, &entry->src, 442 nir_src_for_ssa(&phi->dest.ssa)); 443 } 444 445 return true; 446} 447 448static bool 449coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state) 450{ 451 nir_foreach_instr(instr, block) { 452 /* Phi nodes only ever come at the start of a block */ 453 if (instr->type != nir_instr_type_phi) 454 break; 455 456 nir_phi_instr *phi = nir_instr_as_phi(instr); 457 458 assert(phi->dest.is_ssa); 459 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state); 460 461 nir_foreach_phi_src(src, phi) { 462 assert(src->src.is_ssa); 463 merge_node *src_node = get_merge_node(src->src.ssa, state); 464 if (src_node->set != dest_node->set) 465 merge_merge_sets(dest_node->set, src_node->set); 466 } 467 } 468 469 return true; 470} 471 472static void 473aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, 474 struct from_ssa_state *state) 475{ 476 nir_foreach_parallel_copy_entry(entry, pcopy) { 477 if (!entry->src.is_ssa) 478 continue; 479 480 /* Since load_const instructions are SSA only, we can't replace their 481 * destinations with registers and, therefore, can't coalesce them. 482 */ 483 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const) 484 continue; 485 486 /* Don't try and coalesce these */ 487 if (entry->dest.ssa.num_components != entry->src.ssa->num_components) 488 continue; 489 490 merge_node *src_node = get_merge_node(entry->src.ssa, state); 491 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state); 492 493 if (src_node->set == dest_node->set) 494 continue; 495 496 /* TODO: We can probably do better here but for now we should be safe if 497 * we just don't coalesce things with different divergence. 498 */ 499 if (dest_node->set->divergent != src_node->set->divergent) 500 continue; 501 502 if (!merge_sets_interfere(src_node->set, dest_node->set)) 503 merge_merge_sets(src_node->set, dest_node->set); 504 } 505} 506 507static bool 508aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state) 509{ 510 nir_parallel_copy_instr *start_pcopy = NULL; 511 nir_foreach_instr(instr, block) { 512 /* Phi nodes only ever come at the start of a block */ 513 if (instr->type != nir_instr_type_phi) { 514 if (instr->type != nir_instr_type_parallel_copy) 515 break; /* The parallel copy must be right after the phis */ 516 517 start_pcopy = nir_instr_as_parallel_copy(instr); 518 519 aggressive_coalesce_parallel_copy(start_pcopy, state); 520 521 break; 522 } 523 } 524 525 nir_parallel_copy_instr *end_pcopy = 526 get_parallel_copy_at_end_of_block(block); 527 528 if (end_pcopy && end_pcopy != start_pcopy) 529 aggressive_coalesce_parallel_copy(end_pcopy, state); 530 531 return true; 532} 533 534static nir_register * 535create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl) 536{ 537 nir_register *reg = nir_local_reg_create(impl); 538 539 reg->num_components = def->num_components; 540 reg->bit_size = def->bit_size; 541 reg->num_array_elems = 0; 542 543 return reg; 544} 545 546static bool 547rewrite_ssa_def(nir_ssa_def *def, void *void_state) 548{ 549 struct from_ssa_state *state = void_state; 550 nir_register *reg; 551 552 struct hash_entry *entry = 553 _mesa_hash_table_search(state->merge_node_table, def); 554 if (entry) { 555 /* In this case, we're part of a phi web. Use the web's register. */ 556 merge_node *node = (merge_node *)entry->data; 557 558 /* If it doesn't have a register yet, create one. Note that all of 559 * the things in the merge set should be the same so it doesn't 560 * matter which node's definition we use. 561 */ 562 if (node->set->reg == NULL) { 563 node->set->reg = create_reg_for_ssa_def(def, state->builder.impl); 564 node->set->reg->divergent = node->set->divergent; 565 } 566 567 reg = node->set->reg; 568 } else { 569 if (state->phi_webs_only) 570 return true; 571 572 /* We leave load_const SSA values alone. They act as immediates to 573 * the backend. If it got coalesced into a phi, that's ok. 574 */ 575 if (def->parent_instr->type == nir_instr_type_load_const) 576 return true; 577 578 reg = create_reg_for_ssa_def(def, state->builder.impl); 579 } 580 581 nir_ssa_def_rewrite_uses_src(def, nir_src_for_reg(reg)); 582 assert(nir_ssa_def_is_unused(def)); 583 584 if (def->parent_instr->type == nir_instr_type_ssa_undef) { 585 /* If it's an ssa_undef instruction, remove it since we know we just got 586 * rid of all its uses. 587 */ 588 nir_instr *parent_instr = def->parent_instr; 589 nir_instr_remove(parent_instr); 590 exec_list_push_tail(&state->dead_instrs, &parent_instr->node); 591 state->progress = true; 592 return true; 593 } 594 595 assert(def->parent_instr->type != nir_instr_type_load_const); 596 597 /* At this point we know a priori that this SSA def is part of a 598 * nir_dest. We can use exec_node_data to get the dest pointer. 599 */ 600 nir_dest *dest = exec_node_data(nir_dest, def, ssa); 601 602 nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg)); 603 state->progress = true; 604 return true; 605} 606 607/* Resolves ssa definitions to registers. While we're at it, we also 608 * remove phi nodes. 609 */ 610static void 611resolve_registers_block(nir_block *block, struct from_ssa_state *state) 612{ 613 nir_foreach_instr_safe(instr, block) { 614 state->instr = instr; 615 nir_foreach_ssa_def(instr, rewrite_ssa_def, state); 616 617 if (instr->type == nir_instr_type_phi) { 618 nir_instr_remove(instr); 619 exec_list_push_tail(&state->dead_instrs, &instr->node); 620 state->progress = true; 621 } 622 } 623 state->instr = NULL; 624} 625 626static void 627emit_copy(nir_builder *b, nir_src src, nir_src dest_src) 628{ 629 assert(!dest_src.is_ssa && 630 dest_src.reg.indirect == NULL && 631 dest_src.reg.base_offset == 0); 632 633 assert(!nir_src_is_divergent(src) || nir_src_is_divergent(dest_src)); 634 635 if (src.is_ssa) 636 assert(src.ssa->num_components >= dest_src.reg.reg->num_components); 637 else 638 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components); 639 640 nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov); 641 nir_src_copy(&mov->src[0].src, &src); 642 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg); 643 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1; 644 645 nir_builder_instr_insert(b, &mov->instr); 646} 647 648/* Resolves a single parallel copy operation into a sequence of movs 649 * 650 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for 651 * Correctness, Code Quality, and Efficiency" by Boissinot et al. 652 * However, I never got the algorithm to work as written, so this version 653 * is slightly modified. 654 * 655 * The algorithm works by playing this little shell game with the values. 656 * We start by recording where every source value is and which source value 657 * each destination value should receive. We then grab any copy whose 658 * destination is "empty", i.e. not used as a source, and do the following: 659 * - Find where its source value currently lives 660 * - Emit the move instruction 661 * - Set the location of the source value to the destination 662 * - Mark the location containing the source value 663 * - Mark the destination as no longer needing to be copied 664 * 665 * When we run out of "empty" destinations, we have a cycle and so we 666 * create a temporary register, copy to that register, and mark the value 667 * we copied as living in that temporary. Now, the cycle is broken, so we 668 * can continue with the above steps. 669 */ 670static void 671resolve_parallel_copy(nir_parallel_copy_instr *pcopy, 672 struct from_ssa_state *state) 673{ 674 unsigned num_copies = 0; 675 nir_foreach_parallel_copy_entry(entry, pcopy) { 676 /* Sources may be SSA */ 677 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) 678 continue; 679 680 num_copies++; 681 } 682 683 if (num_copies == 0) { 684 /* Hooray, we don't need any copies! */ 685 nir_instr_remove(&pcopy->instr); 686 exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node); 687 return; 688 } 689 690 /* The register/source corresponding to the given index */ 691 NIR_VLA_ZERO(nir_src, values, num_copies * 2); 692 693 /* The current location of a given piece of data. We will use -1 for "null" */ 694 NIR_VLA_FILL(int, loc, num_copies * 2, -1); 695 696 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */ 697 NIR_VLA_FILL(int, pred, num_copies * 2, -1); 698 699 /* The destinations we have yet to properly fill */ 700 NIR_VLA(int, to_do, num_copies * 2); 701 int to_do_idx = -1; 702 703 state->builder.cursor = nir_before_instr(&pcopy->instr); 704 705 /* Now we set everything up: 706 * - All values get assigned a temporary index 707 * - Current locations are set from sources 708 * - Predicessors are recorded from sources and destinations 709 */ 710 int num_vals = 0; 711 nir_foreach_parallel_copy_entry(entry, pcopy) { 712 /* Sources may be SSA */ 713 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) 714 continue; 715 716 int src_idx = -1; 717 for (int i = 0; i < num_vals; ++i) { 718 if (nir_srcs_equal(values[i], entry->src)) 719 src_idx = i; 720 } 721 if (src_idx < 0) { 722 src_idx = num_vals++; 723 values[src_idx] = entry->src; 724 } 725 726 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg); 727 728 int dest_idx = -1; 729 for (int i = 0; i < num_vals; ++i) { 730 if (nir_srcs_equal(values[i], dest_src)) { 731 /* Each destination of a parallel copy instruction should be 732 * unique. A destination may get used as a source, so we still 733 * have to walk the list. However, the predecessor should not, 734 * at this point, be set yet, so we should have -1 here. 735 */ 736 assert(pred[i] == -1); 737 dest_idx = i; 738 } 739 } 740 if (dest_idx < 0) { 741 dest_idx = num_vals++; 742 values[dest_idx] = dest_src; 743 } 744 745 loc[src_idx] = src_idx; 746 pred[dest_idx] = src_idx; 747 748 to_do[++to_do_idx] = dest_idx; 749 } 750 751 /* Currently empty destinations we can go ahead and fill */ 752 NIR_VLA(int, ready, num_copies * 2); 753 int ready_idx = -1; 754 755 /* Mark the ones that are ready for copying. We know an index is a 756 * destination if it has a predecessor and it's ready for copying if 757 * it's not marked as containing data. 758 */ 759 for (int i = 0; i < num_vals; i++) { 760 if (pred[i] != -1 && loc[i] == -1) 761 ready[++ready_idx] = i; 762 } 763 764 while (to_do_idx >= 0) { 765 while (ready_idx >= 0) { 766 int b = ready[ready_idx--]; 767 int a = pred[b]; 768 emit_copy(&state->builder, values[loc[a]], values[b]); 769 770 /* b has been filled, mark it as not needing to be copied */ 771 pred[b] = -1; 772 773 /* The next bit only applies if the source and destination have the 774 * same divergence. If they differ (it must be convergent -> 775 * divergent), then we can't guarantee we won't need the convergent 776 * version of again. 777 */ 778 if (nir_src_is_divergent(values[a]) == 779 nir_src_is_divergent(values[b])) { 780 /* If any other copies want a they can find it at b but only if the 781 * two have the same divergence. 782 */ 783 loc[a] = b; 784 785 /* If a needs to be filled... */ 786 if (pred[a] != -1) { 787 /* If any other copies want a they can find it at b */ 788 loc[a] = b; 789 790 /* It's ready for copying now */ 791 ready[++ready_idx] = a; 792 } 793 } 794 } 795 int b = to_do[to_do_idx--]; 796 if (pred[b] == -1) 797 continue; 798 799 /* If we got here, then we don't have any more trivial copies that we 800 * can do. We have to break a cycle, so we create a new temporary 801 * register for that purpose. Normally, if going out of SSA after 802 * register allocation, you would want to avoid creating temporary 803 * registers. However, we are going out of SSA before register 804 * allocation, so we would rather not create extra register 805 * dependencies for the backend to deal with. If it wants, the 806 * backend can coalesce the (possibly multiple) temporaries. 807 */ 808 assert(num_vals < num_copies * 2); 809 nir_register *reg = nir_local_reg_create(state->builder.impl); 810 reg->num_array_elems = 0; 811 if (values[b].is_ssa) { 812 reg->num_components = values[b].ssa->num_components; 813 reg->bit_size = values[b].ssa->bit_size; 814 } else { 815 reg->num_components = values[b].reg.reg->num_components; 816 reg->bit_size = values[b].reg.reg->bit_size; 817 } 818 reg->divergent = nir_src_is_divergent(values[b]); 819 values[num_vals].is_ssa = false; 820 values[num_vals].reg.reg = reg; 821 822 emit_copy(&state->builder, values[b], values[num_vals]); 823 loc[b] = num_vals; 824 ready[++ready_idx] = b; 825 num_vals++; 826 } 827 828 nir_instr_remove(&pcopy->instr); 829 exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node); 830} 831 832/* Resolves the parallel copies in a block. Each block can have at most 833 * two: One at the beginning, right after all the phi noces, and one at 834 * the end (or right before the final jump if it exists). 835 */ 836static bool 837resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state) 838{ 839 /* At this point, we have removed all of the phi nodes. If a parallel 840 * copy existed right after the phi nodes in this block, it is now the 841 * first instruction. 842 */ 843 nir_instr *first_instr = nir_block_first_instr(block); 844 if (first_instr == NULL) 845 return true; /* Empty, nothing to do. */ 846 847 if (first_instr->type == nir_instr_type_parallel_copy) { 848 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr); 849 850 resolve_parallel_copy(pcopy, state); 851 } 852 853 /* It's possible that the above code already cleaned up the end parallel 854 * copy. However, doing so removed it form the instructions list so we 855 * won't find it here. Therefore, it's safe to go ahead and just look 856 * for one and clean it up if it exists. 857 */ 858 nir_parallel_copy_instr *end_pcopy = 859 get_parallel_copy_at_end_of_block(block); 860 if (end_pcopy) 861 resolve_parallel_copy(end_pcopy, state); 862 863 return true; 864} 865 866static bool 867nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only) 868{ 869 nir_shader *shader = impl->function->shader; 870 871 struct from_ssa_state state; 872 873 nir_builder_init(&state.builder, impl); 874 state.dead_ctx = ralloc_context(NULL); 875 state.phi_webs_only = phi_webs_only; 876 state.merge_node_table = _mesa_pointer_hash_table_create(NULL); 877 state.progress = false; 878 exec_list_make_empty(&state.dead_instrs); 879 880 nir_foreach_block(block, impl) { 881 add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx); 882 } 883 884 nir_foreach_block(block, impl) { 885 isolate_phi_nodes_block(shader, block, state.dead_ctx); 886 } 887 888 /* Mark metadata as dirty before we ask for liveness analysis */ 889 nir_metadata_preserve(impl, nir_metadata_block_index | 890 nir_metadata_dominance); 891 892 nir_metadata_require(impl, nir_metadata_instr_index | 893 nir_metadata_live_ssa_defs | 894 nir_metadata_dominance); 895 896 nir_foreach_block(block, impl) { 897 coalesce_phi_nodes_block(block, &state); 898 } 899 900 nir_foreach_block(block, impl) { 901 aggressive_coalesce_block(block, &state); 902 } 903 904 nir_foreach_block(block, impl) { 905 resolve_registers_block(block, &state); 906 } 907 908 nir_foreach_block(block, impl) { 909 resolve_parallel_copies_block(block, &state); 910 } 911 912 nir_metadata_preserve(impl, nir_metadata_block_index | 913 nir_metadata_dominance); 914 915 /* Clean up dead instructions and the hash tables */ 916 nir_instr_free_list(&state.dead_instrs); 917 _mesa_hash_table_destroy(state.merge_node_table, NULL); 918 ralloc_free(state.dead_ctx); 919 return state.progress; 920} 921 922bool 923nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only) 924{ 925 bool progress = false; 926 927 nir_foreach_function(function, shader) { 928 if (function->impl) 929 progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only); 930 } 931 932 return progress; 933} 934 935 936static void 937place_phi_read(nir_builder *b, nir_register *reg, 938 nir_ssa_def *def, nir_block *block, struct set *visited_blocks) 939{ 940 /* Search already visited blocks to avoid back edges in tree */ 941 if (_mesa_set_search(visited_blocks, block) == NULL) { 942 /* Try to go up the single-successor tree */ 943 bool all_single_successors = true; 944 set_foreach(block->predecessors, entry) { 945 nir_block *pred = (nir_block *)entry->key; 946 if (pred->successors[0] && pred->successors[1]) { 947 all_single_successors = false; 948 break; 949 } 950 } 951 952 if (all_single_successors) { 953 /* All predecessors of this block have exactly one successor and it 954 * is this block so they must eventually lead here without 955 * intersecting each other. Place the reads in the predecessors 956 * instead of this block. 957 */ 958 _mesa_set_add(visited_blocks, block); 959 960 set_foreach(block->predecessors, entry) { 961 place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks); 962 } 963 return; 964 } 965 } 966 967 b->cursor = nir_after_block_before_jump(block); 968 nir_store_reg(b, reg, def, ~0); 969} 970 971/** Lower all of the phi nodes in a block to movs to and from a register 972 * 973 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a 974 * single block to convert all of its phis to a register and some movs. 975 * The code that is generated, while not optimal for actual codegen in a 976 * back-end, is easy to generate, correct, and will turn into the same set of 977 * phis after you call regs_to_ssa and do some copy propagation. 978 * 979 * The one intelligent thing this pass does is that it places the moves from 980 * the phi sources as high up the predecessor tree as possible instead of in 981 * the exact predecessor. This means that, in particular, it will crawl into 982 * the deepest nesting of any if-ladders. In order to ensure that doing so is 983 * safe, it stops as soon as one of the predecessors has multiple successors. 984 */ 985bool 986nir_lower_phis_to_regs_block(nir_block *block) 987{ 988 nir_builder b; 989 nir_builder_init(&b, nir_cf_node_get_function(&block->cf_node)); 990 struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer, 991 _mesa_key_pointer_equal); 992 993 bool progress = false; 994 nir_foreach_instr_safe(instr, block) { 995 if (instr->type != nir_instr_type_phi) 996 break; 997 998 nir_phi_instr *phi = nir_instr_as_phi(instr); 999 assert(phi->dest.is_ssa); 1000 1001 nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, b.impl); 1002 1003 b.cursor = nir_after_instr(&phi->instr); 1004 nir_ssa_def *def = nir_load_reg(&b, reg); 1005 1006 nir_ssa_def_rewrite_uses(&phi->dest.ssa, def); 1007 1008 nir_foreach_phi_src(src, phi) { 1009 assert(src->src.is_ssa); 1010 _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block); 1011 place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks); 1012 _mesa_set_clear(visited_blocks, NULL); 1013 } 1014 1015 nir_instr_remove(&phi->instr); 1016 1017 progress = true; 1018 } 1019 1020 _mesa_set_destroy(visited_blocks, NULL); 1021 1022 return progress; 1023} 1024 1025struct ssa_def_to_reg_state { 1026 nir_function_impl *impl; 1027 bool progress; 1028}; 1029 1030static bool 1031dest_replace_ssa_with_reg(nir_dest *dest, void *void_state) 1032{ 1033 struct ssa_def_to_reg_state *state = void_state; 1034 1035 if (!dest->is_ssa) 1036 return true; 1037 1038 nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl); 1039 1040 nir_ssa_def_rewrite_uses_src(&dest->ssa, nir_src_for_reg(reg)); 1041 1042 nir_instr *instr = dest->ssa.parent_instr; 1043 *dest = nir_dest_for_reg(reg); 1044 dest->reg.parent_instr = instr; 1045 list_addtail(&dest->reg.def_link, ®->defs); 1046 1047 state->progress = true; 1048 1049 return true; 1050} 1051 1052static bool 1053ssa_def_is_local_to_block(nir_ssa_def *def, UNUSED void *state) 1054{ 1055 nir_block *block = def->parent_instr->block; 1056 nir_foreach_use(use_src, def) { 1057 if (use_src->parent_instr->block != block || 1058 use_src->parent_instr->type == nir_instr_type_phi) { 1059 return false; 1060 } 1061 } 1062 1063 if (!list_is_empty(&def->if_uses)) 1064 return false; 1065 1066 return true; 1067} 1068 1069/** Lower all of the SSA defs in a block to registers 1070 * 1071 * This performs the very simple operation of blindly replacing all of the SSA 1072 * defs in the given block with registers. If not used carefully, this may 1073 * result in phi nodes with register sources which is technically invalid. 1074 * Fortunately, the register-based into-SSA pass handles them anyway. 1075 */ 1076bool 1077nir_lower_ssa_defs_to_regs_block(nir_block *block) 1078{ 1079 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); 1080 nir_shader *shader = impl->function->shader; 1081 1082 struct ssa_def_to_reg_state state = { 1083 .impl = impl, 1084 .progress = false, 1085 }; 1086 1087 nir_foreach_instr(instr, block) { 1088 if (instr->type == nir_instr_type_ssa_undef) { 1089 /* Undefs are just a read of something never written. */ 1090 nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr); 1091 nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl); 1092 nir_ssa_def_rewrite_uses_src(&undef->def, nir_src_for_reg(reg)); 1093 } else if (instr->type == nir_instr_type_load_const) { 1094 /* Constant loads are SSA-only, we need to insert a move */ 1095 nir_load_const_instr *load = nir_instr_as_load_const(instr); 1096 nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl); 1097 nir_ssa_def_rewrite_uses_src(&load->def, nir_src_for_reg(reg)); 1098 1099 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov); 1100 mov->src[0].src = nir_src_for_ssa(&load->def); 1101 mov->dest.dest = nir_dest_for_reg(reg); 1102 mov->dest.write_mask = (1 << reg->num_components) - 1; 1103 nir_instr_insert(nir_after_instr(&load->instr), &mov->instr); 1104 } else if (nir_foreach_ssa_def(instr, ssa_def_is_local_to_block, NULL)) { 1105 /* If the SSA def produced by this instruction is only in the block 1106 * in which it is defined and is not used by ifs or phis, then we 1107 * don't have a reason to convert it to a register. 1108 */ 1109 } else { 1110 nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state); 1111 } 1112 } 1113 1114 return state.progress; 1115} 1116