1/* 2 * Copyright © 2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "nir.h" 25#include "nir_builder.h" 26#include "util/u_math.h" 27 28/** 29 * \file nir_opt_intrinsics.c 30 */ 31 32static nir_intrinsic_instr * 33lower_subgroups_64bit_split_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin, 34 unsigned int component) 35{ 36 nir_ssa_def *comp; 37 if (component == 0) 38 comp = nir_unpack_64_2x32_split_x(b, intrin->src[0].ssa); 39 else 40 comp = nir_unpack_64_2x32_split_y(b, intrin->src[0].ssa); 41 42 nir_intrinsic_instr *intr = nir_intrinsic_instr_create(b->shader, intrin->intrinsic); 43 nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32, NULL); 44 intr->const_index[0] = intrin->const_index[0]; 45 intr->const_index[1] = intrin->const_index[1]; 46 intr->src[0] = nir_src_for_ssa(comp); 47 if (nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2) 48 nir_src_copy(&intr->src[1], &intrin->src[1]); 49 50 intr->num_components = 1; 51 nir_builder_instr_insert(b, &intr->instr); 52 return intr; 53} 54 55static nir_ssa_def * 56lower_subgroup_op_to_32bit(nir_builder *b, nir_intrinsic_instr *intrin) 57{ 58 assert(intrin->src[0].ssa->bit_size == 64); 59 nir_intrinsic_instr *intr_x = lower_subgroups_64bit_split_intrinsic(b, intrin, 0); 60 nir_intrinsic_instr *intr_y = lower_subgroups_64bit_split_intrinsic(b, intrin, 1); 61 return nir_pack_64_2x32_split(b, &intr_x->dest.ssa, &intr_y->dest.ssa); 62} 63 64static nir_ssa_def * 65ballot_type_to_uint(nir_builder *b, nir_ssa_def *value, 66 const nir_lower_subgroups_options *options) 67{ 68 /* Only the new-style SPIR-V subgroup instructions take a ballot result as 69 * an argument, so we only use this on uvec4 types. 70 */ 71 assert(value->num_components == 4 && value->bit_size == 32); 72 73 return nir_extract_bits(b, &value, 1, 0, options->ballot_components, 74 options->ballot_bit_size); 75} 76 77static nir_ssa_def * 78uint_to_ballot_type(nir_builder *b, nir_ssa_def *value, 79 unsigned num_components, unsigned bit_size) 80{ 81 assert(util_is_power_of_two_nonzero(num_components)); 82 assert(util_is_power_of_two_nonzero(value->num_components)); 83 84 unsigned total_bits = bit_size * num_components; 85 86 /* If the source doesn't have enough bits, zero-pad */ 87 if (total_bits > value->bit_size * value->num_components) 88 value = nir_pad_vector_imm_int(b, value, 0, total_bits / value->bit_size); 89 90 value = nir_bitcast_vector(b, value, bit_size); 91 92 /* If the source has too many components, truncate. This can happen if, 93 * for instance, we're implementing GL_ARB_shader_ballot or 94 * VK_EXT_shader_subgroup_ballot which have 64-bit ballot values on an 95 * architecture with a native 128-bit uvec4 ballot. This comes up in Zink 96 * for OpenGL on Vulkan. It's the job of the driver calling this lowering 97 * pass to ensure that it's restricted subgroup sizes sufficiently that we 98 * have enough ballot bits. 99 */ 100 if (value->num_components > num_components) 101 value = nir_channels(b, value, (nir_component_mask_t)BITFIELD_MASK(num_components)); 102 103 return value; 104} 105 106static nir_ssa_def * 107lower_subgroup_op_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin, 108 bool lower_to_32bit) 109{ 110 /* This is safe to call on scalar things but it would be silly */ 111 assert(intrin->dest.ssa.num_components > 1); 112 113 nir_ssa_def *value = nir_ssa_for_src(b, intrin->src[0], 114 intrin->num_components); 115 nir_ssa_def *reads[NIR_MAX_VEC_COMPONENTS]; 116 117 for (unsigned i = 0; i < intrin->num_components; i++) { 118 nir_intrinsic_instr *chan_intrin = 119 nir_intrinsic_instr_create(b->shader, intrin->intrinsic); 120 nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest, 121 1, intrin->dest.ssa.bit_size, NULL); 122 chan_intrin->num_components = 1; 123 124 /* value */ 125 chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i)); 126 /* invocation */ 127 if (nir_intrinsic_infos[intrin->intrinsic].num_srcs > 1) { 128 assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2); 129 nir_src_copy(&chan_intrin->src[1], &intrin->src[1]); 130 } 131 132 chan_intrin->const_index[0] = intrin->const_index[0]; 133 chan_intrin->const_index[1] = intrin->const_index[1]; 134 135 if (lower_to_32bit && chan_intrin->src[0].ssa->bit_size == 64) { 136 reads[i] = lower_subgroup_op_to_32bit(b, chan_intrin); 137 } else { 138 nir_builder_instr_insert(b, &chan_intrin->instr); 139 reads[i] = &chan_intrin->dest.ssa; 140 } 141 } 142 143 return nir_vec(b, reads, intrin->num_components); 144} 145 146static nir_ssa_def * 147lower_vote_eq_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin) 148{ 149 assert(intrin->src[0].is_ssa); 150 nir_ssa_def *value = intrin->src[0].ssa; 151 152 nir_ssa_def *result = NULL; 153 for (unsigned i = 0; i < intrin->num_components; i++) { 154 nir_intrinsic_instr *chan_intrin = 155 nir_intrinsic_instr_create(b->shader, intrin->intrinsic); 156 nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest, 157 1, intrin->dest.ssa.bit_size, NULL); 158 chan_intrin->num_components = 1; 159 chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i)); 160 nir_builder_instr_insert(b, &chan_intrin->instr); 161 162 if (result) { 163 result = nir_iand(b, result, &chan_intrin->dest.ssa); 164 } else { 165 result = &chan_intrin->dest.ssa; 166 } 167 } 168 169 return result; 170} 171 172static nir_ssa_def * 173lower_vote_eq(nir_builder *b, nir_intrinsic_instr *intrin) 174{ 175 assert(intrin->src[0].is_ssa); 176 nir_ssa_def *value = intrin->src[0].ssa; 177 178 /* We have to implicitly lower to scalar */ 179 nir_ssa_def *all_eq = NULL; 180 for (unsigned i = 0; i < intrin->num_components; i++) { 181 nir_ssa_def *rfi = nir_read_first_invocation(b, nir_channel(b, value, i)); 182 183 nir_ssa_def *is_eq; 184 if (intrin->intrinsic == nir_intrinsic_vote_feq) { 185 is_eq = nir_feq(b, rfi, nir_channel(b, value, i)); 186 } else { 187 is_eq = nir_ieq(b, rfi, nir_channel(b, value, i)); 188 } 189 190 if (all_eq == NULL) { 191 all_eq = is_eq; 192 } else { 193 all_eq = nir_iand(b, all_eq, is_eq); 194 } 195 } 196 197 return nir_vote_all(b, 1, all_eq); 198} 199 200static nir_ssa_def * 201lower_shuffle_to_swizzle(nir_builder *b, nir_intrinsic_instr *intrin, 202 const nir_lower_subgroups_options *options) 203{ 204 unsigned mask = nir_src_as_uint(intrin->src[1]); 205 206 if (mask >= 32) 207 return NULL; 208 209 nir_intrinsic_instr *swizzle = nir_intrinsic_instr_create( 210 b->shader, nir_intrinsic_masked_swizzle_amd); 211 swizzle->num_components = intrin->num_components; 212 nir_src_copy(&swizzle->src[0], &intrin->src[0]); 213 nir_intrinsic_set_swizzle_mask(swizzle, (mask << 10) | 0x1f); 214 nir_ssa_dest_init(&swizzle->instr, &swizzle->dest, 215 intrin->dest.ssa.num_components, 216 intrin->dest.ssa.bit_size, NULL); 217 218 if (options->lower_to_scalar && swizzle->num_components > 1) { 219 return lower_subgroup_op_to_scalar(b, swizzle, options->lower_shuffle_to_32bit); 220 } else if (options->lower_shuffle_to_32bit && swizzle->src[0].ssa->bit_size == 64) { 221 return lower_subgroup_op_to_32bit(b, swizzle); 222 } else { 223 nir_builder_instr_insert(b, &swizzle->instr); 224 return &swizzle->dest.ssa; 225 } 226} 227 228static nir_ssa_def * 229lower_shuffle(nir_builder *b, nir_intrinsic_instr *intrin, 230 const nir_lower_subgroups_options *options) 231{ 232 if (intrin->intrinsic == nir_intrinsic_shuffle_xor && 233 options->lower_shuffle_to_swizzle_amd && 234 nir_src_is_const(intrin->src[1])) { 235 nir_ssa_def *result = 236 lower_shuffle_to_swizzle(b, intrin, options); 237 if (result) 238 return result; 239 } 240 241 nir_ssa_def *index = nir_load_subgroup_invocation(b); 242 bool is_shuffle = false; 243 switch (intrin->intrinsic) { 244 case nir_intrinsic_shuffle_xor: 245 assert(intrin->src[1].is_ssa); 246 index = nir_ixor(b, index, intrin->src[1].ssa); 247 is_shuffle = true; 248 break; 249 case nir_intrinsic_shuffle_up: 250 assert(intrin->src[1].is_ssa); 251 index = nir_isub(b, index, intrin->src[1].ssa); 252 is_shuffle = true; 253 break; 254 case nir_intrinsic_shuffle_down: 255 assert(intrin->src[1].is_ssa); 256 index = nir_iadd(b, index, intrin->src[1].ssa); 257 is_shuffle = true; 258 break; 259 case nir_intrinsic_quad_broadcast: 260 assert(intrin->src[1].is_ssa); 261 index = nir_ior(b, nir_iand(b, index, nir_imm_int(b, ~0x3)), 262 intrin->src[1].ssa); 263 break; 264 case nir_intrinsic_quad_swap_horizontal: 265 /* For Quad operations, subgroups are divided into quads where 266 * (invocation % 4) is the index to a square arranged as follows: 267 * 268 * +---+---+ 269 * | 0 | 1 | 270 * +---+---+ 271 * | 2 | 3 | 272 * +---+---+ 273 */ 274 index = nir_ixor(b, index, nir_imm_int(b, 0x1)); 275 break; 276 case nir_intrinsic_quad_swap_vertical: 277 index = nir_ixor(b, index, nir_imm_int(b, 0x2)); 278 break; 279 case nir_intrinsic_quad_swap_diagonal: 280 index = nir_ixor(b, index, nir_imm_int(b, 0x3)); 281 break; 282 default: 283 unreachable("Invalid intrinsic"); 284 } 285 286 nir_intrinsic_instr *shuffle = 287 nir_intrinsic_instr_create(b->shader, nir_intrinsic_shuffle); 288 shuffle->num_components = intrin->num_components; 289 nir_src_copy(&shuffle->src[0], &intrin->src[0]); 290 shuffle->src[1] = nir_src_for_ssa(index); 291 nir_ssa_dest_init(&shuffle->instr, &shuffle->dest, 292 intrin->dest.ssa.num_components, 293 intrin->dest.ssa.bit_size, NULL); 294 295 bool lower_to_32bit = options->lower_shuffle_to_32bit && is_shuffle; 296 if (options->lower_to_scalar && shuffle->num_components > 1) { 297 return lower_subgroup_op_to_scalar(b, shuffle, lower_to_32bit); 298 } else if (lower_to_32bit && shuffle->src[0].ssa->bit_size == 64) { 299 return lower_subgroup_op_to_32bit(b, shuffle); 300 } else { 301 nir_builder_instr_insert(b, &shuffle->instr); 302 return &shuffle->dest.ssa; 303 } 304} 305 306static bool 307lower_subgroups_filter(const nir_instr *instr, const void *_options) 308{ 309 return instr->type == nir_instr_type_intrinsic; 310} 311 312/* Return a ballot-mask-sized value which represents "val" sign-extended and 313 * then shifted left by "shift". Only particular values for "val" are 314 * supported, see below. 315 */ 316static nir_ssa_def * 317build_ballot_imm_ishl(nir_builder *b, int64_t val, nir_ssa_def *shift, 318 const nir_lower_subgroups_options *options) 319{ 320 /* This only works if all the high bits are the same as bit 1. */ 321 assert(((val << 62) >> 62) == val); 322 323 /* First compute the result assuming one ballot component. */ 324 nir_ssa_def *result = 325 nir_ishl(b, nir_imm_intN_t(b, val, options->ballot_bit_size), shift); 326 327 if (options->ballot_components == 1) 328 return result; 329 330 /* Fix up the result when there is > 1 component. The idea is that nir_ishl 331 * masks out the high bits of the shift value already, so in case there's 332 * more than one component the component which 1 would be shifted into 333 * already has the right value and all we have to do is fixup the other 334 * components. Components below it should always be 0, and components above 335 * it must be either 0 or ~0 because of the assert above. For example, if 336 * the target ballot size is 2 x uint32, and we're shifting 1 by 33, then 337 * we'll feed 33 into ishl, which will mask it off to get 1, so we'll 338 * compute a single-component result of 2, which is correct for the second 339 * component, but the first component needs to be 0, which we get by 340 * comparing the high bits of the shift with 0 and selecting the original 341 * answer or 0 for the first component (and something similar with the 342 * second component). This idea is generalized here for any component count 343 */ 344 nir_const_value min_shift[4] = { 0 }; 345 for (unsigned i = 0; i < options->ballot_components; i++) 346 min_shift[i].i32 = i * options->ballot_bit_size; 347 nir_ssa_def *min_shift_val = nir_build_imm(b, options->ballot_components, 32, min_shift); 348 349 nir_const_value max_shift[4] = { 0 }; 350 for (unsigned i = 0; i < options->ballot_components; i++) 351 max_shift[i].i32 = (i + 1) * options->ballot_bit_size; 352 nir_ssa_def *max_shift_val = nir_build_imm(b, options->ballot_components, 32, max_shift); 353 354 return nir_bcsel(b, nir_ult(b, shift, max_shift_val), 355 nir_bcsel(b, nir_ult(b, shift, min_shift_val), 356 nir_imm_intN_t(b, val >> 63, result->bit_size), 357 result), 358 nir_imm_intN_t(b, 0, result->bit_size)); 359} 360 361static nir_ssa_def * 362build_subgroup_eq_mask(nir_builder *b, 363 const nir_lower_subgroups_options *options) 364{ 365 nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b); 366 367 return build_ballot_imm_ishl(b, 1, subgroup_idx, options); 368} 369 370static nir_ssa_def * 371build_subgroup_ge_mask(nir_builder *b, 372 const nir_lower_subgroups_options *options) 373{ 374 nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b); 375 376 return build_ballot_imm_ishl(b, ~0ull, subgroup_idx, options); 377} 378 379static nir_ssa_def * 380build_subgroup_gt_mask(nir_builder *b, 381 const nir_lower_subgroups_options *options) 382{ 383 nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b); 384 385 return build_ballot_imm_ishl(b, ~1ull, subgroup_idx, options); 386} 387 388/* Return a mask which is 1 for threads up to the run-time subgroup size, i.e. 389 * 1 for the entire subgroup. SPIR-V requires us to return 0 for indices at or 390 * above the subgroup size for the masks, but gt_mask and ge_mask make them 1 391 * so we have to "and" with this mask. 392 */ 393static nir_ssa_def * 394build_subgroup_mask(nir_builder *b, 395 const nir_lower_subgroups_options *options) 396{ 397 nir_ssa_def *subgroup_size = nir_load_subgroup_size(b); 398 399 /* First compute the result assuming one ballot component. */ 400 nir_ssa_def *result = 401 nir_ushr(b, nir_imm_intN_t(b, ~0ull, options->ballot_bit_size), 402 nir_isub_imm(b, options->ballot_bit_size, 403 subgroup_size)); 404 405 /* Since the subgroup size and ballot bitsize are both powers of two, there 406 * are two possible cases to consider: 407 * 408 * (1) The subgroup size is less than the ballot bitsize. We need to return 409 * "result" in the first component and 0 in every other component. 410 * (2) The subgroup size is a multiple of the ballot bitsize. We need to 411 * return ~0 if the subgroup size divided by the ballot bitsize is less 412 * than or equal to the index in the vector and 0 otherwise. For example, 413 * with a target ballot type of 4 x uint32 and subgroup_size = 64 we'd need 414 * to return { ~0, ~0, 0, 0 }. 415 * 416 * In case (2) it turns out that "result" will be ~0, because 417 * "ballot_bit_size - subgroup_size" is also a multiple of 418 * "ballot_bit_size" and since nir_ushr masks the shift value it will 419 * shifted by 0. This means that the first component can just be "result" 420 * in all cases. The other components will also get the correct value in 421 * case (1) if we just use the rule in case (2), so we'll get the correct 422 * result if we just follow (2) and then replace the first component with 423 * "result". 424 */ 425 nir_const_value min_idx[4] = { 0 }; 426 for (unsigned i = 0; i < options->ballot_components; i++) 427 min_idx[i].i32 = i * options->ballot_bit_size; 428 nir_ssa_def *min_idx_val = nir_build_imm(b, options->ballot_components, 32, min_idx); 429 430 nir_ssa_def *result_extended = 431 nir_pad_vector_imm_int(b, result, ~0ull, options->ballot_components); 432 433 return nir_bcsel(b, nir_ult(b, min_idx_val, subgroup_size), 434 result_extended, nir_imm_intN_t(b, 0, options->ballot_bit_size)); 435} 436 437static nir_ssa_def * 438vec_bit_count(nir_builder *b, nir_ssa_def *value) 439{ 440 nir_ssa_def *vec_result = nir_bit_count(b, value); 441 nir_ssa_def *result = nir_channel(b, vec_result, 0); 442 for (unsigned i = 1; i < value->num_components; i++) 443 result = nir_iadd(b, result, nir_channel(b, vec_result, i)); 444 return result; 445} 446 447static nir_ssa_def * 448vec_find_lsb(nir_builder *b, nir_ssa_def *value) 449{ 450 nir_ssa_def *vec_result = nir_find_lsb(b, value); 451 nir_ssa_def *result = nir_imm_int(b, -1); 452 for (int i = value->num_components - 1; i >= 0; i--) { 453 nir_ssa_def *channel = nir_channel(b, vec_result, i); 454 /* result = channel >= 0 ? (i * bitsize + channel) : result */ 455 result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)), 456 nir_iadd_imm(b, channel, i * value->bit_size), 457 result); 458 } 459 return result; 460} 461 462static nir_ssa_def * 463vec_find_msb(nir_builder *b, nir_ssa_def *value) 464{ 465 nir_ssa_def *vec_result = nir_ufind_msb(b, value); 466 nir_ssa_def *result = nir_imm_int(b, -1); 467 for (unsigned i = 0; i < value->num_components; i++) { 468 nir_ssa_def *channel = nir_channel(b, vec_result, i); 469 /* result = channel >= 0 ? (i * bitsize + channel) : result */ 470 result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)), 471 nir_iadd_imm(b, channel, i * value->bit_size), 472 result); 473 } 474 return result; 475} 476 477static nir_ssa_def * 478lower_dynamic_quad_broadcast(nir_builder *b, nir_intrinsic_instr *intrin, 479 const nir_lower_subgroups_options *options) 480{ 481 if (!options->lower_quad_broadcast_dynamic_to_const) 482 return lower_shuffle(b, intrin, options); 483 484 nir_ssa_def *dst = NULL; 485 486 for (unsigned i = 0; i < 4; ++i) { 487 nir_intrinsic_instr *qbcst = 488 nir_intrinsic_instr_create(b->shader, nir_intrinsic_quad_broadcast); 489 490 qbcst->num_components = intrin->num_components; 491 qbcst->src[1] = nir_src_for_ssa(nir_imm_int(b, i)); 492 nir_src_copy(&qbcst->src[0], &intrin->src[0]); 493 nir_ssa_dest_init(&qbcst->instr, &qbcst->dest, 494 intrin->dest.ssa.num_components, 495 intrin->dest.ssa.bit_size, NULL); 496 497 nir_ssa_def *qbcst_dst = NULL; 498 499 if (options->lower_to_scalar && qbcst->num_components > 1) { 500 qbcst_dst = lower_subgroup_op_to_scalar(b, qbcst, false); 501 } else { 502 nir_builder_instr_insert(b, &qbcst->instr); 503 qbcst_dst = &qbcst->dest.ssa; 504 } 505 506 if (i) 507 dst = nir_bcsel(b, nir_ieq(b, intrin->src[1].ssa, 508 nir_src_for_ssa(nir_imm_int(b, i)).ssa), 509 qbcst_dst, dst); 510 else 511 dst = qbcst_dst; 512 } 513 514 return dst; 515} 516 517static nir_ssa_def * 518lower_read_invocation_to_cond(nir_builder *b, nir_intrinsic_instr *intrin) 519{ 520 return nir_read_invocation_cond_ir3(b, intrin->dest.ssa.bit_size, 521 intrin->src[0].ssa, 522 nir_ieq(b, intrin->src[1].ssa, 523 nir_load_subgroup_invocation(b))); 524} 525 526static nir_ssa_def * 527lower_subgroups_instr(nir_builder *b, nir_instr *instr, void *_options) 528{ 529 const nir_lower_subgroups_options *options = _options; 530 531 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 532 switch (intrin->intrinsic) { 533 case nir_intrinsic_vote_any: 534 case nir_intrinsic_vote_all: 535 if (options->lower_vote_trivial) 536 return nir_ssa_for_src(b, intrin->src[0], 1); 537 break; 538 539 case nir_intrinsic_vote_feq: 540 case nir_intrinsic_vote_ieq: 541 if (options->lower_vote_trivial) 542 return nir_imm_true(b); 543 544 if (options->lower_vote_eq) 545 return lower_vote_eq(b, intrin); 546 547 if (options->lower_to_scalar && intrin->num_components > 1) 548 return lower_vote_eq_to_scalar(b, intrin); 549 break; 550 551 case nir_intrinsic_load_subgroup_size: 552 if (options->subgroup_size) 553 return nir_imm_int(b, options->subgroup_size); 554 break; 555 556 case nir_intrinsic_read_invocation: 557 if (options->lower_to_scalar && intrin->num_components > 1) 558 return lower_subgroup_op_to_scalar(b, intrin, false); 559 560 if (options->lower_read_invocation_to_cond) 561 return lower_read_invocation_to_cond(b, intrin); 562 563 break; 564 565 case nir_intrinsic_read_first_invocation: 566 if (options->lower_to_scalar && intrin->num_components > 1) 567 return lower_subgroup_op_to_scalar(b, intrin, false); 568 break; 569 570 case nir_intrinsic_load_subgroup_eq_mask: 571 case nir_intrinsic_load_subgroup_ge_mask: 572 case nir_intrinsic_load_subgroup_gt_mask: 573 case nir_intrinsic_load_subgroup_le_mask: 574 case nir_intrinsic_load_subgroup_lt_mask: { 575 if (!options->lower_subgroup_masks) 576 return NULL; 577 578 nir_ssa_def *val; 579 switch (intrin->intrinsic) { 580 case nir_intrinsic_load_subgroup_eq_mask: 581 val = build_subgroup_eq_mask(b, options); 582 break; 583 case nir_intrinsic_load_subgroup_ge_mask: 584 val = nir_iand(b, build_subgroup_ge_mask(b, options), 585 build_subgroup_mask(b, options)); 586 break; 587 case nir_intrinsic_load_subgroup_gt_mask: 588 val = nir_iand(b, build_subgroup_gt_mask(b, options), 589 build_subgroup_mask(b, options)); 590 break; 591 case nir_intrinsic_load_subgroup_le_mask: 592 val = nir_inot(b, build_subgroup_gt_mask(b, options)); 593 break; 594 case nir_intrinsic_load_subgroup_lt_mask: 595 val = nir_inot(b, build_subgroup_ge_mask(b, options)); 596 break; 597 default: 598 unreachable("you seriously can't tell this is unreachable?"); 599 } 600 601 return uint_to_ballot_type(b, val, 602 intrin->dest.ssa.num_components, 603 intrin->dest.ssa.bit_size); 604 } 605 606 case nir_intrinsic_ballot: { 607 if (intrin->dest.ssa.num_components == options->ballot_components && 608 intrin->dest.ssa.bit_size == options->ballot_bit_size) 609 return NULL; 610 611 nir_ssa_def *ballot = 612 nir_ballot(b, options->ballot_components, options->ballot_bit_size, 613 intrin->src[0].ssa); 614 615 return uint_to_ballot_type(b, ballot, 616 intrin->dest.ssa.num_components, 617 intrin->dest.ssa.bit_size); 618 } 619 620 case nir_intrinsic_ballot_bitfield_extract: 621 case nir_intrinsic_ballot_bit_count_reduce: 622 case nir_intrinsic_ballot_find_lsb: 623 case nir_intrinsic_ballot_find_msb: { 624 assert(intrin->src[0].is_ssa); 625 nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa, 626 options); 627 628 if (intrin->intrinsic != nir_intrinsic_ballot_bitfield_extract && 629 intrin->intrinsic != nir_intrinsic_ballot_find_lsb) { 630 /* For OpGroupNonUniformBallotFindMSB, the SPIR-V Spec says: 631 * 632 * "Find the most significant bit set to 1 in Value, considering 633 * only the bits in Value required to represent all bits of the 634 * group’s invocations. If none of the considered bits is set to 635 * 1, the result is undefined." 636 * 637 * It has similar text for the other three. This means that, in case 638 * the subgroup size is less than 32, we have to mask off the unused 639 * bits. If the subgroup size is fixed and greater than or equal to 640 * 32, the mask will be 0xffffffff and nir_opt_algebraic will delete 641 * the iand. 642 * 643 * We only have to worry about this for BitCount and FindMSB because 644 * FindLSB counts from the bottom and BitfieldExtract selects 645 * individual bits. In either case, if run outside the range of 646 * valid bits, we hit the undefined results case and we can return 647 * anything we want. 648 */ 649 int_val = nir_iand(b, int_val, build_subgroup_mask(b, options)); 650 } 651 652 switch (intrin->intrinsic) { 653 case nir_intrinsic_ballot_bitfield_extract: { 654 assert(intrin->src[1].is_ssa); 655 nir_ssa_def *idx = intrin->src[1].ssa; 656 if (int_val->num_components > 1) { 657 /* idx will be truncated by nir_ushr, so we just need to select 658 * the right component using the bits of idx that are truncated in 659 * the shift. 660 */ 661 int_val = 662 nir_vector_extract(b, int_val, 663 nir_udiv_imm(b, idx, int_val->bit_size)); 664 } 665 666 return nir_i2b(b, nir_iand_imm(b, nir_ushr(b, int_val, idx), 1)); 667 } 668 case nir_intrinsic_ballot_bit_count_reduce: 669 return vec_bit_count(b, int_val); 670 case nir_intrinsic_ballot_find_lsb: 671 return vec_find_lsb(b, int_val); 672 case nir_intrinsic_ballot_find_msb: 673 return vec_find_msb(b, int_val); 674 default: 675 unreachable("you seriously can't tell this is unreachable?"); 676 } 677 } 678 679 case nir_intrinsic_ballot_bit_count_exclusive: 680 case nir_intrinsic_ballot_bit_count_inclusive: { 681 nir_ssa_def *mask; 682 if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_inclusive) { 683 mask = nir_inot(b, build_subgroup_gt_mask(b, options)); 684 } else { 685 mask = nir_inot(b, build_subgroup_ge_mask(b, options)); 686 } 687 688 assert(intrin->src[0].is_ssa); 689 nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa, 690 options); 691 692 return vec_bit_count(b, nir_iand(b, int_val, mask)); 693 } 694 695 case nir_intrinsic_elect: { 696 if (!options->lower_elect) 697 return NULL; 698 699 return nir_ieq(b, nir_load_subgroup_invocation(b), nir_first_invocation(b)); 700 } 701 702 case nir_intrinsic_shuffle: 703 if (options->lower_to_scalar && intrin->num_components > 1) 704 return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit); 705 else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64) 706 return lower_subgroup_op_to_32bit(b, intrin); 707 break; 708 case nir_intrinsic_shuffle_xor: 709 case nir_intrinsic_shuffle_up: 710 case nir_intrinsic_shuffle_down: 711 if (options->lower_shuffle) 712 return lower_shuffle(b, intrin, options); 713 else if (options->lower_to_scalar && intrin->num_components > 1) 714 return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit); 715 else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64) 716 return lower_subgroup_op_to_32bit(b, intrin); 717 break; 718 719 case nir_intrinsic_quad_broadcast: 720 case nir_intrinsic_quad_swap_horizontal: 721 case nir_intrinsic_quad_swap_vertical: 722 case nir_intrinsic_quad_swap_diagonal: 723 if (options->lower_quad || 724 (options->lower_quad_broadcast_dynamic && 725 intrin->intrinsic == nir_intrinsic_quad_broadcast && 726 !nir_src_is_const(intrin->src[1]))) 727 return lower_dynamic_quad_broadcast(b, intrin, options); 728 else if (options->lower_to_scalar && intrin->num_components > 1) 729 return lower_subgroup_op_to_scalar(b, intrin, false); 730 break; 731 732 case nir_intrinsic_reduce: { 733 nir_ssa_def *ret = NULL; 734 /* A cluster size greater than the subgroup size is implemention defined */ 735 if (options->subgroup_size && 736 nir_intrinsic_cluster_size(intrin) >= options->subgroup_size) { 737 nir_intrinsic_set_cluster_size(intrin, 0); 738 ret = NIR_LOWER_INSTR_PROGRESS; 739 } 740 if (options->lower_to_scalar && intrin->num_components > 1) 741 ret = lower_subgroup_op_to_scalar(b, intrin, false); 742 return ret; 743 } 744 case nir_intrinsic_inclusive_scan: 745 case nir_intrinsic_exclusive_scan: 746 if (options->lower_to_scalar && intrin->num_components > 1) 747 return lower_subgroup_op_to_scalar(b, intrin, false); 748 break; 749 750 default: 751 break; 752 } 753 754 return NULL; 755} 756 757bool 758nir_lower_subgroups(nir_shader *shader, 759 const nir_lower_subgroups_options *options) 760{ 761 return nir_shader_lower_instructions(shader, 762 lower_subgroups_filter, 763 lower_subgroups_instr, 764 (void *)options); 765} 766