1/*
2 * Copyright © 2020 Google, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24#include "ir3/ir3_compiler.h"
25
26#include "util/u_math.h"
27
28#include "adreno_pm4.xml.h"
29#include "adreno_common.xml.h"
30#include "a6xx.xml.h"
31
32#include "common/freedreno_dev_info.h"
33
34#include "ir3_asm.h"
35#include "main.h"
36
37struct a6xx_backend {
38   struct backend base;
39
40   struct ir3_compiler *compiler;
41   struct fd_device *dev;
42
43   const struct fd_dev_info *info;
44
45   unsigned seqno;
46   struct fd_bo *control_mem;
47
48   struct fd_bo *query_mem;
49   const struct perfcntr *perfcntrs;
50   unsigned num_perfcntrs;
51};
52define_cast(backend, a6xx_backend);
53
54/*
55 * Data structures shared with GPU:
56 */
57
58/* This struct defines the layout of the fd6_context::control buffer: */
59struct fd6_control {
60   uint32_t seqno; /* seqno for async CP_EVENT_WRITE, etc */
61   uint32_t _pad0;
62   volatile uint32_t vsc_overflow;
63   uint32_t _pad1;
64   /* flag set from cmdstream when VSC overflow detected: */
65   uint32_t vsc_scratch;
66   uint32_t _pad2;
67   uint32_t _pad3;
68   uint32_t _pad4;
69
70   /* scratch space for VPC_SO[i].FLUSH_BASE_LO/HI, start on 32 byte boundary. */
71   struct {
72      uint32_t offset;
73      uint32_t pad[7];
74   } flush_base[4];
75};
76
77#define control_ptr(a6xx_backend, member)                                      \
78   (a6xx_backend)->control_mem, offsetof(struct fd6_control, member), 0, 0
79
80struct PACKED fd6_query_sample {
81   uint64_t start;
82   uint64_t result;
83   uint64_t stop;
84};
85
86/* offset of a single field of an array of fd6_query_sample: */
87#define query_sample_idx(a6xx_backend, idx, field)                             \
88   (a6xx_backend)->query_mem,                                                  \
89      (idx * sizeof(struct fd6_query_sample)) +                                \
90         offsetof(struct fd6_query_sample, field),                             \
91      0, 0
92
93/*
94 * Backend implementation:
95 */
96
97static struct kernel *
98a6xx_assemble(struct backend *b, FILE *in)
99{
100   struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
101   struct ir3_kernel *ir3_kernel = ir3_asm_assemble(a6xx_backend->compiler, in);
102   ir3_kernel->backend = b;
103   return &ir3_kernel->base;
104}
105
106static void
107a6xx_disassemble(struct kernel *kernel, FILE *out)
108{
109   ir3_asm_disassemble(to_ir3_kernel(kernel), out);
110}
111
112static void
113cs_program_emit(struct fd_ringbuffer *ring, struct kernel *kernel)
114{
115   struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
116   struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
117   struct ir3_shader_variant *v = ir3_kernel->v;
118   const struct ir3_info *i = &v->info;
119   enum a6xx_threadsize thrsz = i->double_threadsize ? THREAD128 : THREAD64;
120
121   OUT_PKT4(ring, REG_A6XX_SP_MODE_CONTROL, 1);
122   OUT_RING(ring, A6XX_SP_MODE_CONTROL_CONSTANT_DEMOTION_ENABLE | 4);
123
124   OUT_PKT4(ring, REG_A6XX_SP_PERFCTR_ENABLE, 1);
125   OUT_RING(ring, A6XX_SP_PERFCTR_ENABLE_CS);
126
127   OUT_PKT4(ring, REG_A6XX_SP_FLOAT_CNTL, 1);
128   OUT_RING(ring, 0);
129
130   OUT_PKT4(ring, REG_A6XX_HLSQ_INVALIDATE_CMD, 1);
131   OUT_RING(
132      ring,
133      A6XX_HLSQ_INVALIDATE_CMD_VS_STATE | A6XX_HLSQ_INVALIDATE_CMD_HS_STATE |
134         A6XX_HLSQ_INVALIDATE_CMD_DS_STATE | A6XX_HLSQ_INVALIDATE_CMD_GS_STATE |
135         A6XX_HLSQ_INVALIDATE_CMD_FS_STATE | A6XX_HLSQ_INVALIDATE_CMD_CS_STATE |
136         A6XX_HLSQ_INVALIDATE_CMD_CS_IBO | A6XX_HLSQ_INVALIDATE_CMD_GFX_IBO);
137
138   unsigned constlen = align(v->constlen, 4);
139   OUT_PKT4(ring, REG_A6XX_HLSQ_CS_CNTL, 1);
140   OUT_RING(ring,
141            A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) | A6XX_HLSQ_CS_CNTL_ENABLED);
142
143   OUT_PKT4(ring, REG_A6XX_SP_CS_CONFIG, 2);
144   OUT_RING(ring, A6XX_SP_CS_CONFIG_ENABLED |
145                     A6XX_SP_CS_CONFIG_NIBO(kernel->num_bufs) |
146                     A6XX_SP_CS_CONFIG_NTEX(v->num_samp) |
147                     A6XX_SP_CS_CONFIG_NSAMP(v->num_samp)); /* SP_VS_CONFIG */
148   OUT_RING(ring, v->instrlen);                             /* SP_VS_INSTRLEN */
149
150   OUT_PKT4(ring, REG_A6XX_SP_CS_CTRL_REG0, 1);
151   OUT_RING(ring,
152            A6XX_SP_CS_CTRL_REG0_THREADSIZE(thrsz) |
153               A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(i->max_reg + 1) |
154               A6XX_SP_CS_CTRL_REG0_HALFREGFOOTPRINT(i->max_half_reg + 1) |
155               COND(v->mergedregs, A6XX_SP_CS_CTRL_REG0_MERGEDREGS) |
156               A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(ir3_shader_branchstack_hw(v)));
157
158   OUT_PKT4(ring, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
159   OUT_RING(ring, 0x41);
160
161   uint32_t local_invocation_id, work_group_id;
162   local_invocation_id =
163      ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
164   work_group_id = ir3_find_sysval_regid(v, SYSTEM_VALUE_WORKGROUP_ID);
165
166   OUT_PKT4(ring, REG_A6XX_HLSQ_CS_CNTL_0, 2);
167   OUT_RING(ring, A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
168                     A6XX_HLSQ_CS_CNTL_0_WGSIZECONSTID(regid(63, 0)) |
169                     A6XX_HLSQ_CS_CNTL_0_WGOFFSETCONSTID(regid(63, 0)) |
170                     A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
171   OUT_RING(ring, A6XX_HLSQ_CS_CNTL_1_LINEARLOCALIDREGID(regid(63, 0)) |
172                     A6XX_HLSQ_CS_CNTL_1_THREADSIZE(thrsz));
173
174   OUT_PKT4(ring, REG_A6XX_SP_CS_OBJ_START, 2);
175   OUT_RELOC(ring, v->bo, 0, 0, 0); /* SP_CS_OBJ_START_LO/HI */
176
177   OUT_PKT4(ring, REG_A6XX_SP_CS_INSTRLEN, 1);
178   OUT_RING(ring, v->instrlen);
179
180   OUT_PKT4(ring, REG_A6XX_SP_CS_OBJ_START, 2);
181   OUT_RELOC(ring, v->bo, 0, 0, 0);
182
183   OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
184   OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
185                     CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
186                     CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
187                     CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
188                     CP_LOAD_STATE6_0_NUM_UNIT(v->instrlen));
189   OUT_RELOC(ring, v->bo, 0, 0, 0);
190
191   if (v->pvtmem_size > 0) {
192      uint32_t per_fiber_size = ALIGN(v->pvtmem_size, 512);
193      uint32_t per_sp_size =
194         ALIGN(per_fiber_size * a6xx_backend->info->a6xx.fibers_per_sp, 1 << 12);
195      uint32_t total_size = per_sp_size * a6xx_backend->info->num_sp_cores;
196
197      struct fd_bo *pvtmem = fd_bo_new(a6xx_backend->dev, total_size, 0, "pvtmem");
198      OUT_PKT4(ring, REG_A6XX_SP_CS_PVT_MEM_PARAM, 4);
199      OUT_RING(ring, A6XX_SP_CS_PVT_MEM_PARAM_MEMSIZEPERITEM(per_fiber_size));
200      OUT_RELOC(ring, pvtmem, 0, 0, 0);
201      OUT_RING(ring, A6XX_SP_CS_PVT_MEM_SIZE_TOTALPVTMEMSIZE(per_sp_size) |
202                     COND(v->pvtmem_per_wave,
203                          A6XX_SP_CS_PVT_MEM_SIZE_PERWAVEMEMLAYOUT));
204
205      OUT_PKT4(ring, REG_A6XX_SP_CS_PVT_MEM_HW_STACK_OFFSET, 1);
206      OUT_RING(ring, A6XX_SP_CS_PVT_MEM_HW_STACK_OFFSET_OFFSET(per_sp_size));
207   }
208}
209
210static void
211emit_const(struct fd_ringbuffer *ring, uint32_t regid, uint32_t sizedwords,
212           const uint32_t *dwords)
213{
214   uint32_t align_sz;
215
216   debug_assert((regid % 4) == 0);
217
218   align_sz = align(sizedwords, 4);
219
220   OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3 + align_sz);
221   OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(regid / 4) |
222                     CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
223                     CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
224                     CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
225                     CP_LOAD_STATE6_0_NUM_UNIT(DIV_ROUND_UP(sizedwords, 4)));
226   OUT_RING(ring, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
227   OUT_RING(ring, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
228
229   for (uint32_t i = 0; i < sizedwords; i++) {
230      OUT_RING(ring, dwords[i]);
231   }
232
233   /* Zero-pad to multiple of 4 dwords */
234   for (uint32_t i = sizedwords; i < align_sz; i++) {
235      OUT_RING(ring, 0);
236   }
237}
238
239static void
240cs_const_emit(struct fd_ringbuffer *ring, struct kernel *kernel,
241              uint32_t grid[3])
242{
243   struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
244   struct ir3_shader_variant *v = ir3_kernel->v;
245
246   const struct ir3_const_state *const_state = ir3_const_state(v);
247   uint32_t base = const_state->offsets.immediate;
248   int size = DIV_ROUND_UP(const_state->immediates_count, 4);
249
250   if (ir3_kernel->info.numwg != INVALID_REG) {
251      assert((ir3_kernel->info.numwg & 0x3) == 0);
252      int idx = ir3_kernel->info.numwg >> 2;
253      const_state->immediates[idx * 4 + 0] = grid[0];
254      const_state->immediates[idx * 4 + 1] = grid[1];
255      const_state->immediates[idx * 4 + 2] = grid[2];
256   }
257
258   for (int i = 0; i < MAX_BUFS; i++) {
259      if (kernel->buf_addr_regs[i] != INVALID_REG) {
260         assert((kernel->buf_addr_regs[i] & 0x3) == 0);
261         int idx = kernel->buf_addr_regs[i] >> 2;
262
263         uint64_t iova = fd_bo_get_iova(kernel->bufs[i]);
264
265         const_state->immediates[idx * 4 + 1] = iova >> 32;
266         const_state->immediates[idx * 4 + 0] = (iova << 32) >> 32;
267      }
268   }
269
270   /* truncate size to avoid writing constants that shader
271    * does not use:
272    */
273   size = MIN2(size + base, v->constlen) - base;
274
275   /* convert out of vec4: */
276   base *= 4;
277   size *= 4;
278
279   if (size > 0) {
280      emit_const(ring, base, size, const_state->immediates);
281   }
282}
283
284static void
285cs_ibo_emit(struct fd_ringbuffer *ring, struct fd_submit *submit,
286            struct kernel *kernel)
287{
288   struct fd_ringbuffer *state = fd_submit_new_ringbuffer(
289      submit, kernel->num_bufs * 16 * 4, FD_RINGBUFFER_STREAMING);
290
291   for (unsigned i = 0; i < kernel->num_bufs; i++) {
292      /* size is encoded with low 15b in WIDTH and high bits in HEIGHT,
293       * in units of elements:
294       */
295      unsigned sz = kernel->buf_sizes[i];
296      unsigned width = sz & MASK(15);
297      unsigned height = sz >> 15;
298
299      OUT_RING(state, A6XX_IBO_0_FMT(FMT6_32_UINT) | A6XX_IBO_0_TILE_MODE(0));
300      OUT_RING(state, A6XX_IBO_1_WIDTH(width) | A6XX_IBO_1_HEIGHT(height));
301      OUT_RING(state, A6XX_IBO_2_PITCH(0) | A6XX_IBO_2_UNK4 | A6XX_IBO_2_UNK31 |
302                         A6XX_IBO_2_TYPE(A6XX_TEX_1D));
303      OUT_RING(state, A6XX_IBO_3_ARRAY_PITCH(0));
304      OUT_RELOC(state, kernel->bufs[i], 0, 0, 0);
305      OUT_RING(state, 0x00000000);
306      OUT_RING(state, 0x00000000);
307      OUT_RING(state, 0x00000000);
308      OUT_RING(state, 0x00000000);
309      OUT_RING(state, 0x00000000);
310      OUT_RING(state, 0x00000000);
311      OUT_RING(state, 0x00000000);
312      OUT_RING(state, 0x00000000);
313      OUT_RING(state, 0x00000000);
314      OUT_RING(state, 0x00000000);
315   }
316
317   OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
318   OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
319                     CP_LOAD_STATE6_0_STATE_TYPE(ST6_IBO) |
320                     CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
321                     CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
322                     CP_LOAD_STATE6_0_NUM_UNIT(kernel->num_bufs));
323   OUT_RB(ring, state);
324
325   OUT_PKT4(ring, REG_A6XX_SP_CS_IBO, 2);
326   OUT_RB(ring, state);
327
328   OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_COUNT, 1);
329   OUT_RING(ring, kernel->num_bufs);
330
331   fd_ringbuffer_del(state);
332}
333
334static inline unsigned
335event_write(struct fd_ringbuffer *ring, struct kernel *kernel,
336            enum vgt_event_type evt, bool timestamp)
337{
338   unsigned seqno = 0;
339
340   OUT_PKT7(ring, CP_EVENT_WRITE, timestamp ? 4 : 1);
341   OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(evt));
342   if (timestamp) {
343      struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
344      struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
345      seqno = ++a6xx_backend->seqno;
346      OUT_RELOC(ring, control_ptr(a6xx_backend, seqno)); /* ADDR_LO/HI */
347      OUT_RING(ring, seqno);
348   }
349
350   return seqno;
351}
352
353static inline void
354cache_flush(struct fd_ringbuffer *ring, struct kernel *kernel)
355{
356   struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
357   struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
358   unsigned seqno;
359
360   seqno = event_write(ring, kernel, RB_DONE_TS, true);
361
362   OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
363   OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
364                     CP_WAIT_REG_MEM_0_POLL_MEMORY);
365   OUT_RELOC(ring, control_ptr(a6xx_backend, seqno));
366   OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(seqno));
367   OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(~0));
368   OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(16));
369
370   seqno = event_write(ring, kernel, CACHE_FLUSH_TS, true);
371
372   OUT_PKT7(ring, CP_WAIT_MEM_GTE, 4);
373   OUT_RING(ring, CP_WAIT_MEM_GTE_0_RESERVED(0));
374   OUT_RELOC(ring, control_ptr(a6xx_backend, seqno));
375   OUT_RING(ring, CP_WAIT_MEM_GTE_3_REF(seqno));
376}
377
378static void
379a6xx_emit_grid(struct kernel *kernel, uint32_t grid[3],
380               struct fd_submit *submit)
381{
382   struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
383   struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
384   struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(
385      submit, 0, FD_RINGBUFFER_PRIMARY | FD_RINGBUFFER_GROWABLE);
386
387   cs_program_emit(ring, kernel);
388   cs_const_emit(ring, kernel, grid);
389   cs_ibo_emit(ring, submit, kernel);
390
391   OUT_PKT7(ring, CP_SET_MARKER, 1);
392   OUT_RING(ring, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
393
394   const unsigned *local_size = kernel->local_size;
395   const unsigned *num_groups = grid;
396
397   unsigned work_dim = 0;
398   for (int i = 0; i < 3; i++) {
399      if (!grid[i])
400         break;
401      work_dim++;
402   }
403
404   OUT_PKT4(ring, REG_A6XX_HLSQ_CS_NDRANGE_0, 7);
405   OUT_RING(ring, A6XX_HLSQ_CS_NDRANGE_0_KERNELDIM(work_dim) |
406                     A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEX(local_size[0] - 1) |
407                     A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEY(local_size[1] - 1) |
408                     A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEZ(local_size[2] - 1));
409   OUT_RING(ring,
410            A6XX_HLSQ_CS_NDRANGE_1_GLOBALSIZE_X(local_size[0] * num_groups[0]));
411   OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_2_GLOBALOFF_X */
412   OUT_RING(ring,
413            A6XX_HLSQ_CS_NDRANGE_3_GLOBALSIZE_Y(local_size[1] * num_groups[1]));
414   OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_4_GLOBALOFF_Y */
415   OUT_RING(ring,
416            A6XX_HLSQ_CS_NDRANGE_5_GLOBALSIZE_Z(local_size[2] * num_groups[2]));
417   OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_6_GLOBALOFF_Z */
418
419   OUT_PKT4(ring, REG_A6XX_HLSQ_CS_KERNEL_GROUP_X, 3);
420   OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_X */
421   OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_Y */
422   OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_Z */
423
424   if (a6xx_backend->num_perfcntrs > 0) {
425      a6xx_backend->query_mem = fd_bo_new(
426         a6xx_backend->dev,
427         a6xx_backend->num_perfcntrs * sizeof(struct fd6_query_sample), 0, "query");
428
429      /* configure the performance counters to count the requested
430       * countables:
431       */
432      for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
433         const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
434
435         OUT_PKT4(ring, counter->select_reg, 1);
436         OUT_RING(ring, counter->selector);
437      }
438
439      OUT_PKT7(ring, CP_WAIT_FOR_IDLE, 0);
440
441      /* and snapshot the start values: */
442      for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
443         const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
444
445         OUT_PKT7(ring, CP_REG_TO_MEM, 3);
446         OUT_RING(ring, CP_REG_TO_MEM_0_64B |
447                           CP_REG_TO_MEM_0_REG(counter->counter_reg_lo));
448         OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, start));
449      }
450   }
451
452   OUT_PKT7(ring, CP_EXEC_CS, 4);
453   OUT_RING(ring, 0x00000000);
454   OUT_RING(ring, CP_EXEC_CS_1_NGROUPS_X(grid[0]));
455   OUT_RING(ring, CP_EXEC_CS_2_NGROUPS_Y(grid[1]));
456   OUT_RING(ring, CP_EXEC_CS_3_NGROUPS_Z(grid[2]));
457
458   OUT_PKT7(ring, CP_WAIT_FOR_IDLE, 0);
459
460   if (a6xx_backend->num_perfcntrs > 0) {
461      /* snapshot the end values: */
462      for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
463         const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
464
465         OUT_PKT7(ring, CP_REG_TO_MEM, 3);
466         OUT_RING(ring, CP_REG_TO_MEM_0_64B |
467                           CP_REG_TO_MEM_0_REG(counter->counter_reg_lo));
468         OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, stop));
469      }
470
471      /* and compute the result: */
472      for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
473         /* result += stop - start: */
474         OUT_PKT7(ring, CP_MEM_TO_MEM, 9);
475         OUT_RING(ring, CP_MEM_TO_MEM_0_DOUBLE | CP_MEM_TO_MEM_0_NEG_C);
476         OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, result)); /* dst */
477         OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, result)); /* srcA */
478         OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, stop));   /* srcB */
479         OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, start));  /* srcC */
480      }
481   }
482
483   cache_flush(ring, kernel);
484}
485
486static void
487a6xx_set_perfcntrs(struct backend *b, const struct perfcntr *perfcntrs,
488                   unsigned num_perfcntrs)
489{
490   struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
491
492   a6xx_backend->perfcntrs = perfcntrs;
493   a6xx_backend->num_perfcntrs = num_perfcntrs;
494}
495
496static void
497a6xx_read_perfcntrs(struct backend *b, uint64_t *results)
498{
499   struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
500
501   fd_bo_cpu_prep(a6xx_backend->query_mem, NULL, FD_BO_PREP_READ);
502   struct fd6_query_sample *samples = fd_bo_map(a6xx_backend->query_mem);
503
504   for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
505      results[i] = samples[i].result;
506   }
507}
508
509struct backend *
510a6xx_init(struct fd_device *dev, const struct fd_dev_id *dev_id)
511{
512   struct a6xx_backend *a6xx_backend = calloc(1, sizeof(*a6xx_backend));
513
514   a6xx_backend->base = (struct backend){
515      .assemble = a6xx_assemble,
516      .disassemble = a6xx_disassemble,
517      .emit_grid = a6xx_emit_grid,
518      .set_perfcntrs = a6xx_set_perfcntrs,
519      .read_perfcntrs = a6xx_read_perfcntrs,
520   };
521
522   a6xx_backend->compiler = ir3_compiler_create(dev, dev_id, false);
523   a6xx_backend->dev = dev;
524
525   a6xx_backend->info = fd_dev_info(dev_id);
526
527   a6xx_backend->control_mem =
528      fd_bo_new(dev, 0x1000, 0, "control");
529
530   return &a6xx_backend->base;
531}
532