1/* 2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org> 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Rob Clark <robclark@freedesktop.org> 25 */ 26 27#include "util/ralloc.h" 28#include "util/u_math.h" 29 30#include "ir3.h" 31#include "ir3_shader.h" 32 33/* 34 * Legalize: 35 * 36 * The legalize pass handles ensuring sufficient nop's and sync flags for 37 * correct execution. 38 * 39 * 1) Iteratively determine where sync ((sy)/(ss)) flags are needed, 40 * based on state flowing out of predecessor blocks until there is 41 * no further change. In some cases this requires inserting nops. 42 * 2) Mark (ei) on last varying input, and (ul) on last use of a0.x 43 * 3) Final nop scheduling for instruction latency 44 * 4) Resolve jumps and schedule blocks, marking potential convergence 45 * points with (jp) 46 */ 47 48struct ir3_legalize_ctx { 49 struct ir3_compiler *compiler; 50 struct ir3_shader_variant *so; 51 gl_shader_stage type; 52 int max_bary; 53 bool early_input_release; 54}; 55 56struct ir3_legalize_state { 57 regmask_t needs_ss; 58 regmask_t needs_ss_war; /* write after read */ 59 regmask_t needs_sy; 60}; 61 62struct ir3_legalize_block_data { 63 bool valid; 64 struct ir3_legalize_state state; 65}; 66 67/* We want to evaluate each block from the position of any other 68 * predecessor block, in order that the flags set are the union of 69 * all possible program paths. 70 * 71 * To do this, we need to know the output state (needs_ss/ss_war/sy) 72 * of all predecessor blocks. The tricky thing is loops, which mean 73 * that we can't simply recursively process each predecessor block 74 * before legalizing the current block. 75 * 76 * How we handle that is by looping over all the blocks until the 77 * results converge. If the output state of a given block changes 78 * in a given pass, this means that all successor blocks are not 79 * yet fully legalized. 80 */ 81 82static bool 83legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block) 84{ 85 struct ir3_legalize_block_data *bd = block->data; 86 87 if (bd->valid) 88 return false; 89 90 struct ir3_instruction *last_rel = NULL; 91 struct ir3_instruction *last_n = NULL; 92 struct list_head instr_list; 93 struct ir3_legalize_state prev_state = bd->state; 94 struct ir3_legalize_state *state = &bd->state; 95 bool last_input_needs_ss = false; 96 bool has_tex_prefetch = false; 97 bool mergedregs = ctx->so->mergedregs; 98 99 /* our input state is the OR of all predecessor blocks' state: */ 100 for (unsigned i = 0; i < block->predecessors_count; i++) { 101 struct ir3_block *predecessor = block->predecessors[i]; 102 struct ir3_legalize_block_data *pbd = predecessor->data; 103 struct ir3_legalize_state *pstate = &pbd->state; 104 105 /* Our input (ss)/(sy) state is based on OR'ing the output 106 * state of all our predecessor blocks 107 */ 108 regmask_or(&state->needs_ss, &state->needs_ss, &pstate->needs_ss); 109 regmask_or(&state->needs_ss_war, &state->needs_ss_war, 110 &pstate->needs_ss_war); 111 regmask_or(&state->needs_sy, &state->needs_sy, &pstate->needs_sy); 112 } 113 114 unsigned input_count = 0; 115 116 foreach_instr (n, &block->instr_list) { 117 if (is_input(n)) { 118 input_count++; 119 } 120 } 121 122 unsigned inputs_remaining = input_count; 123 124 /* Either inputs are in the first block or we expect inputs to be released 125 * with the end of the program. 126 */ 127 assert(input_count == 0 || !ctx->early_input_release || 128 block == ir3_start_block(block->shader)); 129 130 /* remove all the instructions from the list, we'll be adding 131 * them back in as we go 132 */ 133 list_replace(&block->instr_list, &instr_list); 134 list_inithead(&block->instr_list); 135 136 foreach_instr_safe (n, &instr_list) { 137 unsigned i; 138 139 n->flags &= ~(IR3_INSTR_SS | IR3_INSTR_SY); 140 141 /* _meta::tex_prefetch instructions removed later in 142 * collect_tex_prefetches() 143 */ 144 if (is_meta(n) && (n->opc != OPC_META_TEX_PREFETCH)) 145 continue; 146 147 if (is_input(n)) { 148 struct ir3_register *inloc = n->srcs[0]; 149 assert(inloc->flags & IR3_REG_IMMED); 150 ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val); 151 } 152 153 if (last_n && is_barrier(last_n)) { 154 n->flags |= IR3_INSTR_SS | IR3_INSTR_SY; 155 last_input_needs_ss = false; 156 regmask_init(&state->needs_ss_war, mergedregs); 157 regmask_init(&state->needs_ss, mergedregs); 158 regmask_init(&state->needs_sy, mergedregs); 159 } 160 161 if (last_n && (last_n->opc == OPC_PREDT)) { 162 n->flags |= IR3_INSTR_SS; 163 regmask_init(&state->needs_ss_war, mergedregs); 164 regmask_init(&state->needs_ss, mergedregs); 165 } 166 167 /* NOTE: consider dst register too.. it could happen that 168 * texture sample instruction (for example) writes some 169 * components which are unused. A subsequent instruction 170 * that writes the same register can race w/ the sam instr 171 * resulting in undefined results: 172 */ 173 for (i = 0; i < n->dsts_count + n->srcs_count; i++) { 174 struct ir3_register *reg; 175 if (i < n->dsts_count) 176 reg = n->dsts[i]; 177 else 178 reg = n->srcs[i - n->dsts_count]; 179 180 if (reg_gpr(reg)) { 181 182 /* TODO: we probably only need (ss) for alu 183 * instr consuming sfu result.. need to make 184 * some tests for both this and (sy).. 185 */ 186 if (regmask_get(&state->needs_ss, reg)) { 187 n->flags |= IR3_INSTR_SS; 188 last_input_needs_ss = false; 189 regmask_init(&state->needs_ss_war, mergedregs); 190 regmask_init(&state->needs_ss, mergedregs); 191 } 192 193 if (regmask_get(&state->needs_sy, reg)) { 194 n->flags |= IR3_INSTR_SY; 195 regmask_init(&state->needs_sy, mergedregs); 196 } 197 } 198 199 /* TODO: is it valid to have address reg loaded from a 200 * relative src (ie. mova a0, c<a0.x+4>)? If so, the 201 * last_rel check below should be moved ahead of this: 202 */ 203 if (reg->flags & IR3_REG_RELATIV) 204 last_rel = n; 205 } 206 207 foreach_dst (reg, n) { 208 if (regmask_get(&state->needs_ss_war, reg)) { 209 n->flags |= IR3_INSTR_SS; 210 last_input_needs_ss = false; 211 regmask_init(&state->needs_ss_war, mergedregs); 212 regmask_init(&state->needs_ss, mergedregs); 213 } 214 215 if (last_rel && (reg->num == regid(REG_A0, 0))) { 216 last_rel->flags |= IR3_INSTR_UL; 217 last_rel = NULL; 218 } 219 } 220 221 /* cat5+ does not have an (ss) bit, if needed we need to 222 * insert a nop to carry the sync flag. Would be kinda 223 * clever if we were aware of this during scheduling, but 224 * this should be a pretty rare case: 225 */ 226 if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) { 227 struct ir3_instruction *nop; 228 nop = ir3_NOP(block); 229 nop->flags |= IR3_INSTR_SS; 230 n->flags &= ~IR3_INSTR_SS; 231 } 232 233 /* need to be able to set (ss) on first instruction: */ 234 if (list_is_empty(&block->instr_list) && (opc_cat(n->opc) >= 5)) 235 ir3_NOP(block); 236 237 if (ctx->compiler->samgq_workaround && 238 ctx->type != MESA_SHADER_FRAGMENT && 239 ctx->type != MESA_SHADER_COMPUTE && n->opc == OPC_SAMGQ) { 240 struct ir3_instruction *samgp; 241 242 list_delinit(&n->node); 243 244 for (i = 0; i < 4; i++) { 245 samgp = ir3_instr_clone(n); 246 samgp->opc = OPC_SAMGP0 + i; 247 if (i > 1) 248 samgp->flags |= IR3_INSTR_SY; 249 } 250 } else { 251 list_delinit(&n->node); 252 list_addtail(&n->node, &block->instr_list); 253 } 254 255 if (is_sfu(n)) 256 regmask_set(&state->needs_ss, n->dsts[0]); 257 258 if (is_tex_or_prefetch(n)) { 259 regmask_set(&state->needs_sy, n->dsts[0]); 260 if (n->opc == OPC_META_TEX_PREFETCH) 261 has_tex_prefetch = true; 262 } else if (n->opc == OPC_RESINFO) { 263 regmask_set(&state->needs_ss, n->dsts[0]); 264 ir3_NOP(block)->flags |= IR3_INSTR_SS; 265 last_input_needs_ss = false; 266 } else if (is_load(n)) { 267 /* seems like ldlv needs (ss) bit instead?? which is odd but 268 * makes a bunch of flat-varying tests start working on a4xx. 269 */ 270 if ((n->opc == OPC_LDLV) || (n->opc == OPC_LDL) || 271 (n->opc == OPC_LDLW)) 272 regmask_set(&state->needs_ss, n->dsts[0]); 273 else 274 regmask_set(&state->needs_sy, n->dsts[0]); 275 } else if (is_atomic(n->opc)) { 276 if (n->flags & IR3_INSTR_G) { 277 if (ctx->compiler->gen >= 6) { 278 /* New encoding, returns result via second src: */ 279 regmask_set(&state->needs_sy, n->srcs[2]); 280 } else { 281 regmask_set(&state->needs_sy, n->dsts[0]); 282 } 283 } else { 284 regmask_set(&state->needs_ss, n->dsts[0]); 285 } 286 } 287 288 if (is_ssbo(n->opc) || (is_atomic(n->opc) && (n->flags & IR3_INSTR_G))) 289 ctx->so->has_ssbo = true; 290 291 /* both tex/sfu appear to not always immediately consume 292 * their src register(s): 293 */ 294 if (is_tex(n) || is_sfu(n) || is_mem(n)) { 295 foreach_src (reg, n) { 296 regmask_set(&state->needs_ss_war, reg); 297 } 298 } 299 300 if (ctx->early_input_release && is_input(n)) { 301 last_input_needs_ss |= (n->opc == OPC_LDLV); 302 303 assert(inputs_remaining > 0); 304 inputs_remaining--; 305 if (inputs_remaining == 0) { 306 /* This is the last input. We add the (ei) flag to release 307 * varying memory after this executes. If it's an ldlv, 308 * however, we need to insert a dummy bary.f on which we can 309 * set the (ei) flag. We may also need to insert an (ss) to 310 * guarantee that all ldlv's have finished fetching their 311 * results before releasing the varying memory. 312 */ 313 struct ir3_instruction *last_input = n; 314 if (n->opc == OPC_LDLV) { 315 struct ir3_instruction *baryf; 316 317 /* (ss)bary.f (ei)r63.x, 0, r0.x */ 318 baryf = ir3_instr_create(block, OPC_BARY_F, 1, 2); 319 ir3_dst_create(baryf, regid(63, 0), 0); 320 ir3_src_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0; 321 ir3_src_create(baryf, regid(0, 0), 0); 322 323 last_input = baryf; 324 } 325 326 last_input->dsts[0]->flags |= IR3_REG_EI; 327 if (last_input_needs_ss) { 328 last_input->flags |= IR3_INSTR_SS; 329 regmask_init(&state->needs_ss_war, mergedregs); 330 regmask_init(&state->needs_ss, mergedregs); 331 } 332 } 333 } 334 335 last_n = n; 336 } 337 338 assert(inputs_remaining == 0 || !ctx->early_input_release); 339 340 if (has_tex_prefetch && input_count == 0) { 341 /* texture prefetch, but *no* inputs.. we need to insert a 342 * dummy bary.f at the top of the shader to unblock varying 343 * storage: 344 */ 345 struct ir3_instruction *baryf; 346 347 /* (ss)bary.f (ei)r63.x, 0, r0.x */ 348 baryf = ir3_instr_create(block, OPC_BARY_F, 1, 2); 349 ir3_dst_create(baryf, regid(63, 0), 0)->flags |= IR3_REG_EI; 350 ir3_src_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0; 351 ir3_src_create(baryf, regid(0, 0), 0); 352 353 /* insert the dummy bary.f at head: */ 354 list_delinit(&baryf->node); 355 list_add(&baryf->node, &block->instr_list); 356 } 357 358 if (last_rel) 359 last_rel->flags |= IR3_INSTR_UL; 360 361 bd->valid = true; 362 363 if (memcmp(&prev_state, state, sizeof(*state))) { 364 /* our output state changed, this invalidates all of our 365 * successors: 366 */ 367 for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) { 368 if (!block->successors[i]) 369 break; 370 struct ir3_legalize_block_data *pbd = block->successors[i]->data; 371 pbd->valid = false; 372 } 373 } 374 375 return true; 376} 377 378/* Expands dsxpp and dsypp macros to: 379 * 380 * dsxpp.1 dst, src 381 * dsxpp.1.p dst, src 382 * 383 * We apply this after flags syncing, as we don't want to sync in between the 384 * two (which might happen if dst == src). We do it before nop scheduling 385 * because that needs to count actual instructions. 386 */ 387static bool 388apply_fine_deriv_macro(struct ir3_legalize_ctx *ctx, struct ir3_block *block) 389{ 390 struct list_head instr_list; 391 392 /* remove all the instructions from the list, we'll be adding 393 * them back in as we go 394 */ 395 list_replace(&block->instr_list, &instr_list); 396 list_inithead(&block->instr_list); 397 398 foreach_instr_safe (n, &instr_list) { 399 list_addtail(&n->node, &block->instr_list); 400 401 if (n->opc == OPC_DSXPP_MACRO || n->opc == OPC_DSYPP_MACRO) { 402 n->opc = (n->opc == OPC_DSXPP_MACRO) ? OPC_DSXPP_1 : OPC_DSYPP_1; 403 404 struct ir3_instruction *op_p = ir3_instr_clone(n); 405 op_p->flags = IR3_INSTR_P; 406 407 ctx->so->need_fine_derivatives = true; 408 } 409 } 410 411 return true; 412} 413 414/* NOTE: branch instructions are always the last instruction(s) 415 * in the block. We take advantage of this as we resolve the 416 * branches, since "if (foo) break;" constructs turn into 417 * something like: 418 * 419 * block3 { 420 * ... 421 * 0029:021: mov.s32s32 r62.x, r1.y 422 * 0082:022: br !p0.x, target=block5 423 * 0083:023: br p0.x, target=block4 424 * // succs: if _[0029:021: mov.s32s32] block4; else block5; 425 * } 426 * block4 { 427 * 0084:024: jump, target=block6 428 * // succs: block6; 429 * } 430 * block5 { 431 * 0085:025: jump, target=block7 432 * // succs: block7; 433 * } 434 * 435 * ie. only instruction in block4/block5 is a jump, so when 436 * resolving branches we can easily detect this by checking 437 * that the first instruction in the target block is itself 438 * a jump, and setup the br directly to the jump's target 439 * (and strip back out the now unreached jump) 440 * 441 * TODO sometimes we end up with things like: 442 * 443 * br !p0.x, #2 444 * br p0.x, #12 445 * add.u r0.y, r0.y, 1 446 * 447 * If we swapped the order of the branches, we could drop one. 448 */ 449static struct ir3_block * 450resolve_dest_block(struct ir3_block *block) 451{ 452 /* special case for last block: */ 453 if (!block->successors[0]) 454 return block; 455 456 /* NOTE that we may or may not have inserted the jump 457 * in the target block yet, so conditions to resolve 458 * the dest to the dest block's successor are: 459 * 460 * (1) successor[1] == NULL && 461 * (2) (block-is-empty || only-instr-is-jump) 462 */ 463 if (block->successors[1] == NULL) { 464 if (list_is_empty(&block->instr_list)) { 465 return block->successors[0]; 466 } else if (list_length(&block->instr_list) == 1) { 467 struct ir3_instruction *instr = 468 list_first_entry(&block->instr_list, struct ir3_instruction, node); 469 if (instr->opc == OPC_JUMP) { 470 /* If this jump is backwards, then we will probably convert 471 * the jump being resolved to a backwards jump, which will 472 * change a loop-with-continue or loop-with-if into a 473 * doubly-nested loop and change the convergence behavior. 474 * Disallow this here. 475 */ 476 if (block->successors[0]->index <= block->index) 477 return block; 478 return block->successors[0]; 479 } 480 } 481 } 482 return block; 483} 484 485static void 486remove_unused_block(struct ir3_block *old_target) 487{ 488 list_delinit(&old_target->node); 489 490 /* cleanup dangling predecessors: */ 491 for (unsigned i = 0; i < ARRAY_SIZE(old_target->successors); i++) { 492 if (old_target->successors[i]) { 493 struct ir3_block *succ = old_target->successors[i]; 494 ir3_block_remove_predecessor(succ, old_target); 495 } 496 } 497} 498 499static bool 500retarget_jump(struct ir3_instruction *instr, struct ir3_block *new_target) 501{ 502 struct ir3_block *old_target = instr->cat0.target; 503 struct ir3_block *cur_block = instr->block; 504 505 /* update current blocks successors to reflect the retargetting: */ 506 if (cur_block->successors[0] == old_target) { 507 cur_block->successors[0] = new_target; 508 } else { 509 debug_assert(cur_block->successors[1] == old_target); 510 cur_block->successors[1] = new_target; 511 } 512 513 /* also update physical_successors.. we don't really need them at 514 * this stage, but it keeps ir3_validate happy: 515 */ 516 if (cur_block->physical_successors[0] == old_target) { 517 cur_block->physical_successors[0] = new_target; 518 } else { 519 debug_assert(cur_block->physical_successors[1] == old_target); 520 cur_block->physical_successors[1] = new_target; 521 } 522 523 /* update new target's predecessors: */ 524 ir3_block_add_predecessor(new_target, cur_block); 525 526 /* and remove old_target's predecessor: */ 527 ir3_block_remove_predecessor(old_target, cur_block); 528 529 instr->cat0.target = new_target; 530 531 if (old_target->predecessors_count == 0) { 532 remove_unused_block(old_target); 533 return true; 534 } 535 536 return false; 537} 538 539static bool 540opt_jump(struct ir3 *ir) 541{ 542 bool progress = false; 543 544 unsigned index = 0; 545 foreach_block (block, &ir->block_list) 546 block->index = index++; 547 548 foreach_block (block, &ir->block_list) { 549 foreach_instr (instr, &block->instr_list) { 550 if (!is_flow(instr) || !instr->cat0.target) 551 continue; 552 553 struct ir3_block *tblock = resolve_dest_block(instr->cat0.target); 554 if (tblock != instr->cat0.target) { 555 progress = true; 556 557 /* Exit early if we deleted a block to avoid iterator 558 * weirdness/assert fails 559 */ 560 if (retarget_jump(instr, tblock)) 561 return true; 562 } 563 } 564 565 /* Detect the case where the block ends either with: 566 * - A single unconditional jump to the next block. 567 * - Two jump instructions with opposite conditions, and one of the 568 * them jumps to the next block. 569 * We can remove the one that jumps to the next block in either case. 570 */ 571 if (list_is_empty(&block->instr_list)) 572 continue; 573 574 struct ir3_instruction *jumps[2] = {NULL, NULL}; 575 jumps[0] = 576 list_last_entry(&block->instr_list, struct ir3_instruction, node); 577 if (!list_is_singular(&block->instr_list)) 578 jumps[1] = 579 list_last_entry(&jumps[0]->node, struct ir3_instruction, node); 580 581 if (jumps[0]->opc == OPC_JUMP) 582 jumps[1] = NULL; 583 else if (jumps[0]->opc != OPC_B || !jumps[1] || jumps[1]->opc != OPC_B) 584 continue; 585 586 for (unsigned i = 0; i < 2; i++) { 587 if (!jumps[i]) 588 continue; 589 590 struct ir3_block *tblock = jumps[i]->cat0.target; 591 if (&tblock->node == block->node.next) { 592 list_delinit(&jumps[i]->node); 593 progress = true; 594 break; 595 } 596 } 597 } 598 599 return progress; 600} 601 602static void 603resolve_jumps(struct ir3 *ir) 604{ 605 foreach_block (block, &ir->block_list) 606 foreach_instr (instr, &block->instr_list) 607 if (is_flow(instr) && instr->cat0.target) { 608 struct ir3_instruction *target = list_first_entry( 609 &instr->cat0.target->instr_list, struct ir3_instruction, node); 610 611 instr->cat0.immed = (int)target->ip - (int)instr->ip; 612 } 613} 614 615static void 616mark_jp(struct ir3_block *block) 617{ 618 struct ir3_instruction *target = 619 list_first_entry(&block->instr_list, struct ir3_instruction, node); 620 target->flags |= IR3_INSTR_JP; 621} 622 623/* Mark points where control flow converges or diverges. 624 * 625 * Divergence points could actually be re-convergence points where 626 * "parked" threads are recoverged with threads that took the opposite 627 * path last time around. Possibly it is easier to think of (jp) as 628 * "the execution mask might have changed". 629 */ 630static void 631mark_xvergence_points(struct ir3 *ir) 632{ 633 foreach_block (block, &ir->block_list) { 634 if (block->predecessors_count > 1) { 635 /* if a block has more than one possible predecessor, then 636 * the first instruction is a convergence point. 637 */ 638 mark_jp(block); 639 } else if (block->predecessors_count == 1) { 640 /* If a block has one predecessor, which has multiple possible 641 * successors, it is a divergence point. 642 */ 643 for (unsigned i = 0; i < block->predecessors_count; i++) { 644 struct ir3_block *predecessor = block->predecessors[i]; 645 if (predecessor->successors[1]) { 646 mark_jp(block); 647 } 648 } 649 } 650 } 651} 652 653/* Insert the branch/jump instructions for flow control between blocks. 654 * Initially this is done naively, without considering if the successor 655 * block immediately follows the current block (ie. so no jump required), 656 * but that is cleaned up in opt_jump(). 657 * 658 * TODO what ensures that the last write to p0.x in a block is the 659 * branch condition? Have we been getting lucky all this time? 660 */ 661static void 662block_sched(struct ir3 *ir) 663{ 664 foreach_block (block, &ir->block_list) { 665 if (block->successors[1]) { 666 /* if/else, conditional branches to "then" or "else": */ 667 struct ir3_instruction *br1, *br2; 668 669 if (block->brtype == IR3_BRANCH_GETONE) { 670 /* getone can't be inverted, and it wouldn't even make sense 671 * to follow it with an inverted branch, so follow it by an 672 * unconditional branch. 673 */ 674 debug_assert(!block->condition); 675 br1 = ir3_GETONE(block); 676 br1->cat0.target = block->successors[1]; 677 678 br2 = ir3_JUMP(block); 679 br2->cat0.target = block->successors[0]; 680 } else { 681 debug_assert(block->condition); 682 683 /* create "else" branch first (since "then" block should 684 * frequently/always end up being a fall-thru): 685 */ 686 br1 = ir3_instr_create(block, OPC_B, 0, 1); 687 ir3_src_create(br1, regid(REG_P0, 0), 0)->def = 688 block->condition->dsts[0]; 689 br1->cat0.inv1 = true; 690 br1->cat0.target = block->successors[1]; 691 692 /* "then" branch: */ 693 br2 = ir3_instr_create(block, OPC_B, 0, 1); 694 ir3_src_create(br2, regid(REG_P0, 0), 0)->def = 695 block->condition->dsts[0]; 696 br2->cat0.target = block->successors[0]; 697 698 switch (block->brtype) { 699 case IR3_BRANCH_COND: 700 br1->cat0.brtype = br2->cat0.brtype = BRANCH_PLAIN; 701 break; 702 case IR3_BRANCH_ALL: 703 br1->cat0.brtype = BRANCH_ANY; 704 br2->cat0.brtype = BRANCH_ALL; 705 break; 706 case IR3_BRANCH_ANY: 707 br1->cat0.brtype = BRANCH_ALL; 708 br2->cat0.brtype = BRANCH_ANY; 709 break; 710 case IR3_BRANCH_GETONE: 711 unreachable("can't get here"); 712 } 713 } 714 } else if (block->successors[0]) { 715 /* otherwise unconditional jump to next block: */ 716 struct ir3_instruction *jmp; 717 718 jmp = ir3_JUMP(block); 719 jmp->cat0.target = block->successors[0]; 720 } 721 } 722} 723 724/* Here we workaround the fact that kill doesn't actually kill the thread as 725 * GL expects. The last instruction always needs to be an end instruction, 726 * which means that if we're stuck in a loop where kill is the only way out, 727 * then we may have to jump out to the end. kill may also have the d3d 728 * semantics of converting the thread to a helper thread, rather than setting 729 * the exec mask to 0, in which case the helper thread could get stuck in an 730 * infinite loop. 731 * 732 * We do this late, both to give the scheduler the opportunity to reschedule 733 * kill instructions earlier and to avoid having to create a separate basic 734 * block. 735 * 736 * TODO: Assuming that the wavefront doesn't stop as soon as all threads are 737 * killed, we might benefit by doing this more aggressively when the remaining 738 * part of the program after the kill is large, since that would let us 739 * skip over the instructions when there are no non-killed threads left. 740 */ 741static void 742kill_sched(struct ir3 *ir, struct ir3_shader_variant *so) 743{ 744 /* True if we know that this block will always eventually lead to the end 745 * block: 746 */ 747 bool always_ends = true; 748 bool added = false; 749 struct ir3_block *last_block = 750 list_last_entry(&ir->block_list, struct ir3_block, node); 751 752 foreach_block_rev (block, &ir->block_list) { 753 for (unsigned i = 0; i < 2 && block->successors[i]; i++) { 754 if (block->successors[i]->start_ip <= block->end_ip) 755 always_ends = false; 756 } 757 758 if (always_ends) 759 continue; 760 761 foreach_instr_safe (instr, &block->instr_list) { 762 if (instr->opc != OPC_KILL) 763 continue; 764 765 struct ir3_instruction *br = ir3_instr_create(block, OPC_B, 0, 1); 766 ir3_src_create(br, instr->srcs[0]->num, instr->srcs[0]->flags)->wrmask = 767 1; 768 br->cat0.target = 769 list_last_entry(&ir->block_list, struct ir3_block, node); 770 771 list_del(&br->node); 772 list_add(&br->node, &instr->node); 773 774 added = true; 775 } 776 } 777 778 if (added) { 779 /* I'm not entirely sure how the branchstack works, but we probably 780 * need to add at least one entry for the divergence which is resolved 781 * at the end: 782 */ 783 so->branchstack++; 784 785 /* We don't update predecessors/successors, so we have to do this 786 * manually: 787 */ 788 mark_jp(last_block); 789 } 790} 791 792/* Insert nop's required to make this a legal/valid shader program: */ 793static void 794nop_sched(struct ir3 *ir, struct ir3_shader_variant *so) 795{ 796 foreach_block (block, &ir->block_list) { 797 struct ir3_instruction *last = NULL; 798 struct list_head instr_list; 799 800 /* remove all the instructions from the list, we'll be adding 801 * them back in as we go 802 */ 803 list_replace(&block->instr_list, &instr_list); 804 list_inithead(&block->instr_list); 805 806 foreach_instr_safe (instr, &instr_list) { 807 unsigned delay = ir3_delay_calc_exact(block, instr, so->mergedregs); 808 809 /* NOTE: I think the nopN encoding works for a5xx and 810 * probably a4xx, but not a3xx. So far only tested on 811 * a6xx. 812 */ 813 814 if ((delay > 0) && (ir->compiler->gen >= 6) && last && 815 ((opc_cat(last->opc) == 2) || (opc_cat(last->opc) == 3)) && 816 (last->repeat == 0)) { 817 /* the previous cat2/cat3 instruction can encode at most 3 nop's: */ 818 unsigned transfer = MIN2(delay, 3 - last->nop); 819 last->nop += transfer; 820 delay -= transfer; 821 } 822 823 if ((delay > 0) && last && (last->opc == OPC_NOP)) { 824 /* the previous nop can encode at most 5 repeats: */ 825 unsigned transfer = MIN2(delay, 5 - last->repeat); 826 last->repeat += transfer; 827 delay -= transfer; 828 } 829 830 if (delay > 0) { 831 debug_assert(delay <= 6); 832 ir3_NOP(block)->repeat = delay - 1; 833 } 834 835 list_addtail(&instr->node, &block->instr_list); 836 last = instr; 837 } 838 } 839} 840 841bool 842ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary) 843{ 844 struct ir3_legalize_ctx *ctx = rzalloc(ir, struct ir3_legalize_ctx); 845 bool mergedregs = so->mergedregs; 846 bool progress; 847 848 ctx->so = so; 849 ctx->max_bary = -1; 850 ctx->compiler = ir->compiler; 851 ctx->type = ir->type; 852 853 /* allocate per-block data: */ 854 foreach_block (block, &ir->block_list) { 855 struct ir3_legalize_block_data *bd = 856 rzalloc(ctx, struct ir3_legalize_block_data); 857 858 regmask_init(&bd->state.needs_ss_war, mergedregs); 859 regmask_init(&bd->state.needs_ss, mergedregs); 860 regmask_init(&bd->state.needs_sy, mergedregs); 861 862 block->data = bd; 863 } 864 865 ir3_remove_nops(ir); 866 867 /* We may have failed to pull all input loads into the first block. 868 * In such case at the moment we aren't able to find a better place 869 * to for (ei) than the end of the program. 870 * a5xx and a6xx do automatically release varying storage at the end. 871 */ 872 ctx->early_input_release = true; 873 struct ir3_block *start_block = ir3_start_block(ir); 874 foreach_block (block, &ir->block_list) { 875 foreach_instr (instr, &block->instr_list) { 876 if (is_input(instr) && block != start_block) { 877 ctx->early_input_release = false; 878 break; 879 } 880 } 881 } 882 883 assert(ctx->early_input_release || ctx->compiler->gen >= 5); 884 885 /* process each block: */ 886 do { 887 progress = false; 888 foreach_block (block, &ir->block_list) { 889 progress |= legalize_block(ctx, block); 890 } 891 } while (progress); 892 893 *max_bary = ctx->max_bary; 894 895 block_sched(ir); 896 if (so->type == MESA_SHADER_FRAGMENT) 897 kill_sched(ir, so); 898 899 foreach_block (block, &ir->block_list) { 900 progress |= apply_fine_deriv_macro(ctx, block); 901 } 902 903 nop_sched(ir, so); 904 905 while (opt_jump(ir)) 906 ; 907 908 ir3_count_instructions(ir); 909 resolve_jumps(ir); 910 911 mark_xvergence_points(ir); 912 913 ralloc_free(ctx); 914 915 return true; 916} 917