1/* 2 * Copyright 2011 Adam Rak <adam.rak@streamnovation.com> 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * on the rights to use, copy, modify, merge, publish, distribute, sub 8 * license, and/or sell copies of the Software, and to permit persons to whom 9 * the Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, 19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 21 * USE OR OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Adam Rak <adam.rak@streamnovation.com> 25 */ 26 27#ifdef HAVE_OPENCL 28#include <gelf.h> 29#include <libelf.h> 30#endif 31#include <stdio.h> 32#include <errno.h> 33#include "pipe/p_defines.h" 34#include "pipe/p_state.h" 35#include "pipe/p_context.h" 36#include "util/u_blitter.h" 37#include "util/list.h" 38#include "util/u_transfer.h" 39#include "util/u_surface.h" 40#include "util/u_pack_color.h" 41#include "util/u_memory.h" 42#include "util/u_inlines.h" 43#include "util/u_framebuffer.h" 44#include "tgsi/tgsi_parse.h" 45#include "pipebuffer/pb_buffer.h" 46#include "evergreend.h" 47#include "r600_shader.h" 48#include "r600_pipe.h" 49#include "r600_formats.h" 50#include "evergreen_compute.h" 51#include "evergreen_compute_internal.h" 52#include "compute_memory_pool.h" 53#include "sb/sb_public.h" 54#include <inttypes.h> 55 56/** 57RAT0 is for global binding write 58VTX1 is for global binding read 59 60for wrting images RAT1... 61for reading images TEX2... 62 TEX2-RAT1 is paired 63 64TEX2... consumes the same fetch resources, that VTX2... would consume 65 66CONST0 and VTX0 is for parameters 67 CONST0 is binding smaller input parameter buffer, and for constant indexing, 68 also constant cached 69 VTX0 is for indirect/non-constant indexing, or if the input is bigger than 70 the constant cache can handle 71 72RAT-s are limited to 12, so we can only bind at most 11 texture for writing 73because we reserve RAT0 for global bindings. With byteaddressing enabled, 74we should reserve another one too.=> 10 image binding for writing max. 75 76from Nvidia OpenCL: 77 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128 78 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8 79 80so 10 for writing is enough. 176 is the max for reading according to the docs 81 82writable images should be listed first < 10, so their id corresponds to RAT(id+1) 83writable images will consume TEX slots, VTX slots too because of linear indexing 84 85*/ 86 87#ifdef HAVE_OPENCL 88static void radeon_shader_binary_init(struct r600_shader_binary *b) 89{ 90 memset(b, 0, sizeof(*b)); 91} 92 93static void radeon_shader_binary_clean(struct r600_shader_binary *b) 94{ 95 if (!b) 96 return; 97 FREE(b->code); 98 FREE(b->config); 99 FREE(b->rodata); 100 FREE(b->global_symbol_offsets); 101 FREE(b->relocs); 102 FREE(b->disasm_string); 103} 104#endif 105 106struct r600_resource *r600_compute_buffer_alloc_vram(struct r600_screen *screen, 107 unsigned size) 108{ 109 struct pipe_resource *buffer = NULL; 110 assert(size); 111 112 buffer = pipe_buffer_create((struct pipe_screen*) screen, 113 0, PIPE_USAGE_IMMUTABLE, size); 114 115 return (struct r600_resource *)buffer; 116} 117 118 119static void evergreen_set_rat(struct r600_pipe_compute *pipe, 120 unsigned id, 121 struct r600_resource *bo, 122 int start, 123 int size) 124{ 125 struct pipe_surface rat_templ; 126 struct r600_surface *surf = NULL; 127 struct r600_context *rctx = NULL; 128 129 assert(id < 12); 130 assert((size & 3) == 0); 131 assert((start & 0xFF) == 0); 132 133 rctx = pipe->ctx; 134 135 COMPUTE_DBG(rctx->screen, "bind rat: %i \n", id); 136 137 /* Create the RAT surface */ 138 memset(&rat_templ, 0, sizeof(rat_templ)); 139 rat_templ.format = PIPE_FORMAT_R32_UINT; 140 rat_templ.u.tex.level = 0; 141 rat_templ.u.tex.first_layer = 0; 142 rat_templ.u.tex.last_layer = 0; 143 144 /* Add the RAT the list of color buffers. Drop the old buffer first. */ 145 pipe_surface_reference(&pipe->ctx->framebuffer.state.cbufs[id], NULL); 146 pipe->ctx->framebuffer.state.cbufs[id] = pipe->ctx->b.b.create_surface( 147 (struct pipe_context *)pipe->ctx, 148 (struct pipe_resource *)bo, &rat_templ); 149 150 /* Update the number of color buffers */ 151 pipe->ctx->framebuffer.state.nr_cbufs = 152 MAX2(id + 1, pipe->ctx->framebuffer.state.nr_cbufs); 153 154 /* Update the cb_target_mask 155 * XXX: I think this is a potential spot for bugs once we start doing 156 * GL interop. cb_target_mask may be modified in the 3D sections 157 * of this driver. */ 158 pipe->ctx->compute_cb_target_mask |= (0xf << (id * 4)); 159 160 surf = (struct r600_surface*)pipe->ctx->framebuffer.state.cbufs[id]; 161 evergreen_init_color_surface_rat(rctx, surf); 162} 163 164static void evergreen_cs_set_vertex_buffer(struct r600_context *rctx, 165 unsigned vb_index, 166 unsigned offset, 167 struct pipe_resource *buffer) 168{ 169 struct r600_vertexbuf_state *state = &rctx->cs_vertex_buffer_state; 170 struct pipe_vertex_buffer *vb = &state->vb[vb_index]; 171 vb->stride = 1; 172 vb->buffer_offset = offset; 173 vb->buffer.resource = buffer; 174 vb->is_user_buffer = false; 175 176 /* The vertex instructions in the compute shaders use the texture cache, 177 * so we need to invalidate it. */ 178 rctx->b.flags |= R600_CONTEXT_INV_VERTEX_CACHE; 179 state->enabled_mask |= 1 << vb_index; 180 state->dirty_mask |= 1 << vb_index; 181 r600_mark_atom_dirty(rctx, &state->atom); 182} 183 184static void evergreen_cs_set_constant_buffer(struct r600_context *rctx, 185 unsigned cb_index, 186 unsigned offset, 187 unsigned size, 188 struct pipe_resource *buffer) 189{ 190 struct pipe_constant_buffer cb; 191 cb.buffer_size = size; 192 cb.buffer_offset = offset; 193 cb.buffer = buffer; 194 cb.user_buffer = NULL; 195 196 rctx->b.b.set_constant_buffer(&rctx->b.b, PIPE_SHADER_COMPUTE, cb_index, false, &cb); 197} 198 199/* We need to define these R600 registers here, because we can't include 200 * evergreend.h and r600d.h. 201 */ 202#define R_028868_SQ_PGM_RESOURCES_VS 0x028868 203#define R_028850_SQ_PGM_RESOURCES_PS 0x028850 204 205#ifdef HAVE_OPENCL 206static void parse_symbol_table(Elf_Data *symbol_table_data, 207 const GElf_Shdr *symbol_table_header, 208 struct r600_shader_binary *binary) 209{ 210 GElf_Sym symbol; 211 unsigned i = 0; 212 unsigned symbol_count = 213 symbol_table_header->sh_size / symbol_table_header->sh_entsize; 214 215 /* We are over allocating this list, because symbol_count gives the 216 * total number of symbols, and we will only be filling the list 217 * with offsets of global symbols. The memory savings from 218 * allocating the correct size of this list will be small, and 219 * I don't think it is worth the cost of pre-computing the number 220 * of global symbols. 221 */ 222 binary->global_symbol_offsets = CALLOC(symbol_count, sizeof(uint64_t)); 223 224 while (gelf_getsym(symbol_table_data, i++, &symbol)) { 225 unsigned i; 226 if (GELF_ST_BIND(symbol.st_info) != STB_GLOBAL || 227 symbol.st_shndx == 0 /* Undefined symbol */) { 228 continue; 229 } 230 231 binary->global_symbol_offsets[binary->global_symbol_count] = 232 symbol.st_value; 233 234 /* Sort the list using bubble sort. This list will usually 235 * be small. */ 236 for (i = binary->global_symbol_count; i > 0; --i) { 237 uint64_t lhs = binary->global_symbol_offsets[i - 1]; 238 uint64_t rhs = binary->global_symbol_offsets[i]; 239 if (lhs < rhs) { 240 break; 241 } 242 binary->global_symbol_offsets[i] = lhs; 243 binary->global_symbol_offsets[i - 1] = rhs; 244 } 245 ++binary->global_symbol_count; 246 } 247} 248 249 250static void parse_relocs(Elf *elf, Elf_Data *relocs, Elf_Data *symbols, 251 unsigned symbol_sh_link, 252 struct r600_shader_binary *binary) 253{ 254 unsigned i; 255 256 if (!relocs || !symbols || !binary->reloc_count) { 257 return; 258 } 259 binary->relocs = CALLOC(binary->reloc_count, 260 sizeof(struct r600_shader_reloc)); 261 for (i = 0; i < binary->reloc_count; i++) { 262 GElf_Sym symbol; 263 GElf_Rel rel; 264 char *symbol_name; 265 struct r600_shader_reloc *reloc = &binary->relocs[i]; 266 267 gelf_getrel(relocs, i, &rel); 268 gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &symbol); 269 symbol_name = elf_strptr(elf, symbol_sh_link, symbol.st_name); 270 271 reloc->offset = rel.r_offset; 272 strncpy(reloc->name, symbol_name, sizeof(reloc->name)-1); 273 reloc->name[sizeof(reloc->name)-1] = 0; 274 } 275} 276 277static void r600_elf_read(const char *elf_data, unsigned elf_size, 278 struct r600_shader_binary *binary) 279{ 280 char *elf_buffer; 281 Elf *elf; 282 Elf_Scn *section = NULL; 283 Elf_Data *symbols = NULL, *relocs = NULL; 284 size_t section_str_index; 285 unsigned symbol_sh_link = 0; 286 287 /* One of the libelf implementations 288 * (http://www.mr511.de/software/english.htm) requires calling 289 * elf_version() before elf_memory(). 290 */ 291 elf_version(EV_CURRENT); 292 elf_buffer = MALLOC(elf_size); 293 memcpy(elf_buffer, elf_data, elf_size); 294 295 elf = elf_memory(elf_buffer, elf_size); 296 297 elf_getshdrstrndx(elf, §ion_str_index); 298 299 while ((section = elf_nextscn(elf, section))) { 300 const char *name; 301 Elf_Data *section_data = NULL; 302 GElf_Shdr section_header; 303 if (gelf_getshdr(section, §ion_header) != §ion_header) { 304 fprintf(stderr, "Failed to read ELF section header\n"); 305 return; 306 } 307 name = elf_strptr(elf, section_str_index, section_header.sh_name); 308 if (!strcmp(name, ".text")) { 309 section_data = elf_getdata(section, section_data); 310 binary->code_size = section_data->d_size; 311 binary->code = MALLOC(binary->code_size * sizeof(unsigned char)); 312 memcpy(binary->code, section_data->d_buf, binary->code_size); 313 } else if (!strcmp(name, ".AMDGPU.config")) { 314 section_data = elf_getdata(section, section_data); 315 binary->config_size = section_data->d_size; 316 binary->config = MALLOC(binary->config_size * sizeof(unsigned char)); 317 memcpy(binary->config, section_data->d_buf, binary->config_size); 318 } else if (!strcmp(name, ".AMDGPU.disasm")) { 319 /* Always read disassembly if it's available. */ 320 section_data = elf_getdata(section, section_data); 321 binary->disasm_string = strndup(section_data->d_buf, 322 section_data->d_size); 323 } else if (!strncmp(name, ".rodata", 7)) { 324 section_data = elf_getdata(section, section_data); 325 binary->rodata_size = section_data->d_size; 326 binary->rodata = MALLOC(binary->rodata_size * sizeof(unsigned char)); 327 memcpy(binary->rodata, section_data->d_buf, binary->rodata_size); 328 } else if (!strncmp(name, ".symtab", 7)) { 329 symbols = elf_getdata(section, section_data); 330 symbol_sh_link = section_header.sh_link; 331 parse_symbol_table(symbols, §ion_header, binary); 332 } else if (!strcmp(name, ".rel.text")) { 333 relocs = elf_getdata(section, section_data); 334 binary->reloc_count = section_header.sh_size / 335 section_header.sh_entsize; 336 } 337 } 338 339 parse_relocs(elf, relocs, symbols, symbol_sh_link, binary); 340 341 if (elf){ 342 elf_end(elf); 343 } 344 FREE(elf_buffer); 345 346 /* Cache the config size per symbol */ 347 if (binary->global_symbol_count) { 348 binary->config_size_per_symbol = 349 binary->config_size / binary->global_symbol_count; 350 } else { 351 binary->global_symbol_count = 1; 352 binary->config_size_per_symbol = binary->config_size; 353 } 354} 355 356static const unsigned char *r600_shader_binary_config_start( 357 const struct r600_shader_binary *binary, 358 uint64_t symbol_offset) 359{ 360 unsigned i; 361 for (i = 0; i < binary->global_symbol_count; ++i) { 362 if (binary->global_symbol_offsets[i] == symbol_offset) { 363 unsigned offset = i * binary->config_size_per_symbol; 364 return binary->config + offset; 365 } 366 } 367 return binary->config; 368} 369 370static void r600_shader_binary_read_config(const struct r600_shader_binary *binary, 371 struct r600_bytecode *bc, 372 uint64_t symbol_offset, 373 boolean *use_kill) 374{ 375 unsigned i; 376 const unsigned char *config = 377 r600_shader_binary_config_start(binary, symbol_offset); 378 379 for (i = 0; i < binary->config_size_per_symbol; i+= 8) { 380 unsigned reg = 381 util_le32_to_cpu(*(uint32_t*)(config + i)); 382 unsigned value = 383 util_le32_to_cpu(*(uint32_t*)(config + i + 4)); 384 switch (reg) { 385 /* R600 / R700 */ 386 case R_028850_SQ_PGM_RESOURCES_PS: 387 case R_028868_SQ_PGM_RESOURCES_VS: 388 /* Evergreen / Northern Islands */ 389 case R_028844_SQ_PGM_RESOURCES_PS: 390 case R_028860_SQ_PGM_RESOURCES_VS: 391 case R_0288D4_SQ_PGM_RESOURCES_LS: 392 bc->ngpr = MAX2(bc->ngpr, G_028844_NUM_GPRS(value)); 393 bc->nstack = MAX2(bc->nstack, G_028844_STACK_SIZE(value)); 394 break; 395 case R_02880C_DB_SHADER_CONTROL: 396 *use_kill = G_02880C_KILL_ENABLE(value); 397 break; 398 case R_0288E8_SQ_LDS_ALLOC: 399 bc->nlds_dw = value; 400 break; 401 } 402 } 403} 404 405static unsigned r600_create_shader(struct r600_bytecode *bc, 406 const struct r600_shader_binary *binary, 407 boolean *use_kill) 408 409{ 410 assert(binary->code_size % 4 == 0); 411 bc->bytecode = CALLOC(1, binary->code_size); 412 memcpy(bc->bytecode, binary->code, binary->code_size); 413 bc->ndw = binary->code_size / 4; 414 415 r600_shader_binary_read_config(binary, bc, 0, use_kill); 416 return 0; 417} 418 419#endif 420 421static void r600_destroy_shader(struct r600_bytecode *bc) 422{ 423 FREE(bc->bytecode); 424} 425 426static void *evergreen_create_compute_state(struct pipe_context *ctx, 427 const struct pipe_compute_state *cso) 428{ 429 struct r600_context *rctx = (struct r600_context *)ctx; 430 struct r600_pipe_compute *shader = CALLOC_STRUCT(r600_pipe_compute); 431#ifdef HAVE_OPENCL 432 const struct pipe_binary_program_header *header; 433 void *p; 434 boolean use_kill; 435#endif 436 437 shader->ctx = rctx; 438 shader->local_size = cso->req_local_mem; 439 shader->private_size = cso->req_private_mem; 440 shader->input_size = cso->req_input_mem; 441 442 shader->ir_type = cso->ir_type; 443 444 if (shader->ir_type == PIPE_SHADER_IR_TGSI || 445 shader->ir_type == PIPE_SHADER_IR_NIR) { 446 shader->sel = r600_create_shader_state_tokens(ctx, cso->prog, cso->ir_type, PIPE_SHADER_COMPUTE); 447 return shader; 448 } 449#ifdef HAVE_OPENCL 450 COMPUTE_DBG(rctx->screen, "*** evergreen_create_compute_state\n"); 451 header = cso->prog; 452 radeon_shader_binary_init(&shader->binary); 453 r600_elf_read(header->blob, header->num_bytes, &shader->binary); 454 r600_create_shader(&shader->bc, &shader->binary, &use_kill); 455 456 /* Upload code + ROdata */ 457 shader->code_bo = r600_compute_buffer_alloc_vram(rctx->screen, 458 shader->bc.ndw * 4); 459 p = r600_buffer_map_sync_with_rings( 460 &rctx->b, shader->code_bo, 461 PIPE_MAP_WRITE | RADEON_MAP_TEMPORARY); 462 //TODO: use util_memcpy_cpu_to_le32 ? 463 memcpy(p, shader->bc.bytecode, shader->bc.ndw * 4); 464 rctx->b.ws->buffer_unmap(rctx->b.ws, shader->code_bo->buf); 465#endif 466 467 return shader; 468} 469 470static void evergreen_delete_compute_state(struct pipe_context *ctx, void *state) 471{ 472 struct r600_context *rctx = (struct r600_context *)ctx; 473 struct r600_pipe_compute *shader = state; 474 475 COMPUTE_DBG(rctx->screen, "*** evergreen_delete_compute_state\n"); 476 477 if (!shader) 478 return; 479 480 if (shader->ir_type == PIPE_SHADER_IR_TGSI || 481 shader->ir_type == PIPE_SHADER_IR_NIR) { 482 r600_delete_shader_selector(ctx, shader->sel); 483 } else { 484#ifdef HAVE_OPENCL 485 radeon_shader_binary_clean(&shader->binary); 486 pipe_resource_reference((struct pipe_resource**)&shader->code_bo, NULL); 487 pipe_resource_reference((struct pipe_resource**)&shader->kernel_param, NULL); 488#endif 489 r600_destroy_shader(&shader->bc); 490 } 491 FREE(shader); 492} 493 494static void evergreen_bind_compute_state(struct pipe_context *ctx, void *state) 495{ 496 struct r600_context *rctx = (struct r600_context *)ctx; 497 struct r600_pipe_compute *cstate = (struct r600_pipe_compute *)state; 498 COMPUTE_DBG(rctx->screen, "*** evergreen_bind_compute_state\n"); 499 500 if (!state) { 501 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state; 502 return; 503 } 504 505 if (cstate->ir_type == PIPE_SHADER_IR_TGSI || 506 cstate->ir_type == PIPE_SHADER_IR_NIR) { 507 bool compute_dirty; 508 cstate->sel->ir_type = cstate->ir_type; 509 if (r600_shader_select(ctx, cstate->sel, &compute_dirty)) 510 R600_ERR("Failed to select compute shader\n"); 511 } 512 513 rctx->cs_shader_state.shader = (struct r600_pipe_compute *)state; 514} 515 516/* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit 517 * kernel parameters there are implicit parameters that need to be stored 518 * in the vertex buffer as well. Here is how these parameters are organized in 519 * the buffer: 520 * 521 * DWORDS 0-2: Number of work groups in each dimension (x,y,z) 522 * DWORDS 3-5: Number of global work items in each dimension (x,y,z) 523 * DWORDS 6-8: Number of work items within each work group in each dimension 524 * (x,y,z) 525 * DWORDS 9+ : Kernel parameters 526 */ 527static void evergreen_compute_upload_input(struct pipe_context *ctx, 528 const struct pipe_grid_info *info) 529{ 530 struct r600_context *rctx = (struct r600_context *)ctx; 531 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader; 532 unsigned i; 533 /* We need to reserve 9 dwords (36 bytes) for implicit kernel 534 * parameters. 535 */ 536 unsigned input_size; 537 uint32_t *num_work_groups_start; 538 uint32_t *global_size_start; 539 uint32_t *local_size_start; 540 uint32_t *kernel_parameters_start; 541 struct pipe_box box; 542 struct pipe_transfer *transfer = NULL; 543 544 if (!shader) 545 return; 546 if (shader->input_size == 0) { 547 return; 548 } 549 input_size = shader->input_size + 36; 550 if (!shader->kernel_param) { 551 /* Add space for the grid dimensions */ 552 shader->kernel_param = (struct r600_resource *) 553 pipe_buffer_create(ctx->screen, 0, 554 PIPE_USAGE_IMMUTABLE, input_size); 555 } 556 557 u_box_1d(0, input_size, &box); 558 num_work_groups_start = ctx->buffer_map(ctx, 559 (struct pipe_resource*)shader->kernel_param, 560 0, PIPE_MAP_WRITE | PIPE_MAP_DISCARD_RANGE, 561 &box, &transfer); 562 global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4)); 563 local_size_start = global_size_start + (3 * (sizeof(uint)) / 4); 564 kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4); 565 566 /* Copy the work group size */ 567 memcpy(num_work_groups_start, info->grid, 3 * sizeof(uint)); 568 569 /* Copy the global size */ 570 for (i = 0; i < 3; i++) { 571 global_size_start[i] = info->grid[i] * info->block[i]; 572 } 573 574 /* Copy the local dimensions */ 575 memcpy(local_size_start, info->block, 3 * sizeof(uint)); 576 577 /* Copy the kernel inputs */ 578 memcpy(kernel_parameters_start, info->input, shader->input_size); 579 580 for (i = 0; i < (input_size / 4); i++) { 581 COMPUTE_DBG(rctx->screen, "input %i : %u\n", i, 582 ((unsigned*)num_work_groups_start)[i]); 583 } 584 585 ctx->buffer_unmap(ctx, transfer); 586 587 /* ID=0 and ID=3 are reserved for the parameters. 588 * LLVM will preferably use ID=0, but it does not work for dynamic 589 * indices. */ 590 evergreen_cs_set_vertex_buffer(rctx, 3, 0, 591 (struct pipe_resource*)shader->kernel_param); 592 evergreen_cs_set_constant_buffer(rctx, 0, 0, input_size, 593 (struct pipe_resource*)shader->kernel_param); 594} 595 596static void evergreen_emit_dispatch(struct r600_context *rctx, 597 const struct pipe_grid_info *info, 598 uint32_t indirect_grid[3]) 599{ 600 int i; 601 struct radeon_cmdbuf *cs = &rctx->b.gfx.cs; 602 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader; 603 bool render_cond_bit = rctx->b.render_cond && !rctx->b.render_cond_force_off; 604 unsigned num_waves; 605 unsigned num_pipes = rctx->screen->b.info.r600_max_quad_pipes; 606 unsigned wave_divisor = (16 * num_pipes); 607 int group_size = 1; 608 int grid_size = 1; 609 unsigned lds_size = shader->local_size / 4; 610 611 if (shader->ir_type != PIPE_SHADER_IR_TGSI && 612 shader->ir_type != PIPE_SHADER_IR_NIR) 613 lds_size += shader->bc.nlds_dw; 614 615 /* Calculate group_size/grid_size */ 616 for (i = 0; i < 3; i++) { 617 group_size *= info->block[i]; 618 } 619 620 for (i = 0; i < 3; i++) { 621 grid_size *= info->grid[i]; 622 } 623 624 /* num_waves = ceil((tg_size.x * tg_size.y, tg_size.z) / (16 * num_pipes)) */ 625 num_waves = (info->block[0] * info->block[1] * info->block[2] + 626 wave_divisor - 1) / wave_divisor; 627 628 COMPUTE_DBG(rctx->screen, "Using %u pipes, " 629 "%u wavefronts per thread block, " 630 "allocating %u dwords lds.\n", 631 num_pipes, num_waves, lds_size); 632 633 radeon_set_config_reg(cs, R_008970_VGT_NUM_INDICES, group_size); 634 635 radeon_set_config_reg_seq(cs, R_00899C_VGT_COMPUTE_START_X, 3); 636 radeon_emit(cs, 0); /* R_00899C_VGT_COMPUTE_START_X */ 637 radeon_emit(cs, 0); /* R_0089A0_VGT_COMPUTE_START_Y */ 638 radeon_emit(cs, 0); /* R_0089A4_VGT_COMPUTE_START_Z */ 639 640 radeon_set_config_reg(cs, R_0089AC_VGT_COMPUTE_THREAD_GROUP_SIZE, 641 group_size); 642 643 radeon_compute_set_context_reg_seq(cs, R_0286EC_SPI_COMPUTE_NUM_THREAD_X, 3); 644 radeon_emit(cs, info->block[0]); /* R_0286EC_SPI_COMPUTE_NUM_THREAD_X */ 645 radeon_emit(cs, info->block[1]); /* R_0286F0_SPI_COMPUTE_NUM_THREAD_Y */ 646 radeon_emit(cs, info->block[2]); /* R_0286F4_SPI_COMPUTE_NUM_THREAD_Z */ 647 648 if (rctx->b.chip_class < CAYMAN) { 649 assert(lds_size <= 8192); 650 } else { 651 /* Cayman appears to have a slightly smaller limit, see the 652 * value of CM_R_0286FC_SPI_LDS_MGMT.NUM_LS_LDS */ 653 assert(lds_size <= 8160); 654 } 655 656 radeon_compute_set_context_reg(cs, R_0288E8_SQ_LDS_ALLOC, 657 lds_size | (num_waves << 14)); 658 659 if (info->indirect) { 660 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, render_cond_bit)); 661 radeon_emit(cs, indirect_grid[0]); 662 radeon_emit(cs, indirect_grid[1]); 663 radeon_emit(cs, indirect_grid[2]); 664 radeon_emit(cs, 1); 665 } else { 666 /* Dispatch packet */ 667 radeon_emit(cs, PKT3C(PKT3_DISPATCH_DIRECT, 3, render_cond_bit)); 668 radeon_emit(cs, info->grid[0]); 669 radeon_emit(cs, info->grid[1]); 670 radeon_emit(cs, info->grid[2]); 671 /* VGT_DISPATCH_INITIATOR = COMPUTE_SHADER_EN */ 672 radeon_emit(cs, 1); 673 } 674 675 if (rctx->is_debug) 676 eg_trace_emit(rctx); 677} 678 679static void compute_setup_cbs(struct r600_context *rctx) 680{ 681 struct radeon_cmdbuf *cs = &rctx->b.gfx.cs; 682 unsigned i; 683 684 /* Emit colorbuffers. */ 685 /* XXX support more than 8 colorbuffers (the offsets are not a multiple of 0x3C for CB8-11) */ 686 for (i = 0; i < 8 && i < rctx->framebuffer.state.nr_cbufs; i++) { 687 struct r600_surface *cb = (struct r600_surface*)rctx->framebuffer.state.cbufs[i]; 688 unsigned reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx, 689 (struct r600_resource*)cb->base.texture, 690 RADEON_USAGE_READWRITE, 691 RADEON_PRIO_SHADER_RW_BUFFER); 692 693 radeon_compute_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 7); 694 radeon_emit(cs, cb->cb_color_base); /* R_028C60_CB_COLOR0_BASE */ 695 radeon_emit(cs, cb->cb_color_pitch); /* R_028C64_CB_COLOR0_PITCH */ 696 radeon_emit(cs, cb->cb_color_slice); /* R_028C68_CB_COLOR0_SLICE */ 697 radeon_emit(cs, cb->cb_color_view); /* R_028C6C_CB_COLOR0_VIEW */ 698 radeon_emit(cs, cb->cb_color_info); /* R_028C70_CB_COLOR0_INFO */ 699 radeon_emit(cs, cb->cb_color_attrib); /* R_028C74_CB_COLOR0_ATTRIB */ 700 radeon_emit(cs, cb->cb_color_dim); /* R_028C78_CB_COLOR0_DIM */ 701 702 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C60_CB_COLOR0_BASE */ 703 radeon_emit(cs, reloc); 704 705 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); /* R_028C74_CB_COLOR0_ATTRIB */ 706 radeon_emit(cs, reloc); 707 } 708 for (; i < 8 ; i++) 709 radeon_compute_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, 710 S_028C70_FORMAT(V_028C70_COLOR_INVALID)); 711 for (; i < 12; i++) 712 radeon_compute_set_context_reg(cs, R_028E50_CB_COLOR8_INFO + (i - 8) * 0x1C, 713 S_028C70_FORMAT(V_028C70_COLOR_INVALID)); 714 715 /* Set CB_TARGET_MASK XXX: Use cb_misc_state */ 716 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK, 717 rctx->compute_cb_target_mask); 718} 719 720static void compute_emit_cs(struct r600_context *rctx, 721 const struct pipe_grid_info *info) 722{ 723 struct radeon_cmdbuf *cs = &rctx->b.gfx.cs; 724 bool compute_dirty = false; 725 struct r600_pipe_shader *current; 726 struct r600_shader_atomic combined_atomics[8]; 727 uint8_t atomic_used_mask; 728 uint32_t indirect_grid[3] = { 0, 0, 0 }; 729 730 /* make sure that the gfx ring is only one active */ 731 if (radeon_emitted(&rctx->b.dma.cs, 0)) { 732 rctx->b.dma.flush(rctx, PIPE_FLUSH_ASYNC, NULL); 733 } 734 735 r600_update_compressed_resource_state(rctx, true); 736 737 if (!rctx->cmd_buf_is_compute) { 738 rctx->b.gfx.flush(rctx, PIPE_FLUSH_ASYNC, NULL); 739 rctx->cmd_buf_is_compute = true; 740 } 741 742 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI|| 743 rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_NIR) { 744 if (r600_shader_select(&rctx->b.b, rctx->cs_shader_state.shader->sel, &compute_dirty)) { 745 R600_ERR("Failed to select compute shader\n"); 746 return; 747 } 748 749 current = rctx->cs_shader_state.shader->sel->current; 750 if (compute_dirty) { 751 rctx->cs_shader_state.atom.num_dw = current->command_buffer.num_dw; 752 r600_context_add_resource_size(&rctx->b.b, (struct pipe_resource *)current->bo); 753 r600_set_atom_dirty(rctx, &rctx->cs_shader_state.atom, true); 754 } 755 756 bool need_buf_const = current->shader.uses_tex_buffers || 757 current->shader.has_txq_cube_array_z_comp; 758 759 if (info->indirect) { 760 struct r600_resource *indirect_resource = (struct r600_resource *)info->indirect; 761 unsigned *data = r600_buffer_map_sync_with_rings(&rctx->b, indirect_resource, PIPE_MAP_READ); 762 unsigned offset = info->indirect_offset / 4; 763 indirect_grid[0] = data[offset]; 764 indirect_grid[1] = data[offset + 1]; 765 indirect_grid[2] = data[offset + 2]; 766 } 767 for (int i = 0; i < 3; i++) { 768 rctx->cs_block_grid_sizes[i] = info->block[i]; 769 rctx->cs_block_grid_sizes[i + 4] = info->indirect ? indirect_grid[i] : info->grid[i]; 770 } 771 rctx->cs_block_grid_sizes[3] = rctx->cs_block_grid_sizes[7] = 0; 772 rctx->driver_consts[PIPE_SHADER_COMPUTE].cs_block_grid_size_dirty = true; 773 774 evergreen_emit_atomic_buffer_setup_count(rctx, current, combined_atomics, &atomic_used_mask); 775 r600_need_cs_space(rctx, 0, true, util_bitcount(atomic_used_mask)); 776 777 if (need_buf_const) { 778 eg_setup_buffer_constants(rctx, PIPE_SHADER_COMPUTE); 779 } 780 r600_update_driver_const_buffers(rctx, true); 781 782 evergreen_emit_atomic_buffer_setup(rctx, true, combined_atomics, atomic_used_mask); 783 if (atomic_used_mask) { 784 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 785 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4)); 786 } 787 } else 788 r600_need_cs_space(rctx, 0, true, 0); 789 790 /* Initialize all the compute-related registers. 791 * 792 * See evergreen_init_atom_start_compute_cs() in this file for the list 793 * of registers initialized by the start_compute_cs_cmd atom. 794 */ 795 r600_emit_command_buffer(cs, &rctx->start_compute_cs_cmd); 796 797 /* emit config state */ 798 if (rctx->b.chip_class == EVERGREEN) { 799 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI|| 800 rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_NIR) { 801 radeon_set_config_reg_seq(cs, R_008C04_SQ_GPR_RESOURCE_MGMT_1, 3); 802 radeon_emit(cs, S_008C04_NUM_CLAUSE_TEMP_GPRS(rctx->r6xx_num_clause_temp_gprs)); 803 radeon_emit(cs, 0); 804 radeon_emit(cs, 0); 805 radeon_set_config_reg(cs, R_008D8C_SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, (1 << 8)); 806 } else 807 r600_emit_atom(rctx, &rctx->config_state.atom); 808 } 809 810 rctx->b.flags |= R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_FLUSH_AND_INV; 811 r600_flush_emit(rctx); 812 813 if (rctx->cs_shader_state.shader->ir_type != PIPE_SHADER_IR_TGSI && 814 rctx->cs_shader_state.shader->ir_type != PIPE_SHADER_IR_NIR) { 815 816 compute_setup_cbs(rctx); 817 818 /* Emit vertex buffer state */ 819 rctx->cs_vertex_buffer_state.atom.num_dw = 12 * util_bitcount(rctx->cs_vertex_buffer_state.dirty_mask); 820 r600_emit_atom(rctx, &rctx->cs_vertex_buffer_state.atom); 821 } else { 822 uint32_t rat_mask; 823 824 rat_mask = evergreen_construct_rat_mask(rctx, &rctx->cb_misc_state, 0); 825 radeon_compute_set_context_reg(cs, R_028238_CB_TARGET_MASK, 826 rat_mask); 827 } 828 829 r600_emit_atom(rctx, &rctx->b.render_cond_atom); 830 831 /* Emit constant buffer state */ 832 r600_emit_atom(rctx, &rctx->constbuf_state[PIPE_SHADER_COMPUTE].atom); 833 834 /* Emit sampler state */ 835 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].states.atom); 836 837 /* Emit sampler view (texture resource) state */ 838 r600_emit_atom(rctx, &rctx->samplers[PIPE_SHADER_COMPUTE].views.atom); 839 840 /* Emit images state */ 841 r600_emit_atom(rctx, &rctx->compute_images.atom); 842 843 /* Emit buffers state */ 844 r600_emit_atom(rctx, &rctx->compute_buffers.atom); 845 846 /* Emit shader state */ 847 r600_emit_atom(rctx, &rctx->cs_shader_state.atom); 848 849 /* Emit dispatch state and dispatch packet */ 850 evergreen_emit_dispatch(rctx, info, indirect_grid); 851 852 /* XXX evergreen_flush_emit() hardcodes the CP_COHER_SIZE to 0xffffffff 853 */ 854 rctx->b.flags |= R600_CONTEXT_INV_CONST_CACHE | 855 R600_CONTEXT_INV_VERTEX_CACHE | 856 R600_CONTEXT_INV_TEX_CACHE; 857 r600_flush_emit(rctx); 858 rctx->b.flags = 0; 859 860 if (rctx->b.chip_class >= CAYMAN) { 861 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); 862 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4)); 863 /* DEALLOC_STATE prevents the GPU from hanging when a 864 * SURFACE_SYNC packet is emitted some time after a DISPATCH_DIRECT 865 * with any of the CB*_DEST_BASE_ENA or DB_DEST_BASE_ENA bits set. 866 */ 867 radeon_emit(cs, PKT3C(PKT3_DEALLOC_STATE, 0, 0)); 868 radeon_emit(cs, 0); 869 } 870 if (rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_TGSI || 871 rctx->cs_shader_state.shader->ir_type == PIPE_SHADER_IR_NIR) 872 evergreen_emit_atomic_buffer_save(rctx, true, combined_atomics, &atomic_used_mask); 873 874#if 0 875 COMPUTE_DBG(rctx->screen, "cdw: %i\n", cs->cdw); 876 for (i = 0; i < cs->cdw; i++) { 877 COMPUTE_DBG(rctx->screen, "%4i : 0x%08X\n", i, cs->buf[i]); 878 } 879#endif 880 881} 882 883 884/** 885 * Emit function for r600_cs_shader_state atom 886 */ 887void evergreen_emit_cs_shader(struct r600_context *rctx, 888 struct r600_atom *atom) 889{ 890 struct r600_cs_shader_state *state = 891 (struct r600_cs_shader_state*)atom; 892 struct r600_pipe_compute *shader = state->shader; 893 struct radeon_cmdbuf *cs = &rctx->b.gfx.cs; 894 uint64_t va; 895 struct r600_resource *code_bo; 896 unsigned ngpr, nstack; 897 898 if (shader->ir_type == PIPE_SHADER_IR_TGSI || 899 shader->ir_type == PIPE_SHADER_IR_NIR) { 900 code_bo = shader->sel->current->bo; 901 va = shader->sel->current->bo->gpu_address; 902 ngpr = shader->sel->current->shader.bc.ngpr; 903 nstack = shader->sel->current->shader.bc.nstack; 904 } else { 905 code_bo = shader->code_bo; 906 va = shader->code_bo->gpu_address + state->pc; 907 ngpr = shader->bc.ngpr; 908 nstack = shader->bc.nstack; 909 } 910 911 radeon_compute_set_context_reg_seq(cs, R_0288D0_SQ_PGM_START_LS, 3); 912 radeon_emit(cs, va >> 8); /* R_0288D0_SQ_PGM_START_LS */ 913 radeon_emit(cs, /* R_0288D4_SQ_PGM_RESOURCES_LS */ 914 S_0288D4_NUM_GPRS(ngpr) | 915 S_0288D4_DX10_CLAMP(1) | 916 S_0288D4_STACK_SIZE(nstack)); 917 radeon_emit(cs, 0); /* R_0288D8_SQ_PGM_RESOURCES_LS_2 */ 918 919 radeon_emit(cs, PKT3C(PKT3_NOP, 0, 0)); 920 radeon_emit(cs, radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx, 921 code_bo, RADEON_USAGE_READ, 922 RADEON_PRIO_SHADER_BINARY)); 923} 924 925static void evergreen_launch_grid(struct pipe_context *ctx, 926 const struct pipe_grid_info *info) 927{ 928 struct r600_context *rctx = (struct r600_context *)ctx; 929#ifdef HAVE_OPENCL 930 struct r600_pipe_compute *shader = rctx->cs_shader_state.shader; 931 boolean use_kill; 932 933 if (shader->ir_type != PIPE_SHADER_IR_TGSI && 934 shader->ir_type != PIPE_SHADER_IR_NIR) { 935 rctx->cs_shader_state.pc = info->pc; 936 /* Get the config information for this kernel. */ 937 r600_shader_binary_read_config(&shader->binary, &shader->bc, 938 info->pc, &use_kill); 939 } else { 940 use_kill = false; 941 rctx->cs_shader_state.pc = 0; 942 } 943#endif 944 945 COMPUTE_DBG(rctx->screen, "*** evergreen_launch_grid: pc = %u\n", info->pc); 946 947 948 evergreen_compute_upload_input(ctx, info); 949 compute_emit_cs(rctx, info); 950} 951 952static void evergreen_set_compute_resources(struct pipe_context *ctx, 953 unsigned start, unsigned count, 954 struct pipe_surface **surfaces) 955{ 956 struct r600_context *rctx = (struct r600_context *)ctx; 957 struct r600_surface **resources = (struct r600_surface **)surfaces; 958 959 COMPUTE_DBG(rctx->screen, "*** evergreen_set_compute_resources: start = %u count = %u\n", 960 start, count); 961 962 for (unsigned i = 0; i < count; i++) { 963 /* The First four vertex buffers are reserved for parameters and 964 * global buffers. */ 965 unsigned vtx_id = 4 + i; 966 if (resources[i]) { 967 struct r600_resource_global *buffer = 968 (struct r600_resource_global*) 969 resources[i]->base.texture; 970 if (resources[i]->base.writable) { 971 assert(i+1 < 12); 972 973 evergreen_set_rat(rctx->cs_shader_state.shader, i+1, 974 (struct r600_resource *)resources[i]->base.texture, 975 buffer->chunk->start_in_dw*4, 976 resources[i]->base.texture->width0); 977 } 978 979 evergreen_cs_set_vertex_buffer(rctx, vtx_id, 980 buffer->chunk->start_in_dw * 4, 981 resources[i]->base.texture); 982 } 983 } 984} 985 986static void evergreen_set_global_binding(struct pipe_context *ctx, 987 unsigned first, unsigned n, 988 struct pipe_resource **resources, 989 uint32_t **handles) 990{ 991 struct r600_context *rctx = (struct r600_context *)ctx; 992 struct compute_memory_pool *pool = rctx->screen->global_pool; 993 struct r600_resource_global **buffers = 994 (struct r600_resource_global **)resources; 995 unsigned i; 996 997 COMPUTE_DBG(rctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n", 998 first, n); 999 1000 if (!resources) { 1001 /* XXX: Unset */ 1002 return; 1003 } 1004 1005 /* We mark these items for promotion to the pool if they 1006 * aren't already there */ 1007 for (i = first; i < first + n; i++) { 1008 struct compute_memory_item *item = buffers[i]->chunk; 1009 1010 if (!is_item_in_pool(item)) 1011 buffers[i]->chunk->status |= ITEM_FOR_PROMOTING; 1012 } 1013 1014 if (compute_memory_finalize_pending(pool, ctx) == -1) { 1015 /* XXX: Unset */ 1016 return; 1017 } 1018 1019 for (i = first; i < first + n; i++) 1020 { 1021 uint32_t buffer_offset; 1022 uint32_t handle; 1023 assert(resources[i]->target == PIPE_BUFFER); 1024 assert(resources[i]->bind & PIPE_BIND_GLOBAL); 1025 1026 buffer_offset = util_le32_to_cpu(*(handles[i])); 1027 handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4; 1028 1029 *(handles[i]) = util_cpu_to_le32(handle); 1030 } 1031 1032 /* globals for writing */ 1033 evergreen_set_rat(rctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4); 1034 /* globals for reading */ 1035 evergreen_cs_set_vertex_buffer(rctx, 1, 0, 1036 (struct pipe_resource*)pool->bo); 1037 1038 /* constants for reading, LLVM puts them in text segment */ 1039 evergreen_cs_set_vertex_buffer(rctx, 2, 0, 1040 (struct pipe_resource*)rctx->cs_shader_state.shader->code_bo); 1041} 1042 1043/** 1044 * This function initializes all the compute specific registers that need to 1045 * be initialized for each compute command stream. Registers that are common 1046 * to both compute and 3D will be initialized at the beginning of each compute 1047 * command stream by the start_cs_cmd atom. However, since the SET_CONTEXT_REG 1048 * packet requires that the shader type bit be set, we must initialize all 1049 * context registers needed for compute in this function. The registers 1050 * initialized by the start_cs_cmd atom can be found in evergreen_state.c in the 1051 * functions evergreen_init_atom_start_cs or cayman_init_atom_start_cs depending 1052 * on the GPU family. 1053 */ 1054void evergreen_init_atom_start_compute_cs(struct r600_context *rctx) 1055{ 1056 struct r600_command_buffer *cb = &rctx->start_compute_cs_cmd; 1057 int num_threads; 1058 int num_stack_entries; 1059 1060 /* since all required registers are initialized in the 1061 * start_compute_cs_cmd atom, we can EMIT_EARLY here. 1062 */ 1063 r600_init_command_buffer(cb, 256); 1064 cb->pkt_flags = RADEON_CP_PACKET3_COMPUTE_MODE; 1065 1066 /* We're setting config registers here. */ 1067 r600_store_value(cb, PKT3(PKT3_EVENT_WRITE, 0, 0)); 1068 r600_store_value(cb, EVENT_TYPE(EVENT_TYPE_CS_PARTIAL_FLUSH) | EVENT_INDEX(4)); 1069 1070 switch (rctx->b.family) { 1071 case CHIP_CEDAR: 1072 default: 1073 num_threads = 128; 1074 num_stack_entries = 256; 1075 break; 1076 case CHIP_REDWOOD: 1077 num_threads = 128; 1078 num_stack_entries = 256; 1079 break; 1080 case CHIP_JUNIPER: 1081 num_threads = 128; 1082 num_stack_entries = 512; 1083 break; 1084 case CHIP_CYPRESS: 1085 case CHIP_HEMLOCK: 1086 num_threads = 128; 1087 num_stack_entries = 512; 1088 break; 1089 case CHIP_PALM: 1090 num_threads = 128; 1091 num_stack_entries = 256; 1092 break; 1093 case CHIP_SUMO: 1094 num_threads = 128; 1095 num_stack_entries = 256; 1096 break; 1097 case CHIP_SUMO2: 1098 num_threads = 128; 1099 num_stack_entries = 512; 1100 break; 1101 case CHIP_BARTS: 1102 num_threads = 128; 1103 num_stack_entries = 512; 1104 break; 1105 case CHIP_TURKS: 1106 num_threads = 128; 1107 num_stack_entries = 256; 1108 break; 1109 case CHIP_CAICOS: 1110 num_threads = 128; 1111 num_stack_entries = 256; 1112 break; 1113 } 1114 1115 /* The primitive type always needs to be POINTLIST for compute. */ 1116 r600_store_config_reg(cb, R_008958_VGT_PRIMITIVE_TYPE, 1117 V_008958_DI_PT_POINTLIST); 1118 1119 if (rctx->b.chip_class < CAYMAN) { 1120 1121 /* These registers control which simds can be used by each stage. 1122 * The default for these registers is 0xffffffff, which means 1123 * all simds are available for each stage. It's possible we may 1124 * want to play around with these in the future, but for now 1125 * the default value is fine. 1126 * 1127 * R_008E20_SQ_STATIC_THREAD_MGMT1 1128 * R_008E24_SQ_STATIC_THREAD_MGMT2 1129 * R_008E28_SQ_STATIC_THREAD_MGMT3 1130 */ 1131 1132 /* XXX: We may need to adjust the thread and stack resource 1133 * values for 3D/compute interop */ 1134 1135 r600_store_config_reg_seq(cb, R_008C18_SQ_THREAD_RESOURCE_MGMT_1, 5); 1136 1137 /* R_008C18_SQ_THREAD_RESOURCE_MGMT_1 1138 * Set the number of threads used by the PS/VS/GS/ES stage to 1139 * 0. 1140 */ 1141 r600_store_value(cb, 0); 1142 1143 /* R_008C1C_SQ_THREAD_RESOURCE_MGMT_2 1144 * Set the number of threads used by the CS (aka LS) stage to 1145 * the maximum number of threads and set the number of threads 1146 * for the HS stage to 0. */ 1147 r600_store_value(cb, S_008C1C_NUM_LS_THREADS(num_threads)); 1148 1149 /* R_008C20_SQ_STACK_RESOURCE_MGMT_1 1150 * Set the Control Flow stack entries to 0 for PS/VS stages */ 1151 r600_store_value(cb, 0); 1152 1153 /* R_008C24_SQ_STACK_RESOURCE_MGMT_2 1154 * Set the Control Flow stack entries to 0 for GS/ES stages */ 1155 r600_store_value(cb, 0); 1156 1157 /* R_008C28_SQ_STACK_RESOURCE_MGMT_3 1158 * Set the Contol Flow stack entries to 0 for the HS stage, and 1159 * set it to the maximum value for the CS (aka LS) stage. */ 1160 r600_store_value(cb, 1161 S_008C28_NUM_LS_STACK_ENTRIES(num_stack_entries)); 1162 } 1163 /* Give the compute shader all the available LDS space. 1164 * NOTE: This only sets the maximum number of dwords that a compute 1165 * shader can allocate. When a shader is executed, we still need to 1166 * allocate the appropriate amount of LDS dwords using the 1167 * CM_R_0288E8_SQ_LDS_ALLOC register. 1168 */ 1169 if (rctx->b.chip_class < CAYMAN) { 1170 r600_store_config_reg(cb, R_008E2C_SQ_LDS_RESOURCE_MGMT, 1171 S_008E2C_NUM_PS_LDS(0x0000) | S_008E2C_NUM_LS_LDS(8192)); 1172 } else { 1173 r600_store_context_reg(cb, CM_R_0286FC_SPI_LDS_MGMT, 1174 S_0286FC_NUM_PS_LDS(0) | 1175 S_0286FC_NUM_LS_LDS(255)); /* 255 * 32 = 8160 dwords */ 1176 } 1177 1178 /* Context Registers */ 1179 1180 if (rctx->b.chip_class < CAYMAN) { 1181 /* workaround for hw issues with dyn gpr - must set all limits 1182 * to 240 instead of 0, 0x1e == 240 / 8 1183 */ 1184 r600_store_context_reg(cb, R_028838_SQ_DYN_GPR_RESOURCE_LIMIT_1, 1185 S_028838_PS_GPRS(0x1e) | 1186 S_028838_VS_GPRS(0x1e) | 1187 S_028838_GS_GPRS(0x1e) | 1188 S_028838_ES_GPRS(0x1e) | 1189 S_028838_HS_GPRS(0x1e) | 1190 S_028838_LS_GPRS(0x1e)); 1191 } 1192 1193 /* XXX: Investigate setting bit 15, which is FAST_COMPUTE_MODE */ 1194 r600_store_context_reg(cb, R_028A40_VGT_GS_MODE, 1195 S_028A40_COMPUTE_MODE(1) | S_028A40_PARTIAL_THD_AT_EOI(1)); 1196 1197 r600_store_context_reg(cb, R_028B54_VGT_SHADER_STAGES_EN, 2/*CS_ON*/); 1198 1199 r600_store_context_reg(cb, R_0286E8_SPI_COMPUTE_INPUT_CNTL, 1200 S_0286E8_TID_IN_GROUP_ENA(1) | 1201 S_0286E8_TGID_ENA(1) | 1202 S_0286E8_DISABLE_INDEX_PACK(1)); 1203 1204 /* The LOOP_CONST registers are an optimizations for loops that allows 1205 * you to store the initial counter, increment value, and maximum 1206 * counter value in a register so that hardware can calculate the 1207 * correct number of iterations for the loop, so that you don't need 1208 * to have the loop counter in your shader code. We don't currently use 1209 * this optimization, so we must keep track of the counter in the 1210 * shader and use a break instruction to exit loops. However, the 1211 * hardware will still uses this register to determine when to exit a 1212 * loop, so we need to initialize the counter to 0, set the increment 1213 * value to 1 and the maximum counter value to the 4095 (0xfff) which 1214 * is the maximum value allowed. This gives us a maximum of 4096 1215 * iterations for our loops, but hopefully our break instruction will 1216 * execute before some time before the 4096th iteration. 1217 */ 1218 eg_store_loop_const(cb, R_03A200_SQ_LOOP_CONST_0 + (160 * 4), 0x1000FFF); 1219} 1220 1221void evergreen_init_compute_state_functions(struct r600_context *rctx) 1222{ 1223 rctx->b.b.create_compute_state = evergreen_create_compute_state; 1224 rctx->b.b.delete_compute_state = evergreen_delete_compute_state; 1225 rctx->b.b.bind_compute_state = evergreen_bind_compute_state; 1226// rctx->context.create_sampler_view = evergreen_compute_create_sampler_view; 1227 rctx->b.b.set_compute_resources = evergreen_set_compute_resources; 1228 rctx->b.b.set_global_binding = evergreen_set_global_binding; 1229 rctx->b.b.launch_grid = evergreen_launch_grid; 1230 1231} 1232 1233void *r600_compute_global_transfer_map(struct pipe_context *ctx, 1234 struct pipe_resource *resource, 1235 unsigned level, 1236 unsigned usage, 1237 const struct pipe_box *box, 1238 struct pipe_transfer **ptransfer) 1239{ 1240 struct r600_context *rctx = (struct r600_context*)ctx; 1241 struct compute_memory_pool *pool = rctx->screen->global_pool; 1242 struct r600_resource_global* buffer = 1243 (struct r600_resource_global*)resource; 1244 1245 struct compute_memory_item *item = buffer->chunk; 1246 struct pipe_resource *dst = NULL; 1247 unsigned offset = box->x; 1248 1249 if (is_item_in_pool(item)) { 1250 compute_memory_demote_item(pool, item, ctx); 1251 } 1252 else { 1253 if (item->real_buffer == NULL) { 1254 item->real_buffer = 1255 r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4); 1256 } 1257 } 1258 1259 dst = (struct pipe_resource*)item->real_buffer; 1260 1261 if (usage & PIPE_MAP_READ) 1262 buffer->chunk->status |= ITEM_MAPPED_FOR_READING; 1263 1264 COMPUTE_DBG(rctx->screen, "* r600_compute_global_transfer_map()\n" 1265 "level = %u, usage = %u, box(x = %u, y = %u, z = %u " 1266 "width = %u, height = %u, depth = %u)\n", level, usage, 1267 box->x, box->y, box->z, box->width, box->height, 1268 box->depth); 1269 COMPUTE_DBG(rctx->screen, "Buffer id = %"PRIi64" offset = " 1270 "%u (box.x)\n", item->id, box->x); 1271 1272 1273 assert(resource->target == PIPE_BUFFER); 1274 assert(resource->bind & PIPE_BIND_GLOBAL); 1275 assert(box->x >= 0); 1276 assert(box->y == 0); 1277 assert(box->z == 0); 1278 1279 ///TODO: do it better, mapping is not possible if the pool is too big 1280 return pipe_buffer_map_range(ctx, dst, 1281 offset, box->width, usage, ptransfer); 1282} 1283 1284void r600_compute_global_transfer_unmap(struct pipe_context *ctx, 1285 struct pipe_transfer *transfer) 1286{ 1287 /* struct r600_resource_global are not real resources, they just map 1288 * to an offset within the compute memory pool. The function 1289 * r600_compute_global_transfer_map() maps the memory pool 1290 * resource rather than the struct r600_resource_global passed to 1291 * it as an argument and then initializes ptransfer->resource with 1292 * the memory pool resource (via pipe_buffer_map_range). 1293 * When transfer_unmap is called it uses the memory pool's 1294 * vtable which calls r600_buffer_transfer_map() rather than 1295 * this function. 1296 */ 1297 assert (!"This function should not be called"); 1298} 1299 1300void r600_compute_global_buffer_destroy(struct pipe_screen *screen, 1301 struct pipe_resource *res) 1302{ 1303 struct r600_resource_global* buffer = NULL; 1304 struct r600_screen* rscreen = NULL; 1305 1306 assert(res->target == PIPE_BUFFER); 1307 assert(res->bind & PIPE_BIND_GLOBAL); 1308 1309 buffer = (struct r600_resource_global*)res; 1310 rscreen = (struct r600_screen*)screen; 1311 1312 compute_memory_free(rscreen->global_pool, buffer->chunk->id); 1313 1314 buffer->chunk = NULL; 1315 free(res); 1316} 1317 1318struct pipe_resource *r600_compute_global_buffer_create(struct pipe_screen *screen, 1319 const struct pipe_resource *templ) 1320{ 1321 struct r600_resource_global* result = NULL; 1322 struct r600_screen* rscreen = NULL; 1323 int size_in_dw = 0; 1324 1325 assert(templ->target == PIPE_BUFFER); 1326 assert(templ->bind & PIPE_BIND_GLOBAL); 1327 assert(templ->array_size == 1 || templ->array_size == 0); 1328 assert(templ->depth0 == 1 || templ->depth0 == 0); 1329 assert(templ->height0 == 1 || templ->height0 == 0); 1330 1331 result = (struct r600_resource_global*) 1332 CALLOC(sizeof(struct r600_resource_global), 1); 1333 rscreen = (struct r600_screen*)screen; 1334 1335 COMPUTE_DBG(rscreen, "*** r600_compute_global_buffer_create\n"); 1336 COMPUTE_DBG(rscreen, "width = %u array_size = %u\n", templ->width0, 1337 templ->array_size); 1338 1339 result->base.b.b = *templ; 1340 result->base.b.b.screen = screen; 1341 result->base.compute_global_bo = true; 1342 pipe_reference_init(&result->base.b.b.reference, 1); 1343 1344 size_in_dw = (templ->width0+3) / 4; 1345 1346 result->chunk = compute_memory_alloc(rscreen->global_pool, size_in_dw); 1347 1348 if (result->chunk == NULL) 1349 { 1350 free(result); 1351 return NULL; 1352 } 1353 1354 return &result->base.b.b; 1355} 1356