1/* 2 * Copyright 2013 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: Marek Olšák <maraeo@gmail.com> 24 * 25 */ 26 27#include "r600_pipe_common.h" 28#include "r600_cs.h" 29#include "evergreen_compute.h" 30#include "tgsi/tgsi_parse.h" 31#include "util/list.h" 32#include "util/u_draw_quad.h" 33#include "util/u_memory.h" 34#include "util/format/u_format_s3tc.h" 35#include "util/u_upload_mgr.h" 36#include "util/os_time.h" 37#include "vl/vl_decoder.h" 38#include "vl/vl_video_buffer.h" 39#include "radeon_video.h" 40#include <inttypes.h> 41#include <sys/utsname.h> 42#include <stdlib.h> 43 44#ifdef LLVM_AVAILABLE 45#include <llvm-c/TargetMachine.h> 46#endif 47 48struct r600_multi_fence { 49 struct pipe_reference reference; 50 struct pipe_fence_handle *gfx; 51 struct pipe_fence_handle *sdma; 52 53 /* If the context wasn't flushed at fence creation, this is non-NULL. */ 54 struct { 55 struct r600_common_context *ctx; 56 unsigned ib_index; 57 } gfx_unflushed; 58}; 59 60/* 61 * pipe_context 62 */ 63 64/** 65 * Write an EOP event. 66 * 67 * \param event EVENT_TYPE_* 68 * \param event_flags Optional cache flush flags (TC) 69 * \param data_sel 1 = fence, 3 = timestamp 70 * \param buf Buffer 71 * \param va GPU address 72 * \param old_value Previous fence value (for a bug workaround) 73 * \param new_value Fence value to write for this event. 74 */ 75void r600_gfx_write_event_eop(struct r600_common_context *ctx, 76 unsigned event, unsigned event_flags, 77 unsigned data_sel, 78 struct r600_resource *buf, uint64_t va, 79 uint32_t new_fence, unsigned query_type) 80{ 81 struct radeon_cmdbuf *cs = &ctx->gfx.cs; 82 unsigned op = EVENT_TYPE(event) | 83 EVENT_INDEX(5) | 84 event_flags; 85 unsigned sel = EOP_DATA_SEL(data_sel); 86 87 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 88 radeon_emit(cs, op); 89 radeon_emit(cs, va); 90 radeon_emit(cs, ((va >> 32) & 0xffff) | sel); 91 radeon_emit(cs, new_fence); /* immediate data */ 92 radeon_emit(cs, 0); /* unused */ 93 94 if (buf) 95 r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE, 96 RADEON_PRIO_QUERY); 97} 98 99unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen) 100{ 101 unsigned dwords = 6; 102 103 if (!screen->info.r600_has_virtual_memory) 104 dwords += 2; 105 106 return dwords; 107} 108 109void r600_gfx_wait_fence(struct r600_common_context *ctx, 110 struct r600_resource *buf, 111 uint64_t va, uint32_t ref, uint32_t mask) 112{ 113 struct radeon_cmdbuf *cs = &ctx->gfx.cs; 114 115 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); 116 radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1)); 117 radeon_emit(cs, va); 118 radeon_emit(cs, va >> 32); 119 radeon_emit(cs, ref); /* reference value */ 120 radeon_emit(cs, mask); /* mask */ 121 radeon_emit(cs, 4); /* poll interval */ 122 123 if (buf) 124 r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_READ, 125 RADEON_PRIO_QUERY); 126} 127 128void r600_draw_rectangle(struct blitter_context *blitter, 129 void *vertex_elements_cso, 130 blitter_get_vs_func get_vs, 131 int x1, int y1, int x2, int y2, 132 float depth, unsigned num_instances, 133 enum blitter_attrib_type type, 134 const union blitter_attrib *attrib) 135{ 136 struct r600_common_context *rctx = 137 (struct r600_common_context*)util_blitter_get_pipe(blitter); 138 struct pipe_viewport_state viewport; 139 struct pipe_resource *buf = NULL; 140 unsigned offset = 0; 141 float *vb; 142 143 rctx->b.bind_vertex_elements_state(&rctx->b, vertex_elements_cso); 144 rctx->b.bind_vs_state(&rctx->b, get_vs(blitter)); 145 146 /* Some operations (like color resolve on r6xx) don't work 147 * with the conventional primitive types. 148 * One that works is PT_RECTLIST, which we use here. */ 149 150 /* setup viewport */ 151 viewport.scale[0] = 1.0f; 152 viewport.scale[1] = 1.0f; 153 viewport.scale[2] = 1.0f; 154 viewport.translate[0] = 0.0f; 155 viewport.translate[1] = 0.0f; 156 viewport.translate[2] = 0.0f; 157 rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport); 158 159 /* Upload vertices. The hw rectangle has only 3 vertices, 160 * The 4th one is derived from the first 3. 161 * The vertex specification should match u_blitter's vertex element state. */ 162 u_upload_alloc(rctx->b.stream_uploader, 0, sizeof(float) * 24, 163 rctx->screen->info.tcc_cache_line_size, 164 &offset, &buf, (void**)&vb); 165 if (!buf) 166 return; 167 168 vb[0] = x1; 169 vb[1] = y1; 170 vb[2] = depth; 171 vb[3] = 1; 172 173 vb[8] = x1; 174 vb[9] = y2; 175 vb[10] = depth; 176 vb[11] = 1; 177 178 vb[16] = x2; 179 vb[17] = y1; 180 vb[18] = depth; 181 vb[19] = 1; 182 183 switch (type) { 184 case UTIL_BLITTER_ATTRIB_COLOR: 185 memcpy(vb+4, attrib->color, sizeof(float)*4); 186 memcpy(vb+12, attrib->color, sizeof(float)*4); 187 memcpy(vb+20, attrib->color, sizeof(float)*4); 188 break; 189 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW: 190 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY: 191 vb[6] = vb[14] = vb[22] = attrib->texcoord.z; 192 vb[7] = vb[15] = vb[23] = attrib->texcoord.w; 193 /* fall through */ 194 vb[4] = attrib->texcoord.x1; 195 vb[5] = attrib->texcoord.y1; 196 vb[12] = attrib->texcoord.x1; 197 vb[13] = attrib->texcoord.y2; 198 vb[20] = attrib->texcoord.x2; 199 vb[21] = attrib->texcoord.y1; 200 break; 201 default:; /* Nothing to do. */ 202 } 203 204 /* draw */ 205 struct pipe_vertex_buffer vbuffer = {}; 206 vbuffer.buffer.resource = buf; 207 vbuffer.stride = 2 * 4 * sizeof(float); /* vertex size */ 208 vbuffer.buffer_offset = offset; 209 210 rctx->b.set_vertex_buffers(&rctx->b, blitter->vb_slot, 1, 0, false, &vbuffer); 211 util_draw_arrays_instanced(&rctx->b, R600_PRIM_RECTANGLE_LIST, 0, 3, 212 0, num_instances); 213 pipe_resource_reference(&buf, NULL); 214} 215 216static void r600_dma_emit_wait_idle(struct r600_common_context *rctx) 217{ 218 struct radeon_cmdbuf *cs = &rctx->dma.cs; 219 220 if (rctx->chip_class >= EVERGREEN) 221 radeon_emit(cs, 0xf0000000); /* NOP */ 222 else { 223 /* TODO: R600-R700 should use the FENCE packet. 224 * CS checker support is required. */ 225 } 226} 227 228void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw, 229 struct r600_resource *dst, struct r600_resource *src) 230{ 231 uint64_t vram = (uint64_t)ctx->dma.cs.used_vram_kb * 1024; 232 uint64_t gtt = (uint64_t)ctx->dma.cs.used_gart_kb * 1024; 233 234 if (dst) { 235 vram += dst->vram_usage; 236 gtt += dst->gart_usage; 237 } 238 if (src) { 239 vram += src->vram_usage; 240 gtt += src->gart_usage; 241 } 242 243 /* Flush the GFX IB if DMA depends on it. */ 244 if (radeon_emitted(&ctx->gfx.cs, ctx->initial_gfx_cs_size) && 245 ((dst && 246 ctx->ws->cs_is_buffer_referenced(&ctx->gfx.cs, dst->buf, 247 RADEON_USAGE_READWRITE)) || 248 (src && 249 ctx->ws->cs_is_buffer_referenced(&ctx->gfx.cs, src->buf, 250 RADEON_USAGE_WRITE)))) 251 ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL); 252 253 /* Flush if there's not enough space, or if the memory usage per IB 254 * is too large. 255 * 256 * IBs using too little memory are limited by the IB submission overhead. 257 * IBs using too much memory are limited by the kernel/TTM overhead. 258 * Too long IBs create CPU-GPU pipeline bubbles and add latency. 259 * 260 * This heuristic makes sure that DMA requests are executed 261 * very soon after the call is made and lowers memory usage. 262 * It improves texture upload performance by keeping the DMA 263 * engine busy while uploads are being submitted. 264 */ 265 num_dw++; /* for emit_wait_idle below */ 266 if (!ctx->ws->cs_check_space(&ctx->dma.cs, num_dw, false) || 267 ctx->dma.cs.used_vram_kb + ctx->dma.cs.used_gart_kb > 64 * 1024 || 268 !radeon_cs_memory_below_limit(ctx->screen, &ctx->dma.cs, vram, gtt)) { 269 ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL); 270 assert((num_dw + ctx->dma.cs.current.cdw) <= ctx->dma.cs.current.max_dw); 271 } 272 273 /* Wait for idle if either buffer has been used in the IB before to 274 * prevent read-after-write hazards. 275 */ 276 if ((dst && 277 ctx->ws->cs_is_buffer_referenced(&ctx->dma.cs, dst->buf, 278 RADEON_USAGE_READWRITE)) || 279 (src && 280 ctx->ws->cs_is_buffer_referenced(&ctx->dma.cs, src->buf, 281 RADEON_USAGE_WRITE))) 282 r600_dma_emit_wait_idle(ctx); 283 284 /* If GPUVM is not supported, the CS checker needs 2 entries 285 * in the buffer list per packet, which has to be done manually. 286 */ 287 if (ctx->screen->info.r600_has_virtual_memory) { 288 if (dst) 289 radeon_add_to_buffer_list(ctx, &ctx->dma, dst, 290 RADEON_USAGE_WRITE, 0); 291 if (src) 292 radeon_add_to_buffer_list(ctx, &ctx->dma, src, 293 RADEON_USAGE_READ, 0); 294 } 295 296 /* this function is called before all DMA calls, so increment this. */ 297 ctx->num_dma_calls++; 298} 299 300void r600_preflush_suspend_features(struct r600_common_context *ctx) 301{ 302 /* suspend queries */ 303 if (!list_is_empty(&ctx->active_queries)) 304 r600_suspend_queries(ctx); 305 306 ctx->streamout.suspended = false; 307 if (ctx->streamout.begin_emitted) { 308 r600_emit_streamout_end(ctx); 309 ctx->streamout.suspended = true; 310 } 311} 312 313void r600_postflush_resume_features(struct r600_common_context *ctx) 314{ 315 if (ctx->streamout.suspended) { 316 ctx->streamout.append_bitmask = ctx->streamout.enabled_mask; 317 r600_streamout_buffers_dirty(ctx); 318 } 319 320 /* resume queries */ 321 if (!list_is_empty(&ctx->active_queries)) 322 r600_resume_queries(ctx); 323} 324 325static void r600_fence_server_sync(struct pipe_context *ctx, 326 struct pipe_fence_handle *fence) 327{ 328 /* radeon synchronizes all rings by default and will not implement 329 * fence imports. 330 */ 331} 332 333static void r600_flush_from_st(struct pipe_context *ctx, 334 struct pipe_fence_handle **fence, 335 unsigned flags) 336{ 337 struct pipe_screen *screen = ctx->screen; 338 struct r600_common_context *rctx = (struct r600_common_context *)ctx; 339 struct radeon_winsys *ws = rctx->ws; 340 struct pipe_fence_handle *gfx_fence = NULL; 341 struct pipe_fence_handle *sdma_fence = NULL; 342 bool deferred_fence = false; 343 unsigned rflags = PIPE_FLUSH_ASYNC; 344 345 if (flags & PIPE_FLUSH_END_OF_FRAME) 346 rflags |= PIPE_FLUSH_END_OF_FRAME; 347 348 /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */ 349 if (rctx->dma.cs.priv) 350 rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL); 351 352 if (!radeon_emitted(&rctx->gfx.cs, rctx->initial_gfx_cs_size)) { 353 if (fence) 354 ws->fence_reference(&gfx_fence, rctx->last_gfx_fence); 355 if (!(flags & PIPE_FLUSH_DEFERRED)) 356 ws->cs_sync_flush(&rctx->gfx.cs); 357 } else { 358 /* Instead of flushing, create a deferred fence. Constraints: 359 * - the gallium frontend must allow a deferred flush. 360 * - the gallium frontend must request a fence. 361 * Thread safety in fence_finish must be ensured by the gallium frontend. 362 */ 363 if (flags & PIPE_FLUSH_DEFERRED && fence) { 364 gfx_fence = rctx->ws->cs_get_next_fence(&rctx->gfx.cs); 365 deferred_fence = true; 366 } else { 367 rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL); 368 } 369 } 370 371 /* Both engines can signal out of order, so we need to keep both fences. */ 372 if (fence) { 373 struct r600_multi_fence *multi_fence = 374 CALLOC_STRUCT(r600_multi_fence); 375 if (!multi_fence) { 376 ws->fence_reference(&sdma_fence, NULL); 377 ws->fence_reference(&gfx_fence, NULL); 378 goto finish; 379 } 380 381 multi_fence->reference.count = 1; 382 /* If both fences are NULL, fence_finish will always return true. */ 383 multi_fence->gfx = gfx_fence; 384 multi_fence->sdma = sdma_fence; 385 386 if (deferred_fence) { 387 multi_fence->gfx_unflushed.ctx = rctx; 388 multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes; 389 } 390 391 screen->fence_reference(screen, fence, NULL); 392 *fence = (struct pipe_fence_handle*)multi_fence; 393 } 394finish: 395 if (!(flags & PIPE_FLUSH_DEFERRED)) { 396 if (rctx->dma.cs.priv) 397 ws->cs_sync_flush(&rctx->dma.cs); 398 ws->cs_sync_flush(&rctx->gfx.cs); 399 } 400} 401 402static void r600_flush_dma_ring(void *ctx, unsigned flags, 403 struct pipe_fence_handle **fence) 404{ 405 struct r600_common_context *rctx = (struct r600_common_context *)ctx; 406 struct radeon_cmdbuf *cs = &rctx->dma.cs; 407 struct radeon_saved_cs saved; 408 bool check_vm = 409 (rctx->screen->debug_flags & DBG_CHECK_VM) && 410 rctx->check_vm_faults; 411 412 if (!radeon_emitted(cs, 0)) { 413 if (fence) 414 rctx->ws->fence_reference(fence, rctx->last_sdma_fence); 415 return; 416 } 417 418 if (check_vm) 419 radeon_save_cs(rctx->ws, cs, &saved, true); 420 421 rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence); 422 if (fence) 423 rctx->ws->fence_reference(fence, rctx->last_sdma_fence); 424 425 if (check_vm) { 426 /* Use conservative timeout 800ms, after which we won't wait any 427 * longer and assume the GPU is hung. 428 */ 429 rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000); 430 431 rctx->check_vm_faults(rctx, &saved, RING_DMA); 432 radeon_clear_saved_cs(&saved); 433 } 434} 435 436/** 437 * Store a linearized copy of all chunks of \p cs together with the buffer 438 * list in \p saved. 439 */ 440void radeon_save_cs(struct radeon_winsys *ws, struct radeon_cmdbuf *cs, 441 struct radeon_saved_cs *saved, bool get_buffer_list) 442{ 443 uint32_t *buf; 444 unsigned i; 445 446 /* Save the IB chunks. */ 447 saved->num_dw = cs->prev_dw + cs->current.cdw; 448 saved->ib = MALLOC(4 * saved->num_dw); 449 if (!saved->ib) 450 goto oom; 451 452 buf = saved->ib; 453 for (i = 0; i < cs->num_prev; ++i) { 454 memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4); 455 buf += cs->prev[i].cdw; 456 } 457 memcpy(buf, cs->current.buf, cs->current.cdw * 4); 458 459 if (!get_buffer_list) 460 return; 461 462 /* Save the buffer list. */ 463 saved->bo_count = ws->cs_get_buffer_list(cs, NULL); 464 saved->bo_list = CALLOC(saved->bo_count, 465 sizeof(saved->bo_list[0])); 466 if (!saved->bo_list) { 467 FREE(saved->ib); 468 goto oom; 469 } 470 ws->cs_get_buffer_list(cs, saved->bo_list); 471 472 return; 473 474oom: 475 fprintf(stderr, "%s: out of memory\n", __func__); 476 memset(saved, 0, sizeof(*saved)); 477} 478 479void radeon_clear_saved_cs(struct radeon_saved_cs *saved) 480{ 481 FREE(saved->ib); 482 FREE(saved->bo_list); 483 484 memset(saved, 0, sizeof(*saved)); 485} 486 487static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx) 488{ 489 struct r600_common_context *rctx = (struct r600_common_context *)ctx; 490 491 return rctx->ws->ctx_query_reset_status(rctx->ctx, false, NULL); 492} 493 494static void r600_set_debug_callback(struct pipe_context *ctx, 495 const struct pipe_debug_callback *cb) 496{ 497 struct r600_common_context *rctx = (struct r600_common_context *)ctx; 498 499 if (cb) 500 rctx->debug = *cb; 501 else 502 memset(&rctx->debug, 0, sizeof(rctx->debug)); 503} 504 505static void r600_set_device_reset_callback(struct pipe_context *ctx, 506 const struct pipe_device_reset_callback *cb) 507{ 508 struct r600_common_context *rctx = (struct r600_common_context *)ctx; 509 510 if (cb) 511 rctx->device_reset_callback = *cb; 512 else 513 memset(&rctx->device_reset_callback, 0, 514 sizeof(rctx->device_reset_callback)); 515} 516 517bool r600_check_device_reset(struct r600_common_context *rctx) 518{ 519 enum pipe_reset_status status; 520 521 if (!rctx->device_reset_callback.reset) 522 return false; 523 524 if (!rctx->b.get_device_reset_status) 525 return false; 526 527 status = rctx->b.get_device_reset_status(&rctx->b); 528 if (status == PIPE_NO_RESET) 529 return false; 530 531 rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status); 532 return true; 533} 534 535static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx, 536 struct pipe_resource *dst, 537 uint64_t offset, uint64_t size, 538 unsigned value) 539{ 540 struct r600_common_context *rctx = (struct r600_common_context *)ctx; 541 542 rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE); 543} 544 545static bool r600_resource_commit(struct pipe_context *pctx, 546 struct pipe_resource *resource, 547 unsigned level, struct pipe_box *box, 548 bool commit) 549{ 550 struct r600_common_context *ctx = (struct r600_common_context *)pctx; 551 struct r600_resource *res = r600_resource(resource); 552 553 /* 554 * Since buffer commitment changes cannot be pipelined, we need to 555 * (a) flush any pending commands that refer to the buffer we're about 556 * to change, and 557 * (b) wait for threaded submit to finish, including those that were 558 * triggered by some other, earlier operation. 559 */ 560 if (radeon_emitted(&ctx->gfx.cs, ctx->initial_gfx_cs_size) && 561 ctx->ws->cs_is_buffer_referenced(&ctx->gfx.cs, 562 res->buf, RADEON_USAGE_READWRITE)) { 563 ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL); 564 } 565 if (radeon_emitted(&ctx->dma.cs, 0) && 566 ctx->ws->cs_is_buffer_referenced(&ctx->dma.cs, 567 res->buf, RADEON_USAGE_READWRITE)) { 568 ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL); 569 } 570 571 ctx->ws->cs_sync_flush(&ctx->dma.cs); 572 ctx->ws->cs_sync_flush(&ctx->gfx.cs); 573 574 assert(resource->target == PIPE_BUFFER); 575 576 return ctx->ws->buffer_commit(ctx->ws, res->buf, box->x, box->width, commit); 577} 578 579bool r600_common_context_init(struct r600_common_context *rctx, 580 struct r600_common_screen *rscreen, 581 unsigned context_flags) 582{ 583 slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers); 584 slab_create_child(&rctx->pool_transfers_unsync, &rscreen->pool_transfers); 585 586 rctx->screen = rscreen; 587 rctx->ws = rscreen->ws; 588 rctx->family = rscreen->family; 589 rctx->chip_class = rscreen->chip_class; 590 591 rctx->b.invalidate_resource = r600_invalidate_resource; 592 rctx->b.resource_commit = r600_resource_commit; 593 rctx->b.buffer_map = r600_buffer_transfer_map; 594 rctx->b.texture_map = r600_texture_transfer_map; 595 rctx->b.transfer_flush_region = r600_buffer_flush_region; 596 rctx->b.buffer_unmap = r600_buffer_transfer_unmap; 597 rctx->b.texture_unmap = r600_texture_transfer_unmap; 598 rctx->b.texture_subdata = u_default_texture_subdata; 599 rctx->b.flush = r600_flush_from_st; 600 rctx->b.set_debug_callback = r600_set_debug_callback; 601 rctx->b.fence_server_sync = r600_fence_server_sync; 602 rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback; 603 604 /* evergreen_compute.c has a special codepath for global buffers. 605 * Everything else can use the direct path. 606 */ 607 if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) && 608 (context_flags & PIPE_CONTEXT_COMPUTE_ONLY)) 609 rctx->b.buffer_subdata = u_default_buffer_subdata; 610 else 611 rctx->b.buffer_subdata = r600_buffer_subdata; 612 613 rctx->b.get_device_reset_status = r600_get_reset_status; 614 rctx->b.set_device_reset_callback = r600_set_device_reset_callback; 615 616 r600_init_context_texture_functions(rctx); 617 r600_init_viewport_functions(rctx); 618 r600_streamout_init(rctx); 619 r600_query_init(rctx); 620 cayman_init_msaa(&rctx->b); 621 622 u_suballocator_init(&rctx->allocator_zeroed_memory, &rctx->b, rscreen->info.gart_page_size, 623 0, PIPE_USAGE_DEFAULT, 0, true); 624 625 rctx->b.stream_uploader = u_upload_create(&rctx->b, 1024 * 1024, 626 0, PIPE_USAGE_STREAM, 0); 627 if (!rctx->b.stream_uploader) 628 return false; 629 630 rctx->b.const_uploader = u_upload_create(&rctx->b, 128 * 1024, 631 0, PIPE_USAGE_DEFAULT, 0); 632 if (!rctx->b.const_uploader) 633 return false; 634 635 rctx->ctx = rctx->ws->ctx_create(rctx->ws); 636 if (!rctx->ctx) 637 return false; 638 639 if (rscreen->info.num_rings[RING_DMA] && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) { 640 rctx->ws->cs_create(&rctx->dma.cs, rctx->ctx, RING_DMA, 641 r600_flush_dma_ring, rctx, false); 642 rctx->dma.flush = r600_flush_dma_ring; 643 } 644 645 return true; 646} 647 648void r600_common_context_cleanup(struct r600_common_context *rctx) 649{ 650 if (rctx->query_result_shader) 651 rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader); 652 653 rctx->ws->cs_destroy(&rctx->gfx.cs); 654 rctx->ws->cs_destroy(&rctx->dma.cs); 655 if (rctx->ctx) 656 rctx->ws->ctx_destroy(rctx->ctx); 657 658 if (rctx->b.stream_uploader) 659 u_upload_destroy(rctx->b.stream_uploader); 660 if (rctx->b.const_uploader) 661 u_upload_destroy(rctx->b.const_uploader); 662 663 slab_destroy_child(&rctx->pool_transfers); 664 slab_destroy_child(&rctx->pool_transfers_unsync); 665 666 u_suballocator_destroy(&rctx->allocator_zeroed_memory); 667 rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL); 668 rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL); 669 r600_resource_reference(&rctx->eop_bug_scratch, NULL); 670} 671 672/* 673 * pipe_screen 674 */ 675 676static const struct debug_named_value common_debug_options[] = { 677 /* logging */ 678 { "tex", DBG_TEX, "Print texture info" }, 679 { "nir", DBG_NIR, "Enable experimental NIR shaders" }, 680 { "compute", DBG_COMPUTE, "Print compute info" }, 681 { "vm", DBG_VM, "Print virtual addresses when creating resources" }, 682 { "info", DBG_INFO, "Print driver information" }, 683 684 /* shaders */ 685 { "fs", DBG_FS, "Print fetch shaders" }, 686 { "vs", DBG_VS, "Print vertex shaders" }, 687 { "gs", DBG_GS, "Print geometry shaders" }, 688 { "ps", DBG_PS, "Print pixel shaders" }, 689 { "cs", DBG_CS, "Print compute shaders" }, 690 { "tcs", DBG_TCS, "Print tessellation control shaders" }, 691 { "tes", DBG_TES, "Print tessellation evaluation shaders" }, 692 { "noir", DBG_NO_IR, "Don't print the LLVM IR"}, 693 { "notgsi", DBG_NO_TGSI, "Don't print the TGSI"}, 694 { "noasm", DBG_NO_ASM, "Don't print disassembled shaders"}, 695 { "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" }, 696 { "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" }, 697 { "nooptvariant", DBG_NO_OPT_VARIANT, "Disable compiling optimized shader variants." }, 698 699 { "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." }, 700 { "testvmfaultcp", DBG_TEST_VMFAULT_CP, "Invoke a CP VM fault test and exit." }, 701 { "testvmfaultsdma", DBG_TEST_VMFAULT_SDMA, "Invoke a SDMA VM fault test and exit." }, 702 { "testvmfaultshader", DBG_TEST_VMFAULT_SHADER, "Invoke a shader VM fault test and exit." }, 703 704 /* features */ 705 { "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" }, 706 { "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" }, 707 /* GL uses the word INVALIDATE, gallium uses the word DISCARD */ 708 { "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" }, 709 { "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" }, 710 { "notiling", DBG_NO_TILING, "Disable tiling" }, 711 { "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." }, 712 { "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." }, 713 { "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." }, 714 { "nowc", DBG_NO_WC, "Disable GTT write combining" }, 715 { "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." }, 716 { "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" }, 717 718 DEBUG_NAMED_VALUE_END /* must be last */ 719}; 720 721static const char* r600_get_vendor(struct pipe_screen* pscreen) 722{ 723 return "X.Org"; 724} 725 726static const char* r600_get_device_vendor(struct pipe_screen* pscreen) 727{ 728 return "AMD"; 729} 730 731static const char *r600_get_family_name(const struct r600_common_screen *rscreen) 732{ 733 switch (rscreen->info.family) { 734 case CHIP_R600: return "AMD R600"; 735 case CHIP_RV610: return "AMD RV610"; 736 case CHIP_RV630: return "AMD RV630"; 737 case CHIP_RV670: return "AMD RV670"; 738 case CHIP_RV620: return "AMD RV620"; 739 case CHIP_RV635: return "AMD RV635"; 740 case CHIP_RS780: return "AMD RS780"; 741 case CHIP_RS880: return "AMD RS880"; 742 case CHIP_RV770: return "AMD RV770"; 743 case CHIP_RV730: return "AMD RV730"; 744 case CHIP_RV710: return "AMD RV710"; 745 case CHIP_RV740: return "AMD RV740"; 746 case CHIP_CEDAR: return "AMD CEDAR"; 747 case CHIP_REDWOOD: return "AMD REDWOOD"; 748 case CHIP_JUNIPER: return "AMD JUNIPER"; 749 case CHIP_CYPRESS: return "AMD CYPRESS"; 750 case CHIP_HEMLOCK: return "AMD HEMLOCK"; 751 case CHIP_PALM: return "AMD PALM"; 752 case CHIP_SUMO: return "AMD SUMO"; 753 case CHIP_SUMO2: return "AMD SUMO2"; 754 case CHIP_BARTS: return "AMD BARTS"; 755 case CHIP_TURKS: return "AMD TURKS"; 756 case CHIP_CAICOS: return "AMD CAICOS"; 757 case CHIP_CAYMAN: return "AMD CAYMAN"; 758 case CHIP_ARUBA: return "AMD ARUBA"; 759 default: return "AMD unknown"; 760 } 761} 762 763static void r600_disk_cache_create(struct r600_common_screen *rscreen) 764{ 765 /* Don't use the cache if shader dumping is enabled. */ 766 if (rscreen->debug_flags & DBG_ALL_SHADERS) 767 return; 768 769 struct mesa_sha1 ctx; 770 unsigned char sha1[20]; 771 char cache_id[20 * 2 + 1]; 772 773 _mesa_sha1_init(&ctx); 774 if (!disk_cache_get_function_identifier(r600_disk_cache_create, 775 &ctx)) 776 return; 777 778 _mesa_sha1_final(&ctx, sha1); 779 disk_cache_format_hex_id(cache_id, sha1, 20 * 2); 780 781 /* These flags affect shader compilation. */ 782 uint64_t shader_debug_flags = 783 rscreen->debug_flags & 784 (DBG_FS_CORRECT_DERIVS_AFTER_KILL | 785 DBG_UNSAFE_MATH); 786 787 rscreen->disk_shader_cache = 788 disk_cache_create(r600_get_family_name(rscreen), 789 cache_id, 790 shader_debug_flags); 791} 792 793static struct disk_cache *r600_get_disk_shader_cache(struct pipe_screen *pscreen) 794{ 795 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen; 796 return rscreen->disk_shader_cache; 797} 798 799static const char* r600_get_name(struct pipe_screen* pscreen) 800{ 801 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen; 802 803 return rscreen->renderer_string; 804} 805 806static float r600_get_paramf(struct pipe_screen* pscreen, 807 enum pipe_capf param) 808{ 809 switch (param) { 810 case PIPE_CAPF_MAX_LINE_WIDTH: 811 case PIPE_CAPF_MAX_LINE_WIDTH_AA: 812 case PIPE_CAPF_MAX_POINT_WIDTH: 813 case PIPE_CAPF_MAX_POINT_WIDTH_AA: 814 return 8191.0f; 815 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY: 816 return 16.0f; 817 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS: 818 return 16.0f; 819 case PIPE_CAPF_MIN_CONSERVATIVE_RASTER_DILATE: 820 case PIPE_CAPF_MAX_CONSERVATIVE_RASTER_DILATE: 821 case PIPE_CAPF_CONSERVATIVE_RASTER_DILATE_GRANULARITY: 822 return 0.0f; 823 } 824 return 0.0f; 825} 826 827static int r600_get_video_param(struct pipe_screen *screen, 828 enum pipe_video_profile profile, 829 enum pipe_video_entrypoint entrypoint, 830 enum pipe_video_cap param) 831{ 832 switch (param) { 833 case PIPE_VIDEO_CAP_SUPPORTED: 834 return vl_profile_supported(screen, profile, entrypoint); 835 case PIPE_VIDEO_CAP_NPOT_TEXTURES: 836 return 1; 837 case PIPE_VIDEO_CAP_MAX_WIDTH: 838 case PIPE_VIDEO_CAP_MAX_HEIGHT: 839 return vl_video_buffer_max_size(screen); 840 case PIPE_VIDEO_CAP_PREFERED_FORMAT: 841 return PIPE_FORMAT_NV12; 842 case PIPE_VIDEO_CAP_PREFERS_INTERLACED: 843 return false; 844 case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED: 845 return false; 846 case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE: 847 return true; 848 case PIPE_VIDEO_CAP_MAX_LEVEL: 849 return vl_level_supported(screen, profile); 850 default: 851 return 0; 852 } 853} 854 855const char *r600_get_llvm_processor_name(enum radeon_family family) 856{ 857 switch (family) { 858 case CHIP_R600: 859 case CHIP_RV630: 860 case CHIP_RV635: 861 case CHIP_RV670: 862 return "r600"; 863 case CHIP_RV610: 864 case CHIP_RV620: 865 case CHIP_RS780: 866 case CHIP_RS880: 867 return "rs880"; 868 case CHIP_RV710: 869 return "rv710"; 870 case CHIP_RV730: 871 return "rv730"; 872 case CHIP_RV740: 873 case CHIP_RV770: 874 return "rv770"; 875 case CHIP_PALM: 876 case CHIP_CEDAR: 877 return "cedar"; 878 case CHIP_SUMO: 879 case CHIP_SUMO2: 880 return "sumo"; 881 case CHIP_REDWOOD: 882 return "redwood"; 883 case CHIP_JUNIPER: 884 return "juniper"; 885 case CHIP_HEMLOCK: 886 case CHIP_CYPRESS: 887 return "cypress"; 888 case CHIP_BARTS: 889 return "barts"; 890 case CHIP_TURKS: 891 return "turks"; 892 case CHIP_CAICOS: 893 return "caicos"; 894 case CHIP_CAYMAN: 895 case CHIP_ARUBA: 896 return "cayman"; 897 898 default: 899 return ""; 900 } 901} 902 903static unsigned get_max_threads_per_block(struct r600_common_screen *screen, 904 enum pipe_shader_ir ir_type) 905{ 906 if (ir_type != PIPE_SHADER_IR_TGSI && 907 ir_type != PIPE_SHADER_IR_NIR) 908 return 256; 909 if (screen->chip_class >= EVERGREEN) 910 return 1024; 911 return 256; 912} 913 914static int r600_get_compute_param(struct pipe_screen *screen, 915 enum pipe_shader_ir ir_type, 916 enum pipe_compute_cap param, 917 void *ret) 918{ 919 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen; 920 921 //TODO: select these params by asic 922 switch (param) { 923 case PIPE_COMPUTE_CAP_IR_TARGET: { 924 const char *gpu; 925 const char *triple = "r600--"; 926 gpu = r600_get_llvm_processor_name(rscreen->family); 927 if (ret) { 928 sprintf(ret, "%s-%s", gpu, triple); 929 } 930 /* +2 for dash and terminating NIL byte */ 931 return (strlen(triple) + strlen(gpu) + 2) * sizeof(char); 932 } 933 case PIPE_COMPUTE_CAP_GRID_DIMENSION: 934 if (ret) { 935 uint64_t *grid_dimension = ret; 936 grid_dimension[0] = 3; 937 } 938 return 1 * sizeof(uint64_t); 939 940 case PIPE_COMPUTE_CAP_MAX_GRID_SIZE: 941 if (ret) { 942 uint64_t *grid_size = ret; 943 grid_size[0] = 65535; 944 grid_size[1] = 65535; 945 grid_size[2] = 65535; 946 } 947 return 3 * sizeof(uint64_t) ; 948 949 case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE: 950 if (ret) { 951 uint64_t *block_size = ret; 952 unsigned threads_per_block = get_max_threads_per_block(rscreen, ir_type); 953 block_size[0] = threads_per_block; 954 block_size[1] = threads_per_block; 955 block_size[2] = threads_per_block; 956 } 957 return 3 * sizeof(uint64_t); 958 959 case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK: 960 if (ret) { 961 uint64_t *max_threads_per_block = ret; 962 *max_threads_per_block = get_max_threads_per_block(rscreen, ir_type); 963 } 964 return sizeof(uint64_t); 965 case PIPE_COMPUTE_CAP_ADDRESS_BITS: 966 if (ret) { 967 uint32_t *address_bits = ret; 968 address_bits[0] = 32; 969 } 970 return 1 * sizeof(uint32_t); 971 972 case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE: 973 if (ret) { 974 uint64_t *max_global_size = ret; 975 uint64_t max_mem_alloc_size; 976 977 r600_get_compute_param(screen, ir_type, 978 PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE, 979 &max_mem_alloc_size); 980 981 /* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least 982 * 1/4 of the MAX_GLOBAL_SIZE. Since the 983 * MAX_MEM_ALLOC_SIZE is fixed for older kernels, 984 * make sure we never report more than 985 * 4 * MAX_MEM_ALLOC_SIZE. 986 */ 987 *max_global_size = MIN2(4 * max_mem_alloc_size, 988 MAX2(rscreen->info.gart_size, 989 rscreen->info.vram_size)); 990 } 991 return sizeof(uint64_t); 992 993 case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE: 994 if (ret) { 995 uint64_t *max_local_size = ret; 996 /* Value reported by the closed source driver. */ 997 *max_local_size = 32768; 998 } 999 return sizeof(uint64_t); 1000 1001 case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE: 1002 if (ret) { 1003 uint64_t *max_input_size = ret; 1004 /* Value reported by the closed source driver. */ 1005 *max_input_size = 1024; 1006 } 1007 return sizeof(uint64_t); 1008 1009 case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE: 1010 if (ret) { 1011 uint64_t *max_mem_alloc_size = ret; 1012 1013 *max_mem_alloc_size = rscreen->info.max_alloc_size; 1014 } 1015 return sizeof(uint64_t); 1016 1017 case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY: 1018 if (ret) { 1019 uint32_t *max_clock_frequency = ret; 1020 *max_clock_frequency = rscreen->info.max_shader_clock; 1021 } 1022 return sizeof(uint32_t); 1023 1024 case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS: 1025 if (ret) { 1026 uint32_t *max_compute_units = ret; 1027 *max_compute_units = rscreen->info.num_good_compute_units; 1028 } 1029 return sizeof(uint32_t); 1030 1031 case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED: 1032 if (ret) { 1033 uint32_t *images_supported = ret; 1034 *images_supported = 0; 1035 } 1036 return sizeof(uint32_t); 1037 case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE: 1038 break; /* unused */ 1039 case PIPE_COMPUTE_CAP_SUBGROUP_SIZE: 1040 if (ret) { 1041 uint32_t *subgroup_size = ret; 1042 *subgroup_size = r600_wavefront_size(rscreen->family); 1043 } 1044 return sizeof(uint32_t); 1045 case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK: 1046 if (ret) { 1047 uint64_t *max_variable_threads_per_block = ret; 1048 *max_variable_threads_per_block = 0; 1049 } 1050 return sizeof(uint64_t); 1051 } 1052 1053 fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param); 1054 return 0; 1055} 1056 1057static uint64_t r600_get_timestamp(struct pipe_screen *screen) 1058{ 1059 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; 1060 1061 return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) / 1062 rscreen->info.clock_crystal_freq; 1063} 1064 1065static void r600_fence_reference(struct pipe_screen *screen, 1066 struct pipe_fence_handle **dst, 1067 struct pipe_fence_handle *src) 1068{ 1069 struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws; 1070 struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst; 1071 struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src; 1072 1073 if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) { 1074 ws->fence_reference(&(*rdst)->gfx, NULL); 1075 ws->fence_reference(&(*rdst)->sdma, NULL); 1076 FREE(*rdst); 1077 } 1078 *rdst = rsrc; 1079} 1080 1081static bool r600_fence_finish(struct pipe_screen *screen, 1082 struct pipe_context *ctx, 1083 struct pipe_fence_handle *fence, 1084 uint64_t timeout) 1085{ 1086 struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws; 1087 struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence; 1088 struct r600_common_context *rctx; 1089 int64_t abs_timeout = os_time_get_absolute_timeout(timeout); 1090 1091 ctx = threaded_context_unwrap_sync(ctx); 1092 rctx = ctx ? (struct r600_common_context*)ctx : NULL; 1093 1094 if (rfence->sdma) { 1095 if (!rws->fence_wait(rws, rfence->sdma, timeout)) 1096 return false; 1097 1098 /* Recompute the timeout after waiting. */ 1099 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 1100 int64_t time = os_time_get_nano(); 1101 timeout = abs_timeout > time ? abs_timeout - time : 0; 1102 } 1103 } 1104 1105 if (!rfence->gfx) 1106 return true; 1107 1108 /* Flush the gfx IB if it hasn't been flushed yet. */ 1109 if (rctx && 1110 rfence->gfx_unflushed.ctx == rctx && 1111 rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) { 1112 rctx->gfx.flush(rctx, timeout ? 0 : PIPE_FLUSH_ASYNC, NULL); 1113 rfence->gfx_unflushed.ctx = NULL; 1114 1115 if (!timeout) 1116 return false; 1117 1118 /* Recompute the timeout after all that. */ 1119 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 1120 int64_t time = os_time_get_nano(); 1121 timeout = abs_timeout > time ? abs_timeout - time : 0; 1122 } 1123 } 1124 1125 return rws->fence_wait(rws, rfence->gfx, timeout); 1126} 1127 1128static void r600_query_memory_info(struct pipe_screen *screen, 1129 struct pipe_memory_info *info) 1130{ 1131 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; 1132 struct radeon_winsys *ws = rscreen->ws; 1133 unsigned vram_usage, gtt_usage; 1134 1135 info->total_device_memory = rscreen->info.vram_size / 1024; 1136 info->total_staging_memory = rscreen->info.gart_size / 1024; 1137 1138 /* The real TTM memory usage is somewhat random, because: 1139 * 1140 * 1) TTM delays freeing memory, because it can only free it after 1141 * fences expire. 1142 * 1143 * 2) The memory usage can be really low if big VRAM evictions are 1144 * taking place, but the real usage is well above the size of VRAM. 1145 * 1146 * Instead, return statistics of this process. 1147 */ 1148 vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024; 1149 gtt_usage = ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024; 1150 1151 info->avail_device_memory = 1152 vram_usage <= info->total_device_memory ? 1153 info->total_device_memory - vram_usage : 0; 1154 info->avail_staging_memory = 1155 gtt_usage <= info->total_staging_memory ? 1156 info->total_staging_memory - gtt_usage : 0; 1157 1158 info->device_memory_evicted = 1159 ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024; 1160 1161 /* Just return the number of evicted 64KB pages. */ 1162 info->nr_device_memory_evictions = info->device_memory_evicted / 64; 1163} 1164 1165struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen, 1166 const struct pipe_resource *templ) 1167{ 1168 if (templ->target == PIPE_BUFFER) { 1169 return r600_buffer_create(screen, templ, 256); 1170 } else { 1171 return r600_texture_create(screen, templ); 1172 } 1173} 1174 1175static const void * 1176r600_get_compiler_options(struct pipe_screen *screen, 1177 enum pipe_shader_ir ir, 1178 enum pipe_shader_type shader) 1179{ 1180 assert(ir == PIPE_SHADER_IR_NIR); 1181 1182 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen; 1183 1184 return &rscreen->nir_options; 1185} 1186 1187extern bool r600_lower_to_scalar_instr_filter(const nir_instr *instr, const void *); 1188 1189static void r600_resource_destroy(struct pipe_screen *screen, 1190 struct pipe_resource *res) 1191{ 1192 if (res->target == PIPE_BUFFER) { 1193 if (r600_resource(res)->compute_global_bo) 1194 r600_compute_global_buffer_destroy(screen, res); 1195 else 1196 r600_buffer_destroy(screen, res); 1197 } else { 1198 r600_texture_destroy(screen, res); 1199 } 1200} 1201 1202bool r600_common_screen_init(struct r600_common_screen *rscreen, 1203 struct radeon_winsys *ws) 1204{ 1205 char family_name[32] = {}, kernel_version[128] = {}; 1206 struct utsname uname_data; 1207 const char *chip_name; 1208 1209 ws->query_info(ws, &rscreen->info, false, false); 1210 rscreen->ws = ws; 1211 1212 chip_name = r600_get_family_name(rscreen); 1213 1214 if (uname(&uname_data) == 0) 1215 snprintf(kernel_version, sizeof(kernel_version), 1216 " / %s", uname_data.release); 1217 1218 snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string), 1219 "%s (%sDRM %i.%i.%i%s" 1220#ifdef LLVM_AVAILABLE 1221 ", LLVM " MESA_LLVM_VERSION_STRING 1222#endif 1223 ")", 1224 chip_name, family_name, rscreen->info.drm_major, 1225 rscreen->info.drm_minor, rscreen->info.drm_patchlevel, 1226 kernel_version); 1227 1228 rscreen->b.get_name = r600_get_name; 1229 rscreen->b.get_vendor = r600_get_vendor; 1230 rscreen->b.get_device_vendor = r600_get_device_vendor; 1231 rscreen->b.get_disk_shader_cache = r600_get_disk_shader_cache; 1232 rscreen->b.get_compute_param = r600_get_compute_param; 1233 rscreen->b.get_paramf = r600_get_paramf; 1234 rscreen->b.get_timestamp = r600_get_timestamp; 1235 rscreen->b.get_compiler_options = r600_get_compiler_options; 1236 rscreen->b.fence_finish = r600_fence_finish; 1237 rscreen->b.fence_reference = r600_fence_reference; 1238 rscreen->b.resource_destroy = r600_resource_destroy; 1239 rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory; 1240 rscreen->b.query_memory_info = r600_query_memory_info; 1241 1242 if (rscreen->info.has_video_hw.uvd_decode) { 1243 rscreen->b.get_video_param = rvid_get_video_param; 1244 rscreen->b.is_video_format_supported = rvid_is_format_supported; 1245 } else { 1246 rscreen->b.get_video_param = r600_get_video_param; 1247 rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported; 1248 } 1249 1250 r600_init_screen_texture_functions(rscreen); 1251 r600_init_screen_query_functions(rscreen); 1252 1253 rscreen->family = rscreen->info.family; 1254 rscreen->chip_class = rscreen->info.chip_class; 1255 rscreen->debug_flags |= debug_get_flags_option("R600_DEBUG", common_debug_options, 0); 1256 1257 r600_disk_cache_create(rscreen); 1258 1259 slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64); 1260 1261 rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1)); 1262 if (rscreen->force_aniso >= 0) { 1263 printf("radeon: Forcing anisotropy filter to %ix\n", 1264 /* round down to a power of two */ 1265 1 << util_logbase2(rscreen->force_aniso)); 1266 } 1267 1268 (void) mtx_init(&rscreen->aux_context_lock, mtx_plain); 1269 (void) mtx_init(&rscreen->gpu_load_mutex, mtx_plain); 1270 1271 if (rscreen->debug_flags & DBG_INFO) { 1272 printf("pci (domain:bus:dev.func): %04x:%02x:%02x.%x\n", 1273 rscreen->info.pci_domain, rscreen->info.pci_bus, 1274 rscreen->info.pci_dev, rscreen->info.pci_func); 1275 printf("pci_id = 0x%x\n", rscreen->info.pci_id); 1276 printf("family = %i (%s)\n", rscreen->info.family, 1277 r600_get_family_name(rscreen)); 1278 printf("chip_class = %i\n", rscreen->info.chip_class); 1279 printf("pte_fragment_size = %u\n", rscreen->info.pte_fragment_size); 1280 printf("gart_page_size = %u\n", rscreen->info.gart_page_size); 1281 printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024)); 1282 printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024)); 1283 printf("vram_vis_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_vis_size, 1024*1024)); 1284 printf("max_alloc_size = %i MB\n", 1285 (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024)); 1286 printf("min_alloc_size = %u\n", rscreen->info.min_alloc_size); 1287 printf("has_dedicated_vram = %u\n", rscreen->info.has_dedicated_vram); 1288 printf("r600_has_virtual_memory = %i\n", rscreen->info.r600_has_virtual_memory); 1289 printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2); 1290 printf("uvd_decode = %u\n", rscreen->info.has_video_hw.uvd_decode); 1291 printf("num_rings[RING_DMA] = %i\n", rscreen->info.num_rings[RING_DMA]); 1292 printf("num_rings[RING_COMPUTE] = %u\n", rscreen->info.num_rings[RING_COMPUTE]); 1293 printf("uvd_fw_version = %u\n", rscreen->info.uvd_fw_version); 1294 printf("vce_fw_version = %u\n", rscreen->info.vce_fw_version); 1295 printf("me_fw_version = %i\n", rscreen->info.me_fw_version); 1296 printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version); 1297 printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version); 1298 printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config); 1299 printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq); 1300 printf("tcc_cache_line_size = %u\n", rscreen->info.tcc_cache_line_size); 1301 printf("drm = %i.%i.%i\n", rscreen->info.drm_major, 1302 rscreen->info.drm_minor, rscreen->info.drm_patchlevel); 1303 printf("has_userptr = %i\n", rscreen->info.has_userptr); 1304 printf("has_syncobj = %u\n", rscreen->info.has_syncobj); 1305 1306 printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes); 1307 printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock); 1308 printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units); 1309 printf("max_se = %i\n", rscreen->info.max_se); 1310 printf("max_sh_per_se = %i\n", rscreen->info.max_sa_per_se); 1311 1312 printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map); 1313 printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid); 1314 printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks); 1315 printf("num_render_backends = %i\n", rscreen->info.max_render_backends); 1316 printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes); 1317 printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes); 1318 printf("enabled_rb_mask = 0x%x\n", rscreen->info.enabled_rb_mask); 1319 printf("max_alignment = %u\n", (unsigned)rscreen->info.max_alignment); 1320 } 1321 1322 const struct nir_shader_compiler_options nir_options = { 1323 .fuse_ffma16 = true, 1324 .fuse_ffma32 = true, 1325 .fuse_ffma64 = true, 1326 .lower_flrp32 = true, 1327 .lower_flrp64 = true, 1328 .lower_fpow = true, 1329 .lower_fdiv = true, 1330 .lower_isign = true, 1331 .lower_fsign = true, 1332 .lower_fmod = true, 1333 .lower_doubles_options = nir_lower_fp64_full_software, 1334 .lower_int64_options = ~0, 1335 .lower_extract_byte = true, 1336 .lower_extract_word = true, 1337 .lower_insert_byte = true, 1338 .lower_insert_word = true, 1339 .lower_rotate = true, 1340 .max_unroll_iterations = 32, 1341 .lower_interpolate_at = true, 1342 .vectorize_io = true, 1343 .has_umad24 = true, 1344 .has_umul24 = true, 1345 .use_interpolated_input_intrinsics = true, 1346 .has_fsub = true, 1347 .has_isub = true, 1348 .lower_iabs = true, 1349 .lower_bitfield_extract = true, 1350 .lower_bitfield_insert_to_bitfield_select = true, 1351 .has_fused_comp_and_csel = true, 1352 .lower_find_msb_to_reverse = true, 1353 .lower_to_scalar = true, 1354 .lower_to_scalar_filter = r600_lower_to_scalar_instr_filter, 1355 .linker_ignore_precision = true, 1356 }; 1357 1358 rscreen->nir_options = nir_options; 1359 1360 return true; 1361} 1362 1363void r600_destroy_common_screen(struct r600_common_screen *rscreen) 1364{ 1365 r600_perfcounters_destroy(rscreen); 1366 r600_gpu_load_kill_thread(rscreen); 1367 1368 mtx_destroy(&rscreen->gpu_load_mutex); 1369 mtx_destroy(&rscreen->aux_context_lock); 1370 rscreen->aux_context->destroy(rscreen->aux_context); 1371 1372 slab_destroy_parent(&rscreen->pool_transfers); 1373 1374 disk_cache_destroy(rscreen->disk_shader_cache); 1375 rscreen->ws->destroy(rscreen->ws); 1376 FREE(rscreen); 1377} 1378 1379bool r600_can_dump_shader(struct r600_common_screen *rscreen, 1380 unsigned processor) 1381{ 1382 return rscreen->debug_flags & (1 << processor); 1383} 1384 1385bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor) 1386{ 1387 return (rscreen->debug_flags & DBG_CHECK_IR) || 1388 r600_can_dump_shader(rscreen, processor); 1389} 1390 1391void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst, 1392 uint64_t offset, uint64_t size, unsigned value) 1393{ 1394 struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context; 1395 1396 mtx_lock(&rscreen->aux_context_lock); 1397 rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value); 1398 rscreen->aux_context->flush(rscreen->aux_context, NULL, 0); 1399 mtx_unlock(&rscreen->aux_context_lock); 1400} 1401