1/*
2 * Copyright (c) 2014 Scott Mansell
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25#include <inttypes.h>
26#include "util/format/u_format.h"
27#include "util/crc32.h"
28#include "util/u_helpers.h"
29#include "util/u_math.h"
30#include "util/u_memory.h"
31#include "util/ralloc.h"
32#include "util/hash_table.h"
33#include "tgsi/tgsi_dump.h"
34#include "tgsi/tgsi_parse.h"
35#include "compiler/nir/nir.h"
36#include "compiler/nir/nir_builder.h"
37#include "compiler/nir_types.h"
38#include "nir/tgsi_to_nir.h"
39#include "vc4_context.h"
40#include "vc4_qpu.h"
41#include "vc4_qir.h"
42
43static struct qreg
44ntq_get_src(struct vc4_compile *c, nir_src src, int i);
45static void
46ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
47
48static int
49type_size(const struct glsl_type *type, bool bindless)
50{
51   return glsl_count_attribute_slots(type, false);
52}
53
54static void
55resize_qreg_array(struct vc4_compile *c,
56                  struct qreg **regs,
57                  uint32_t *size,
58                  uint32_t decl_size)
59{
60        if (*size >= decl_size)
61                return;
62
63        uint32_t old_size = *size;
64        *size = MAX2(*size * 2, decl_size);
65        *regs = reralloc(c, *regs, struct qreg, *size);
66        if (!*regs) {
67                fprintf(stderr, "Malloc failure\n");
68                abort();
69        }
70
71        for (uint32_t i = old_size; i < *size; i++)
72                (*regs)[i] = c->undef;
73}
74
75static void
76ntq_emit_thrsw(struct vc4_compile *c)
77{
78        if (!c->fs_threaded)
79                return;
80
81        /* Always thread switch after each texture operation for now.
82         *
83         * We could do better by batching a bunch of texture fetches up and
84         * then doing one thread switch and collecting all their results
85         * afterward.
86         */
87        qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
88                                    c->undef, c->undef));
89        c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
90}
91
92static struct qreg
93indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
94{
95        struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
96
97        /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
98        uint32_t range = nir_intrinsic_range(intr);
99        indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
100        indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
101                                        qir_uniform_ui(c, range - 4));
102
103        qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
104                     indirect_offset,
105                     qir_uniform(c, QUNIFORM_UBO0_ADDR,
106                                 nir_intrinsic_base(intr)));
107
108        c->num_texture_samples++;
109
110        ntq_emit_thrsw(c);
111
112        return qir_TEX_RESULT(c);
113}
114
115static struct qreg
116vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
117{
118        ASSERTED int buffer_index = nir_src_as_uint(intr->src[0]);
119        assert(buffer_index == 1);
120        assert(c->stage == QSTAGE_FRAG);
121
122        struct qreg offset = ntq_get_src(c, intr->src[1], 0);
123
124        /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
125        offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
126        offset = qir_MIN_NOIMM(c, offset,
127                               qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
128
129        qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
130                     offset,
131                     qir_uniform(c, QUNIFORM_UBO1_ADDR, 0));
132
133        c->num_texture_samples++;
134
135        ntq_emit_thrsw(c);
136
137        return qir_TEX_RESULT(c);
138}
139
140nir_ssa_def *
141vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
142{
143        switch (swiz) {
144        default:
145        case PIPE_SWIZZLE_NONE:
146                fprintf(stderr, "warning: unknown swizzle\n");
147                FALLTHROUGH;
148        case PIPE_SWIZZLE_0:
149                return nir_imm_float(b, 0.0);
150        case PIPE_SWIZZLE_1:
151                return nir_imm_float(b, 1.0);
152        case PIPE_SWIZZLE_X:
153        case PIPE_SWIZZLE_Y:
154        case PIPE_SWIZZLE_Z:
155        case PIPE_SWIZZLE_W:
156                return srcs[swiz];
157        }
158}
159
160static struct qreg *
161ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
162{
163        struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
164                                          def->num_components);
165        _mesa_hash_table_insert(c->def_ht, def, qregs);
166        return qregs;
167}
168
169/**
170 * This function is responsible for getting QIR results into the associated
171 * storage for a NIR instruction.
172 *
173 * If it's a NIR SSA def, then we just set the associated hash table entry to
174 * the new result.
175 *
176 * If it's a NIR reg, then we need to update the existing qreg assigned to the
177 * NIR destination with the incoming value.  To do that without introducing
178 * new MOVs, we require that the incoming qreg either be a uniform, or be
179 * SSA-defined by the previous QIR instruction in the block and rewritable by
180 * this function.  That lets us sneak ahead and insert the SF flag beforehand
181 * (knowing that the previous instruction doesn't depend on flags) and rewrite
182 * its destination to be the NIR reg's destination
183 */
184static void
185ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
186               struct qreg result)
187{
188        struct qinst *last_inst = NULL;
189        if (!list_is_empty(&c->cur_block->instructions))
190                last_inst = (struct qinst *)c->cur_block->instructions.prev;
191
192        assert(result.file == QFILE_UNIF ||
193               (result.file == QFILE_TEMP &&
194                last_inst && last_inst == c->defs[result.index]));
195
196        if (dest->is_ssa) {
197                assert(chan < dest->ssa.num_components);
198
199                struct qreg *qregs;
200                struct hash_entry *entry =
201                        _mesa_hash_table_search(c->def_ht, &dest->ssa);
202
203                if (entry)
204                        qregs = entry->data;
205                else
206                        qregs = ntq_init_ssa_def(c, &dest->ssa);
207
208                qregs[chan] = result;
209        } else {
210                nir_register *reg = dest->reg.reg;
211                assert(dest->reg.base_offset == 0);
212                assert(reg->num_array_elems == 0);
213                struct hash_entry *entry =
214                        _mesa_hash_table_search(c->def_ht, reg);
215                struct qreg *qregs = entry->data;
216
217                /* Insert a MOV if the source wasn't an SSA def in the
218                 * previous instruction.
219                 */
220                if (result.file == QFILE_UNIF) {
221                        result = qir_MOV(c, result);
222                        last_inst = c->defs[result.index];
223                }
224
225                /* We know they're both temps, so just rewrite index. */
226                c->defs[last_inst->dst.index] = NULL;
227                last_inst->dst.index = qregs[chan].index;
228
229                /* If we're in control flow, then make this update of the reg
230                 * conditional on the execution mask.
231                 */
232                if (c->execute.file != QFILE_NULL) {
233                        last_inst->dst.index = qregs[chan].index;
234
235                        /* Set the flags to the current exec mask.  To insert
236                         * the SF, we temporarily remove our SSA instruction.
237                         */
238                        list_del(&last_inst->link);
239                        qir_SF(c, c->execute);
240                        list_addtail(&last_inst->link,
241                                     &c->cur_block->instructions);
242
243                        last_inst->cond = QPU_COND_ZS;
244                        last_inst->cond_is_exec_mask = true;
245                }
246        }
247}
248
249static struct qreg *
250ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
251{
252        if (dest->is_ssa) {
253                struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
254                for (int i = 0; i < dest->ssa.num_components; i++)
255                        qregs[i] = c->undef;
256                return qregs;
257        } else {
258                nir_register *reg = dest->reg.reg;
259                assert(dest->reg.base_offset == 0);
260                assert(reg->num_array_elems == 0);
261                struct hash_entry *entry =
262                        _mesa_hash_table_search(c->def_ht, reg);
263                return entry->data;
264        }
265}
266
267static struct qreg
268ntq_get_src(struct vc4_compile *c, nir_src src, int i)
269{
270        struct hash_entry *entry;
271        if (src.is_ssa) {
272                entry = _mesa_hash_table_search(c->def_ht, src.ssa);
273                assert(i < src.ssa->num_components);
274        } else {
275                nir_register *reg = src.reg.reg;
276                entry = _mesa_hash_table_search(c->def_ht, reg);
277                assert(reg->num_array_elems == 0);
278                assert(src.reg.base_offset == 0);
279                assert(i < reg->num_components);
280        }
281
282        struct qreg *qregs = entry->data;
283        return qregs[i];
284}
285
286static struct qreg
287ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
288                unsigned src)
289{
290        assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
291        unsigned chan = ffs(instr->dest.write_mask) - 1;
292        struct qreg r = ntq_get_src(c, instr->src[src].src,
293                                    instr->src[src].swizzle[chan]);
294
295        assert(!instr->src[src].abs);
296        assert(!instr->src[src].negate);
297
298        return r;
299};
300
301static inline struct qreg
302qir_SAT(struct vc4_compile *c, struct qreg val)
303{
304        return qir_FMAX(c,
305                        qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
306                        qir_uniform_f(c, 0.0));
307}
308
309static struct qreg
310ntq_rcp(struct vc4_compile *c, struct qreg x)
311{
312        struct qreg r = qir_RCP(c, x);
313
314        /* Apply a Newton-Raphson step to improve the accuracy. */
315        r = qir_FMUL(c, r, qir_FSUB(c,
316                                    qir_uniform_f(c, 2.0),
317                                    qir_FMUL(c, x, r)));
318
319        return r;
320}
321
322static struct qreg
323ntq_rsq(struct vc4_compile *c, struct qreg x)
324{
325        struct qreg r = qir_RSQ(c, x);
326
327        /* Apply a Newton-Raphson step to improve the accuracy. */
328        r = qir_FMUL(c, r, qir_FSUB(c,
329                                    qir_uniform_f(c, 1.5),
330                                    qir_FMUL(c,
331                                             qir_uniform_f(c, 0.5),
332                                             qir_FMUL(c, x,
333                                                      qir_FMUL(c, r, r)))));
334
335        return r;
336}
337
338static struct qreg
339ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
340{
341        struct qreg src0_hi = qir_SHR(c, src0,
342                                      qir_uniform_ui(c, 24));
343        struct qreg src1_hi = qir_SHR(c, src1,
344                                      qir_uniform_ui(c, 24));
345
346        struct qreg hilo = qir_MUL24(c, src0_hi, src1);
347        struct qreg lohi = qir_MUL24(c, src0, src1_hi);
348        struct qreg lolo = qir_MUL24(c, src0, src1);
349
350        return qir_ADD(c, lolo, qir_SHL(c,
351                                        qir_ADD(c, hilo, lohi),
352                                        qir_uniform_ui(c, 24)));
353}
354
355static struct qreg
356ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
357{
358        struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
359                                                 qir_uniform_ui(c, 8)));
360        return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
361}
362
363/**
364 * Emits a lowered TXF_MS from an MSAA texture.
365 *
366 * The addressing math has been lowered in NIR, and now we just need to read
367 * it like a UBO.
368 */
369static void
370ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
371{
372        uint32_t tile_width = 32;
373        uint32_t tile_height = 32;
374        uint32_t tile_size = (tile_height * tile_width *
375                              VC4_MAX_SAMPLES * sizeof(uint32_t));
376
377        unsigned unit = instr->texture_index;
378        uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
379        uint32_t w_tiles = w / tile_width;
380        uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
381        uint32_t h_tiles = h / tile_height;
382        uint32_t size = w_tiles * h_tiles * tile_size;
383
384        struct qreg addr;
385        assert(instr->num_srcs == 1);
386        assert(instr->src[0].src_type == nir_tex_src_coord);
387        addr = ntq_get_src(c, instr->src[0].src, 0);
388
389        /* Perform the clamping required by kernel validation. */
390        addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
391        addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
392
393        qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
394                     addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
395
396        ntq_emit_thrsw(c);
397
398        struct qreg tex = qir_TEX_RESULT(c);
399        c->num_texture_samples++;
400
401        enum pipe_format format = c->key->tex[unit].format;
402        if (util_format_is_depth_or_stencil(format)) {
403                struct qreg scaled = ntq_scale_depth_texture(c, tex);
404                for (int i = 0; i < 4; i++)
405                        ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
406        } else {
407                for (int i = 0; i < 4; i++)
408                        ntq_store_dest(c, &instr->dest, i,
409                                       qir_UNPACK_8_F(c, tex, i));
410        }
411}
412
413static void
414ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
415{
416        struct qreg s, t, r, lod, compare;
417        bool is_txb = false, is_txl = false;
418        unsigned unit = instr->texture_index;
419
420        if (instr->op == nir_texop_txf) {
421                ntq_emit_txf(c, instr);
422                return;
423        }
424
425        for (unsigned i = 0; i < instr->num_srcs; i++) {
426                switch (instr->src[i].src_type) {
427                case nir_tex_src_coord:
428                        s = ntq_get_src(c, instr->src[i].src, 0);
429                        if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
430                                t = qir_uniform_f(c, 0.5);
431                        else
432                                t = ntq_get_src(c, instr->src[i].src, 1);
433                        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
434                                r = ntq_get_src(c, instr->src[i].src, 2);
435                        break;
436                case nir_tex_src_bias:
437                        lod = ntq_get_src(c, instr->src[i].src, 0);
438                        is_txb = true;
439                        break;
440                case nir_tex_src_lod:
441                        lod = ntq_get_src(c, instr->src[i].src, 0);
442                        is_txl = true;
443                        break;
444                case nir_tex_src_comparator:
445                        compare = ntq_get_src(c, instr->src[i].src, 0);
446                        break;
447                default:
448                        unreachable("unknown texture source");
449                }
450        }
451
452        if (c->stage != QSTAGE_FRAG && !is_txl) {
453                /* From the GLSL 1.20 spec:
454                 *
455                 *     "If it is mip-mapped and running on the vertex shader,
456                 *      then the base texture is used."
457                 */
458                is_txl = true;
459                lod = qir_uniform_ui(c, 0);
460        }
461
462        if (c->key->tex[unit].force_first_level) {
463                lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
464                is_txl = true;
465                is_txb = false;
466        }
467
468        struct qreg texture_u[] = {
469                qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
470                qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
471                qir_uniform(c, QUNIFORM_CONSTANT, 0),
472                qir_uniform(c, QUNIFORM_CONSTANT, 0),
473        };
474        uint32_t next_texture_u = 0;
475
476        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
477                texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
478                                           unit | (is_txl << 16));
479        }
480
481        struct qinst *tmu;
482        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
483                tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
484                tmu->src[qir_get_tex_uniform_src(tmu)] =
485                        texture_u[next_texture_u++];
486        } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
487                   c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
488                   c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
489                   c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
490                tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
491                                   qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
492                                               unit));
493                tmu->src[qir_get_tex_uniform_src(tmu)] =
494                        texture_u[next_texture_u++];
495        }
496
497        if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
498                s = qir_SAT(c, s);
499        }
500
501        if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
502                t = qir_SAT(c, t);
503        }
504
505        tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
506        tmu->src[qir_get_tex_uniform_src(tmu)] =
507                texture_u[next_texture_u++];
508
509        if (is_txl || is_txb) {
510                tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
511                tmu->src[qir_get_tex_uniform_src(tmu)] =
512                        texture_u[next_texture_u++];
513        }
514
515        tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
516        tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
517
518        c->num_texture_samples++;
519
520        ntq_emit_thrsw(c);
521
522        struct qreg tex = qir_TEX_RESULT(c);
523
524        enum pipe_format format = c->key->tex[unit].format;
525
526        struct qreg *dest = ntq_get_dest(c, &instr->dest);
527        if (util_format_is_depth_or_stencil(format)) {
528                struct qreg normalized = ntq_scale_depth_texture(c, tex);
529                struct qreg depth_output;
530
531                struct qreg u0 = qir_uniform_f(c, 0.0f);
532                struct qreg u1 = qir_uniform_f(c, 1.0f);
533                if (c->key->tex[unit].compare_mode) {
534                        /* From the GL_ARB_shadow spec:
535                         *
536                         *     "Let Dt (D subscript t) be the depth texture
537                         *      value, in the range [0, 1].  Let R be the
538                         *      interpolated texture coordinate clamped to the
539                         *      range [0, 1]."
540                         */
541                        compare = qir_SAT(c, compare);
542
543                        switch (c->key->tex[unit].compare_func) {
544                        case PIPE_FUNC_NEVER:
545                                depth_output = qir_uniform_f(c, 0.0f);
546                                break;
547                        case PIPE_FUNC_ALWAYS:
548                                depth_output = u1;
549                                break;
550                        case PIPE_FUNC_EQUAL:
551                                qir_SF(c, qir_FSUB(c, compare, normalized));
552                                depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
553                                break;
554                        case PIPE_FUNC_NOTEQUAL:
555                                qir_SF(c, qir_FSUB(c, compare, normalized));
556                                depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
557                                break;
558                        case PIPE_FUNC_GREATER:
559                                qir_SF(c, qir_FSUB(c, compare, normalized));
560                                depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
561                                break;
562                        case PIPE_FUNC_GEQUAL:
563                                qir_SF(c, qir_FSUB(c, normalized, compare));
564                                depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
565                                break;
566                        case PIPE_FUNC_LESS:
567                                qir_SF(c, qir_FSUB(c, compare, normalized));
568                                depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
569                                break;
570                        case PIPE_FUNC_LEQUAL:
571                                qir_SF(c, qir_FSUB(c, normalized, compare));
572                                depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
573                                break;
574                        }
575                } else {
576                        depth_output = normalized;
577                }
578
579                for (int i = 0; i < 4; i++)
580                        dest[i] = depth_output;
581        } else {
582                for (int i = 0; i < 4; i++)
583                        dest[i] = qir_UNPACK_8_F(c, tex, i);
584        }
585}
586
587/**
588 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
589 * to zero).
590 */
591static struct qreg
592ntq_ffract(struct vc4_compile *c, struct qreg src)
593{
594        struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
595        struct qreg diff = qir_FSUB(c, src, trunc);
596        qir_SF(c, diff);
597
598        qir_FADD_dest(c, diff,
599                      diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
600
601        return qir_MOV(c, diff);
602}
603
604/**
605 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
606 * zero).
607 */
608static struct qreg
609ntq_ffloor(struct vc4_compile *c, struct qreg src)
610{
611        struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
612
613        /* This will be < 0 if we truncated and the truncation was of a value
614         * that was < 0 in the first place.
615         */
616        qir_SF(c, qir_FSUB(c, src, result));
617
618        struct qinst *sub = qir_FSUB_dest(c, result,
619                                          result, qir_uniform_f(c, 1.0));
620        sub->cond = QPU_COND_NS;
621
622        return qir_MOV(c, result);
623}
624
625/**
626 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
627 * zero).
628 */
629static struct qreg
630ntq_fceil(struct vc4_compile *c, struct qreg src)
631{
632        struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
633
634        /* This will be < 0 if we truncated and the truncation was of a value
635         * that was > 0 in the first place.
636         */
637        qir_SF(c, qir_FSUB(c, result, src));
638
639        qir_FADD_dest(c, result,
640                      result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
641
642        return qir_MOV(c, result);
643}
644
645static struct qreg
646ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x)
647{
648        /* Since we're using a Taylor approximation, we want to have a small
649         * number of coefficients and take advantage of sin/cos repeating
650         * every 2pi.  We keep our x as close to 0 as we can, since the series
651         * will be less accurate as |x| increases.  (Also, be careful of
652         * shifting the input x value to be tricky with sin/cos relations,
653         * because getting accurate values for x==0 is very important for SDL
654         * rendering)
655         */
656        struct qreg scaled_x =
657                qir_FMUL(c, x,
658                         qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
659        /* Note: FTOI truncates toward 0. */
660        struct qreg x_frac = qir_FSUB(c, scaled_x,
661                                      qir_ITOF(c, qir_FTOI(c, scaled_x)));
662        /* Map [0.5, 1] to [-0.5, 0] */
663        qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5)));
664        qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC;
665        /* Map [-1, -0.5] to [0, 0.5] */
666        qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5)));
667        qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
668
669        return x_frac;
670}
671
672static struct qreg
673ntq_fsin(struct vc4_compile *c, struct qreg src)
674{
675        float coeff[] = {
676                2.0 * M_PI,
677                -pow(2.0 * M_PI, 3) / (3 * 2 * 1),
678                pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
679                -pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
680                pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
681        };
682
683        struct qreg x = ntq_shrink_sincos_input_range(c, src);
684        struct qreg x2 = qir_FMUL(c, x, x);
685        struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
686        for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
687                x = qir_FMUL(c, x, x2);
688                sum = qir_FADD(c,
689                               sum,
690                               qir_FMUL(c,
691                                        x,
692                                        qir_uniform_f(c, coeff[i])));
693        }
694        return sum;
695}
696
697static struct qreg
698ntq_fcos(struct vc4_compile *c, struct qreg src)
699{
700        float coeff[] = {
701                1.0f,
702                -pow(2.0 * M_PI, 2) / (2 * 1),
703                pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
704                -pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
705                pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
706                -pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
707        };
708
709        struct qreg x_frac = ntq_shrink_sincos_input_range(c, src);
710        struct qreg sum = qir_uniform_f(c, coeff[0]);
711        struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
712        struct qreg x = x2; /* Current x^2, x^4, or x^6 */
713        for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
714                if (i != 1)
715                        x = qir_FMUL(c, x, x2);
716
717                sum = qir_FADD(c, qir_FMUL(c,
718                                           x,
719                                           qir_uniform_f(c, coeff[i])),
720                               sum);
721        }
722        return sum;
723}
724
725static struct qreg
726ntq_fsign(struct vc4_compile *c, struct qreg src)
727{
728        struct qreg t = qir_get_temp(c);
729
730        qir_SF(c, src);
731        qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
732        qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
733        qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
734        return qir_MOV(c, t);
735}
736
737static void
738emit_vertex_input(struct vc4_compile *c, int attr)
739{
740        enum pipe_format format = c->vs_key->attr_formats[attr];
741        uint32_t attr_size = util_format_get_blocksize(format);
742
743        c->vattr_sizes[attr] = align(attr_size, 4);
744        for (int i = 0; i < align(attr_size, 4) / 4; i++) {
745                c->inputs[attr * 4 + i] =
746                        qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
747                c->num_inputs++;
748        }
749}
750
751static void
752emit_fragcoord_input(struct vc4_compile *c, int attr)
753{
754        c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
755        c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
756        c->inputs[attr * 4 + 2] =
757                qir_FMUL(c,
758                         qir_ITOF(c, qir_FRAG_Z(c)),
759                         qir_uniform_f(c, 1.0 / 0xffffff));
760        c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
761}
762
763static struct qreg
764emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
765                      uint8_t swizzle)
766{
767        uint32_t i = c->num_input_slots++;
768        struct qreg vary = {
769                QFILE_VARY,
770                i
771        };
772
773        if (c->num_input_slots >= c->input_slots_array_size) {
774                c->input_slots_array_size =
775                        MAX2(4, c->input_slots_array_size * 2);
776
777                c->input_slots = reralloc(c, c->input_slots,
778                                          struct vc4_varying_slot,
779                                          c->input_slots_array_size);
780        }
781
782        c->input_slots[i].slot = slot;
783        c->input_slots[i].swizzle = swizzle;
784
785        return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
786}
787
788static void
789emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
790{
791        for (int i = 0; i < 4; i++) {
792                c->inputs[attr * 4 + i] =
793                        emit_fragment_varying(c, slot, i);
794                c->num_inputs++;
795        }
796}
797
798static void
799add_output(struct vc4_compile *c,
800           uint32_t decl_offset,
801           uint8_t slot,
802           uint8_t swizzle)
803{
804        uint32_t old_array_size = c->outputs_array_size;
805        resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
806                          decl_offset + 1);
807
808        if (old_array_size != c->outputs_array_size) {
809                c->output_slots = reralloc(c,
810                                           c->output_slots,
811                                           struct vc4_varying_slot,
812                                           c->outputs_array_size);
813        }
814
815        c->output_slots[decl_offset].slot = slot;
816        c->output_slots[decl_offset].swizzle = swizzle;
817}
818
819static bool
820ntq_src_is_only_ssa_def_user(nir_src *src)
821{
822        if (!src->is_ssa)
823                return false;
824
825        if (!list_is_empty(&src->ssa->if_uses))
826                return false;
827
828        return (src->ssa->uses.next == &src->use_link &&
829                src->ssa->uses.next->next == &src->ssa->uses);
830}
831
832/**
833 * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
834 * bit set.
835 *
836 * However, as an optimization, it tries to find the instructions generating
837 * the sources to be packed and just emit the pack flag there, if possible.
838 */
839static void
840ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
841{
842        struct qreg result = qir_get_temp(c);
843        struct nir_alu_instr *vec4 = NULL;
844
845        /* If packing from a vec4 op (as expected), identify it so that we can
846         * peek back at what generated its sources.
847         */
848        if (instr->src[0].src.is_ssa &&
849            instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
850            nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
851            nir_op_vec4) {
852                vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
853        }
854
855        /* If the pack is replicating the same channel 4 times, use the 8888
856         * pack flag.  This is common for blending using the alpha
857         * channel.
858         */
859        if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
860            instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
861            instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
862                struct qreg rep = ntq_get_src(c,
863                                              instr->src[0].src,
864                                              instr->src[0].swizzle[0]);
865                ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
866                return;
867        }
868
869        for (int i = 0; i < 4; i++) {
870                int swiz = instr->src[0].swizzle[i];
871                struct qreg src;
872                if (vec4) {
873                        src = ntq_get_src(c, vec4->src[swiz].src,
874                                          vec4->src[swiz].swizzle[0]);
875                } else {
876                        src = ntq_get_src(c, instr->src[0].src, swiz);
877                }
878
879                if (vec4 &&
880                    ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
881                    src.file == QFILE_TEMP &&
882                    c->defs[src.index] &&
883                    qir_is_mul(c->defs[src.index]) &&
884                    !c->defs[src.index]->dst.pack) {
885                        struct qinst *rewrite = c->defs[src.index];
886                        c->defs[src.index] = NULL;
887                        rewrite->dst = result;
888                        rewrite->dst.pack = QPU_PACK_MUL_8A + i;
889                        continue;
890                }
891
892                qir_PACK_8_F(c, result, src, i);
893        }
894
895        ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
896}
897
898/** Handles sign-extended bitfield extracts for 16 bits. */
899static struct qreg
900ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
901              struct qreg bits)
902{
903        assert(bits.file == QFILE_UNIF &&
904               c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
905               c->uniform_data[bits.index] == 16);
906
907        assert(offset.file == QFILE_UNIF &&
908               c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
909        int offset_bit = c->uniform_data[offset.index];
910        assert(offset_bit % 16 == 0);
911
912        return qir_UNPACK_16_I(c, base, offset_bit / 16);
913}
914
915/** Handles unsigned bitfield extracts for 8 bits. */
916static struct qreg
917ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
918              struct qreg bits)
919{
920        assert(bits.file == QFILE_UNIF &&
921               c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
922               c->uniform_data[bits.index] == 8);
923
924        assert(offset.file == QFILE_UNIF &&
925               c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
926        int offset_bit = c->uniform_data[offset.index];
927        assert(offset_bit % 8 == 0);
928
929        return qir_UNPACK_8_I(c, base, offset_bit / 8);
930}
931
932/**
933 * If compare_instr is a valid comparison instruction, emits the
934 * compare_instr's comparison and returns the sel_instr's return value based
935 * on the compare_instr's result.
936 */
937static bool
938ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
939                    nir_alu_instr *compare_instr,
940                    nir_alu_instr *sel_instr)
941{
942        enum qpu_cond cond;
943
944        switch (compare_instr->op) {
945        case nir_op_feq32:
946        case nir_op_ieq32:
947        case nir_op_seq:
948                cond = QPU_COND_ZS;
949                break;
950        case nir_op_fneu32:
951        case nir_op_ine32:
952        case nir_op_sne:
953                cond = QPU_COND_ZC;
954                break;
955        case nir_op_fge32:
956        case nir_op_ige32:
957        case nir_op_uge32:
958        case nir_op_sge:
959                cond = QPU_COND_NC;
960                break;
961        case nir_op_flt32:
962        case nir_op_ilt32:
963        case nir_op_slt:
964                cond = QPU_COND_NS;
965                break;
966        default:
967                return false;
968        }
969
970        struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
971        struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
972
973        unsigned unsized_type =
974                nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
975        if (unsized_type == nir_type_float)
976                qir_SF(c, qir_FSUB(c, src0, src1));
977        else
978                qir_SF(c, qir_SUB(c, src0, src1));
979
980        switch (sel_instr->op) {
981        case nir_op_seq:
982        case nir_op_sne:
983        case nir_op_sge:
984        case nir_op_slt:
985                *dest = qir_SEL(c, cond,
986                                qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
987                break;
988
989        case nir_op_b32csel:
990                *dest = qir_SEL(c, cond,
991                                ntq_get_alu_src(c, sel_instr, 1),
992                                ntq_get_alu_src(c, sel_instr, 2));
993                break;
994
995        default:
996                *dest = qir_SEL(c, cond,
997                                qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
998                break;
999        }
1000
1001        /* Make the temporary for nir_store_dest(). */
1002        *dest = qir_MOV(c, *dest);
1003
1004        return true;
1005}
1006
1007/**
1008 * Attempts to fold a comparison generating a boolean result into the
1009 * condition code for selecting between two values, instead of comparing the
1010 * boolean result against 0 to generate the condition code.
1011 */
1012static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
1013                                  struct qreg *src)
1014{
1015        if (!instr->src[0].src.is_ssa)
1016                goto out;
1017        if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1018                goto out;
1019        nir_alu_instr *compare =
1020                nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1021        if (!compare)
1022                goto out;
1023
1024        struct qreg dest;
1025        if (ntq_emit_comparison(c, &dest, compare, instr))
1026                return dest;
1027
1028out:
1029        qir_SF(c, src[0]);
1030        return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
1031}
1032
1033static struct qreg
1034ntq_fddx(struct vc4_compile *c, struct qreg src)
1035{
1036        /* Make sure that we have a bare temp to use for MUL rotation, so it
1037         * can be allocated to an accumulator.
1038         */
1039        if (src.pack || src.file != QFILE_TEMP)
1040                src = qir_MOV(c, src);
1041
1042        struct qreg from_left = qir_ROT_MUL(c, src, 1);
1043        struct qreg from_right = qir_ROT_MUL(c, src, 15);
1044
1045        /* Distinguish left/right pixels of the quad. */
1046        qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
1047                          qir_uniform_ui(c, 1)));
1048
1049        return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1050                                  qir_FSUB(c, from_right, src),
1051                                  qir_FSUB(c, src, from_left)));
1052}
1053
1054static struct qreg
1055ntq_fddy(struct vc4_compile *c, struct qreg src)
1056{
1057        if (src.pack || src.file != QFILE_TEMP)
1058                src = qir_MOV(c, src);
1059
1060        struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
1061        struct qreg from_top = qir_ROT_MUL(c, src, 14);
1062
1063        /* Distinguish top/bottom pixels of the quad. */
1064        qir_SF(c, qir_AND(c,
1065                          qir_reg(QFILE_QPU_ELEMENT, 0),
1066                          qir_uniform_ui(c, 2)));
1067
1068        return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1069                                  qir_FSUB(c, from_top, src),
1070                                  qir_FSUB(c, src, from_bottom)));
1071}
1072
1073static void
1074ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
1075{
1076        /* This should always be lowered to ALU operations for VC4. */
1077        assert(!instr->dest.saturate);
1078
1079        /* Vectors are special in that they have non-scalarized writemasks,
1080         * and just take the first swizzle channel for each argument in order
1081         * into each writemask channel.
1082         */
1083        if (instr->op == nir_op_vec2 ||
1084            instr->op == nir_op_vec3 ||
1085            instr->op == nir_op_vec4) {
1086                struct qreg srcs[4];
1087                for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1088                        srcs[i] = ntq_get_src(c, instr->src[i].src,
1089                                              instr->src[i].swizzle[0]);
1090                for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1091                        ntq_store_dest(c, &instr->dest.dest, i,
1092                                       qir_MOV(c, srcs[i]));
1093                return;
1094        }
1095
1096        if (instr->op == nir_op_pack_unorm_4x8) {
1097                ntq_emit_pack_unorm_4x8(c, instr);
1098                return;
1099        }
1100
1101        if (instr->op == nir_op_unpack_unorm_4x8) {
1102                struct qreg src = ntq_get_src(c, instr->src[0].src,
1103                                              instr->src[0].swizzle[0]);
1104                for (int i = 0; i < 4; i++) {
1105                        if (instr->dest.write_mask & (1 << i))
1106                                ntq_store_dest(c, &instr->dest.dest, i,
1107                                               qir_UNPACK_8_F(c, src, i));
1108                }
1109                return;
1110        }
1111
1112        /* General case: We can just grab the one used channel per src. */
1113        struct qreg src[nir_op_infos[instr->op].num_inputs];
1114        for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1115                src[i] = ntq_get_alu_src(c, instr, i);
1116        }
1117
1118        struct qreg result;
1119
1120        switch (instr->op) {
1121        case nir_op_mov:
1122                result = qir_MOV(c, src[0]);
1123                break;
1124        case nir_op_fmul:
1125                result = qir_FMUL(c, src[0], src[1]);
1126                break;
1127        case nir_op_fadd:
1128                result = qir_FADD(c, src[0], src[1]);
1129                break;
1130        case nir_op_fsub:
1131                result = qir_FSUB(c, src[0], src[1]);
1132                break;
1133        case nir_op_fmin:
1134                result = qir_FMIN(c, src[0], src[1]);
1135                break;
1136        case nir_op_fmax:
1137                result = qir_FMAX(c, src[0], src[1]);
1138                break;
1139
1140        case nir_op_f2i32:
1141        case nir_op_f2u32:
1142                result = qir_FTOI(c, src[0]);
1143                break;
1144        case nir_op_i2f32:
1145        case nir_op_u2f32:
1146                result = qir_ITOF(c, src[0]);
1147                break;
1148        case nir_op_b2f32:
1149                result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1150                break;
1151        case nir_op_b2i32:
1152                result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1153                break;
1154        case nir_op_i2b32:
1155        case nir_op_f2b32:
1156                qir_SF(c, src[0]);
1157                result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
1158                                            qir_uniform_ui(c, ~0),
1159                                            qir_uniform_ui(c, 0)));
1160                break;
1161
1162        case nir_op_iadd:
1163                result = qir_ADD(c, src[0], src[1]);
1164                break;
1165        case nir_op_ushr:
1166                result = qir_SHR(c, src[0], src[1]);
1167                break;
1168        case nir_op_isub:
1169                result = qir_SUB(c, src[0], src[1]);
1170                break;
1171        case nir_op_ishr:
1172                result = qir_ASR(c, src[0], src[1]);
1173                break;
1174        case nir_op_ishl:
1175                result = qir_SHL(c, src[0], src[1]);
1176                break;
1177        case nir_op_imin:
1178                result = qir_MIN(c, src[0], src[1]);
1179                break;
1180        case nir_op_imax:
1181                result = qir_MAX(c, src[0], src[1]);
1182                break;
1183        case nir_op_iand:
1184                result = qir_AND(c, src[0], src[1]);
1185                break;
1186        case nir_op_ior:
1187                result = qir_OR(c, src[0], src[1]);
1188                break;
1189        case nir_op_ixor:
1190                result = qir_XOR(c, src[0], src[1]);
1191                break;
1192        case nir_op_inot:
1193                result = qir_NOT(c, src[0]);
1194                break;
1195
1196        case nir_op_imul:
1197                result = ntq_umul(c, src[0], src[1]);
1198                break;
1199
1200        case nir_op_seq:
1201        case nir_op_sne:
1202        case nir_op_sge:
1203        case nir_op_slt:
1204        case nir_op_feq32:
1205        case nir_op_fneu32:
1206        case nir_op_fge32:
1207        case nir_op_flt32:
1208        case nir_op_ieq32:
1209        case nir_op_ine32:
1210        case nir_op_ige32:
1211        case nir_op_uge32:
1212        case nir_op_ilt32:
1213                if (!ntq_emit_comparison(c, &result, instr, instr)) {
1214                        fprintf(stderr, "Bad comparison instruction\n");
1215                }
1216                break;
1217
1218        case nir_op_b32csel:
1219                result = ntq_emit_bcsel(c, instr, src);
1220                break;
1221        case nir_op_fcsel:
1222                qir_SF(c, src[0]);
1223                result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
1224                break;
1225
1226        case nir_op_frcp:
1227                result = ntq_rcp(c, src[0]);
1228                break;
1229        case nir_op_frsq:
1230                result = ntq_rsq(c, src[0]);
1231                break;
1232        case nir_op_fexp2:
1233                result = qir_EXP2(c, src[0]);
1234                break;
1235        case nir_op_flog2:
1236                result = qir_LOG2(c, src[0]);
1237                break;
1238
1239        case nir_op_ftrunc:
1240                result = qir_ITOF(c, qir_FTOI(c, src[0]));
1241                break;
1242        case nir_op_fceil:
1243                result = ntq_fceil(c, src[0]);
1244                break;
1245        case nir_op_ffract:
1246                result = ntq_ffract(c, src[0]);
1247                break;
1248        case nir_op_ffloor:
1249                result = ntq_ffloor(c, src[0]);
1250                break;
1251
1252        case nir_op_fsin:
1253                result = ntq_fsin(c, src[0]);
1254                break;
1255        case nir_op_fcos:
1256                result = ntq_fcos(c, src[0]);
1257                break;
1258
1259        case nir_op_fsign:
1260                result = ntq_fsign(c, src[0]);
1261                break;
1262
1263        case nir_op_fabs:
1264                result = qir_FMAXABS(c, src[0], src[0]);
1265                break;
1266        case nir_op_iabs:
1267                result = qir_MAX(c, src[0],
1268                                qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1269                break;
1270
1271        case nir_op_ibitfield_extract:
1272                result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1273                break;
1274
1275        case nir_op_ubitfield_extract:
1276                result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1277                break;
1278
1279        case nir_op_usadd_4x8_vc4:
1280                result = qir_V8ADDS(c, src[0], src[1]);
1281                break;
1282
1283        case nir_op_ussub_4x8_vc4:
1284                result = qir_V8SUBS(c, src[0], src[1]);
1285                break;
1286
1287        case nir_op_umin_4x8_vc4:
1288                result = qir_V8MIN(c, src[0], src[1]);
1289                break;
1290
1291        case nir_op_umax_4x8_vc4:
1292                result = qir_V8MAX(c, src[0], src[1]);
1293                break;
1294
1295        case nir_op_umul_unorm_4x8_vc4:
1296                result = qir_V8MULD(c, src[0], src[1]);
1297                break;
1298
1299        case nir_op_fddx:
1300        case nir_op_fddx_coarse:
1301        case nir_op_fddx_fine:
1302                result = ntq_fddx(c, src[0]);
1303                break;
1304
1305        case nir_op_fddy:
1306        case nir_op_fddy_coarse:
1307        case nir_op_fddy_fine:
1308                result = ntq_fddy(c, src[0]);
1309                break;
1310
1311        default:
1312                fprintf(stderr, "unknown NIR ALU inst: ");
1313                nir_print_instr(&instr->instr, stderr);
1314                fprintf(stderr, "\n");
1315                abort();
1316        }
1317
1318        /* We have a scalar result, so the instruction should only have a
1319         * single channel written to.
1320         */
1321        assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
1322        ntq_store_dest(c, &instr->dest.dest,
1323                       ffs(instr->dest.write_mask) - 1, result);
1324}
1325
1326static void
1327emit_frag_end(struct vc4_compile *c)
1328{
1329        struct qreg color;
1330        if (c->output_color_index != -1) {
1331                color = c->outputs[c->output_color_index];
1332        } else {
1333                color = qir_uniform_ui(c, 0);
1334        }
1335
1336        uint32_t discard_cond = QPU_COND_ALWAYS;
1337        if (c->s->info.fs.uses_discard) {
1338                qir_SF(c, c->discard);
1339                discard_cond = QPU_COND_ZS;
1340        }
1341
1342        if (c->fs_key->stencil_enabled) {
1343                qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1344                             qir_uniform(c, QUNIFORM_STENCIL, 0));
1345                if (c->fs_key->stencil_twoside) {
1346                        qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1347                                     qir_uniform(c, QUNIFORM_STENCIL, 1));
1348                }
1349                if (c->fs_key->stencil_full_writemasks) {
1350                        qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1351                                     qir_uniform(c, QUNIFORM_STENCIL, 2));
1352                }
1353        }
1354
1355        if (c->output_sample_mask_index != -1) {
1356                qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1357        }
1358
1359        if (c->fs_key->depth_enabled) {
1360                if (c->output_position_index != -1) {
1361                        qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1362                                      qir_FMUL(c,
1363                                               c->outputs[c->output_position_index],
1364                                               qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
1365                } else {
1366                        qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1367                                     qir_FRAG_Z(c))->cond = discard_cond;
1368                }
1369        }
1370
1371        if (!c->msaa_per_sample_output) {
1372                qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
1373                             color)->cond = discard_cond;
1374        } else {
1375                for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1376                        qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
1377                                     c->sample_colors[i])->cond = discard_cond;
1378                }
1379        }
1380}
1381
1382static void
1383emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1384{
1385        struct qreg packed = qir_get_temp(c);
1386
1387        for (int i = 0; i < 2; i++) {
1388                struct qreg scale =
1389                        qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1390
1391                struct qreg packed_chan = packed;
1392                packed_chan.pack = QPU_PACK_A_16A + i;
1393
1394                qir_FTOI_dest(c, packed_chan,
1395                              qir_FMUL(c,
1396                                       qir_FMUL(c,
1397                                                c->outputs[c->output_position_index + i],
1398                                                scale),
1399                                       rcp_w));
1400        }
1401
1402        qir_VPM_WRITE(c, packed);
1403}
1404
1405static void
1406emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1407{
1408        struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1409        struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1410
1411        qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1412                                                          c->outputs[c->output_position_index + 2],
1413                                                          zscale),
1414                                              rcp_w),
1415                                  zoffset));
1416}
1417
1418static void
1419emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1420{
1421        qir_VPM_WRITE(c, rcp_w);
1422}
1423
1424static void
1425emit_point_size_write(struct vc4_compile *c)
1426{
1427        struct qreg point_size;
1428
1429        if (c->output_point_size_index != -1)
1430                point_size = c->outputs[c->output_point_size_index];
1431        else
1432                point_size = qir_uniform_f(c, 1.0);
1433
1434        qir_VPM_WRITE(c, point_size);
1435}
1436
1437/**
1438 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1439 *
1440 * The simulator insists that there be at least one vertex attribute, so
1441 * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1442 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1443 * to consume it here.
1444 */
1445static void
1446emit_stub_vpm_read(struct vc4_compile *c)
1447{
1448        if (c->num_inputs)
1449                return;
1450
1451        c->vattr_sizes[0] = 4;
1452        (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1453        c->num_inputs++;
1454}
1455
1456static void
1457emit_vert_end(struct vc4_compile *c,
1458              struct vc4_varying_slot *fs_inputs,
1459              uint32_t num_fs_inputs)
1460{
1461        struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1462
1463        emit_stub_vpm_read(c);
1464
1465        emit_scaled_viewport_write(c, rcp_w);
1466        emit_zs_write(c, rcp_w);
1467        emit_rcp_wc_write(c, rcp_w);
1468        if (c->vs_key->per_vertex_point_size)
1469                emit_point_size_write(c);
1470
1471        for (int i = 0; i < num_fs_inputs; i++) {
1472                struct vc4_varying_slot *input = &fs_inputs[i];
1473                int j;
1474
1475                for (j = 0; j < c->num_outputs; j++) {
1476                        struct vc4_varying_slot *output =
1477                                &c->output_slots[j];
1478
1479                        if (input->slot == output->slot &&
1480                            input->swizzle == output->swizzle) {
1481                                qir_VPM_WRITE(c, c->outputs[j]);
1482                                break;
1483                        }
1484                }
1485                /* Emit padding if we didn't find a declared VS output for
1486                 * this FS input.
1487                 */
1488                if (j == c->num_outputs)
1489                        qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1490        }
1491}
1492
1493static void
1494emit_coord_end(struct vc4_compile *c)
1495{
1496        struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1497
1498        emit_stub_vpm_read(c);
1499
1500        for (int i = 0; i < 4; i++)
1501                qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1502
1503        emit_scaled_viewport_write(c, rcp_w);
1504        emit_zs_write(c, rcp_w);
1505        emit_rcp_wc_write(c, rcp_w);
1506        if (c->vs_key->per_vertex_point_size)
1507                emit_point_size_write(c);
1508}
1509
1510static void
1511vc4_optimize_nir(struct nir_shader *s)
1512{
1513        bool progress;
1514        unsigned lower_flrp =
1515                (s->options->lower_flrp16 ? 16 : 0) |
1516                (s->options->lower_flrp32 ? 32 : 0) |
1517                (s->options->lower_flrp64 ? 64 : 0);
1518
1519        do {
1520                progress = false;
1521
1522                NIR_PASS_V(s, nir_lower_vars_to_ssa);
1523                NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
1524                NIR_PASS(progress, s, nir_lower_phis_to_scalar, false);
1525                NIR_PASS(progress, s, nir_copy_prop);
1526                NIR_PASS(progress, s, nir_opt_remove_phis);
1527                NIR_PASS(progress, s, nir_opt_dce);
1528                NIR_PASS(progress, s, nir_opt_dead_cf);
1529                NIR_PASS(progress, s, nir_opt_cse);
1530                NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
1531                NIR_PASS(progress, s, nir_opt_algebraic);
1532                NIR_PASS(progress, s, nir_opt_constant_folding);
1533                if (lower_flrp != 0) {
1534                        bool lower_flrp_progress = false;
1535
1536                        NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
1537                                 lower_flrp,
1538                                 false /* always_precise */);
1539                        if (lower_flrp_progress) {
1540                                NIR_PASS(progress, s, nir_opt_constant_folding);
1541                                progress = true;
1542                        }
1543
1544                        /* Nothing should rematerialize any flrps, so we only
1545                         * need to do this lowering once.
1546                         */
1547                        lower_flrp = 0;
1548                }
1549
1550                NIR_PASS(progress, s, nir_opt_undef);
1551                NIR_PASS(progress, s, nir_opt_loop_unroll);
1552        } while (progress);
1553}
1554
1555static int
1556driver_location_compare(const void *in_a, const void *in_b)
1557{
1558        const nir_variable *const *a = in_a;
1559        const nir_variable *const *b = in_b;
1560
1561        return (*a)->data.driver_location - (*b)->data.driver_location;
1562}
1563
1564static void
1565ntq_setup_inputs(struct vc4_compile *c)
1566{
1567        unsigned num_entries = 0;
1568        nir_foreach_shader_in_variable(var, c->s)
1569                num_entries++;
1570
1571        nir_variable *vars[num_entries];
1572
1573        unsigned i = 0;
1574        nir_foreach_shader_in_variable(var, c->s)
1575                vars[i++] = var;
1576
1577        /* Sort the variables so that we emit the input setup in
1578         * driver_location order.  This is required for VPM reads, whose data
1579         * is fetched into the VPM in driver_location (TGSI register index)
1580         * order.
1581         */
1582        qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1583
1584        for (unsigned i = 0; i < num_entries; i++) {
1585                nir_variable *var = vars[i];
1586                unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1587                unsigned loc = var->data.driver_location;
1588
1589                assert(array_len == 1);
1590                (void)array_len;
1591                resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1592                                  (loc + 1) * 4);
1593
1594                if (c->stage == QSTAGE_FRAG) {
1595                        if (var->data.location == VARYING_SLOT_POS) {
1596                                emit_fragcoord_input(c, loc);
1597                        } else if (util_varying_is_point_coord(var->data.location,
1598                                                               c->fs_key->point_sprite_mask)) {
1599                                c->inputs[loc * 4 + 0] = c->point_x;
1600                                c->inputs[loc * 4 + 1] = c->point_y;
1601                        } else {
1602                                emit_fragment_input(c, loc, var->data.location);
1603                        }
1604                } else {
1605                        emit_vertex_input(c, loc);
1606                }
1607        }
1608}
1609
1610static void
1611ntq_setup_outputs(struct vc4_compile *c)
1612{
1613        nir_foreach_shader_out_variable(var, c->s) {
1614                unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1615                unsigned loc = var->data.driver_location * 4;
1616
1617                assert(array_len == 1);
1618                (void)array_len;
1619
1620                for (int i = 0; i < 4; i++)
1621                        add_output(c, loc + i, var->data.location, i);
1622
1623                if (c->stage == QSTAGE_FRAG) {
1624                        switch (var->data.location) {
1625                        case FRAG_RESULT_COLOR:
1626                        case FRAG_RESULT_DATA0:
1627                                c->output_color_index = loc;
1628                                break;
1629                        case FRAG_RESULT_DEPTH:
1630                                c->output_position_index = loc;
1631                                break;
1632                        case FRAG_RESULT_SAMPLE_MASK:
1633                                c->output_sample_mask_index = loc;
1634                                break;
1635                        }
1636                } else {
1637                        switch (var->data.location) {
1638                        case VARYING_SLOT_POS:
1639                                c->output_position_index = loc;
1640                                break;
1641                        case VARYING_SLOT_PSIZ:
1642                                c->output_point_size_index = loc;
1643                                break;
1644                        }
1645                }
1646        }
1647}
1648
1649/**
1650 * Sets up the mapping from nir_register to struct qreg *.
1651 *
1652 * Each nir_register gets a struct qreg per 32-bit component being stored.
1653 */
1654static void
1655ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1656{
1657        foreach_list_typed(nir_register, nir_reg, node, list) {
1658                unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1659                struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1660                                                  array_len *
1661                                                  nir_reg->num_components);
1662
1663                _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1664
1665                for (int i = 0; i < array_len * nir_reg->num_components; i++)
1666                        qregs[i] = qir_get_temp(c);
1667        }
1668}
1669
1670static void
1671ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1672{
1673        struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1674        for (int i = 0; i < instr->def.num_components; i++)
1675                qregs[i] = qir_uniform_ui(c, instr->value[i].u32);
1676
1677        _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1678}
1679
1680static void
1681ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1682{
1683        struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1684
1685        /* QIR needs there to be *some* value, so pick 0 (same as for
1686         * ntq_setup_registers().
1687         */
1688        for (int i = 0; i < instr->def.num_components; i++)
1689                qregs[i] = qir_uniform_ui(c, 0);
1690}
1691
1692static void
1693ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
1694{
1695        assert(nir_src_as_uint(instr->src[0]) == 0);
1696
1697        /* Reads of the per-sample color need to be done in
1698         * order.
1699         */
1700        int sample_index = (nir_intrinsic_base(instr) -
1701                            VC4_NIR_TLB_COLOR_READ_INPUT);
1702        for (int i = 0; i <= sample_index; i++) {
1703                if (c->color_reads[i].file == QFILE_NULL) {
1704                        c->color_reads[i] =
1705                                qir_TLB_COLOR_READ(c);
1706                }
1707        }
1708        ntq_store_dest(c, &instr->dest, 0,
1709                       qir_MOV(c, c->color_reads[sample_index]));
1710}
1711
1712static void
1713ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
1714{
1715        assert(instr->num_components == 1);
1716        assert(nir_src_is_const(instr->src[0]) &&
1717               "vc4 doesn't support indirect inputs");
1718
1719        if (c->stage == QSTAGE_FRAG &&
1720            nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1721                ntq_emit_color_read(c, instr);
1722                return;
1723        }
1724
1725        uint32_t offset = nir_intrinsic_base(instr) +
1726                          nir_src_as_uint(instr->src[0]);
1727        int comp = nir_intrinsic_component(instr);
1728        ntq_store_dest(c, &instr->dest, 0,
1729                       qir_MOV(c, c->inputs[offset * 4 + comp]));
1730}
1731
1732static void
1733ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1734{
1735        unsigned offset;
1736
1737        switch (instr->intrinsic) {
1738        case nir_intrinsic_load_uniform:
1739                assert(instr->num_components == 1);
1740                if (nir_src_is_const(instr->src[0])) {
1741                        offset = nir_intrinsic_base(instr) +
1742                                 nir_src_as_uint(instr->src[0]);
1743                        assert(offset % 4 == 0);
1744                        /* We need dwords */
1745                        offset = offset / 4;
1746                        ntq_store_dest(c, &instr->dest, 0,
1747                                       qir_uniform(c, QUNIFORM_UNIFORM,
1748                                                   offset));
1749                } else {
1750                        ntq_store_dest(c, &instr->dest, 0,
1751                                       indirect_uniform_load(c, instr));
1752                }
1753                break;
1754
1755        case nir_intrinsic_load_ubo:
1756                assert(instr->num_components == 1);
1757                ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
1758                break;
1759
1760        case nir_intrinsic_load_user_clip_plane:
1761                for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
1762                        ntq_store_dest(c, &instr->dest, i,
1763                                       qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1764                                                   nir_intrinsic_ucp_id(instr) *
1765                                                   4 + i));
1766                }
1767                break;
1768
1769        case nir_intrinsic_load_blend_const_color_r_float:
1770        case nir_intrinsic_load_blend_const_color_g_float:
1771        case nir_intrinsic_load_blend_const_color_b_float:
1772        case nir_intrinsic_load_blend_const_color_a_float:
1773                ntq_store_dest(c, &instr->dest, 0,
1774                               qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
1775                                           (instr->intrinsic -
1776                                            nir_intrinsic_load_blend_const_color_r_float),
1777                                           0));
1778                break;
1779
1780        case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
1781                ntq_store_dest(c, &instr->dest, 0,
1782                               qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
1783                                           0));
1784                break;
1785
1786        case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
1787                ntq_store_dest(c, &instr->dest, 0,
1788                               qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
1789                                           0));
1790                break;
1791
1792        case nir_intrinsic_load_sample_mask_in:
1793                ntq_store_dest(c, &instr->dest, 0,
1794                               qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
1795                break;
1796
1797        case nir_intrinsic_load_front_face:
1798                /* The register contains 0 (front) or 1 (back), and we need to
1799                 * turn it into a NIR bool where true means front.
1800                 */
1801                ntq_store_dest(c, &instr->dest, 0,
1802                               qir_ADD(c,
1803                                       qir_uniform_ui(c, -1),
1804                                       qir_reg(QFILE_FRAG_REV_FLAG, 0)));
1805                break;
1806
1807        case nir_intrinsic_load_input:
1808                ntq_emit_load_input(c, instr);
1809                break;
1810
1811        case nir_intrinsic_store_output:
1812                assert(nir_src_is_const(instr->src[1]) &&
1813                       "vc4 doesn't support indirect outputs");
1814                offset = nir_intrinsic_base(instr) +
1815                         nir_src_as_uint(instr->src[1]);
1816
1817                /* MSAA color outputs are the only case where we have an
1818                 * output that's not lowered to being a store of a single 32
1819                 * bit value.
1820                 */
1821                if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1822                        assert(offset == c->output_color_index);
1823                        for (int i = 0; i < 4; i++) {
1824                                c->sample_colors[i] =
1825                                        qir_MOV(c, ntq_get_src(c, instr->src[0],
1826                                                               i));
1827                        }
1828                } else {
1829                        offset = offset * 4 + nir_intrinsic_component(instr);
1830                        assert(instr->num_components == 1);
1831                        c->outputs[offset] =
1832                                qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1833                        c->num_outputs = MAX2(c->num_outputs, offset + 1);
1834                }
1835                break;
1836
1837        case nir_intrinsic_discard:
1838                if (c->execute.file != QFILE_NULL) {
1839                        qir_SF(c, c->execute);
1840                        qir_MOV_cond(c, QPU_COND_ZS, c->discard,
1841                                     qir_uniform_ui(c, ~0));
1842                } else {
1843                        qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
1844                }
1845                break;
1846
1847        case nir_intrinsic_discard_if: {
1848                /* true (~0) if we're discarding */
1849                struct qreg cond = ntq_get_src(c, instr->src[0], 0);
1850
1851                if (c->execute.file != QFILE_NULL) {
1852                        /* execute == 0 means the channel is active.  Invert
1853                         * the condition so that we can use zero as "executing
1854                         * and discarding."
1855                         */
1856                        qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
1857                        qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
1858                } else {
1859                        qir_OR_dest(c, c->discard, c->discard,
1860                                    ntq_get_src(c, instr->src[0], 0));
1861                }
1862
1863                break;
1864        }
1865
1866        case nir_intrinsic_load_texture_rect_scaling: {
1867                assert(nir_src_is_const(instr->src[0]));
1868                int sampler = nir_src_as_int(instr->src[0]);
1869
1870                ntq_store_dest(c, &instr->dest, 0,
1871                                qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, sampler));
1872                ntq_store_dest(c, &instr->dest, 1,
1873                                qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, sampler));
1874                break;
1875        }
1876
1877        default:
1878                fprintf(stderr, "Unknown intrinsic: ");
1879                nir_print_instr(&instr->instr, stderr);
1880                fprintf(stderr, "\n");
1881                break;
1882        }
1883}
1884
1885/* Clears (activates) the execute flags for any channels whose jump target
1886 * matches this block.
1887 */
1888static void
1889ntq_activate_execute_for_block(struct vc4_compile *c)
1890{
1891        qir_SF(c, qir_SUB(c,
1892                          c->execute,
1893                          qir_uniform_ui(c, c->cur_block->index)));
1894        qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
1895}
1896
1897static void
1898ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1899{
1900        if (!c->vc4->screen->has_control_flow) {
1901                fprintf(stderr,
1902                        "IF statement support requires updated kernel.\n");
1903                return;
1904        }
1905
1906        nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1907        bool empty_else_block =
1908                (nir_else_block == nir_if_last_else_block(if_stmt) &&
1909                 exec_list_is_empty(&nir_else_block->instr_list));
1910
1911        struct qblock *then_block = qir_new_block(c);
1912        struct qblock *after_block = qir_new_block(c);
1913        struct qblock *else_block;
1914        if (empty_else_block)
1915                else_block = after_block;
1916        else
1917                else_block = qir_new_block(c);
1918
1919        bool was_top_level = false;
1920        if (c->execute.file == QFILE_NULL) {
1921                c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
1922                was_top_level = true;
1923        }
1924
1925        /* Set ZS for executing (execute == 0) and jumping (if->condition ==
1926         * 0) channels, and then update execute flags for those to point to
1927         * the ELSE block.
1928         */
1929        qir_SF(c, qir_OR(c,
1930                         c->execute,
1931                         ntq_get_src(c, if_stmt->condition, 0)));
1932        qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1933                     qir_uniform_ui(c, else_block->index));
1934
1935        /* Jump to ELSE if nothing is active for THEN, otherwise fall
1936         * through.
1937         */
1938        qir_SF(c, c->execute);
1939        qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
1940        qir_link_blocks(c->cur_block, else_block);
1941        qir_link_blocks(c->cur_block, then_block);
1942
1943        /* Process the THEN block. */
1944        qir_set_emit_block(c, then_block);
1945        ntq_emit_cf_list(c, &if_stmt->then_list);
1946
1947        if (!empty_else_block) {
1948                /* Handle the end of the THEN block.  First, all currently
1949                 * active channels update their execute flags to point to
1950                 * ENDIF
1951                 */
1952                qir_SF(c, c->execute);
1953                qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1954                             qir_uniform_ui(c, after_block->index));
1955
1956                /* If everything points at ENDIF, then jump there immediately. */
1957                qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
1958                qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
1959                qir_link_blocks(c->cur_block, after_block);
1960                qir_link_blocks(c->cur_block, else_block);
1961
1962                qir_set_emit_block(c, else_block);
1963                ntq_activate_execute_for_block(c);
1964                ntq_emit_cf_list(c, &if_stmt->else_list);
1965        }
1966
1967        qir_link_blocks(c->cur_block, after_block);
1968
1969        qir_set_emit_block(c, after_block);
1970        if (was_top_level) {
1971                c->execute = c->undef;
1972                c->last_top_block = c->cur_block;
1973        } else {
1974                ntq_activate_execute_for_block(c);
1975        }
1976}
1977
1978static void
1979ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
1980{
1981        struct qblock *jump_block;
1982        switch (jump->type) {
1983        case nir_jump_break:
1984                jump_block = c->loop_break_block;
1985                break;
1986        case nir_jump_continue:
1987                jump_block = c->loop_cont_block;
1988                break;
1989        default:
1990                unreachable("Unsupported jump type\n");
1991        }
1992
1993        qir_SF(c, c->execute);
1994        qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1995                     qir_uniform_ui(c, jump_block->index));
1996
1997        /* Jump to the destination block if everyone has taken the jump. */
1998        qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
1999        qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
2000        struct qblock *new_block = qir_new_block(c);
2001        qir_link_blocks(c->cur_block, jump_block);
2002        qir_link_blocks(c->cur_block, new_block);
2003        qir_set_emit_block(c, new_block);
2004}
2005
2006static void
2007ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
2008{
2009        switch (instr->type) {
2010        case nir_instr_type_alu:
2011                ntq_emit_alu(c, nir_instr_as_alu(instr));
2012                break;
2013
2014        case nir_instr_type_intrinsic:
2015                ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
2016                break;
2017
2018        case nir_instr_type_load_const:
2019                ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2020                break;
2021
2022        case nir_instr_type_ssa_undef:
2023                ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2024                break;
2025
2026        case nir_instr_type_tex:
2027                ntq_emit_tex(c, nir_instr_as_tex(instr));
2028                break;
2029
2030        case nir_instr_type_jump:
2031                ntq_emit_jump(c, nir_instr_as_jump(instr));
2032                break;
2033
2034        default:
2035                fprintf(stderr, "Unknown NIR instr type: ");
2036                nir_print_instr(instr, stderr);
2037                fprintf(stderr, "\n");
2038                abort();
2039        }
2040}
2041
2042static void
2043ntq_emit_block(struct vc4_compile *c, nir_block *block)
2044{
2045        nir_foreach_instr(instr, block) {
2046                ntq_emit_instr(c, instr);
2047        }
2048}
2049
2050static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
2051
2052static void
2053ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
2054{
2055        if (!c->vc4->screen->has_control_flow) {
2056                fprintf(stderr,
2057                        "loop support requires updated kernel.\n");
2058                ntq_emit_cf_list(c, &loop->body);
2059                return;
2060        }
2061
2062        bool was_top_level = false;
2063        if (c->execute.file == QFILE_NULL) {
2064                c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
2065                was_top_level = true;
2066        }
2067
2068        struct qblock *save_loop_cont_block = c->loop_cont_block;
2069        struct qblock *save_loop_break_block = c->loop_break_block;
2070
2071        c->loop_cont_block = qir_new_block(c);
2072        c->loop_break_block = qir_new_block(c);
2073
2074        qir_link_blocks(c->cur_block, c->loop_cont_block);
2075        qir_set_emit_block(c, c->loop_cont_block);
2076        ntq_activate_execute_for_block(c);
2077
2078        ntq_emit_cf_list(c, &loop->body);
2079
2080        /* If anything had explicitly continued, or is here at the end of the
2081         * loop, then we need to loop again.  SF updates are masked by the
2082         * instruction's condition, so we can do the OR of the two conditions
2083         * within SF.
2084         */
2085        qir_SF(c, c->execute);
2086        struct qinst *cont_check =
2087                qir_SUB_dest(c,
2088                             c->undef,
2089                             c->execute,
2090                             qir_uniform_ui(c, c->loop_cont_block->index));
2091        cont_check->cond = QPU_COND_ZC;
2092        cont_check->sf = true;
2093
2094        qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
2095        qir_link_blocks(c->cur_block, c->loop_cont_block);
2096        qir_link_blocks(c->cur_block, c->loop_break_block);
2097
2098        qir_set_emit_block(c, c->loop_break_block);
2099        if (was_top_level) {
2100                c->execute = c->undef;
2101                c->last_top_block = c->cur_block;
2102        } else {
2103                ntq_activate_execute_for_block(c);
2104        }
2105
2106        c->loop_break_block = save_loop_break_block;
2107        c->loop_cont_block = save_loop_cont_block;
2108}
2109
2110static void
2111ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
2112{
2113        fprintf(stderr, "FUNCTIONS not handled.\n");
2114        abort();
2115}
2116
2117static void
2118ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
2119{
2120        foreach_list_typed(nir_cf_node, node, node, list) {
2121                switch (node->type) {
2122                case nir_cf_node_block:
2123                        ntq_emit_block(c, nir_cf_node_as_block(node));
2124                        break;
2125
2126                case nir_cf_node_if:
2127                        ntq_emit_if(c, nir_cf_node_as_if(node));
2128                        break;
2129
2130                case nir_cf_node_loop:
2131                        ntq_emit_loop(c, nir_cf_node_as_loop(node));
2132                        break;
2133
2134                case nir_cf_node_function:
2135                        ntq_emit_function(c, nir_cf_node_as_function(node));
2136                        break;
2137
2138                default:
2139                        fprintf(stderr, "Unknown NIR node type\n");
2140                        abort();
2141                }
2142        }
2143}
2144
2145static void
2146ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
2147{
2148        ntq_setup_registers(c, &impl->registers);
2149        ntq_emit_cf_list(c, &impl->body);
2150}
2151
2152static void
2153nir_to_qir(struct vc4_compile *c)
2154{
2155        if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
2156                c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
2157
2158        ntq_setup_inputs(c);
2159        ntq_setup_outputs(c);
2160
2161        /* Find the main function and emit the body. */
2162        nir_foreach_function(function, c->s) {
2163                assert(strcmp(function->name, "main") == 0);
2164                assert(function->impl);
2165                ntq_emit_impl(c, function->impl);
2166        }
2167}
2168
2169static const nir_shader_compiler_options nir_options = {
2170        .lower_all_io_to_temps = true,
2171        .lower_extract_byte = true,
2172        .lower_extract_word = true,
2173        .lower_insert_byte = true,
2174        .lower_insert_word = true,
2175        .lower_fdiv = true,
2176        .lower_ffma16 = true,
2177        .lower_ffma32 = true,
2178        .lower_ffma64 = true,
2179        .lower_flrp32 = true,
2180        .lower_fmod = true,
2181        .lower_fpow = true,
2182        .lower_fsat = true,
2183        .lower_fsqrt = true,
2184        .lower_ldexp = true,
2185        .lower_fneg = true,
2186        .lower_ineg = true,
2187        .lower_rotate = true,
2188        .lower_to_scalar = true,
2189        .lower_umax = true,
2190        .lower_umin = true,
2191        .lower_isign = true,
2192        .has_fsub = true,
2193        .has_isub = true,
2194        .max_unroll_iterations = 32,
2195        .force_indirect_unrolling = (nir_var_shader_in | nir_var_shader_out | nir_var_function_temp),
2196};
2197
2198const void *
2199vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
2200                                enum pipe_shader_ir ir,
2201                                enum pipe_shader_type shader)
2202{
2203        return &nir_options;
2204}
2205
2206static int
2207count_nir_instrs(nir_shader *nir)
2208{
2209        int count = 0;
2210        nir_foreach_function(function, nir) {
2211                if (!function->impl)
2212                        continue;
2213                nir_foreach_block(block, function->impl) {
2214                        nir_foreach_instr(instr, block)
2215                                count++;
2216                }
2217        }
2218        return count;
2219}
2220
2221static struct vc4_compile *
2222vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
2223               struct vc4_key *key, bool fs_threaded)
2224{
2225        struct vc4_compile *c = qir_compile_init();
2226
2227        c->vc4 = vc4;
2228        c->stage = stage;
2229        c->shader_state = &key->shader_state->base;
2230        c->program_id = key->shader_state->program_id;
2231        c->variant_id =
2232                p_atomic_inc_return(&key->shader_state->compiled_variant_count);
2233        c->fs_threaded = fs_threaded;
2234
2235        c->key = key;
2236        switch (stage) {
2237        case QSTAGE_FRAG:
2238                c->fs_key = (struct vc4_fs_key *)key;
2239                if (c->fs_key->is_points) {
2240                        c->point_x = emit_fragment_varying(c, ~0, 0);
2241                        c->point_y = emit_fragment_varying(c, ~0, 0);
2242                } else if (c->fs_key->is_lines) {
2243                        c->line_x = emit_fragment_varying(c, ~0, 0);
2244                }
2245                break;
2246        case QSTAGE_VERT:
2247                c->vs_key = (struct vc4_vs_key *)key;
2248                break;
2249        case QSTAGE_COORD:
2250                c->vs_key = (struct vc4_vs_key *)key;
2251                break;
2252        }
2253
2254        c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
2255
2256        if (stage == QSTAGE_FRAG) {
2257                NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
2258        }
2259
2260        struct nir_lower_tex_options tex_options = {
2261                .lower_txp = ~0,
2262
2263                /* Apply swizzles to all samplers. */
2264                .swizzle_result = ~0,
2265        };
2266
2267        /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
2268         * The format swizzling applies before sRGB decode, and
2269         * ARB_texture_swizzle is the last thing before returning the sample.
2270         */
2271        for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
2272                enum pipe_format format = c->key->tex[i].format;
2273
2274                if (!format)
2275                        continue;
2276
2277                const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
2278
2279                for (int j = 0; j < 4; j++) {
2280                        uint8_t arb_swiz = c->key->tex[i].swizzle[j];
2281
2282                        if (arb_swiz <= 3) {
2283                                tex_options.swizzles[i][j] =
2284                                        format_swizzle[arb_swiz];
2285                        } else {
2286                                tex_options.swizzles[i][j] = arb_swiz;
2287                        }
2288                }
2289
2290                if (util_format_is_srgb(format))
2291                        tex_options.lower_srgb |= (1 << i);
2292        }
2293
2294        NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
2295
2296        if (c->key->ucp_enables) {
2297                if (stage == QSTAGE_FRAG) {
2298                        NIR_PASS_V(c->s, nir_lower_clip_fs,
2299                                   c->key->ucp_enables, false);
2300                } else {
2301                        NIR_PASS_V(c->s, nir_lower_clip_vs,
2302                                   c->key->ucp_enables, false, false, NULL);
2303                        NIR_PASS_V(c->s, nir_lower_io_to_scalar,
2304                                   nir_var_shader_out);
2305                }
2306        }
2307
2308        /* FS input scalarizing must happen after nir_lower_two_sided_color,
2309         * which only handles a vec4 at a time.  Similarly, VS output
2310         * scalarizing must happen after nir_lower_clip_vs.
2311         */
2312        if (c->stage == QSTAGE_FRAG)
2313                NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
2314        else
2315                NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
2316
2317        NIR_PASS_V(c->s, vc4_nir_lower_io, c);
2318        NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
2319        nir_lower_idiv_options idiv_options = {
2320                .imprecise_32bit_lowering = true,
2321                .allow_fp16 = true,
2322        };
2323        NIR_PASS_V(c->s, nir_lower_idiv, &idiv_options);
2324
2325        vc4_optimize_nir(c->s);
2326
2327        /* Do late algebraic optimization to turn add(a, neg(b)) back into
2328         * subs, then the mandatory cleanup after algebraic.  Note that it may
2329         * produce fnegs, and if so then we need to keep running to squash
2330         * fneg(fneg(a)).
2331         */
2332        bool more_late_algebraic = true;
2333        while (more_late_algebraic) {
2334                more_late_algebraic = false;
2335                NIR_PASS(more_late_algebraic, c->s, nir_opt_algebraic_late);
2336                NIR_PASS_V(c->s, nir_opt_constant_folding);
2337                NIR_PASS_V(c->s, nir_copy_prop);
2338                NIR_PASS_V(c->s, nir_opt_dce);
2339                NIR_PASS_V(c->s, nir_opt_cse);
2340        }
2341
2342        NIR_PASS_V(c->s, nir_lower_bool_to_int32);
2343
2344        NIR_PASS_V(c->s, nir_convert_from_ssa, true);
2345
2346        if (vc4_debug & VC4_DEBUG_SHADERDB) {
2347                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
2348                        qir_get_stage_name(c->stage),
2349                        c->program_id, c->variant_id,
2350                        count_nir_instrs(c->s));
2351        }
2352
2353        if (vc4_debug & VC4_DEBUG_NIR) {
2354                fprintf(stderr, "%s prog %d/%d NIR:\n",
2355                        qir_get_stage_name(c->stage),
2356                        c->program_id, c->variant_id);
2357                nir_print_shader(c->s, stderr);
2358        }
2359
2360        nir_to_qir(c);
2361
2362        switch (stage) {
2363        case QSTAGE_FRAG:
2364                /* FS threading requires that the thread execute
2365                 * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
2366                 * (with no other THRSW afterwards, obviously).  If we didn't
2367                 * fetch a texture at a top level block, this wouldn't be
2368                 * true.
2369                 */
2370                if (c->fs_threaded && !c->last_thrsw_at_top_level) {
2371                        c->failed = true;
2372                        return c;
2373                }
2374
2375                emit_frag_end(c);
2376                break;
2377        case QSTAGE_VERT:
2378                emit_vert_end(c,
2379                              c->vs_key->fs_inputs->input_slots,
2380                              c->vs_key->fs_inputs->num_inputs);
2381                break;
2382        case QSTAGE_COORD:
2383                emit_coord_end(c);
2384                break;
2385        }
2386
2387        if (vc4_debug & VC4_DEBUG_QIR) {
2388                fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
2389                        qir_get_stage_name(c->stage),
2390                        c->program_id, c->variant_id);
2391                qir_dump(c);
2392                fprintf(stderr, "\n");
2393        }
2394
2395        qir_optimize(c);
2396        qir_lower_uniforms(c);
2397
2398        qir_schedule_instructions(c);
2399        qir_emit_uniform_stream_resets(c);
2400
2401        if (vc4_debug & VC4_DEBUG_QIR) {
2402                fprintf(stderr, "%s prog %d/%d QIR:\n",
2403                        qir_get_stage_name(c->stage),
2404                        c->program_id, c->variant_id);
2405                qir_dump(c);
2406                fprintf(stderr, "\n");
2407        }
2408
2409        qir_reorder_uniforms(c);
2410        vc4_generate_code(vc4, c);
2411
2412        if (vc4_debug & VC4_DEBUG_SHADERDB) {
2413                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2414                        qir_get_stage_name(c->stage),
2415                        c->program_id, c->variant_id,
2416                        c->qpu_inst_count);
2417                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2418                        qir_get_stage_name(c->stage),
2419                        c->program_id, c->variant_id,
2420                        c->num_uniforms);
2421        }
2422
2423        ralloc_free(c->s);
2424
2425        return c;
2426}
2427
2428static void *
2429vc4_shader_state_create(struct pipe_context *pctx,
2430                        const struct pipe_shader_state *cso)
2431{
2432        struct vc4_context *vc4 = vc4_context(pctx);
2433        struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2434        if (!so)
2435                return NULL;
2436
2437        so->program_id = vc4->next_uncompiled_program_id++;
2438
2439        nir_shader *s;
2440
2441        if (cso->type == PIPE_SHADER_IR_NIR) {
2442                /* The backend takes ownership of the NIR shader on state
2443                 * creation.
2444                 */
2445                s = cso->ir.nir;
2446       } else {
2447                assert(cso->type == PIPE_SHADER_IR_TGSI);
2448
2449                if (vc4_debug & VC4_DEBUG_TGSI) {
2450                        fprintf(stderr, "prog %d TGSI:\n",
2451                                so->program_id);
2452                        tgsi_dump(cso->tokens, 0);
2453                        fprintf(stderr, "\n");
2454                }
2455                s = tgsi_to_nir(cso->tokens, pctx->screen, false);
2456        }
2457
2458        if (s->info.stage == MESA_SHADER_VERTEX)
2459                NIR_PASS_V(s, nir_lower_point_size, 1.0f, 0.0f);
2460
2461        NIR_PASS_V(s, nir_lower_io,
2462                   nir_var_shader_in | nir_var_shader_out | nir_var_uniform,
2463                   type_size, (nir_lower_io_options)0);
2464
2465        NIR_PASS_V(s, nir_lower_regs_to_ssa);
2466        NIR_PASS_V(s, nir_normalize_cubemap_coords);
2467
2468        NIR_PASS_V(s, nir_lower_load_const_to_scalar);
2469
2470        vc4_optimize_nir(s);
2471
2472        NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
2473
2474        /* Garbage collect dead instructions */
2475        nir_sweep(s);
2476
2477        so->base.type = PIPE_SHADER_IR_NIR;
2478        so->base.ir.nir = s;
2479
2480        if (vc4_debug & VC4_DEBUG_NIR) {
2481                fprintf(stderr, "%s prog %d NIR:\n",
2482                        gl_shader_stage_name(s->info.stage),
2483                        so->program_id);
2484                nir_print_shader(s, stderr);
2485                fprintf(stderr, "\n");
2486        }
2487
2488        return so;
2489}
2490
2491static void
2492copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2493                             struct vc4_compile *c)
2494{
2495        int count = c->num_uniforms;
2496        struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2497
2498        uinfo->count = count;
2499        uinfo->data = ralloc_array(shader, uint32_t, count);
2500        memcpy(uinfo->data, c->uniform_data,
2501               count * sizeof(*uinfo->data));
2502        uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2503        memcpy(uinfo->contents, c->uniform_contents,
2504               count * sizeof(*uinfo->contents));
2505        uinfo->num_texture_samples = c->num_texture_samples;
2506
2507        vc4_set_shader_uniform_dirty_flags(shader);
2508}
2509
2510static void
2511vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
2512                             struct vc4_compiled_shader *shader)
2513{
2514        struct vc4_fs_inputs inputs;
2515
2516        memset(&inputs, 0, sizeof(inputs));
2517        inputs.input_slots = ralloc_array(shader,
2518                                          struct vc4_varying_slot,
2519                                          c->num_input_slots);
2520
2521        bool input_live[c->num_input_slots];
2522
2523        memset(input_live, 0, sizeof(input_live));
2524        qir_for_each_inst_inorder(inst, c) {
2525                for (int i = 0; i < qir_get_nsrc(inst); i++) {
2526                        if (inst->src[i].file == QFILE_VARY)
2527                                input_live[inst->src[i].index] = true;
2528                }
2529        }
2530
2531        for (int i = 0; i < c->num_input_slots; i++) {
2532                struct vc4_varying_slot *slot = &c->input_slots[i];
2533
2534                if (!input_live[i])
2535                        continue;
2536
2537                /* Skip non-VS-output inputs. */
2538                if (slot->slot == (uint8_t)~0)
2539                        continue;
2540
2541                if (slot->slot == VARYING_SLOT_COL0 ||
2542                    slot->slot == VARYING_SLOT_COL1 ||
2543                    slot->slot == VARYING_SLOT_BFC0 ||
2544                    slot->slot == VARYING_SLOT_BFC1) {
2545                        shader->color_inputs |= (1 << inputs.num_inputs);
2546                }
2547
2548                inputs.input_slots[inputs.num_inputs] = *slot;
2549                inputs.num_inputs++;
2550        }
2551        shader->num_inputs = inputs.num_inputs;
2552
2553        /* Add our set of inputs to the set of all inputs seen.  This way, we
2554         * can have a single pointer that identifies an FS inputs set,
2555         * allowing VS to avoid recompiling when the FS is recompiled (or a
2556         * new one is bound using separate shader objects) but the inputs
2557         * don't change.
2558         */
2559        struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
2560        if (entry) {
2561                shader->fs_inputs = entry->key;
2562                ralloc_free(inputs.input_slots);
2563        } else {
2564                struct vc4_fs_inputs *alloc_inputs;
2565
2566                alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
2567                memcpy(alloc_inputs, &inputs, sizeof(inputs));
2568                ralloc_steal(alloc_inputs, inputs.input_slots);
2569                _mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
2570
2571                shader->fs_inputs = alloc_inputs;
2572        }
2573}
2574
2575static struct vc4_compiled_shader *
2576vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2577                        struct vc4_key *key)
2578{
2579        struct hash_table *ht;
2580        uint32_t key_size;
2581        bool try_threading;
2582
2583        if (stage == QSTAGE_FRAG) {
2584                ht = vc4->fs_cache;
2585                key_size = sizeof(struct vc4_fs_key);
2586                try_threading = vc4->screen->has_threaded_fs;
2587        } else {
2588                ht = vc4->vs_cache;
2589                key_size = sizeof(struct vc4_vs_key);
2590                try_threading = false;
2591        }
2592
2593        struct vc4_compiled_shader *shader;
2594        struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2595        if (entry)
2596                return entry->data;
2597
2598        struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
2599        /* If the FS failed to compile threaded, fall back to single threaded. */
2600        if (try_threading && c->failed) {
2601                qir_compile_destroy(c);
2602                c = vc4_shader_ntq(vc4, stage, key, false);
2603        }
2604
2605        shader = rzalloc(NULL, struct vc4_compiled_shader);
2606
2607        shader->program_id = vc4->next_compiled_program_id++;
2608        if (stage == QSTAGE_FRAG) {
2609                vc4_setup_compiled_fs_inputs(vc4, c, shader);
2610
2611                /* Note: the temporary clone in c->s has been freed. */
2612                nir_shader *orig_shader = key->shader_state->base.ir.nir;
2613                if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
2614                        shader->disable_early_z = true;
2615        } else {
2616                shader->num_inputs = c->num_inputs;
2617
2618                shader->vattr_offsets[0] = 0;
2619                for (int i = 0; i < 8; i++) {
2620                        shader->vattr_offsets[i + 1] =
2621                                shader->vattr_offsets[i] + c->vattr_sizes[i];
2622
2623                        if (c->vattr_sizes[i])
2624                                shader->vattrs_live |= (1 << i);
2625                }
2626        }
2627
2628        shader->failed = c->failed;
2629        if (c->failed) {
2630                shader->failed = true;
2631        } else {
2632                copy_uniform_state_to_shader(shader, c);
2633                shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2634                                                 c->qpu_inst_count *
2635                                                 sizeof(uint64_t));
2636        }
2637
2638        shader->fs_threaded = c->fs_threaded;
2639
2640        if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
2641                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
2642                        qir_get_stage_name(c->stage),
2643                        c->program_id, c->variant_id,
2644                        1 + shader->fs_threaded);
2645        }
2646
2647        qir_compile_destroy(c);
2648
2649        struct vc4_key *dup_key;
2650        dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
2651        memcpy(dup_key, key, key_size);
2652        _mesa_hash_table_insert(ht, dup_key, shader);
2653
2654        return shader;
2655}
2656
2657static void
2658vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2659                     struct vc4_texture_stateobj *texstate)
2660{
2661        for (int i = 0; i < texstate->num_textures; i++) {
2662                struct pipe_sampler_view *sampler = texstate->textures[i];
2663                struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
2664                struct pipe_sampler_state *sampler_state =
2665                        texstate->samplers[i];
2666
2667                if (!sampler)
2668                        continue;
2669
2670                key->tex[i].format = sampler->format;
2671                key->tex[i].swizzle[0] = sampler->swizzle_r;
2672                key->tex[i].swizzle[1] = sampler->swizzle_g;
2673                key->tex[i].swizzle[2] = sampler->swizzle_b;
2674                key->tex[i].swizzle[3] = sampler->swizzle_a;
2675
2676                if (sampler->texture->nr_samples > 1) {
2677                        key->tex[i].msaa_width = sampler->texture->width0;
2678                        key->tex[i].msaa_height = sampler->texture->height0;
2679                } else if (sampler){
2680                        key->tex[i].compare_mode = sampler_state->compare_mode;
2681                        key->tex[i].compare_func = sampler_state->compare_func;
2682                        key->tex[i].wrap_s = sampler_state->wrap_s;
2683                        key->tex[i].wrap_t = sampler_state->wrap_t;
2684                        key->tex[i].force_first_level =
2685                                vc4_sampler->force_first_level;
2686                }
2687        }
2688
2689        key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2690}
2691
2692static void
2693vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2694{
2695        struct vc4_job *job = vc4->job;
2696        struct vc4_fs_key local_key;
2697        struct vc4_fs_key *key = &local_key;
2698
2699        if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2700                            VC4_DIRTY_BLEND |
2701                            VC4_DIRTY_FRAMEBUFFER |
2702                            VC4_DIRTY_ZSA |
2703                            VC4_DIRTY_RASTERIZER |
2704                            VC4_DIRTY_SAMPLE_MASK |
2705                            VC4_DIRTY_FRAGTEX |
2706                            VC4_DIRTY_UNCOMPILED_FS |
2707                            VC4_DIRTY_UBO_1_SIZE))) {
2708                return;
2709        }
2710
2711        memset(key, 0, sizeof(*key));
2712        vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2713        key->base.shader_state = vc4->prog.bind_fs;
2714        key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2715        key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2716                         prim_mode <= PIPE_PRIM_LINE_STRIP);
2717        key->blend = vc4->blend->rt[0];
2718        if (vc4->blend->logicop_enable) {
2719                key->logicop_func = vc4->blend->logicop_func;
2720        } else {
2721                key->logicop_func = PIPE_LOGICOP_COPY;
2722        }
2723        if (job->msaa) {
2724                key->msaa = vc4->rasterizer->base.multisample;
2725                key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2726                key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2727                key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2728        }
2729
2730        if (vc4->framebuffer.cbufs[0])
2731                key->color_format = vc4->framebuffer.cbufs[0]->format;
2732
2733        key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2734        key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2735        key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2736        key->depth_enabled = (vc4->zsa->base.depth_enabled ||
2737                              key->stencil_enabled);
2738
2739        if (key->is_points) {
2740                key->point_sprite_mask =
2741                        vc4->rasterizer->base.sprite_coord_enable;
2742                key->point_coord_upper_left =
2743                        (vc4->rasterizer->base.sprite_coord_mode ==
2744                         PIPE_SPRITE_COORD_UPPER_LEFT);
2745        }
2746
2747        key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
2748
2749        struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2750        vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2751        if (vc4->prog.fs == old_fs)
2752                return;
2753
2754        vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2755
2756        if (vc4->rasterizer->base.flatshade &&
2757            (!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
2758                vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2759        }
2760
2761        if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
2762                vc4->dirty |= VC4_DIRTY_FS_INPUTS;
2763}
2764
2765static void
2766vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2767{
2768        struct vc4_vs_key local_key;
2769        struct vc4_vs_key *key = &local_key;
2770
2771        if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2772                            VC4_DIRTY_RASTERIZER |
2773                            VC4_DIRTY_VERTTEX |
2774                            VC4_DIRTY_VTXSTATE |
2775                            VC4_DIRTY_UNCOMPILED_VS |
2776                            VC4_DIRTY_FS_INPUTS))) {
2777                return;
2778        }
2779
2780        memset(key, 0, sizeof(*key));
2781        vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2782        key->base.shader_state = vc4->prog.bind_vs;
2783        key->fs_inputs = vc4->prog.fs->fs_inputs;
2784
2785        for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2786                key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2787
2788        key->per_vertex_point_size =
2789                (prim_mode == PIPE_PRIM_POINTS &&
2790                 vc4->rasterizer->base.point_size_per_vertex);
2791
2792        struct vc4_compiled_shader *vs =
2793                vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2794        if (vs != vc4->prog.vs) {
2795                vc4->prog.vs = vs;
2796                vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2797        }
2798
2799        key->is_coord = true;
2800        /* Coord shaders don't care what the FS inputs are. */
2801        key->fs_inputs = NULL;
2802        struct vc4_compiled_shader *cs =
2803                vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2804        if (cs != vc4->prog.cs) {
2805                vc4->prog.cs = cs;
2806                vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2807        }
2808}
2809
2810bool
2811vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2812{
2813        vc4_update_compiled_fs(vc4, prim_mode);
2814        vc4_update_compiled_vs(vc4, prim_mode);
2815
2816        return !(vc4->prog.cs->failed ||
2817                 vc4->prog.vs->failed ||
2818                 vc4->prog.fs->failed);
2819}
2820
2821static uint32_t
2822fs_cache_hash(const void *key)
2823{
2824        return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2825}
2826
2827static uint32_t
2828vs_cache_hash(const void *key)
2829{
2830        return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2831}
2832
2833static bool
2834fs_cache_compare(const void *key1, const void *key2)
2835{
2836        return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2837}
2838
2839static bool
2840vs_cache_compare(const void *key1, const void *key2)
2841{
2842        return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2843}
2844
2845static uint32_t
2846fs_inputs_hash(const void *key)
2847{
2848        const struct vc4_fs_inputs *inputs = key;
2849
2850        return _mesa_hash_data(inputs->input_slots,
2851                               sizeof(*inputs->input_slots) *
2852                               inputs->num_inputs);
2853}
2854
2855static bool
2856fs_inputs_compare(const void *key1, const void *key2)
2857{
2858        const struct vc4_fs_inputs *inputs1 = key1;
2859        const struct vc4_fs_inputs *inputs2 = key2;
2860
2861        return (inputs1->num_inputs == inputs2->num_inputs &&
2862                memcmp(inputs1->input_slots,
2863                       inputs2->input_slots,
2864                       sizeof(*inputs1->input_slots) *
2865                       inputs1->num_inputs) == 0);
2866}
2867
2868static void
2869delete_from_cache_if_matches(struct hash_table *ht,
2870                             struct vc4_compiled_shader **last_compile,
2871                             struct hash_entry *entry,
2872                             struct vc4_uncompiled_shader *so)
2873{
2874        const struct vc4_key *key = entry->key;
2875
2876        if (key->shader_state == so) {
2877                struct vc4_compiled_shader *shader = entry->data;
2878                _mesa_hash_table_remove(ht, entry);
2879                vc4_bo_unreference(&shader->bo);
2880
2881                if (shader == *last_compile)
2882                        *last_compile = NULL;
2883
2884                ralloc_free(shader);
2885        }
2886}
2887
2888static void
2889vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2890{
2891        struct vc4_context *vc4 = vc4_context(pctx);
2892        struct vc4_uncompiled_shader *so = hwcso;
2893
2894        hash_table_foreach(vc4->fs_cache, entry) {
2895                delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
2896                                             entry, so);
2897        }
2898        hash_table_foreach(vc4->vs_cache, entry) {
2899                delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
2900                                             entry, so);
2901        }
2902
2903        ralloc_free(so->base.ir.nir);
2904        free(so);
2905}
2906
2907static void
2908vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2909{
2910        struct vc4_context *vc4 = vc4_context(pctx);
2911        vc4->prog.bind_fs = hwcso;
2912        vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2913}
2914
2915static void
2916vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2917{
2918        struct vc4_context *vc4 = vc4_context(pctx);
2919        vc4->prog.bind_vs = hwcso;
2920        vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2921}
2922
2923void
2924vc4_program_init(struct pipe_context *pctx)
2925{
2926        struct vc4_context *vc4 = vc4_context(pctx);
2927
2928        pctx->create_vs_state = vc4_shader_state_create;
2929        pctx->delete_vs_state = vc4_shader_state_delete;
2930
2931        pctx->create_fs_state = vc4_shader_state_create;
2932        pctx->delete_fs_state = vc4_shader_state_delete;
2933
2934        pctx->bind_fs_state = vc4_fp_state_bind;
2935        pctx->bind_vs_state = vc4_vp_state_bind;
2936
2937        vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2938                                                fs_cache_compare);
2939        vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2940                                                vs_cache_compare);
2941        vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
2942                                              fs_inputs_compare);
2943}
2944
2945void
2946vc4_program_fini(struct pipe_context *pctx)
2947{
2948        struct vc4_context *vc4 = vc4_context(pctx);
2949
2950        hash_table_foreach(vc4->fs_cache, entry) {
2951                struct vc4_compiled_shader *shader = entry->data;
2952                vc4_bo_unreference(&shader->bo);
2953                ralloc_free(shader);
2954                _mesa_hash_table_remove(vc4->fs_cache, entry);
2955        }
2956
2957        hash_table_foreach(vc4->vs_cache, entry) {
2958                struct vc4_compiled_shader *shader = entry->data;
2959                vc4_bo_unreference(&shader->bo);
2960                ralloc_free(shader);
2961                _mesa_hash_table_remove(vc4->vs_cache, entry);
2962        }
2963}
2964