brw_compiler.h revision 01e04c3f
1/* 2 * Copyright © 2010 - 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#ifndef BRW_COMPILER_H 25#define BRW_COMPILER_H 26 27#include <stdio.h> 28#include "dev/gen_device_info.h" 29#include "main/macros.h" 30#include "main/mtypes.h" 31#include "util/ralloc.h" 32 33#ifdef __cplusplus 34extern "C" { 35#endif 36 37struct ra_regs; 38struct nir_shader; 39struct brw_program; 40 41struct brw_compiler { 42 const struct gen_device_info *devinfo; 43 44 struct { 45 struct ra_regs *regs; 46 47 /** 48 * Array of the ra classes for the unaligned contiguous register 49 * block sizes used. 50 */ 51 int *classes; 52 53 /** 54 * Mapping for register-allocated objects in *regs to the first 55 * GRF for that object. 56 */ 57 uint8_t *ra_reg_to_grf; 58 } vec4_reg_set; 59 60 struct { 61 struct ra_regs *regs; 62 63 /** 64 * Array of the ra classes for the unaligned contiguous register 65 * block sizes used, indexed by register size. 66 */ 67 int classes[16]; 68 69 /** 70 * Mapping from classes to ra_reg ranges. Each of the per-size 71 * classes corresponds to a range of ra_reg nodes. This array stores 72 * those ranges in the form of first ra_reg in each class and the 73 * total number of ra_reg elements in the last array element. This 74 * way the range of the i'th class is given by: 75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] ) 76 */ 77 int class_to_ra_reg_range[17]; 78 79 /** 80 * Mapping for register-allocated objects in *regs to the first 81 * GRF for that object. 82 */ 83 uint8_t *ra_reg_to_grf; 84 85 /** 86 * ra class for the aligned pairs we use for PLN, which doesn't 87 * appear in *classes. 88 */ 89 int aligned_pairs_class; 90 } fs_reg_sets[3]; 91 92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3); 93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3); 94 95 bool scalar_stage[MESA_SHADER_STAGES]; 96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES]; 97 98 /** 99 * Apply workarounds for SIN and COS output range problems. 100 * This can negatively impact performance. 101 */ 102 bool precise_trig; 103 104 /** 105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State 106 * Base Address? (If not, it's a normal GPU address.) 107 */ 108 bool constant_buffer_0_is_relative; 109 110 /** 111 * Whether or not the driver supports pull constants. If not, the compiler 112 * will attempt to push everything. 113 */ 114 bool supports_pull_constants; 115 116 /** 117 * Whether or not the driver supports NIR shader constants. This controls 118 * whether nir_opt_large_constants will be run. 119 */ 120 bool supports_shader_constants; 121}; 122 123/** 124 * We use a constant subgroup size of 32. It really only needs to be a 125 * maximum and, since we do SIMD32 for compute shaders in some cases, it 126 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a 127 * subgroup size of 32 but will act as if 16 or 24 of those channels are 128 * disabled. 129 */ 130#define BRW_SUBGROUP_SIZE 32 131 132/** 133 * Program key structures. 134 * 135 * When drawing, we look for the currently bound shaders in the program 136 * cache. This is essentially a hash table lookup, and these are the keys. 137 * 138 * Sometimes OpenGL features specified as state need to be simulated via 139 * shader code, due to a mismatch between the API and the hardware. This 140 * is often referred to as "non-orthagonal state" or "NOS". We store NOS 141 * in the program key so it's considered when searching for a program. If 142 * we haven't seen a particular combination before, we have to recompile a 143 * new specialized version. 144 * 145 * Shader compilation should not look up state in gl_context directly, but 146 * instead use the copy in the program key. This guarantees recompiles will 147 * happen correctly. 148 * 149 * @{ 150 */ 151 152enum PACKED gen6_gather_sampler_wa { 153 WA_SIGN = 1, /* whether we need to sign extend */ 154 WA_8BIT = 2, /* if we have an 8bit format needing wa */ 155 WA_16BIT = 4, /* if we have a 16bit format needing wa */ 156}; 157 158/** 159 * Sampler information needed by VS, WM, and GS program cache keys. 160 */ 161struct brw_sampler_prog_key_data { 162 /** 163 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles. 164 */ 165 uint16_t swizzles[MAX_SAMPLERS]; 166 167 uint32_t gl_clamp_mask[3]; 168 169 /** 170 * For RG32F, gather4's channel select is broken. 171 */ 172 uint32_t gather_channel_quirk_mask; 173 174 /** 175 * Whether this sampler uses the compressed multisample surface layout. 176 */ 177 uint32_t compressed_multisample_layout_mask; 178 179 /** 180 * Whether this sampler is using 16x multisampling. If so fetching from 181 * this sampler will be handled with a different instruction, ld2dms_w 182 * instead of ld2dms. 183 */ 184 uint32_t msaa_16; 185 186 /** 187 * For Sandybridge, which shader w/a we need for gather quirks. 188 */ 189 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS]; 190 191 /** 192 * Texture units that have a YUV image bound. 193 */ 194 uint32_t y_u_v_image_mask; 195 uint32_t y_uv_image_mask; 196 uint32_t yx_xuxv_image_mask; 197 uint32_t xy_uxvx_image_mask; 198}; 199 200/** 201 * The VF can't natively handle certain types of attributes, such as GL_FIXED 202 * or most 10_10_10_2 types. These flags enable various VS workarounds to 203 * "fix" attributes at the beginning of shaders. 204 */ 205#define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */ 206#define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */ 207#define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */ 208#define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */ 209#define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */ 210 211/** 212 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range 213 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user 214 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input 215 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0. 216 */ 217#define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX 218#define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28) 219 220/** The program key for Vertex Shaders. */ 221struct brw_vs_prog_key { 222 unsigned program_string_id; 223 224 /** 225 * Per-attribute workaround flags 226 * 227 * For each attribute, a combination of BRW_ATTRIB_WA_*. 228 * 229 * For OpenGL, where we expose a maximum of 16 user input atttributes 230 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan 231 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can 232 * expose up to 28 user input vertex attributes that are mapped to slots 233 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large 234 * enough to hold this many slots. 235 */ 236 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)]; 237 238 bool copy_edgeflag:1; 239 240 bool clamp_vertex_color:1; 241 242 /** 243 * How many user clipping planes are being uploaded to the vertex shader as 244 * push constants. 245 * 246 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to 247 * clip distances. 248 */ 249 unsigned nr_userclip_plane_consts:4; 250 251 /** 252 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates 253 * are going to be replaced with point coordinates (as a consequence of a 254 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because 255 * our SF thread requires exact matching between VS outputs and FS inputs, 256 * these texture coordinates will need to be unconditionally included in 257 * the VUE, even if they aren't written by the vertex shader. 258 */ 259 uint8_t point_coord_replace; 260 261 struct brw_sampler_prog_key_data tex; 262}; 263 264/** The program key for Tessellation Control Shaders. */ 265struct brw_tcs_prog_key 266{ 267 unsigned program_string_id; 268 269 GLenum tes_primitive_mode; 270 271 unsigned input_vertices; 272 273 /** A bitfield of per-patch outputs written. */ 274 uint32_t patch_outputs_written; 275 276 /** A bitfield of per-vertex outputs written. */ 277 uint64_t outputs_written; 278 279 bool quads_workaround; 280 281 struct brw_sampler_prog_key_data tex; 282}; 283 284/** The program key for Tessellation Evaluation Shaders. */ 285struct brw_tes_prog_key 286{ 287 unsigned program_string_id; 288 289 /** A bitfield of per-patch inputs read. */ 290 uint32_t patch_inputs_read; 291 292 /** A bitfield of per-vertex inputs read. */ 293 uint64_t inputs_read; 294 295 struct brw_sampler_prog_key_data tex; 296}; 297 298/** The program key for Geometry Shaders. */ 299struct brw_gs_prog_key 300{ 301 unsigned program_string_id; 302 303 struct brw_sampler_prog_key_data tex; 304}; 305 306enum brw_sf_primitive { 307 BRW_SF_PRIM_POINTS = 0, 308 BRW_SF_PRIM_LINES = 1, 309 BRW_SF_PRIM_TRIANGLES = 2, 310 BRW_SF_PRIM_UNFILLED_TRIS = 3, 311}; 312 313struct brw_sf_prog_key { 314 uint64_t attrs; 315 bool contains_flat_varying; 316 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */ 317 uint8_t point_sprite_coord_replace; 318 enum brw_sf_primitive primitive:2; 319 bool do_twoside_color:1; 320 bool frontface_ccw:1; 321 bool do_point_sprite:1; 322 bool do_point_coord:1; 323 bool sprite_origin_lower_left:1; 324 bool userclip_active:1; 325}; 326 327enum brw_clip_mode { 328 BRW_CLIP_MODE_NORMAL = 0, 329 BRW_CLIP_MODE_CLIP_ALL = 1, 330 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2, 331 BRW_CLIP_MODE_REJECT_ALL = 3, 332 BRW_CLIP_MODE_ACCEPT_ALL = 4, 333 BRW_CLIP_MODE_KERNEL_CLIP = 5, 334}; 335 336enum brw_clip_fill_mode { 337 BRW_CLIP_FILL_MODE_LINE = 0, 338 BRW_CLIP_FILL_MODE_POINT = 1, 339 BRW_CLIP_FILL_MODE_FILL = 2, 340 BRW_CLIP_FILL_MODE_CULL = 3, 341}; 342 343/* Note that if unfilled primitives are being emitted, we have to fix 344 * up polygon offset and flatshading at this point: 345 */ 346struct brw_clip_prog_key { 347 uint64_t attrs; 348 bool contains_flat_varying; 349 bool contains_noperspective_varying; 350 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */ 351 unsigned primitive:4; 352 unsigned nr_userclip:4; 353 bool pv_first:1; 354 bool do_unfilled:1; 355 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */ 356 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */ 357 bool offset_cw:1; 358 bool offset_ccw:1; 359 bool copy_bfc_cw:1; 360 bool copy_bfc_ccw:1; 361 enum brw_clip_mode clip_mode:3; 362 363 float offset_factor; 364 float offset_units; 365 float offset_clamp; 366}; 367 368/* A big lookup table is used to figure out which and how many 369 * additional regs will inserted before the main payload in the WM 370 * program execution. These mainly relate to depth and stencil 371 * processing and the early-depth-test optimization. 372 */ 373enum brw_wm_iz_bits { 374 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1, 375 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2, 376 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4, 377 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8, 378 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10, 379 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20, 380 BRW_WM_IZ_BIT_MAX = 0x40 381}; 382 383enum brw_wm_aa_enable { 384 BRW_WM_AA_NEVER, 385 BRW_WM_AA_SOMETIMES, 386 BRW_WM_AA_ALWAYS 387}; 388 389/** The program key for Fragment/Pixel Shaders. */ 390struct brw_wm_prog_key { 391 /* Some collection of BRW_WM_IZ_* */ 392 uint8_t iz_lookup; 393 bool stats_wm:1; 394 bool flat_shade:1; 395 unsigned nr_color_regions:5; 396 bool replicate_alpha:1; 397 bool clamp_fragment_color:1; 398 bool persample_interp:1; 399 bool multisample_fbo:1; 400 bool frag_coord_adds_sample_pos:1; 401 enum brw_wm_aa_enable line_aa:2; 402 bool high_quality_derivatives:1; 403 bool force_dual_color_blend:1; 404 bool coherent_fb_fetch:1; 405 406 uint8_t color_outputs_valid; 407 uint64_t input_slots_valid; 408 unsigned program_string_id; 409 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */ 410 float alpha_test_ref; 411 412 struct brw_sampler_prog_key_data tex; 413}; 414 415struct brw_cs_prog_key { 416 uint32_t program_string_id; 417 struct brw_sampler_prog_key_data tex; 418}; 419 420/* brw_any_prog_key is any of the keys that map to an API stage */ 421union brw_any_prog_key { 422 struct brw_vs_prog_key vs; 423 struct brw_tcs_prog_key tcs; 424 struct brw_tes_prog_key tes; 425 struct brw_gs_prog_key gs; 426 struct brw_wm_prog_key wm; 427 struct brw_cs_prog_key cs; 428}; 429 430/* 431 * Image metadata structure as laid out in the shader parameter 432 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be 433 * able to use them. That's okay because the padding and any unused 434 * entries [most of them except when we're doing untyped surface 435 * access] will be removed by the uniform packing pass. 436 */ 437#define BRW_IMAGE_PARAM_OFFSET_OFFSET 0 438#define BRW_IMAGE_PARAM_SIZE_OFFSET 4 439#define BRW_IMAGE_PARAM_STRIDE_OFFSET 8 440#define BRW_IMAGE_PARAM_TILING_OFFSET 12 441#define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16 442#define BRW_IMAGE_PARAM_SIZE 20 443 444struct brw_image_param { 445 /** Offset applied to the X and Y surface coordinates. */ 446 uint32_t offset[2]; 447 448 /** Surface X, Y and Z dimensions. */ 449 uint32_t size[3]; 450 451 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in 452 * pixels, vertical slice stride in pixels. 453 */ 454 uint32_t stride[4]; 455 456 /** Log2 of the tiling modulus in the X, Y and Z dimension. */ 457 uint32_t tiling[3]; 458 459 /** 460 * Right shift to apply for bit 6 address swizzling. Two different 461 * swizzles can be specified and will be applied one after the other. The 462 * resulting address will be: 463 * 464 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^ 465 * (addr >> swizzling[1]))) 466 * 467 * Use \c 0xff if any of the swizzles is not required. 468 */ 469 uint32_t swizzling[2]; 470}; 471 472/** Max number of render targets in a shader */ 473#define BRW_MAX_DRAW_BUFFERS 8 474 475/** 476 * Max number of binding table entries used for stream output. 477 * 478 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the 479 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64. 480 * 481 * On Gen6, the size of transform feedback data is limited not by the number 482 * of components but by the number of binding table entries we set aside. We 483 * use one binding table entry for a float, one entry for a vector, and one 484 * entry per matrix column. Since the only way we can communicate our 485 * transform feedback capabilities to the client is via 486 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the 487 * worst case, in which all the varyings are floats, so we use up one binding 488 * table entry per component. Therefore we need to set aside at least 64 489 * binding table entries for use by transform feedback. 490 * 491 * Note: since we don't currently pack varyings, it is currently impossible 492 * for the client to actually use up all of these binding table entries--if 493 * all of their varyings were floats, they would run out of varying slots and 494 * fail to link. But that's a bug, so it seems prudent to go ahead and 495 * allocate the number of binding table entries we will need once the bug is 496 * fixed. 497 */ 498#define BRW_MAX_SOL_BINDINGS 64 499 500/** 501 * Binding table index for the first gen6 SOL binding. 502 */ 503#define BRW_GEN6_SOL_BINDING_START 0 504 505/** 506 * Stride in bytes between shader_time entries. 507 * 508 * We separate entries by a cacheline to reduce traffic between EUs writing to 509 * different entries. 510 */ 511#define BRW_SHADER_TIME_STRIDE 64 512 513struct brw_ubo_range 514{ 515 uint16_t block; 516 uint8_t start; 517 uint8_t length; 518}; 519 520/* We reserve the first 2^16 values for builtins */ 521#define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0) 522 523enum brw_param_builtin { 524 BRW_PARAM_BUILTIN_ZERO, 525 526 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X, 527 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y, 528 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z, 529 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W, 530 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X, 531 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y, 532 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z, 533 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W, 534 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X, 535 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y, 536 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z, 537 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W, 538 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X, 539 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y, 540 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z, 541 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W, 542 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X, 543 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y, 544 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z, 545 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W, 546 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X, 547 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y, 548 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z, 549 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W, 550 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X, 551 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y, 552 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z, 553 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W, 554 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X, 555 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y, 556 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z, 557 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W, 558 559 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X, 560 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y, 561 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z, 562 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W, 563 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X, 564 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y, 565 566 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X, 567 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y, 568 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z, 569 BRW_PARAM_BUILTIN_SUBGROUP_ID, 570}; 571 572#define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \ 573 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp)) 574 575#define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \ 576 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \ 577 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W) 578 579#define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \ 580 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2) 581 582#define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \ 583 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3) 584 585struct brw_stage_prog_data { 586 struct { 587 /** size of our binding table. */ 588 uint32_t size_bytes; 589 590 /** @{ 591 * surface indices for the various groups of surfaces 592 */ 593 uint32_t pull_constants_start; 594 uint32_t texture_start; 595 uint32_t gather_texture_start; 596 uint32_t ubo_start; 597 uint32_t ssbo_start; 598 uint32_t image_start; 599 uint32_t shader_time_start; 600 uint32_t plane_start[3]; 601 /** @} */ 602 } binding_table; 603 604 struct brw_ubo_range ubo_ranges[4]; 605 606 GLuint nr_params; /**< number of float params/constants */ 607 GLuint nr_pull_params; 608 609 unsigned curb_read_length; 610 unsigned total_scratch; 611 unsigned total_shared; 612 613 unsigned program_size; 614 615 /** 616 * Register where the thread expects to find input data from the URB 617 * (typically uniforms, followed by vertex or fragment attributes). 618 */ 619 unsigned dispatch_grf_start_reg; 620 621 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */ 622 623 /* 32-bit identifiers for all push/pull parameters. These can be anything 624 * the driver wishes them to be; the core of the back-end compiler simply 625 * re-arranges them. The one restriction is that the bottom 2^16 values 626 * are reserved for builtins defined in the brw_param_builtin enum defined 627 * above. 628 */ 629 uint32_t *param; 630 uint32_t *pull_param; 631}; 632 633static inline uint32_t * 634brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data, 635 unsigned nr_new_params) 636{ 637 unsigned old_nr_params = prog_data->nr_params; 638 prog_data->nr_params += nr_new_params; 639 prog_data->param = reralloc(ralloc_parent(prog_data->param), 640 prog_data->param, uint32_t, 641 prog_data->nr_params); 642 return prog_data->param + old_nr_params; 643} 644 645static inline void 646brw_mark_surface_used(struct brw_stage_prog_data *prog_data, 647 unsigned surf_index) 648{ 649 /* A binding table index is 8 bits and the top 3 values are reserved for 650 * special things (stateless and SLM). 651 */ 652 assert(surf_index <= 252); 653 654 prog_data->binding_table.size_bytes = 655 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4); 656} 657 658enum brw_barycentric_mode { 659 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0, 660 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1, 661 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2, 662 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3, 663 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4, 664 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5, 665 BRW_BARYCENTRIC_MODE_COUNT = 6 666}; 667#define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \ 668 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \ 669 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \ 670 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE)) 671 672enum brw_pixel_shader_computed_depth_mode { 673 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */ 674 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */ 675 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */ 676 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */ 677}; 678 679/* Data about a particular attempt to compile a program. Note that 680 * there can be many of these, each in a different GL state 681 * corresponding to a different brw_wm_prog_key struct, with different 682 * compiled programs. 683 */ 684struct brw_wm_prog_data { 685 struct brw_stage_prog_data base; 686 687 GLuint num_varying_inputs; 688 689 uint8_t reg_blocks_8; 690 uint8_t reg_blocks_16; 691 uint8_t reg_blocks_32; 692 693 uint8_t dispatch_grf_start_reg_16; 694 uint8_t dispatch_grf_start_reg_32; 695 uint32_t prog_offset_16; 696 uint32_t prog_offset_32; 697 698 struct { 699 /** @{ 700 * surface indices the WM-specific surfaces 701 */ 702 uint32_t render_target_read_start; 703 /** @} */ 704 } binding_table; 705 706 uint8_t computed_depth_mode; 707 bool computed_stencil; 708 709 bool early_fragment_tests; 710 bool post_depth_coverage; 711 bool inner_coverage; 712 bool dispatch_8; 713 bool dispatch_16; 714 bool dispatch_32; 715 bool dual_src_blend; 716 bool persample_dispatch; 717 bool uses_pos_offset; 718 bool uses_omask; 719 bool uses_kill; 720 bool uses_src_depth; 721 bool uses_src_w; 722 bool uses_sample_mask; 723 bool has_render_target_reads; 724 bool has_side_effects; 725 bool pulls_bary; 726 727 bool contains_flat_varying; 728 bool contains_noperspective_varying; 729 730 /** 731 * Mask of which interpolation modes are required by the fragment shader. 732 * Used in hardware setup on gen6+. 733 */ 734 uint32_t barycentric_interp_modes; 735 736 /** 737 * Mask of which FS inputs are marked flat by the shader source. This is 738 * needed for setting up 3DSTATE_SF/SBE. 739 */ 740 uint32_t flat_inputs; 741 742 /* Mapping of VUE slots to interpolation modes. 743 * Used by the Gen4-5 clip/sf/wm stages. 744 */ 745 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */ 746 747 /** 748 * Map from gl_varying_slot to the position within the FS setup data 749 * payload where the varying's attribute vertex deltas should be delivered. 750 * For varying slots that are not used by the FS, the value is -1. 751 */ 752 int urb_setup[VARYING_SLOT_MAX]; 753}; 754 755/** Returns the SIMD width corresponding to a given KSP index 756 * 757 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for 758 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to 759 * kernel start pointer (KSP) indices that is based on what dispatch widths 760 * are enabled. This function provides, effectively, the reverse mapping. 761 * 762 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD 763 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned. 764 */ 765static inline unsigned 766brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled, 767 bool simd16_enabled, bool simd32_enabled) 768{ 769 /* This function strictly ignores contiguous dispatch */ 770 switch (ksp_idx) { 771 case 0: 772 return simd8_enabled ? 8 : 773 (simd16_enabled && !simd32_enabled) ? 16 : 774 (simd32_enabled && !simd16_enabled) ? 32 : 0; 775 case 1: 776 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0; 777 case 2: 778 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0; 779 default: 780 unreachable("Invalid KSP index"); 781 } 782} 783 784#define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \ 785 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \ 786 (wm_state)._16PixelDispatchEnable, \ 787 (wm_state)._32PixelDispatchEnable) 788 789#define brw_wm_state_has_ksp(wm_state, ksp_idx) \ 790 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0) 791 792static inline uint32_t 793_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data, 794 unsigned simd_width) 795{ 796 switch (simd_width) { 797 case 8: return 0; 798 case 16: return prog_data->prog_offset_16; 799 case 32: return prog_data->prog_offset_32; 800 default: return 0; 801 } 802} 803 804#define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \ 805 _brw_wm_prog_data_prog_offset(prog_data, \ 806 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx)) 807 808static inline uint8_t 809_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data, 810 unsigned simd_width) 811{ 812 switch (simd_width) { 813 case 8: return prog_data->base.dispatch_grf_start_reg; 814 case 16: return prog_data->dispatch_grf_start_reg_16; 815 case 32: return prog_data->dispatch_grf_start_reg_32; 816 default: return 0; 817 } 818} 819 820#define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \ 821 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \ 822 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx)) 823 824static inline uint8_t 825_brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data, 826 unsigned simd_width) 827{ 828 switch (simd_width) { 829 case 8: return prog_data->reg_blocks_8; 830 case 16: return prog_data->reg_blocks_16; 831 case 32: return prog_data->reg_blocks_32; 832 default: return 0; 833 } 834} 835 836#define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \ 837 _brw_wm_prog_data_reg_blocks(prog_data, \ 838 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx)) 839 840struct brw_push_const_block { 841 unsigned dwords; /* Dword count, not reg aligned */ 842 unsigned regs; 843 unsigned size; /* Bytes, register aligned */ 844}; 845 846struct brw_cs_prog_data { 847 struct brw_stage_prog_data base; 848 849 unsigned local_size[3]; 850 unsigned simd_size; 851 unsigned threads; 852 bool uses_barrier; 853 bool uses_num_work_groups; 854 855 struct { 856 struct brw_push_const_block cross_thread; 857 struct brw_push_const_block per_thread; 858 struct brw_push_const_block total; 859 } push; 860 861 struct { 862 /** @{ 863 * surface indices the CS-specific surfaces 864 */ 865 uint32_t work_groups_start; 866 /** @} */ 867 } binding_table; 868}; 869 870/** 871 * Enum representing the i965-specific vertex results that don't correspond 872 * exactly to any element of gl_varying_slot. The values of this enum are 873 * assigned such that they don't conflict with gl_varying_slot. 874 */ 875typedef enum 876{ 877 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX, 878 BRW_VARYING_SLOT_PAD, 879 /** 880 * Technically this is not a varying but just a placeholder that 881 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord 882 * builtin variable to be compiled correctly. see compile_sf_prog() for 883 * more info. 884 */ 885 BRW_VARYING_SLOT_PNTC, 886 BRW_VARYING_SLOT_COUNT 887} brw_varying_slot; 888 889/** 890 * We always program SF to start reading at an offset of 1 (2 varying slots) 891 * from the start of the vertex URB entry. This causes it to skip: 892 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5 893 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+ 894 */ 895#define BRW_SF_URB_ENTRY_READ_OFFSET 1 896 897/** 898 * Bitmask indicating which fragment shader inputs represent varyings (and 899 * hence have to be delivered to the fragment shader by the SF/SBE stage). 900 */ 901#define BRW_FS_VARYING_INPUT_MASK \ 902 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \ 903 ~VARYING_BIT_POS & ~VARYING_BIT_FACE) 904 905/** 906 * Data structure recording the relationship between the gl_varying_slot enum 907 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a 908 * single octaword within the VUE (128 bits). 909 * 910 * Note that each BRW register contains 256 bits (2 octawords), so when 911 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two 912 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as 913 * in a vertex shader), each register corresponds to a single VUE slot, since 914 * it contains data for two separate vertices. 915 */ 916struct brw_vue_map { 917 /** 918 * Bitfield representing all varying slots that are (a) stored in this VUE 919 * map, and (b) actually written by the shader. Does not include any of 920 * the additional varying slots defined in brw_varying_slot. 921 */ 922 uint64_t slots_valid; 923 924 /** 925 * Is this VUE map for a separate shader pipeline? 926 * 927 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched 928 * without the linker having a chance to dead code eliminate unused varyings. 929 * 930 * This means that we have to use a fixed slot layout, based on the output's 931 * location field, rather than assigning slots in a compact contiguous block. 932 */ 933 bool separate; 934 935 /** 936 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are 937 * not stored in a slot (because they are not written, or because 938 * additional processing is applied before storing them in the VUE), the 939 * value is -1. 940 */ 941 signed char varying_to_slot[VARYING_SLOT_TESS_MAX]; 942 943 /** 944 * Map from VUE slot to gl_varying_slot value. For slots that do not 945 * directly correspond to a gl_varying_slot, the value comes from 946 * brw_varying_slot. 947 * 948 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD. 949 */ 950 signed char slot_to_varying[VARYING_SLOT_TESS_MAX]; 951 952 /** 953 * Total number of VUE slots in use 954 */ 955 int num_slots; 956 957 /** 958 * Number of per-patch VUE slots. Only valid for tessellation control 959 * shader outputs and tessellation evaluation shader inputs. 960 */ 961 int num_per_patch_slots; 962 963 /** 964 * Number of per-vertex VUE slots. Only valid for tessellation control 965 * shader outputs and tessellation evaluation shader inputs. 966 */ 967 int num_per_vertex_slots; 968}; 969 970void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map); 971 972/** 973 * Convert a VUE slot number into a byte offset within the VUE. 974 */ 975static inline GLuint brw_vue_slot_to_offset(GLuint slot) 976{ 977 return 16*slot; 978} 979 980/** 981 * Convert a vertex output (brw_varying_slot) into a byte offset within the 982 * VUE. 983 */ 984static inline 985GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying) 986{ 987 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]); 988} 989 990void brw_compute_vue_map(const struct gen_device_info *devinfo, 991 struct brw_vue_map *vue_map, 992 uint64_t slots_valid, 993 bool separate_shader); 994 995void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map, 996 uint64_t slots_valid, 997 uint32_t is_patch); 998 999/* brw_interpolation_map.c */ 1000void brw_setup_vue_interpolation(struct brw_vue_map *vue_map, 1001 struct nir_shader *nir, 1002 struct brw_wm_prog_data *prog_data, 1003 const struct gen_device_info *devinfo); 1004 1005enum shader_dispatch_mode { 1006 DISPATCH_MODE_4X1_SINGLE = 0, 1007 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1, 1008 DISPATCH_MODE_4X2_DUAL_OBJECT = 2, 1009 DISPATCH_MODE_SIMD8 = 3, 1010}; 1011 1012/** 1013 * @defgroup Tessellator parameter enumerations. 1014 * 1015 * These correspond to the hardware values in 3DSTATE_TE, and are provided 1016 * as part of the tessellation evaluation shader. 1017 * 1018 * @{ 1019 */ 1020enum brw_tess_partitioning { 1021 BRW_TESS_PARTITIONING_INTEGER = 0, 1022 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1, 1023 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2, 1024}; 1025 1026enum brw_tess_output_topology { 1027 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0, 1028 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1, 1029 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2, 1030 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3, 1031}; 1032 1033enum brw_tess_domain { 1034 BRW_TESS_DOMAIN_QUAD = 0, 1035 BRW_TESS_DOMAIN_TRI = 1, 1036 BRW_TESS_DOMAIN_ISOLINE = 2, 1037}; 1038/** @} */ 1039 1040struct brw_vue_prog_data { 1041 struct brw_stage_prog_data base; 1042 struct brw_vue_map vue_map; 1043 1044 /** Should the hardware deliver input VUE handles for URB pull loads? */ 1045 bool include_vue_handles; 1046 1047 GLuint urb_read_length; 1048 GLuint total_grf; 1049 1050 uint32_t clip_distance_mask; 1051 uint32_t cull_distance_mask; 1052 1053 /* Used for calculating urb partitions. In the VS, this is the size of the 1054 * URB entry used for both input and output to the thread. In the GS, this 1055 * is the size of the URB entry used for output. 1056 */ 1057 GLuint urb_entry_size; 1058 1059 enum shader_dispatch_mode dispatch_mode; 1060}; 1061 1062struct brw_vs_prog_data { 1063 struct brw_vue_prog_data base; 1064 1065 GLbitfield64 inputs_read; 1066 GLbitfield64 double_inputs_read; 1067 1068 unsigned nr_attribute_slots; 1069 1070 bool uses_vertexid; 1071 bool uses_instanceid; 1072 bool uses_is_indexed_draw; 1073 bool uses_firstvertex; 1074 bool uses_baseinstance; 1075 bool uses_drawid; 1076}; 1077 1078struct brw_tcs_prog_data 1079{ 1080 struct brw_vue_prog_data base; 1081 1082 /** Number vertices in output patch */ 1083 int instances; 1084}; 1085 1086 1087struct brw_tes_prog_data 1088{ 1089 struct brw_vue_prog_data base; 1090 1091 enum brw_tess_partitioning partitioning; 1092 enum brw_tess_output_topology output_topology; 1093 enum brw_tess_domain domain; 1094}; 1095 1096struct brw_gs_prog_data 1097{ 1098 struct brw_vue_prog_data base; 1099 1100 unsigned vertices_in; 1101 1102 /** 1103 * Size of an output vertex, measured in HWORDS (32 bytes). 1104 */ 1105 unsigned output_vertex_size_hwords; 1106 1107 unsigned output_topology; 1108 1109 /** 1110 * Size of the control data (cut bits or StreamID bits), in hwords (32 1111 * bytes). 0 if there is no control data. 1112 */ 1113 unsigned control_data_header_size_hwords; 1114 1115 /** 1116 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID 1117 * if the control data is StreamID bits, or 1118 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits). 1119 * Ignored if control_data_header_size is 0. 1120 */ 1121 unsigned control_data_format; 1122 1123 bool include_primitive_id; 1124 1125 /** 1126 * The number of vertices emitted, if constant - otherwise -1. 1127 */ 1128 int static_vertex_count; 1129 1130 int invocations; 1131 1132 /** 1133 * Gen6: Provoking vertex convention for odd-numbered triangles 1134 * in tristrips. 1135 */ 1136 GLuint pv_first:1; 1137 1138 /** 1139 * Gen6: Number of varyings that are output to transform feedback. 1140 */ 1141 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */ 1142 1143 /** 1144 * Gen6: Map from the index of a transform feedback binding table entry to the 1145 * gl_varying_slot that should be streamed out through that binding table 1146 * entry. 1147 */ 1148 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */]; 1149 1150 /** 1151 * Gen6: Map from the index of a transform feedback binding table entry to the 1152 * swizzles that should be used when streaming out data through that 1153 * binding table entry. 1154 */ 1155 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */]; 1156}; 1157 1158struct brw_sf_prog_data { 1159 uint32_t urb_read_length; 1160 uint32_t total_grf; 1161 1162 /* Each vertex may have upto 12 attributes, 4 components each, 1163 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11 1164 * rows. 1165 * 1166 * Actually we use 4 for each, so call it 12 rows. 1167 */ 1168 unsigned urb_entry_size; 1169}; 1170 1171struct brw_clip_prog_data { 1172 uint32_t curb_read_length; /* user planes? */ 1173 uint32_t clip_mode; 1174 uint32_t urb_read_length; 1175 uint32_t total_grf; 1176}; 1177 1178/* brw_any_prog_data is prog_data for any stage that maps to an API stage */ 1179union brw_any_prog_data { 1180 struct brw_stage_prog_data base; 1181 struct brw_vue_prog_data vue; 1182 struct brw_vs_prog_data vs; 1183 struct brw_tcs_prog_data tcs; 1184 struct brw_tes_prog_data tes; 1185 struct brw_gs_prog_data gs; 1186 struct brw_wm_prog_data wm; 1187 struct brw_cs_prog_data cs; 1188}; 1189 1190#define DEFINE_PROG_DATA_DOWNCAST(stage) \ 1191static inline struct brw_##stage##_prog_data * \ 1192brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \ 1193{ \ 1194 return (struct brw_##stage##_prog_data *) prog_data; \ 1195} 1196DEFINE_PROG_DATA_DOWNCAST(vue) 1197DEFINE_PROG_DATA_DOWNCAST(vs) 1198DEFINE_PROG_DATA_DOWNCAST(tcs) 1199DEFINE_PROG_DATA_DOWNCAST(tes) 1200DEFINE_PROG_DATA_DOWNCAST(gs) 1201DEFINE_PROG_DATA_DOWNCAST(wm) 1202DEFINE_PROG_DATA_DOWNCAST(cs) 1203DEFINE_PROG_DATA_DOWNCAST(ff_gs) 1204DEFINE_PROG_DATA_DOWNCAST(clip) 1205DEFINE_PROG_DATA_DOWNCAST(sf) 1206#undef DEFINE_PROG_DATA_DOWNCAST 1207 1208/** @} */ 1209 1210struct brw_compiler * 1211brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo); 1212 1213/** 1214 * Returns a compiler configuration for use with disk shader cache 1215 * 1216 * This value only needs to change for settings that can cause different 1217 * program generation between two runs on the same hardware. 1218 * 1219 * For example, it doesn't need to be different for gen 8 and gen 9 hardware, 1220 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used. 1221 */ 1222uint64_t 1223brw_get_compiler_config_value(const struct brw_compiler *compiler); 1224 1225unsigned 1226brw_prog_data_size(gl_shader_stage stage); 1227 1228unsigned 1229brw_prog_key_size(gl_shader_stage stage); 1230 1231/** 1232 * Compile a vertex shader. 1233 * 1234 * Returns the final assembly and the program's size. 1235 */ 1236const unsigned * 1237brw_compile_vs(const struct brw_compiler *compiler, void *log_data, 1238 void *mem_ctx, 1239 const struct brw_vs_prog_key *key, 1240 struct brw_vs_prog_data *prog_data, 1241 const struct nir_shader *shader, 1242 int shader_time_index, 1243 char **error_str); 1244 1245/** 1246 * Compile a tessellation control shader. 1247 * 1248 * Returns the final assembly and the program's size. 1249 */ 1250const unsigned * 1251brw_compile_tcs(const struct brw_compiler *compiler, 1252 void *log_data, 1253 void *mem_ctx, 1254 const struct brw_tcs_prog_key *key, 1255 struct brw_tcs_prog_data *prog_data, 1256 const struct nir_shader *nir, 1257 int shader_time_index, 1258 char **error_str); 1259 1260/** 1261 * Compile a tessellation evaluation shader. 1262 * 1263 * Returns the final assembly and the program's size. 1264 */ 1265const unsigned * 1266brw_compile_tes(const struct brw_compiler *compiler, void *log_data, 1267 void *mem_ctx, 1268 const struct brw_tes_prog_key *key, 1269 const struct brw_vue_map *input_vue_map, 1270 struct brw_tes_prog_data *prog_data, 1271 const struct nir_shader *shader, 1272 struct gl_program *prog, 1273 int shader_time_index, 1274 char **error_str); 1275 1276/** 1277 * Compile a vertex shader. 1278 * 1279 * Returns the final assembly and the program's size. 1280 */ 1281const unsigned * 1282brw_compile_gs(const struct brw_compiler *compiler, void *log_data, 1283 void *mem_ctx, 1284 const struct brw_gs_prog_key *key, 1285 struct brw_gs_prog_data *prog_data, 1286 const struct nir_shader *shader, 1287 struct gl_program *prog, 1288 int shader_time_index, 1289 char **error_str); 1290 1291/** 1292 * Compile a strips and fans shader. 1293 * 1294 * This is a fixed-function shader determined entirely by the shader key and 1295 * a VUE map. 1296 * 1297 * Returns the final assembly and the program's size. 1298 */ 1299const unsigned * 1300brw_compile_sf(const struct brw_compiler *compiler, 1301 void *mem_ctx, 1302 const struct brw_sf_prog_key *key, 1303 struct brw_sf_prog_data *prog_data, 1304 struct brw_vue_map *vue_map, 1305 unsigned *final_assembly_size); 1306 1307/** 1308 * Compile a clipper shader. 1309 * 1310 * This is a fixed-function shader determined entirely by the shader key and 1311 * a VUE map. 1312 * 1313 * Returns the final assembly and the program's size. 1314 */ 1315const unsigned * 1316brw_compile_clip(const struct brw_compiler *compiler, 1317 void *mem_ctx, 1318 const struct brw_clip_prog_key *key, 1319 struct brw_clip_prog_data *prog_data, 1320 struct brw_vue_map *vue_map, 1321 unsigned *final_assembly_size); 1322 1323/** 1324 * Compile a fragment shader. 1325 * 1326 * Returns the final assembly and the program's size. 1327 */ 1328const unsigned * 1329brw_compile_fs(const struct brw_compiler *compiler, void *log_data, 1330 void *mem_ctx, 1331 const struct brw_wm_prog_key *key, 1332 struct brw_wm_prog_data *prog_data, 1333 const struct nir_shader *shader, 1334 struct gl_program *prog, 1335 int shader_time_index8, 1336 int shader_time_index16, 1337 int shader_time_index32, 1338 bool allow_spilling, 1339 bool use_rep_send, struct brw_vue_map *vue_map, 1340 char **error_str); 1341 1342/** 1343 * Compile a compute shader. 1344 * 1345 * Returns the final assembly and the program's size. 1346 */ 1347const unsigned * 1348brw_compile_cs(const struct brw_compiler *compiler, void *log_data, 1349 void *mem_ctx, 1350 const struct brw_cs_prog_key *key, 1351 struct brw_cs_prog_data *prog_data, 1352 const struct nir_shader *shader, 1353 int shader_time_index, 1354 char **error_str); 1355 1356static inline uint32_t 1357encode_slm_size(unsigned gen, uint32_t bytes) 1358{ 1359 uint32_t slm_size = 0; 1360 1361 /* Shared Local Memory is specified as powers of two, and encoded in 1362 * INTERFACE_DESCRIPTOR_DATA with the following representations: 1363 * 1364 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB | 1365 * ------------------------------------------------------------------- 1366 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 | 1367 * ------------------------------------------------------------------- 1368 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1369 */ 1370 assert(bytes <= 64 * 1024); 1371 1372 if (bytes > 0) { 1373 /* Shared Local Memory Size is specified as powers of two. */ 1374 slm_size = util_next_power_of_two(bytes); 1375 1376 if (gen >= 9) { 1377 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */ 1378 slm_size = ffs(MAX2(slm_size, 1024)) - 10; 1379 } else { 1380 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */ 1381 slm_size = MAX2(slm_size, 4096) / 4096; 1382 } 1383 } 1384 1385 return slm_size; 1386} 1387 1388/** 1389 * Return true if the given shader stage is dispatched contiguously by the 1390 * relevant fixed function starting from channel 0 of the SIMD thread, which 1391 * implies that the dispatch mask of a thread can be assumed to have the form 1392 * '2^n - 1' for some n. 1393 */ 1394static inline bool 1395brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo, 1396 gl_shader_stage stage, 1397 const struct brw_stage_prog_data *prog_data) 1398{ 1399 /* The code below makes assumptions about the hardware's thread dispatch 1400 * behavior that could be proven wrong in future generations -- Make sure 1401 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to 1402 * the NIR front-end before changing this assertion. 1403 */ 1404 assert(devinfo->gen <= 11); 1405 1406 switch (stage) { 1407 case MESA_SHADER_FRAGMENT: { 1408 /* The PSD discards subspans coming in with no lit samples, which in the 1409 * per-pixel shading case implies that each subspan will either be fully 1410 * lit (due to the VMask being used to allow derivative computations), 1411 * or not dispatched at all. In per-sample dispatch mode individual 1412 * samples from the same subspan have a fixed relative location within 1413 * the SIMD thread, so dispatch of unlit samples cannot be avoided in 1414 * general and we should return false. 1415 */ 1416 const struct brw_wm_prog_data *wm_prog_data = 1417 (const struct brw_wm_prog_data *)prog_data; 1418 return !wm_prog_data->persample_dispatch; 1419 } 1420 case MESA_SHADER_COMPUTE: 1421 /* Compute shaders will be spawned with either a fully enabled dispatch 1422 * mask or with whatever bottom/right execution mask was given to the 1423 * GPGPU walker command to be used along the workgroup edges -- In both 1424 * cases the dispatch mask is required to be tightly packed for our 1425 * invocation index calculations to work. 1426 */ 1427 return true; 1428 default: 1429 /* Most remaining fixed functions are limited to use a packed dispatch 1430 * mask due to the hardware representation of the dispatch mask as a 1431 * single counter representing the number of enabled channels. 1432 */ 1433 return true; 1434 } 1435} 1436 1437/** 1438 * Computes the first varying slot in the URB produced by the previous stage 1439 * that is used in the next stage. We do this by testing the varying slots in 1440 * the previous stage's vue map against the inputs read in the next stage. 1441 * 1442 * Note that: 1443 * 1444 * - Each URB offset contains two varying slots and we can only skip a 1445 * full offset if both slots are unused, so the value we return here is always 1446 * rounded down to the closest multiple of two. 1447 * 1448 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are 1449 * part of the vue header, so if these are read we can't skip anything. 1450 */ 1451static inline int 1452brw_compute_first_urb_slot_required(uint64_t inputs_read, 1453 const struct brw_vue_map *prev_stage_vue_map) 1454{ 1455 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) { 1456 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) { 1457 int varying = prev_stage_vue_map->slot_to_varying[i]; 1458 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0) 1459 return ROUND_DOWN_TO(i, 2); 1460 } 1461 } 1462 1463 return 0; 1464} 1465 1466#ifdef __cplusplus 1467} /* extern "C" */ 1468#endif 1469 1470#endif /* BRW_COMPILER_H */ 1471