brw_compiler.h revision 01e04c3f
1/*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#ifndef BRW_COMPILER_H
25#define BRW_COMPILER_H
26
27#include <stdio.h>
28#include "dev/gen_device_info.h"
29#include "main/macros.h"
30#include "main/mtypes.h"
31#include "util/ralloc.h"
32
33#ifdef __cplusplus
34extern "C" {
35#endif
36
37struct ra_regs;
38struct nir_shader;
39struct brw_program;
40
41struct brw_compiler {
42   const struct gen_device_info *devinfo;
43
44   struct {
45      struct ra_regs *regs;
46
47      /**
48       * Array of the ra classes for the unaligned contiguous register
49       * block sizes used.
50       */
51      int *classes;
52
53      /**
54       * Mapping for register-allocated objects in *regs to the first
55       * GRF for that object.
56       */
57      uint8_t *ra_reg_to_grf;
58   } vec4_reg_set;
59
60   struct {
61      struct ra_regs *regs;
62
63      /**
64       * Array of the ra classes for the unaligned contiguous register
65       * block sizes used, indexed by register size.
66       */
67      int classes[16];
68
69      /**
70       * Mapping from classes to ra_reg ranges.  Each of the per-size
71       * classes corresponds to a range of ra_reg nodes.  This array stores
72       * those ranges in the form of first ra_reg in each class and the
73       * total number of ra_reg elements in the last array element.  This
74       * way the range of the i'th class is given by:
75       * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76       */
77      int class_to_ra_reg_range[17];
78
79      /**
80       * Mapping for register-allocated objects in *regs to the first
81       * GRF for that object.
82       */
83      uint8_t *ra_reg_to_grf;
84
85      /**
86       * ra class for the aligned pairs we use for PLN, which doesn't
87       * appear in *classes.
88       */
89      int aligned_pairs_class;
90   } fs_reg_sets[3];
91
92   void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93   void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95   bool scalar_stage[MESA_SHADER_STAGES];
96   struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98   /**
99    * Apply workarounds for SIN and COS output range problems.
100    * This can negatively impact performance.
101    */
102   bool precise_trig;
103
104   /**
105    * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106    * Base Address?  (If not, it's a normal GPU address.)
107    */
108   bool constant_buffer_0_is_relative;
109
110   /**
111    * Whether or not the driver supports pull constants.  If not, the compiler
112    * will attempt to push everything.
113    */
114   bool supports_pull_constants;
115
116   /**
117    * Whether or not the driver supports NIR shader constants.  This controls
118    * whether nir_opt_large_constants will be run.
119    */
120   bool supports_shader_constants;
121};
122
123/**
124 * We use a constant subgroup size of 32.  It really only needs to be a
125 * maximum and, since we do SIMD32 for compute shaders in some cases, it
126 * needs to be at least 32.  SIMD8 and SIMD16 shaders will still claim a
127 * subgroup size of 32 but will act as if 16 or 24 of those channels are
128 * disabled.
129 */
130#define BRW_SUBGROUP_SIZE 32
131
132/**
133 * Program key structures.
134 *
135 * When drawing, we look for the currently bound shaders in the program
136 * cache.  This is essentially a hash table lookup, and these are the keys.
137 *
138 * Sometimes OpenGL features specified as state need to be simulated via
139 * shader code, due to a mismatch between the API and the hardware.  This
140 * is often referred to as "non-orthagonal state" or "NOS".  We store NOS
141 * in the program key so it's considered when searching for a program.  If
142 * we haven't seen a particular combination before, we have to recompile a
143 * new specialized version.
144 *
145 * Shader compilation should not look up state in gl_context directly, but
146 * instead use the copy in the program key.  This guarantees recompiles will
147 * happen correctly.
148 *
149 *  @{
150 */
151
152enum PACKED gen6_gather_sampler_wa {
153   WA_SIGN = 1,      /* whether we need to sign extend */
154   WA_8BIT = 2,      /* if we have an 8bit format needing wa */
155   WA_16BIT = 4,     /* if we have a 16bit format needing wa */
156};
157
158/**
159 * Sampler information needed by VS, WM, and GS program cache keys.
160 */
161struct brw_sampler_prog_key_data {
162   /**
163    * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
164    */
165   uint16_t swizzles[MAX_SAMPLERS];
166
167   uint32_t gl_clamp_mask[3];
168
169   /**
170    * For RG32F, gather4's channel select is broken.
171    */
172   uint32_t gather_channel_quirk_mask;
173
174   /**
175    * Whether this sampler uses the compressed multisample surface layout.
176    */
177   uint32_t compressed_multisample_layout_mask;
178
179   /**
180    * Whether this sampler is using 16x multisampling. If so fetching from
181    * this sampler will be handled with a different instruction, ld2dms_w
182    * instead of ld2dms.
183    */
184   uint32_t msaa_16;
185
186   /**
187    * For Sandybridge, which shader w/a we need for gather quirks.
188    */
189   enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
190
191   /**
192    * Texture units that have a YUV image bound.
193    */
194   uint32_t y_u_v_image_mask;
195   uint32_t y_uv_image_mask;
196   uint32_t yx_xuxv_image_mask;
197   uint32_t xy_uxvx_image_mask;
198};
199
200/**
201 * The VF can't natively handle certain types of attributes, such as GL_FIXED
202 * or most 10_10_10_2 types.  These flags enable various VS workarounds to
203 * "fix" attributes at the beginning of shaders.
204 */
205#define BRW_ATTRIB_WA_COMPONENT_MASK    7  /* mask for GL_FIXED scale channel count */
206#define BRW_ATTRIB_WA_NORMALIZE     8   /* normalize in shader */
207#define BRW_ATTRIB_WA_BGRA          16  /* swap r/b channels in shader */
208#define BRW_ATTRIB_WA_SIGN          32  /* interpret as signed in shader */
209#define BRW_ATTRIB_WA_SCALE         64  /* interpret as scaled in shader */
210
211/**
212 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
213 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
214 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
215 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
216 */
217#define MAX_GL_VERT_ATTRIB     VERT_ATTRIB_MAX
218#define MAX_VK_VERT_ATTRIB     (VERT_ATTRIB_GENERIC0 + 28)
219
220/** The program key for Vertex Shaders. */
221struct brw_vs_prog_key {
222   unsigned program_string_id;
223
224   /**
225    * Per-attribute workaround flags
226    *
227    * For each attribute, a combination of BRW_ATTRIB_WA_*.
228    *
229    * For OpenGL, where we expose a maximum of 16 user input atttributes
230    * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
231    * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
232    * expose up to 28 user input vertex attributes that are mapped to slots
233    * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
234    * enough to hold this many slots.
235    */
236   uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
237
238   bool copy_edgeflag:1;
239
240   bool clamp_vertex_color:1;
241
242   /**
243    * How many user clipping planes are being uploaded to the vertex shader as
244    * push constants.
245    *
246    * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
247    * clip distances.
248    */
249   unsigned nr_userclip_plane_consts:4;
250
251   /**
252    * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
253    * are going to be replaced with point coordinates (as a consequence of a
254    * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)).  Because
255    * our SF thread requires exact matching between VS outputs and FS inputs,
256    * these texture coordinates will need to be unconditionally included in
257    * the VUE, even if they aren't written by the vertex shader.
258    */
259   uint8_t point_coord_replace;
260
261   struct brw_sampler_prog_key_data tex;
262};
263
264/** The program key for Tessellation Control Shaders. */
265struct brw_tcs_prog_key
266{
267   unsigned program_string_id;
268
269   GLenum tes_primitive_mode;
270
271   unsigned input_vertices;
272
273   /** A bitfield of per-patch outputs written. */
274   uint32_t patch_outputs_written;
275
276   /** A bitfield of per-vertex outputs written. */
277   uint64_t outputs_written;
278
279   bool quads_workaround;
280
281   struct brw_sampler_prog_key_data tex;
282};
283
284/** The program key for Tessellation Evaluation Shaders. */
285struct brw_tes_prog_key
286{
287   unsigned program_string_id;
288
289   /** A bitfield of per-patch inputs read. */
290   uint32_t patch_inputs_read;
291
292   /** A bitfield of per-vertex inputs read. */
293   uint64_t inputs_read;
294
295   struct brw_sampler_prog_key_data tex;
296};
297
298/** The program key for Geometry Shaders. */
299struct brw_gs_prog_key
300{
301   unsigned program_string_id;
302
303   struct brw_sampler_prog_key_data tex;
304};
305
306enum brw_sf_primitive {
307   BRW_SF_PRIM_POINTS = 0,
308   BRW_SF_PRIM_LINES = 1,
309   BRW_SF_PRIM_TRIANGLES = 2,
310   BRW_SF_PRIM_UNFILLED_TRIS = 3,
311};
312
313struct brw_sf_prog_key {
314   uint64_t attrs;
315   bool contains_flat_varying;
316   unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
317   uint8_t point_sprite_coord_replace;
318   enum brw_sf_primitive primitive:2;
319   bool do_twoside_color:1;
320   bool frontface_ccw:1;
321   bool do_point_sprite:1;
322   bool do_point_coord:1;
323   bool sprite_origin_lower_left:1;
324   bool userclip_active:1;
325};
326
327enum brw_clip_mode {
328   BRW_CLIP_MODE_NORMAL             = 0,
329   BRW_CLIP_MODE_CLIP_ALL           = 1,
330   BRW_CLIP_MODE_CLIP_NON_REJECTED  = 2,
331   BRW_CLIP_MODE_REJECT_ALL         = 3,
332   BRW_CLIP_MODE_ACCEPT_ALL         = 4,
333   BRW_CLIP_MODE_KERNEL_CLIP        = 5,
334};
335
336enum brw_clip_fill_mode {
337   BRW_CLIP_FILL_MODE_LINE = 0,
338   BRW_CLIP_FILL_MODE_POINT = 1,
339   BRW_CLIP_FILL_MODE_FILL = 2,
340   BRW_CLIP_FILL_MODE_CULL = 3,
341};
342
343/* Note that if unfilled primitives are being emitted, we have to fix
344 * up polygon offset and flatshading at this point:
345 */
346struct brw_clip_prog_key {
347   uint64_t attrs;
348   bool contains_flat_varying;
349   bool contains_noperspective_varying;
350   unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
351   unsigned primitive:4;
352   unsigned nr_userclip:4;
353   bool pv_first:1;
354   bool do_unfilled:1;
355   enum brw_clip_fill_mode fill_cw:2;  /* includes cull information */
356   enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
357   bool offset_cw:1;
358   bool offset_ccw:1;
359   bool copy_bfc_cw:1;
360   bool copy_bfc_ccw:1;
361   enum brw_clip_mode clip_mode:3;
362
363   float offset_factor;
364   float offset_units;
365   float offset_clamp;
366};
367
368/* A big lookup table is used to figure out which and how many
369 * additional regs will inserted before the main payload in the WM
370 * program execution.  These mainly relate to depth and stencil
371 * processing and the early-depth-test optimization.
372 */
373enum brw_wm_iz_bits {
374   BRW_WM_IZ_PS_KILL_ALPHATEST_BIT     = 0x1,
375   BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT     = 0x2,
376   BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT    = 0x4,
377   BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT     = 0x8,
378   BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT  = 0x10,
379   BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT   = 0x20,
380   BRW_WM_IZ_BIT_MAX                   = 0x40
381};
382
383enum brw_wm_aa_enable {
384   BRW_WM_AA_NEVER,
385   BRW_WM_AA_SOMETIMES,
386   BRW_WM_AA_ALWAYS
387};
388
389/** The program key for Fragment/Pixel Shaders. */
390struct brw_wm_prog_key {
391   /* Some collection of BRW_WM_IZ_* */
392   uint8_t iz_lookup;
393   bool stats_wm:1;
394   bool flat_shade:1;
395   unsigned nr_color_regions:5;
396   bool replicate_alpha:1;
397   bool clamp_fragment_color:1;
398   bool persample_interp:1;
399   bool multisample_fbo:1;
400   bool frag_coord_adds_sample_pos:1;
401   enum brw_wm_aa_enable line_aa:2;
402   bool high_quality_derivatives:1;
403   bool force_dual_color_blend:1;
404   bool coherent_fb_fetch:1;
405
406   uint8_t color_outputs_valid;
407   uint64_t input_slots_valid;
408   unsigned program_string_id;
409   GLenum alpha_test_func;          /* < For Gen4/5 MRT alpha test */
410   float alpha_test_ref;
411
412   struct brw_sampler_prog_key_data tex;
413};
414
415struct brw_cs_prog_key {
416   uint32_t program_string_id;
417   struct brw_sampler_prog_key_data tex;
418};
419
420/* brw_any_prog_key is any of the keys that map to an API stage */
421union brw_any_prog_key {
422   struct brw_vs_prog_key vs;
423   struct brw_tcs_prog_key tcs;
424   struct brw_tes_prog_key tes;
425   struct brw_gs_prog_key gs;
426   struct brw_wm_prog_key wm;
427   struct brw_cs_prog_key cs;
428};
429
430/*
431 * Image metadata structure as laid out in the shader parameter
432 * buffer.  Entries have to be 16B-aligned for the vec4 back-end to be
433 * able to use them.  That's okay because the padding and any unused
434 * entries [most of them except when we're doing untyped surface
435 * access] will be removed by the uniform packing pass.
436 */
437#define BRW_IMAGE_PARAM_OFFSET_OFFSET           0
438#define BRW_IMAGE_PARAM_SIZE_OFFSET             4
439#define BRW_IMAGE_PARAM_STRIDE_OFFSET           8
440#define BRW_IMAGE_PARAM_TILING_OFFSET           12
441#define BRW_IMAGE_PARAM_SWIZZLING_OFFSET        16
442#define BRW_IMAGE_PARAM_SIZE                    20
443
444struct brw_image_param {
445   /** Offset applied to the X and Y surface coordinates. */
446   uint32_t offset[2];
447
448   /** Surface X, Y and Z dimensions. */
449   uint32_t size[3];
450
451   /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
452    * pixels, vertical slice stride in pixels.
453    */
454   uint32_t stride[4];
455
456   /** Log2 of the tiling modulus in the X, Y and Z dimension. */
457   uint32_t tiling[3];
458
459   /**
460    * Right shift to apply for bit 6 address swizzling.  Two different
461    * swizzles can be specified and will be applied one after the other.  The
462    * resulting address will be:
463    *
464    *  addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
465    *                              (addr >> swizzling[1])))
466    *
467    * Use \c 0xff if any of the swizzles is not required.
468    */
469   uint32_t swizzling[2];
470};
471
472/** Max number of render targets in a shader */
473#define BRW_MAX_DRAW_BUFFERS 8
474
475/**
476 * Max number of binding table entries used for stream output.
477 *
478 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
479 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
480 *
481 * On Gen6, the size of transform feedback data is limited not by the number
482 * of components but by the number of binding table entries we set aside.  We
483 * use one binding table entry for a float, one entry for a vector, and one
484 * entry per matrix column.  Since the only way we can communicate our
485 * transform feedback capabilities to the client is via
486 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
487 * worst case, in which all the varyings are floats, so we use up one binding
488 * table entry per component.  Therefore we need to set aside at least 64
489 * binding table entries for use by transform feedback.
490 *
491 * Note: since we don't currently pack varyings, it is currently impossible
492 * for the client to actually use up all of these binding table entries--if
493 * all of their varyings were floats, they would run out of varying slots and
494 * fail to link.  But that's a bug, so it seems prudent to go ahead and
495 * allocate the number of binding table entries we will need once the bug is
496 * fixed.
497 */
498#define BRW_MAX_SOL_BINDINGS 64
499
500/**
501 * Binding table index for the first gen6 SOL binding.
502 */
503#define BRW_GEN6_SOL_BINDING_START 0
504
505/**
506 * Stride in bytes between shader_time entries.
507 *
508 * We separate entries by a cacheline to reduce traffic between EUs writing to
509 * different entries.
510 */
511#define BRW_SHADER_TIME_STRIDE 64
512
513struct brw_ubo_range
514{
515   uint16_t block;
516   uint8_t start;
517   uint8_t length;
518};
519
520/* We reserve the first 2^16 values for builtins */
521#define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
522
523enum brw_param_builtin {
524   BRW_PARAM_BUILTIN_ZERO,
525
526   BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
527   BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
528   BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
529   BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
530   BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
531   BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
532   BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
533   BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
534   BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
535   BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
536   BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
537   BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
538   BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
539   BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
540   BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
541   BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
542   BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
543   BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
544   BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
545   BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
546   BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
547   BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
548   BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
549   BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
550   BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
551   BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
552   BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
553   BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
554   BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
555   BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
556   BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
557   BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
558
559   BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
560   BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
561   BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
562   BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
563   BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
564   BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
565
566   BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
567   BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
568   BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
569   BRW_PARAM_BUILTIN_SUBGROUP_ID,
570};
571
572#define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
573   (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
574
575#define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param)  \
576   ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
577    (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
578
579#define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
580   (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
581
582#define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
583   (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
584
585struct brw_stage_prog_data {
586   struct {
587      /** size of our binding table. */
588      uint32_t size_bytes;
589
590      /** @{
591       * surface indices for the various groups of surfaces
592       */
593      uint32_t pull_constants_start;
594      uint32_t texture_start;
595      uint32_t gather_texture_start;
596      uint32_t ubo_start;
597      uint32_t ssbo_start;
598      uint32_t image_start;
599      uint32_t shader_time_start;
600      uint32_t plane_start[3];
601      /** @} */
602   } binding_table;
603
604   struct brw_ubo_range ubo_ranges[4];
605
606   GLuint nr_params;       /**< number of float params/constants */
607   GLuint nr_pull_params;
608
609   unsigned curb_read_length;
610   unsigned total_scratch;
611   unsigned total_shared;
612
613   unsigned program_size;
614
615   /**
616    * Register where the thread expects to find input data from the URB
617    * (typically uniforms, followed by vertex or fragment attributes).
618    */
619   unsigned dispatch_grf_start_reg;
620
621   bool use_alt_mode; /**< Use ALT floating point mode?  Otherwise, IEEE. */
622
623   /* 32-bit identifiers for all push/pull parameters.  These can be anything
624    * the driver wishes them to be; the core of the back-end compiler simply
625    * re-arranges them.  The one restriction is that the bottom 2^16 values
626    * are reserved for builtins defined in the brw_param_builtin enum defined
627    * above.
628    */
629   uint32_t *param;
630   uint32_t *pull_param;
631};
632
633static inline uint32_t *
634brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
635                               unsigned nr_new_params)
636{
637   unsigned old_nr_params = prog_data->nr_params;
638   prog_data->nr_params += nr_new_params;
639   prog_data->param = reralloc(ralloc_parent(prog_data->param),
640                               prog_data->param, uint32_t,
641                               prog_data->nr_params);
642   return prog_data->param + old_nr_params;
643}
644
645static inline void
646brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
647                      unsigned surf_index)
648{
649   /* A binding table index is 8 bits and the top 3 values are reserved for
650    * special things (stateless and SLM).
651    */
652   assert(surf_index <= 252);
653
654   prog_data->binding_table.size_bytes =
655      MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
656}
657
658enum brw_barycentric_mode {
659   BRW_BARYCENTRIC_PERSPECTIVE_PIXEL       = 0,
660   BRW_BARYCENTRIC_PERSPECTIVE_CENTROID    = 1,
661   BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE      = 2,
662   BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL    = 3,
663   BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
664   BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE   = 5,
665   BRW_BARYCENTRIC_MODE_COUNT              = 6
666};
667#define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
668   ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
669    (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
670    (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
671
672enum brw_pixel_shader_computed_depth_mode {
673   BRW_PSCDEPTH_OFF   = 0, /* PS does not compute depth */
674   BRW_PSCDEPTH_ON    = 1, /* PS computes depth; no guarantee about value */
675   BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
676   BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
677};
678
679/* Data about a particular attempt to compile a program.  Note that
680 * there can be many of these, each in a different GL state
681 * corresponding to a different brw_wm_prog_key struct, with different
682 * compiled programs.
683 */
684struct brw_wm_prog_data {
685   struct brw_stage_prog_data base;
686
687   GLuint num_varying_inputs;
688
689   uint8_t reg_blocks_8;
690   uint8_t reg_blocks_16;
691   uint8_t reg_blocks_32;
692
693   uint8_t dispatch_grf_start_reg_16;
694   uint8_t dispatch_grf_start_reg_32;
695   uint32_t prog_offset_16;
696   uint32_t prog_offset_32;
697
698   struct {
699      /** @{
700       * surface indices the WM-specific surfaces
701       */
702      uint32_t render_target_read_start;
703      /** @} */
704   } binding_table;
705
706   uint8_t computed_depth_mode;
707   bool computed_stencil;
708
709   bool early_fragment_tests;
710   bool post_depth_coverage;
711   bool inner_coverage;
712   bool dispatch_8;
713   bool dispatch_16;
714   bool dispatch_32;
715   bool dual_src_blend;
716   bool persample_dispatch;
717   bool uses_pos_offset;
718   bool uses_omask;
719   bool uses_kill;
720   bool uses_src_depth;
721   bool uses_src_w;
722   bool uses_sample_mask;
723   bool has_render_target_reads;
724   bool has_side_effects;
725   bool pulls_bary;
726
727   bool contains_flat_varying;
728   bool contains_noperspective_varying;
729
730   /**
731    * Mask of which interpolation modes are required by the fragment shader.
732    * Used in hardware setup on gen6+.
733    */
734   uint32_t barycentric_interp_modes;
735
736   /**
737    * Mask of which FS inputs are marked flat by the shader source.  This is
738    * needed for setting up 3DSTATE_SF/SBE.
739    */
740   uint32_t flat_inputs;
741
742   /* Mapping of VUE slots to interpolation modes.
743    * Used by the Gen4-5 clip/sf/wm stages.
744    */
745   unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
746
747   /**
748    * Map from gl_varying_slot to the position within the FS setup data
749    * payload where the varying's attribute vertex deltas should be delivered.
750    * For varying slots that are not used by the FS, the value is -1.
751    */
752   int urb_setup[VARYING_SLOT_MAX];
753};
754
755/** Returns the SIMD width corresponding to a given KSP index
756 *
757 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
758 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
759 * kernel start pointer (KSP) indices that is based on what dispatch widths
760 * are enabled.  This function provides, effectively, the reverse mapping.
761 *
762 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
763 * width of 8, 16, or 32 is returned.  If the KSP is invalid, 0 is returned.
764 */
765static inline unsigned
766brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
767                          bool simd16_enabled, bool simd32_enabled)
768{
769   /* This function strictly ignores contiguous dispatch */
770   switch (ksp_idx) {
771   case 0:
772      return simd8_enabled ? 8 :
773             (simd16_enabled && !simd32_enabled) ? 16 :
774             (simd32_enabled && !simd16_enabled) ? 32 : 0;
775   case 1:
776      return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
777   case 2:
778      return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
779   default:
780      unreachable("Invalid KSP index");
781   }
782}
783
784#define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
785   brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
786                             (wm_state)._16PixelDispatchEnable, \
787                             (wm_state)._32PixelDispatchEnable)
788
789#define brw_wm_state_has_ksp(wm_state, ksp_idx) \
790   (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
791
792static inline uint32_t
793_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
794                              unsigned simd_width)
795{
796   switch (simd_width) {
797   case 8: return 0;
798   case 16: return prog_data->prog_offset_16;
799   case 32: return prog_data->prog_offset_32;
800   default: return 0;
801   }
802}
803
804#define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
805   _brw_wm_prog_data_prog_offset(prog_data, \
806      brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
807
808static inline uint8_t
809_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
810                                         unsigned simd_width)
811{
812   switch (simd_width) {
813   case 8: return prog_data->base.dispatch_grf_start_reg;
814   case 16: return prog_data->dispatch_grf_start_reg_16;
815   case 32: return prog_data->dispatch_grf_start_reg_32;
816   default: return 0;
817   }
818}
819
820#define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
821   _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
822      brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
823
824static inline uint8_t
825_brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
826                             unsigned simd_width)
827{
828   switch (simd_width) {
829   case 8: return prog_data->reg_blocks_8;
830   case 16: return prog_data->reg_blocks_16;
831   case 32: return prog_data->reg_blocks_32;
832   default: return 0;
833   }
834}
835
836#define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
837   _brw_wm_prog_data_reg_blocks(prog_data, \
838      brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
839
840struct brw_push_const_block {
841   unsigned dwords;     /* Dword count, not reg aligned */
842   unsigned regs;
843   unsigned size;       /* Bytes, register aligned */
844};
845
846struct brw_cs_prog_data {
847   struct brw_stage_prog_data base;
848
849   unsigned local_size[3];
850   unsigned simd_size;
851   unsigned threads;
852   bool uses_barrier;
853   bool uses_num_work_groups;
854
855   struct {
856      struct brw_push_const_block cross_thread;
857      struct brw_push_const_block per_thread;
858      struct brw_push_const_block total;
859   } push;
860
861   struct {
862      /** @{
863       * surface indices the CS-specific surfaces
864       */
865      uint32_t work_groups_start;
866      /** @} */
867   } binding_table;
868};
869
870/**
871 * Enum representing the i965-specific vertex results that don't correspond
872 * exactly to any element of gl_varying_slot.  The values of this enum are
873 * assigned such that they don't conflict with gl_varying_slot.
874 */
875typedef enum
876{
877   BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
878   BRW_VARYING_SLOT_PAD,
879   /**
880    * Technically this is not a varying but just a placeholder that
881    * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
882    * builtin variable to be compiled correctly. see compile_sf_prog() for
883    * more info.
884    */
885   BRW_VARYING_SLOT_PNTC,
886   BRW_VARYING_SLOT_COUNT
887} brw_varying_slot;
888
889/**
890 * We always program SF to start reading at an offset of 1 (2 varying slots)
891 * from the start of the vertex URB entry.  This causes it to skip:
892 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
893 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
894 */
895#define BRW_SF_URB_ENTRY_READ_OFFSET 1
896
897/**
898 * Bitmask indicating which fragment shader inputs represent varyings (and
899 * hence have to be delivered to the fragment shader by the SF/SBE stage).
900 */
901#define BRW_FS_VARYING_INPUT_MASK \
902   (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
903    ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
904
905/**
906 * Data structure recording the relationship between the gl_varying_slot enum
907 * and "slots" within the vertex URB entry (VUE).  A "slot" is defined as a
908 * single octaword within the VUE (128 bits).
909 *
910 * Note that each BRW register contains 256 bits (2 octawords), so when
911 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
912 * consecutive VUE slots.  When accessing the VUE in URB_INTERLEAVED mode (as
913 * in a vertex shader), each register corresponds to a single VUE slot, since
914 * it contains data for two separate vertices.
915 */
916struct brw_vue_map {
917   /**
918    * Bitfield representing all varying slots that are (a) stored in this VUE
919    * map, and (b) actually written by the shader.  Does not include any of
920    * the additional varying slots defined in brw_varying_slot.
921    */
922   uint64_t slots_valid;
923
924   /**
925    * Is this VUE map for a separate shader pipeline?
926    *
927    * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
928    * without the linker having a chance to dead code eliminate unused varyings.
929    *
930    * This means that we have to use a fixed slot layout, based on the output's
931    * location field, rather than assigning slots in a compact contiguous block.
932    */
933   bool separate;
934
935   /**
936    * Map from gl_varying_slot value to VUE slot.  For gl_varying_slots that are
937    * not stored in a slot (because they are not written, or because
938    * additional processing is applied before storing them in the VUE), the
939    * value is -1.
940    */
941   signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
942
943   /**
944    * Map from VUE slot to gl_varying_slot value.  For slots that do not
945    * directly correspond to a gl_varying_slot, the value comes from
946    * brw_varying_slot.
947    *
948    * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
949    */
950   signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
951
952   /**
953    * Total number of VUE slots in use
954    */
955   int num_slots;
956
957   /**
958    * Number of per-patch VUE slots. Only valid for tessellation control
959    * shader outputs and tessellation evaluation shader inputs.
960    */
961   int num_per_patch_slots;
962
963   /**
964    * Number of per-vertex VUE slots. Only valid for tessellation control
965    * shader outputs and tessellation evaluation shader inputs.
966    */
967   int num_per_vertex_slots;
968};
969
970void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
971
972/**
973 * Convert a VUE slot number into a byte offset within the VUE.
974 */
975static inline GLuint brw_vue_slot_to_offset(GLuint slot)
976{
977   return 16*slot;
978}
979
980/**
981 * Convert a vertex output (brw_varying_slot) into a byte offset within the
982 * VUE.
983 */
984static inline
985GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
986{
987   return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
988}
989
990void brw_compute_vue_map(const struct gen_device_info *devinfo,
991                         struct brw_vue_map *vue_map,
992                         uint64_t slots_valid,
993                         bool separate_shader);
994
995void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
996                              uint64_t slots_valid,
997                              uint32_t is_patch);
998
999/* brw_interpolation_map.c */
1000void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1001                                 struct nir_shader *nir,
1002                                 struct brw_wm_prog_data *prog_data,
1003                                 const struct gen_device_info *devinfo);
1004
1005enum shader_dispatch_mode {
1006   DISPATCH_MODE_4X1_SINGLE = 0,
1007   DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1008   DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1009   DISPATCH_MODE_SIMD8 = 3,
1010};
1011
1012/**
1013 * @defgroup Tessellator parameter enumerations.
1014 *
1015 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1016 * as part of the tessellation evaluation shader.
1017 *
1018 * @{
1019 */
1020enum brw_tess_partitioning {
1021   BRW_TESS_PARTITIONING_INTEGER         = 0,
1022   BRW_TESS_PARTITIONING_ODD_FRACTIONAL  = 1,
1023   BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1024};
1025
1026enum brw_tess_output_topology {
1027   BRW_TESS_OUTPUT_TOPOLOGY_POINT   = 0,
1028   BRW_TESS_OUTPUT_TOPOLOGY_LINE    = 1,
1029   BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW  = 2,
1030   BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1031};
1032
1033enum brw_tess_domain {
1034   BRW_TESS_DOMAIN_QUAD    = 0,
1035   BRW_TESS_DOMAIN_TRI     = 1,
1036   BRW_TESS_DOMAIN_ISOLINE = 2,
1037};
1038/** @} */
1039
1040struct brw_vue_prog_data {
1041   struct brw_stage_prog_data base;
1042   struct brw_vue_map vue_map;
1043
1044   /** Should the hardware deliver input VUE handles for URB pull loads? */
1045   bool include_vue_handles;
1046
1047   GLuint urb_read_length;
1048   GLuint total_grf;
1049
1050   uint32_t clip_distance_mask;
1051   uint32_t cull_distance_mask;
1052
1053   /* Used for calculating urb partitions.  In the VS, this is the size of the
1054    * URB entry used for both input and output to the thread.  In the GS, this
1055    * is the size of the URB entry used for output.
1056    */
1057   GLuint urb_entry_size;
1058
1059   enum shader_dispatch_mode dispatch_mode;
1060};
1061
1062struct brw_vs_prog_data {
1063   struct brw_vue_prog_data base;
1064
1065   GLbitfield64 inputs_read;
1066   GLbitfield64 double_inputs_read;
1067
1068   unsigned nr_attribute_slots;
1069
1070   bool uses_vertexid;
1071   bool uses_instanceid;
1072   bool uses_is_indexed_draw;
1073   bool uses_firstvertex;
1074   bool uses_baseinstance;
1075   bool uses_drawid;
1076};
1077
1078struct brw_tcs_prog_data
1079{
1080   struct brw_vue_prog_data base;
1081
1082   /** Number vertices in output patch */
1083   int instances;
1084};
1085
1086
1087struct brw_tes_prog_data
1088{
1089   struct brw_vue_prog_data base;
1090
1091   enum brw_tess_partitioning partitioning;
1092   enum brw_tess_output_topology output_topology;
1093   enum brw_tess_domain domain;
1094};
1095
1096struct brw_gs_prog_data
1097{
1098   struct brw_vue_prog_data base;
1099
1100   unsigned vertices_in;
1101
1102   /**
1103    * Size of an output vertex, measured in HWORDS (32 bytes).
1104    */
1105   unsigned output_vertex_size_hwords;
1106
1107   unsigned output_topology;
1108
1109   /**
1110    * Size of the control data (cut bits or StreamID bits), in hwords (32
1111    * bytes).  0 if there is no control data.
1112    */
1113   unsigned control_data_header_size_hwords;
1114
1115   /**
1116    * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1117    * if the control data is StreamID bits, or
1118    * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1119    * Ignored if control_data_header_size is 0.
1120    */
1121   unsigned control_data_format;
1122
1123   bool include_primitive_id;
1124
1125   /**
1126    * The number of vertices emitted, if constant - otherwise -1.
1127    */
1128   int static_vertex_count;
1129
1130   int invocations;
1131
1132   /**
1133    * Gen6: Provoking vertex convention for odd-numbered triangles
1134    * in tristrips.
1135    */
1136   GLuint pv_first:1;
1137
1138   /**
1139    * Gen6: Number of varyings that are output to transform feedback.
1140    */
1141   GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1142
1143   /**
1144    * Gen6: Map from the index of a transform feedback binding table entry to the
1145    * gl_varying_slot that should be streamed out through that binding table
1146    * entry.
1147    */
1148   unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1149
1150   /**
1151    * Gen6: Map from the index of a transform feedback binding table entry to the
1152    * swizzles that should be used when streaming out data through that
1153    * binding table entry.
1154    */
1155   unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1156};
1157
1158struct brw_sf_prog_data {
1159   uint32_t urb_read_length;
1160   uint32_t total_grf;
1161
1162   /* Each vertex may have upto 12 attributes, 4 components each,
1163    * except WPOS which requires only 2.  (11*4 + 2) == 44 ==> 11
1164    * rows.
1165    *
1166    * Actually we use 4 for each, so call it 12 rows.
1167    */
1168   unsigned urb_entry_size;
1169};
1170
1171struct brw_clip_prog_data {
1172   uint32_t curb_read_length;	/* user planes? */
1173   uint32_t clip_mode;
1174   uint32_t urb_read_length;
1175   uint32_t total_grf;
1176};
1177
1178/* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1179union brw_any_prog_data {
1180   struct brw_stage_prog_data base;
1181   struct brw_vue_prog_data vue;
1182   struct brw_vs_prog_data vs;
1183   struct brw_tcs_prog_data tcs;
1184   struct brw_tes_prog_data tes;
1185   struct brw_gs_prog_data gs;
1186   struct brw_wm_prog_data wm;
1187   struct brw_cs_prog_data cs;
1188};
1189
1190#define DEFINE_PROG_DATA_DOWNCAST(stage)                       \
1191static inline struct brw_##stage##_prog_data *                 \
1192brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1193{                                                              \
1194   return (struct brw_##stage##_prog_data *) prog_data;        \
1195}
1196DEFINE_PROG_DATA_DOWNCAST(vue)
1197DEFINE_PROG_DATA_DOWNCAST(vs)
1198DEFINE_PROG_DATA_DOWNCAST(tcs)
1199DEFINE_PROG_DATA_DOWNCAST(tes)
1200DEFINE_PROG_DATA_DOWNCAST(gs)
1201DEFINE_PROG_DATA_DOWNCAST(wm)
1202DEFINE_PROG_DATA_DOWNCAST(cs)
1203DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1204DEFINE_PROG_DATA_DOWNCAST(clip)
1205DEFINE_PROG_DATA_DOWNCAST(sf)
1206#undef DEFINE_PROG_DATA_DOWNCAST
1207
1208/** @} */
1209
1210struct brw_compiler *
1211brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1212
1213/**
1214 * Returns a compiler configuration for use with disk shader cache
1215 *
1216 * This value only needs to change for settings that can cause different
1217 * program generation between two runs on the same hardware.
1218 *
1219 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1220 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1221 */
1222uint64_t
1223brw_get_compiler_config_value(const struct brw_compiler *compiler);
1224
1225unsigned
1226brw_prog_data_size(gl_shader_stage stage);
1227
1228unsigned
1229brw_prog_key_size(gl_shader_stage stage);
1230
1231/**
1232 * Compile a vertex shader.
1233 *
1234 * Returns the final assembly and the program's size.
1235 */
1236const unsigned *
1237brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1238               void *mem_ctx,
1239               const struct brw_vs_prog_key *key,
1240               struct brw_vs_prog_data *prog_data,
1241               const struct nir_shader *shader,
1242               int shader_time_index,
1243               char **error_str);
1244
1245/**
1246 * Compile a tessellation control shader.
1247 *
1248 * Returns the final assembly and the program's size.
1249 */
1250const unsigned *
1251brw_compile_tcs(const struct brw_compiler *compiler,
1252                void *log_data,
1253                void *mem_ctx,
1254                const struct brw_tcs_prog_key *key,
1255                struct brw_tcs_prog_data *prog_data,
1256                const struct nir_shader *nir,
1257                int shader_time_index,
1258                char **error_str);
1259
1260/**
1261 * Compile a tessellation evaluation shader.
1262 *
1263 * Returns the final assembly and the program's size.
1264 */
1265const unsigned *
1266brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1267                void *mem_ctx,
1268                const struct brw_tes_prog_key *key,
1269                const struct brw_vue_map *input_vue_map,
1270                struct brw_tes_prog_data *prog_data,
1271                const struct nir_shader *shader,
1272                struct gl_program *prog,
1273                int shader_time_index,
1274                char **error_str);
1275
1276/**
1277 * Compile a vertex shader.
1278 *
1279 * Returns the final assembly and the program's size.
1280 */
1281const unsigned *
1282brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1283               void *mem_ctx,
1284               const struct brw_gs_prog_key *key,
1285               struct brw_gs_prog_data *prog_data,
1286               const struct nir_shader *shader,
1287               struct gl_program *prog,
1288               int shader_time_index,
1289               char **error_str);
1290
1291/**
1292 * Compile a strips and fans shader.
1293 *
1294 * This is a fixed-function shader determined entirely by the shader key and
1295 * a VUE map.
1296 *
1297 * Returns the final assembly and the program's size.
1298 */
1299const unsigned *
1300brw_compile_sf(const struct brw_compiler *compiler,
1301               void *mem_ctx,
1302               const struct brw_sf_prog_key *key,
1303               struct brw_sf_prog_data *prog_data,
1304               struct brw_vue_map *vue_map,
1305               unsigned *final_assembly_size);
1306
1307/**
1308 * Compile a clipper shader.
1309 *
1310 * This is a fixed-function shader determined entirely by the shader key and
1311 * a VUE map.
1312 *
1313 * Returns the final assembly and the program's size.
1314 */
1315const unsigned *
1316brw_compile_clip(const struct brw_compiler *compiler,
1317                 void *mem_ctx,
1318                 const struct brw_clip_prog_key *key,
1319                 struct brw_clip_prog_data *prog_data,
1320                 struct brw_vue_map *vue_map,
1321                 unsigned *final_assembly_size);
1322
1323/**
1324 * Compile a fragment shader.
1325 *
1326 * Returns the final assembly and the program's size.
1327 */
1328const unsigned *
1329brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1330               void *mem_ctx,
1331               const struct brw_wm_prog_key *key,
1332               struct brw_wm_prog_data *prog_data,
1333               const struct nir_shader *shader,
1334               struct gl_program *prog,
1335               int shader_time_index8,
1336               int shader_time_index16,
1337               int shader_time_index32,
1338               bool allow_spilling,
1339               bool use_rep_send, struct brw_vue_map *vue_map,
1340               char **error_str);
1341
1342/**
1343 * Compile a compute shader.
1344 *
1345 * Returns the final assembly and the program's size.
1346 */
1347const unsigned *
1348brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1349               void *mem_ctx,
1350               const struct brw_cs_prog_key *key,
1351               struct brw_cs_prog_data *prog_data,
1352               const struct nir_shader *shader,
1353               int shader_time_index,
1354               char **error_str);
1355
1356static inline uint32_t
1357encode_slm_size(unsigned gen, uint32_t bytes)
1358{
1359   uint32_t slm_size = 0;
1360
1361   /* Shared Local Memory is specified as powers of two, and encoded in
1362    * INTERFACE_DESCRIPTOR_DATA with the following representations:
1363    *
1364    * Size   | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1365    * -------------------------------------------------------------------
1366    * Gen7-8 |    0 | none | none |    1 |    2 |     4 |     8 |    16 |
1367    * -------------------------------------------------------------------
1368    * Gen9+  |    0 |    1 |    2 |    3 |    4 |     5 |     6 |     7 |
1369    */
1370   assert(bytes <= 64 * 1024);
1371
1372   if (bytes > 0) {
1373      /* Shared Local Memory Size is specified as powers of two. */
1374      slm_size = util_next_power_of_two(bytes);
1375
1376      if (gen >= 9) {
1377         /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1378         slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1379      } else {
1380         /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1381         slm_size = MAX2(slm_size, 4096) / 4096;
1382      }
1383   }
1384
1385   return slm_size;
1386}
1387
1388/**
1389 * Return true if the given shader stage is dispatched contiguously by the
1390 * relevant fixed function starting from channel 0 of the SIMD thread, which
1391 * implies that the dispatch mask of a thread can be assumed to have the form
1392 * '2^n - 1' for some n.
1393 */
1394static inline bool
1395brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1396                              gl_shader_stage stage,
1397                              const struct brw_stage_prog_data *prog_data)
1398{
1399   /* The code below makes assumptions about the hardware's thread dispatch
1400    * behavior that could be proven wrong in future generations -- Make sure
1401    * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1402    * the NIR front-end before changing this assertion.
1403    */
1404   assert(devinfo->gen <= 11);
1405
1406   switch (stage) {
1407   case MESA_SHADER_FRAGMENT: {
1408      /* The PSD discards subspans coming in with no lit samples, which in the
1409       * per-pixel shading case implies that each subspan will either be fully
1410       * lit (due to the VMask being used to allow derivative computations),
1411       * or not dispatched at all.  In per-sample dispatch mode individual
1412       * samples from the same subspan have a fixed relative location within
1413       * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1414       * general and we should return false.
1415       */
1416      const struct brw_wm_prog_data *wm_prog_data =
1417         (const struct brw_wm_prog_data *)prog_data;
1418      return !wm_prog_data->persample_dispatch;
1419   }
1420   case MESA_SHADER_COMPUTE:
1421      /* Compute shaders will be spawned with either a fully enabled dispatch
1422       * mask or with whatever bottom/right execution mask was given to the
1423       * GPGPU walker command to be used along the workgroup edges -- In both
1424       * cases the dispatch mask is required to be tightly packed for our
1425       * invocation index calculations to work.
1426       */
1427      return true;
1428   default:
1429      /* Most remaining fixed functions are limited to use a packed dispatch
1430       * mask due to the hardware representation of the dispatch mask as a
1431       * single counter representing the number of enabled channels.
1432       */
1433      return true;
1434   }
1435}
1436
1437/**
1438 * Computes the first varying slot in the URB produced by the previous stage
1439 * that is used in the next stage. We do this by testing the varying slots in
1440 * the previous stage's vue map against the inputs read in the next stage.
1441 *
1442 * Note that:
1443 *
1444 * - Each URB offset contains two varying slots and we can only skip a
1445 *   full offset if both slots are unused, so the value we return here is always
1446 *   rounded down to the closest multiple of two.
1447 *
1448 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1449 *   part of the vue header, so if these are read we can't skip anything.
1450 */
1451static inline int
1452brw_compute_first_urb_slot_required(uint64_t inputs_read,
1453                                    const struct brw_vue_map *prev_stage_vue_map)
1454{
1455   if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1456      for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1457         int varying = prev_stage_vue_map->slot_to_varying[i];
1458         if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1459            return ROUND_DOWN_TO(i, 2);
1460      }
1461   }
1462
1463   return 0;
1464}
1465
1466#ifdef __cplusplus
1467} /* extern "C" */
1468#endif
1469
1470#endif /* BRW_COMPILER_H */
1471