1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_copy_propagation.cpp
25 *
26 * Support for global copy propagation in two passes: A local pass that does
27 * intra-block copy (and constant) propagation, and a global pass that uses
28 * dataflow analysis on the copies available at the end of each block to re-do
29 * local copy propagation with more copies available.
30 *
31 * See Muchnick's Advanced Compiler Design and Implementation, section
32 * 12.5 (p356).
33 */
34
35#define ACP_HASH_SIZE 64
36
37#include "util/bitset.h"
38#include "util/u_math.h"
39#include "brw_fs.h"
40#include "brw_fs_live_variables.h"
41#include "brw_cfg.h"
42#include "brw_eu.h"
43
44using namespace brw;
45
46namespace { /* avoid conflict with opt_copy_propagation_elements */
47struct acp_entry : public exec_node {
48   fs_reg dst;
49   fs_reg src;
50   unsigned global_idx;
51   unsigned size_written;
52   unsigned size_read;
53   enum opcode opcode;
54   bool saturate;
55   bool is_partial_write;
56};
57
58struct block_data {
59   /**
60    * Which entries in the fs_copy_prop_dataflow acp table are live at the
61    * start of this block.  This is the useful output of the analysis, since
62    * it lets us plug those into the local copy propagation on the second
63    * pass.
64    */
65   BITSET_WORD *livein;
66
67   /**
68    * Which entries in the fs_copy_prop_dataflow acp table are live at the end
69    * of this block.  This is done in initial setup from the per-block acps
70    * returned by the first local copy prop pass.
71    */
72   BITSET_WORD *liveout;
73
74   /**
75    * Which entries in the fs_copy_prop_dataflow acp table are generated by
76    * instructions in this block which reach the end of the block without
77    * being killed.
78    */
79   BITSET_WORD *copy;
80
81   /**
82    * Which entries in the fs_copy_prop_dataflow acp table are killed over the
83    * course of this block.
84    */
85   BITSET_WORD *kill;
86
87   /**
88    * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to
89    * have a fully uninitialized destination at the end of this block.
90    */
91   BITSET_WORD *undef;
92};
93
94class fs_copy_prop_dataflow
95{
96public:
97   fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
98                         const fs_live_variables &live,
99                         exec_list *out_acp[ACP_HASH_SIZE]);
100
101   void setup_initial_values();
102   void run();
103
104   void dump_block_data() const UNUSED;
105
106   void *mem_ctx;
107   cfg_t *cfg;
108   const fs_live_variables &live;
109
110   acp_entry **acp;
111   int num_acp;
112   int bitset_words;
113
114  struct block_data *bd;
115};
116} /* anonymous namespace */
117
118fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
119                                             const fs_live_variables &live,
120                                             exec_list *out_acp[ACP_HASH_SIZE])
121   : mem_ctx(mem_ctx), cfg(cfg), live(live)
122{
123   bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
124
125   num_acp = 0;
126   foreach_block (block, cfg) {
127      for (int i = 0; i < ACP_HASH_SIZE; i++) {
128         num_acp += out_acp[block->num][i].length();
129      }
130   }
131
132   acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
133
134   bitset_words = BITSET_WORDS(num_acp);
135
136   int next_acp = 0;
137   foreach_block (block, cfg) {
138      bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
139      bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
140      bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
141      bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
142      bd[block->num].undef = rzalloc_array(bd, BITSET_WORD, bitset_words);
143
144      for (int i = 0; i < ACP_HASH_SIZE; i++) {
145         foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
146            acp[next_acp] = entry;
147
148            entry->global_idx = next_acp;
149
150            /* opt_copy_propagation_local populates out_acp with copies created
151             * in a block which are still live at the end of the block.  This
152             * is exactly what we want in the COPY set.
153             */
154            BITSET_SET(bd[block->num].copy, next_acp);
155
156            next_acp++;
157         }
158      }
159   }
160
161   assert(next_acp == num_acp);
162
163   setup_initial_values();
164   run();
165}
166
167/**
168 * Set up initial values for each of the data flow sets, prior to running
169 * the fixed-point algorithm.
170 */
171void
172fs_copy_prop_dataflow::setup_initial_values()
173{
174   /* Initialize the COPY and KILL sets. */
175   {
176      /* Create a temporary table of ACP entries which we'll use for efficient
177       * look-up.  Unfortunately, we have to do this in two steps because we
178       * have to match both sources and destinations and an ACP entry can only
179       * be in one list at a time.
180       *
181       * We choose to make the table size between num_acp/2 and num_acp/4 to
182       * try and trade off between the time it takes to initialize the table
183       * via exec_list constructors or make_empty() and the cost of
184       * collisions.  In practice, it doesn't appear to matter too much what
185       * size we make the table as long as it's roughly the same order of
186       * magnitude as num_acp.  We get most of the benefit of the table
187       * approach even if we use a table of size ACP_HASH_SIZE though a
188       * full-sized table is 1-2% faster in practice.
189       */
190      unsigned acp_table_size = util_next_power_of_two(num_acp) / 4;
191      acp_table_size = MAX2(acp_table_size, ACP_HASH_SIZE);
192      exec_list *acp_table = new exec_list[acp_table_size];
193
194      /* First, get all the KILLs for instructions which overwrite ACP
195       * destinations.
196       */
197      for (int i = 0; i < num_acp; i++) {
198         unsigned idx = reg_space(acp[i]->dst) & (acp_table_size - 1);
199         acp_table[idx].push_tail(acp[i]);
200      }
201
202      foreach_block (block, cfg) {
203         foreach_inst_in_block(fs_inst, inst, block) {
204            if (inst->dst.file != VGRF)
205               continue;
206
207            unsigned idx = reg_space(inst->dst) & (acp_table_size - 1);
208            foreach_in_list(acp_entry, entry, &acp_table[idx]) {
209               if (regions_overlap(inst->dst, inst->size_written,
210                                   entry->dst, entry->size_written))
211                  BITSET_SET(bd[block->num].kill, entry->global_idx);
212            }
213         }
214      }
215
216      /* Clear the table for the second pass */
217      for (unsigned i = 0; i < acp_table_size; i++)
218         acp_table[i].make_empty();
219
220      /* Next, get all the KILLs for instructions which overwrite ACP
221       * sources.
222       */
223      for (int i = 0; i < num_acp; i++) {
224         unsigned idx = reg_space(acp[i]->src) & (acp_table_size - 1);
225         acp_table[idx].push_tail(acp[i]);
226      }
227
228      foreach_block (block, cfg) {
229         foreach_inst_in_block(fs_inst, inst, block) {
230            if (inst->dst.file != VGRF &&
231                inst->dst.file != FIXED_GRF)
232               continue;
233
234            unsigned idx = reg_space(inst->dst) & (acp_table_size - 1);
235            foreach_in_list(acp_entry, entry, &acp_table[idx]) {
236               if (regions_overlap(inst->dst, inst->size_written,
237                                   entry->src, entry->size_read))
238                  BITSET_SET(bd[block->num].kill, entry->global_idx);
239            }
240         }
241      }
242
243      delete [] acp_table;
244   }
245
246   /* Populate the initial values for the livein and liveout sets.  For the
247    * block at the start of the program, livein = 0 and liveout = copy.
248    * For the others, set liveout and livein to ~0 (the universal set).
249    */
250   foreach_block (block, cfg) {
251      if (block->parents.is_empty()) {
252         for (int i = 0; i < bitset_words; i++) {
253            bd[block->num].livein[i] = 0u;
254            bd[block->num].liveout[i] = bd[block->num].copy[i];
255         }
256      } else {
257         for (int i = 0; i < bitset_words; i++) {
258            bd[block->num].liveout[i] = ~0u;
259            bd[block->num].livein[i] = ~0u;
260         }
261      }
262   }
263
264   /* Initialize the undef set. */
265   foreach_block (block, cfg) {
266      for (int i = 0; i < num_acp; i++) {
267         BITSET_SET(bd[block->num].undef, i);
268         for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) {
269            if (BITSET_TEST(live.block_data[block->num].defout,
270                            live.var_from_reg(byte_offset(acp[i]->dst, off))))
271               BITSET_CLEAR(bd[block->num].undef, i);
272         }
273      }
274   }
275}
276
277/**
278 * Walk the set of instructions in the block, marking which entries in the acp
279 * are killed by the block.
280 */
281void
282fs_copy_prop_dataflow::run()
283{
284   bool progress;
285
286   do {
287      progress = false;
288
289      foreach_block (block, cfg) {
290         if (block->parents.is_empty())
291            continue;
292
293         for (int i = 0; i < bitset_words; i++) {
294            const BITSET_WORD old_liveout = bd[block->num].liveout[i];
295            BITSET_WORD livein_from_any_block = 0;
296
297            /* Update livein for this block.  If a copy is live out of all
298             * parent blocks, it's live coming in to this block.
299             */
300            bd[block->num].livein[i] = ~0u;
301            foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
302               bblock_t *parent = parent_link->block;
303               /* Consider ACP entries with a known-undefined destination to
304                * be available from the parent.  This is valid because we're
305                * free to set the undefined variable equal to the source of
306                * the ACP entry without breaking the application's
307                * expectations, since the variable is undefined.
308                */
309               bd[block->num].livein[i] &= (bd[parent->num].liveout[i] |
310                                            bd[parent->num].undef[i]);
311               livein_from_any_block |= bd[parent->num].liveout[i];
312            }
313
314            /* Limit to the set of ACP entries that can possibly be available
315             * at the start of the block, since propagating from a variable
316             * which is guaranteed to be undefined (rather than potentially
317             * undefined for some dynamic control-flow paths) doesn't seem
318             * particularly useful.
319             */
320            bd[block->num].livein[i] &= livein_from_any_block;
321
322            /* Update liveout for this block. */
323            bd[block->num].liveout[i] =
324               bd[block->num].copy[i] | (bd[block->num].livein[i] &
325                                         ~bd[block->num].kill[i]);
326
327            if (old_liveout != bd[block->num].liveout[i])
328               progress = true;
329         }
330      }
331   } while (progress);
332}
333
334void
335fs_copy_prop_dataflow::dump_block_data() const
336{
337   foreach_block (block, cfg) {
338      fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
339             block->start_ip, block->end_ip);
340      foreach_list_typed(bblock_link, link, link, &block->parents) {
341         bblock_t *parent = link->block;
342         fprintf(stderr, "%d ", parent->num);
343      }
344      fprintf(stderr, "):\n");
345      fprintf(stderr, "       livein = 0x");
346      for (int i = 0; i < bitset_words; i++)
347         fprintf(stderr, "%08x", bd[block->num].livein[i]);
348      fprintf(stderr, ", liveout = 0x");
349      for (int i = 0; i < bitset_words; i++)
350         fprintf(stderr, "%08x", bd[block->num].liveout[i]);
351      fprintf(stderr, ",\n       copy   = 0x");
352      for (int i = 0; i < bitset_words; i++)
353         fprintf(stderr, "%08x", bd[block->num].copy[i]);
354      fprintf(stderr, ", kill    = 0x");
355      for (int i = 0; i < bitset_words; i++)
356         fprintf(stderr, "%08x", bd[block->num].kill[i]);
357      fprintf(stderr, "\n");
358   }
359}
360
361static bool
362is_logic_op(enum opcode opcode)
363{
364   return (opcode == BRW_OPCODE_AND ||
365           opcode == BRW_OPCODE_OR  ||
366           opcode == BRW_OPCODE_XOR ||
367           opcode == BRW_OPCODE_NOT);
368}
369
370static bool
371can_take_stride(fs_inst *inst, brw_reg_type dst_type,
372                unsigned arg, unsigned stride,
373                const intel_device_info *devinfo)
374{
375   if (stride > 4)
376      return false;
377
378   /* Bail if the channels of the source need to be aligned to the byte offset
379    * of the corresponding channel of the destination, and the provided stride
380    * would break this restriction.
381    */
382   if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
383       !(type_sz(inst->src[arg].type) * stride ==
384           type_sz(dst_type) * inst->dst.stride ||
385         stride == 0))
386      return false;
387
388   /* 3-source instructions can only be Align16, which restricts what strides
389    * they can take. They can only take a stride of 1 (the usual case), or 0
390    * with a special "repctrl" bit. But the repctrl bit doesn't work for
391    * 64-bit datatypes, so if the source type is 64-bit then only a stride of
392    * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
393    * 944:
394    *
395    *    This is applicable to 32b datatypes and 16b datatype. 64b datatypes
396    *    cannot use the replicate control.
397    */
398   if (inst->is_3src(devinfo)) {
399      if (type_sz(inst->src[arg].type) > 4)
400         return stride == 1;
401      else
402         return stride == 1 || stride == 0;
403   }
404
405   /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
406    * page 391 ("Extended Math Function"):
407    *
408    *     The following restrictions apply for align1 mode: Scalar source is
409    *     supported. Source and destination horizontal stride must be the
410    *     same.
411    *
412    * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
413    * 134 ("Extended Math Function"):
414    *
415    *    Scalar source is supported. Source and destination horizontal stride
416    *    must be 1.
417    *
418    * and similar language exists for IVB and SNB. Pre-SNB, math instructions
419    * are sends, so the sources are moved to MRF's and there are no
420    * restrictions.
421    */
422   if (inst->is_math()) {
423      if (devinfo->ver == 6 || devinfo->ver == 7) {
424         assert(inst->dst.stride == 1);
425         return stride == 1 || stride == 0;
426      } else if (devinfo->ver >= 8) {
427         return stride == inst->dst.stride || stride == 0;
428      }
429   }
430
431   return true;
432}
433
434static bool
435instruction_requires_packed_data(fs_inst *inst)
436{
437   switch (inst->opcode) {
438   case FS_OPCODE_DDX_FINE:
439   case FS_OPCODE_DDX_COARSE:
440   case FS_OPCODE_DDY_FINE:
441   case FS_OPCODE_DDY_COARSE:
442   case SHADER_OPCODE_QUAD_SWIZZLE:
443      return true;
444   default:
445      return false;
446   }
447}
448
449bool
450fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
451{
452   if (inst->src[arg].file != VGRF)
453      return false;
454
455   if (entry->src.file == IMM)
456      return false;
457   assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
458          entry->src.file == ATTR || entry->src.file == FIXED_GRF);
459
460   /* Avoid propagating a LOAD_PAYLOAD instruction into another if there is a
461    * good chance that we'll be able to eliminate the latter through register
462    * coalescing.  If only part of the sources of the second LOAD_PAYLOAD can
463    * be simplified through copy propagation we would be making register
464    * coalescing impossible, ending up with unnecessary copies in the program.
465    * This is also the case for is_multi_copy_payload() copies that can only
466    * be coalesced when the instruction is lowered into a sequence of MOVs.
467    *
468    * Worse -- In cases where the ACP entry was the result of CSE combining
469    * multiple LOAD_PAYLOAD subexpressions, propagating the first LOAD_PAYLOAD
470    * into the second would undo the work of CSE, leading to an infinite
471    * optimization loop.  Avoid this by detecting LOAD_PAYLOAD copies from CSE
472    * temporaries which should match is_coalescing_payload().
473    */
474   if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
475       (is_coalescing_payload(alloc, inst) || is_multi_copy_payload(inst)))
476      return false;
477
478   assert(entry->dst.file == VGRF);
479   if (inst->src[arg].nr != entry->dst.nr)
480      return false;
481
482   /* Bail if inst is reading a range that isn't contained in the range
483    * that entry is writing.
484    */
485   if (!region_contained_in(inst->src[arg], inst->size_read(arg),
486                            entry->dst, entry->size_written))
487      return false;
488
489   /* Avoid propagating a FIXED_GRF register into an EOT instruction in order
490    * for any register allocation restrictions to be applied.
491    */
492   if (entry->src.file == FIXED_GRF && inst->eot)
493      return false;
494
495   /* Avoid propagating odd-numbered FIXED_GRF registers into the first source
496    * of a LINTERP instruction on platforms where the PLN instruction has
497    * register alignment restrictions.
498    */
499   if (devinfo->has_pln && devinfo->ver <= 6 &&
500       entry->src.file == FIXED_GRF && (entry->src.nr & 1) &&
501       inst->opcode == FS_OPCODE_LINTERP && arg == 0)
502      return false;
503
504   /* we can't generally copy-propagate UD negations because we
505    * can end up accessing the resulting values as signed integers
506    * instead. See also resolve_ud_negate() and comment in
507    * fs_generator::generate_code.
508    */
509   if (entry->src.type == BRW_REGISTER_TYPE_UD &&
510       entry->src.negate)
511      return false;
512
513   bool has_source_modifiers = entry->src.abs || entry->src.negate;
514
515   if (has_source_modifiers && !inst->can_do_source_mods(devinfo))
516      return false;
517
518   /* Reject cases that would violate register regioning restrictions. */
519   if ((entry->src.file == UNIFORM || !entry->src.is_contiguous()) &&
520       ((devinfo->ver == 6 && inst->is_math()) ||
521        inst->is_send_from_grf() ||
522        inst->uses_indirect_addressing())) {
523      return false;
524   }
525
526   if (has_source_modifiers &&
527       inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_WRITE)
528      return false;
529
530   /* Some instructions implemented in the generator backend, such as
531    * derivatives, assume that their operands are packed so we can't
532    * generally propagate strided regions to them.
533    */
534   const unsigned entry_stride = (entry->src.file == FIXED_GRF ? 1 :
535                                  entry->src.stride);
536   if (instruction_requires_packed_data(inst) && entry_stride != 1)
537      return false;
538
539   const brw_reg_type dst_type = (has_source_modifiers &&
540                                  entry->dst.type != inst->src[arg].type) ?
541      entry->dst.type : inst->dst.type;
542
543   /* Bail if the result of composing both strides would exceed the
544    * hardware limit.
545    */
546   if (!can_take_stride(inst, dst_type, arg,
547                        entry_stride * inst->src[arg].stride,
548                        devinfo))
549      return false;
550
551   /* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU:
552    *    EU Overview
553    *       Register Region Restrictions
554    *          Special Requirements for Handling Double Precision Data Types :
555    *
556    *   "When source or destination datatype is 64b or operation is integer
557    *    DWord multiply, regioning in Align1 must follow these rules:
558    *
559    *      1. Source and Destination horizontal stride must be aligned to the
560    *         same qword.
561    *      2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
562    *      3. Source and Destination offset must be the same, except the case
563    *         of scalar source."
564    *
565    * Most of this is already checked in can_take_stride(), we're only left
566    * with checking 3.
567    */
568   if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
569       entry_stride != 0 &&
570       (reg_offset(inst->dst) % REG_SIZE) != (reg_offset(entry->src) % REG_SIZE))
571      return false;
572
573   /* Bail if the source FIXED_GRF region of the copy cannot be trivially
574    * composed with the source region of the instruction -- E.g. because the
575    * copy uses some extended stride greater than 4 not supported natively by
576    * the hardware as a horizontal stride, or because instruction compression
577    * could require us to use a vertical stride shorter than a GRF.
578    */
579   if (entry->src.file == FIXED_GRF &&
580       (inst->src[arg].stride > 4 ||
581        inst->dst.component_size(inst->exec_size) >
582        inst->src[arg].component_size(inst->exec_size)))
583      return false;
584
585   /* Bail if the instruction type is larger than the execution type of the
586    * copy, what implies that each channel is reading multiple channels of the
587    * destination of the copy, and simply replacing the sources would give a
588    * program with different semantics.
589    */
590   if ((type_sz(entry->dst.type) < type_sz(inst->src[arg].type) ||
591        entry->is_partial_write) &&
592       inst->opcode != BRW_OPCODE_MOV) {
593      return false;
594   }
595
596   /* Bail if the result of composing both strides cannot be expressed
597    * as another stride. This avoids, for example, trying to transform
598    * this:
599    *
600    *     MOV (8) rX<1>UD rY<0;1,0>UD
601    *     FOO (8) ...     rX<8;8,1>UW
602    *
603    * into this:
604    *
605    *     FOO (8) ...     rY<0;1,0>UW
606    *
607    * Which would have different semantics.
608    */
609   if (entry_stride != 1 &&
610       (inst->src[arg].stride *
611        type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
612      return false;
613
614   /* Since semantics of source modifiers are type-dependent we need to
615    * ensure that the meaning of the instruction remains the same if we
616    * change the type. If the sizes of the types are different the new
617    * instruction will read a different amount of data than the original
618    * and the semantics will always be different.
619    */
620   if (has_source_modifiers &&
621       entry->dst.type != inst->src[arg].type &&
622       (!inst->can_change_types() ||
623        type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
624      return false;
625
626   if (devinfo->ver >= 8 && (entry->src.negate || entry->src.abs) &&
627       is_logic_op(inst->opcode)) {
628      return false;
629   }
630
631   if (entry->saturate) {
632      switch(inst->opcode) {
633      case BRW_OPCODE_SEL:
634         if ((inst->conditional_mod != BRW_CONDITIONAL_GE &&
635              inst->conditional_mod != BRW_CONDITIONAL_L) ||
636             inst->src[1].file != IMM ||
637             inst->src[1].f < 0.0 ||
638             inst->src[1].f > 1.0) {
639            return false;
640         }
641         break;
642      default:
643         return false;
644      }
645   }
646
647   /* Save the offset of inst->src[arg] relative to entry->dst for it to be
648    * applied later.
649    */
650   const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
651
652   /* Fold the copy into the instruction consuming it. */
653   inst->src[arg].file = entry->src.file;
654   inst->src[arg].nr = entry->src.nr;
655   inst->src[arg].subnr = entry->src.subnr;
656   inst->src[arg].offset = entry->src.offset;
657
658   /* Compose the strides of both regions. */
659   if (entry->src.file == FIXED_GRF) {
660      if (inst->src[arg].stride) {
661         const unsigned orig_width = 1 << entry->src.width;
662         const unsigned reg_width = REG_SIZE / (type_sz(inst->src[arg].type) *
663                                                inst->src[arg].stride);
664         inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1;
665         inst->src[arg].hstride = cvt(inst->src[arg].stride);
666         inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width;
667      } else {
668         inst->src[arg].vstride = inst->src[arg].hstride =
669            inst->src[arg].width = 0;
670      }
671
672      inst->src[arg].stride = 1;
673
674      /* Hopefully no Align16 around here... */
675      assert(entry->src.swizzle == BRW_SWIZZLE_XYZW);
676      inst->src[arg].swizzle = entry->src.swizzle;
677   } else {
678      inst->src[arg].stride *= entry->src.stride;
679   }
680
681   /* Compose any saturate modifiers. */
682   inst->saturate = inst->saturate || entry->saturate;
683
684   /* Compute the first component of the copy that the instruction is
685    * reading, and the base byte offset within that component.
686    */
687   assert((entry->dst.offset % REG_SIZE == 0 || inst->opcode == BRW_OPCODE_MOV) &&
688           entry->dst.stride == 1);
689   const unsigned component = rel_offset / type_sz(entry->dst.type);
690   const unsigned suboffset = rel_offset % type_sz(entry->dst.type);
691
692   /* Calculate the byte offset at the origin of the copy of the given
693    * component and suboffset.
694    */
695   inst->src[arg] = byte_offset(inst->src[arg],
696      component * entry_stride * type_sz(entry->src.type) + suboffset);
697
698   if (has_source_modifiers) {
699      if (entry->dst.type != inst->src[arg].type) {
700         /* We are propagating source modifiers from a MOV with a different
701          * type.  If we got here, then we can just change the source and
702          * destination types of the instruction and keep going.
703          */
704         assert(inst->can_change_types());
705         for (int i = 0; i < inst->sources; i++) {
706            inst->src[i].type = entry->dst.type;
707         }
708         inst->dst.type = entry->dst.type;
709      }
710
711      if (!inst->src[arg].abs) {
712         inst->src[arg].abs = entry->src.abs;
713         inst->src[arg].negate ^= entry->src.negate;
714      }
715   }
716
717   return true;
718}
719
720
721bool
722fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
723{
724   bool progress = false;
725
726   if (entry->src.file != IMM)
727      return false;
728   if (type_sz(entry->src.type) > 4)
729      return false;
730   if (entry->saturate)
731      return false;
732
733   for (int i = inst->sources - 1; i >= 0; i--) {
734      if (inst->src[i].file != VGRF)
735         continue;
736
737      assert(entry->dst.file == VGRF);
738      if (inst->src[i].nr != entry->dst.nr)
739         continue;
740
741      /* Bail if inst is reading a range that isn't contained in the range
742       * that entry is writing.
743       */
744      if (!region_contained_in(inst->src[i], inst->size_read(i),
745                               entry->dst, entry->size_written))
746         continue;
747
748      /* If the type sizes don't match each channel of the instruction is
749       * either extracting a portion of the constant (which could be handled
750       * with some effort but the code below doesn't) or reading multiple
751       * channels of the source at once.
752       */
753      if (type_sz(inst->src[i].type) != type_sz(entry->dst.type))
754         continue;
755
756      fs_reg val = entry->src;
757      val.type = inst->src[i].type;
758
759      if (inst->src[i].abs) {
760         if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
761             !brw_abs_immediate(val.type, &val.as_brw_reg())) {
762            continue;
763         }
764      }
765
766      if (inst->src[i].negate) {
767         if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
768             !brw_negate_immediate(val.type, &val.as_brw_reg())) {
769            continue;
770         }
771      }
772
773      switch (inst->opcode) {
774      case BRW_OPCODE_MOV:
775      case SHADER_OPCODE_LOAD_PAYLOAD:
776      case FS_OPCODE_PACK:
777         inst->src[i] = val;
778         progress = true;
779         break;
780
781      case SHADER_OPCODE_INT_QUOTIENT:
782      case SHADER_OPCODE_INT_REMAINDER:
783         /* FINISHME: Promote non-float constants and remove this. */
784         if (devinfo->ver < 8)
785            break;
786         FALLTHROUGH;
787      case SHADER_OPCODE_POW:
788         /* Allow constant propagation into src1 (except on Gen 6 which
789          * doesn't support scalar source math), and let constant combining
790          * promote the constant on Gen < 8.
791          */
792         if (devinfo->ver == 6)
793            break;
794         FALLTHROUGH;
795      case BRW_OPCODE_BFI1:
796      case BRW_OPCODE_ASR:
797      case BRW_OPCODE_SHL:
798      case BRW_OPCODE_SHR:
799      case BRW_OPCODE_SUBB:
800         if (i == 1) {
801            inst->src[i] = val;
802            progress = true;
803         }
804         break;
805
806      case BRW_OPCODE_MACH:
807      case BRW_OPCODE_MUL:
808      case SHADER_OPCODE_MULH:
809      case BRW_OPCODE_ADD:
810      case BRW_OPCODE_OR:
811      case BRW_OPCODE_AND:
812      case BRW_OPCODE_XOR:
813      case BRW_OPCODE_ADDC:
814         if (i == 1) {
815            inst->src[i] = val;
816            progress = true;
817         } else if (i == 0 && inst->src[1].file != IMM) {
818            /* Fit this constant in by commuting the operands.
819             * Exception: we can't do this for 32-bit integer MUL/MACH
820             * because it's asymmetric.
821             *
822             * The BSpec says for Broadwell that
823             *
824             *    "When multiplying DW x DW, the dst cannot be accumulator."
825             *
826             * Integer MUL with a non-accumulator destination will be lowered
827             * by lower_integer_multiplication(), so don't restrict it.
828             */
829            if (((inst->opcode == BRW_OPCODE_MUL &&
830                  inst->dst.is_accumulator()) ||
831                 inst->opcode == BRW_OPCODE_MACH) &&
832                (inst->src[1].type == BRW_REGISTER_TYPE_D ||
833                 inst->src[1].type == BRW_REGISTER_TYPE_UD))
834               break;
835            inst->src[0] = inst->src[1];
836            inst->src[1] = val;
837            progress = true;
838         }
839         break;
840
841      case BRW_OPCODE_CMP:
842      case BRW_OPCODE_IF:
843         if (i == 1) {
844            inst->src[i] = val;
845            progress = true;
846         } else if (i == 0 && inst->src[1].file != IMM) {
847            enum brw_conditional_mod new_cmod;
848
849            new_cmod = brw_swap_cmod(inst->conditional_mod);
850            if (new_cmod != BRW_CONDITIONAL_NONE) {
851               /* Fit this constant in by swapping the operands and
852                * flipping the test
853                */
854               inst->src[0] = inst->src[1];
855               inst->src[1] = val;
856               inst->conditional_mod = new_cmod;
857               progress = true;
858            }
859         }
860         break;
861
862      case BRW_OPCODE_SEL:
863         if (i == 1) {
864            inst->src[i] = val;
865            progress = true;
866         } else if (i == 0 && inst->src[1].file != IMM &&
867                    (inst->conditional_mod == BRW_CONDITIONAL_NONE ||
868                     /* Only GE and L are commutative. */
869                     inst->conditional_mod == BRW_CONDITIONAL_GE ||
870                     inst->conditional_mod == BRW_CONDITIONAL_L)) {
871            inst->src[0] = inst->src[1];
872            inst->src[1] = val;
873
874            /* If this was predicated, flipping operands means
875             * we also need to flip the predicate.
876             */
877            if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
878               inst->predicate_inverse =
879                  !inst->predicate_inverse;
880            }
881            progress = true;
882         }
883         break;
884
885      case FS_OPCODE_FB_WRITE_LOGICAL:
886         /* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are
887          * bit-cast using a strided region so they cannot be immediates.
888          */
889         if (i != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
890             i != FB_WRITE_LOGICAL_SRC_OMASK) {
891            inst->src[i] = val;
892            progress = true;
893         }
894         break;
895
896      case SHADER_OPCODE_TEX_LOGICAL:
897      case SHADER_OPCODE_TXD_LOGICAL:
898      case SHADER_OPCODE_TXF_LOGICAL:
899      case SHADER_OPCODE_TXL_LOGICAL:
900      case SHADER_OPCODE_TXS_LOGICAL:
901      case FS_OPCODE_TXB_LOGICAL:
902      case SHADER_OPCODE_TXF_CMS_LOGICAL:
903      case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
904      case SHADER_OPCODE_TXF_UMS_LOGICAL:
905      case SHADER_OPCODE_TXF_MCS_LOGICAL:
906      case SHADER_OPCODE_LOD_LOGICAL:
907      case SHADER_OPCODE_TG4_LOGICAL:
908      case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
909      case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
910      case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
911      case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
912      case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
913      case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
914      case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
915      case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
916      case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
917      case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
918      case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
919      case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
920         inst->src[i] = val;
921         progress = true;
922         break;
923
924      case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
925      case SHADER_OPCODE_BROADCAST:
926         inst->src[i] = val;
927         progress = true;
928         break;
929
930      case BRW_OPCODE_MAD:
931      case BRW_OPCODE_LRP:
932         inst->src[i] = val;
933         progress = true;
934         break;
935
936      default:
937         break;
938      }
939   }
940
941   return progress;
942}
943
944static bool
945can_propagate_from(fs_inst *inst)
946{
947   return (inst->opcode == BRW_OPCODE_MOV &&
948           inst->dst.file == VGRF &&
949           ((inst->src[0].file == VGRF &&
950             !regions_overlap(inst->dst, inst->size_written,
951                              inst->src[0], inst->size_read(0))) ||
952            inst->src[0].file == ATTR ||
953            inst->src[0].file == UNIFORM ||
954            inst->src[0].file == IMM ||
955            (inst->src[0].file == FIXED_GRF &&
956             inst->src[0].is_contiguous())) &&
957           inst->src[0].type == inst->dst.type &&
958           /* Subset of !is_partial_write() conditions. */
959           !((inst->predicate && inst->opcode != BRW_OPCODE_SEL) ||
960             !inst->dst.is_contiguous())) ||
961          is_identity_payload(FIXED_GRF, inst);
962}
963
964/* Walks a basic block and does copy propagation on it using the acp
965 * list.
966 */
967bool
968fs_visitor::opt_copy_propagation_local(void *copy_prop_ctx, bblock_t *block,
969                                       exec_list *acp)
970{
971   bool progress = false;
972
973   foreach_inst_in_block(fs_inst, inst, block) {
974      /* Try propagating into this instruction. */
975      for (int i = 0; i < inst->sources; i++) {
976         if (inst->src[i].file != VGRF)
977            continue;
978
979         foreach_in_list(acp_entry, entry, &acp[inst->src[i].nr % ACP_HASH_SIZE]) {
980            if (try_constant_propagate(inst, entry))
981               progress = true;
982            else if (try_copy_propagate(inst, i, entry))
983               progress = true;
984         }
985      }
986
987      /* kill the destination from the ACP */
988      if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
989         foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.nr % ACP_HASH_SIZE]) {
990            if (regions_overlap(entry->dst, entry->size_written,
991                                inst->dst, inst->size_written))
992               entry->remove();
993         }
994
995         /* Oops, we only have the chaining hash based on the destination, not
996          * the source, so walk across the entire table.
997          */
998         for (int i = 0; i < ACP_HASH_SIZE; i++) {
999            foreach_in_list_safe(acp_entry, entry, &acp[i]) {
1000               /* Make sure we kill the entry if this instruction overwrites
1001                * _any_ of the registers that it reads
1002                */
1003               if (regions_overlap(entry->src, entry->size_read,
1004                                   inst->dst, inst->size_written))
1005                  entry->remove();
1006            }
1007	 }
1008      }
1009
1010      /* If this instruction's source could potentially be folded into the
1011       * operand of another instruction, add it to the ACP.
1012       */
1013      if (can_propagate_from(inst)) {
1014         acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
1015         entry->dst = inst->dst;
1016         entry->src = inst->src[0];
1017         entry->size_written = inst->size_written;
1018         for (unsigned i = 0; i < inst->sources; i++)
1019            entry->size_read += inst->size_read(i);
1020         entry->opcode = inst->opcode;
1021         entry->saturate = inst->saturate;
1022         entry->is_partial_write = inst->is_partial_write();
1023         acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1024      } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
1025                 inst->dst.file == VGRF) {
1026         int offset = 0;
1027         for (int i = 0; i < inst->sources; i++) {
1028            int effective_width = i < inst->header_size ? 8 : inst->exec_size;
1029            assert(effective_width * type_sz(inst->src[i].type) % REG_SIZE == 0);
1030            const unsigned size_written = effective_width *
1031                                          type_sz(inst->src[i].type);
1032            if (inst->src[i].file == VGRF ||
1033                (inst->src[i].file == FIXED_GRF &&
1034                 inst->src[i].is_contiguous())) {
1035               acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
1036               entry->dst = byte_offset(inst->dst, offset);
1037               entry->src = inst->src[i];
1038               entry->size_written = size_written;
1039               entry->size_read = inst->size_read(i);
1040               entry->opcode = inst->opcode;
1041               if (!entry->dst.equals(inst->src[i])) {
1042                  acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1043               } else {
1044                  ralloc_free(entry);
1045               }
1046            }
1047            offset += size_written;
1048         }
1049      }
1050   }
1051
1052   return progress;
1053}
1054
1055bool
1056fs_visitor::opt_copy_propagation()
1057{
1058   bool progress = false;
1059   void *copy_prop_ctx = ralloc_context(NULL);
1060   exec_list *out_acp[cfg->num_blocks];
1061
1062   for (int i = 0; i < cfg->num_blocks; i++)
1063      out_acp[i] = new exec_list [ACP_HASH_SIZE];
1064
1065   const fs_live_variables &live = live_analysis.require();
1066
1067   /* First, walk through each block doing local copy propagation and getting
1068    * the set of copies available at the end of the block.
1069    */
1070   foreach_block (block, cfg) {
1071      progress = opt_copy_propagation_local(copy_prop_ctx, block,
1072                                            out_acp[block->num]) || progress;
1073
1074      /* If the destination of an ACP entry exists only within this block,
1075       * then there's no need to keep it for dataflow analysis.  We can delete
1076       * it from the out_acp table and avoid growing the bitsets any bigger
1077       * than we absolutely have to.
1078       *
1079       * Because nothing in opt_copy_propagation_local touches the block
1080       * start/end IPs and opt_copy_propagation_local is incapable of
1081       * extending the live range of an ACP destination beyond the block,
1082       * it's safe to use the liveness information in this way.
1083       */
1084      for (unsigned a = 0; a < ACP_HASH_SIZE; a++) {
1085         foreach_in_list_safe(acp_entry, entry, &out_acp[block->num][a]) {
1086            assert(entry->dst.file == VGRF);
1087            if (block->start_ip <= live.vgrf_start[entry->dst.nr] &&
1088                live.vgrf_end[entry->dst.nr] <= block->end_ip)
1089               entry->remove();
1090         }
1091      }
1092   }
1093
1094   /* Do dataflow analysis for those available copies. */
1095   fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, live, out_acp);
1096
1097   /* Next, re-run local copy propagation, this time with the set of copies
1098    * provided by the dataflow analysis available at the start of a block.
1099    */
1100   foreach_block (block, cfg) {
1101      exec_list in_acp[ACP_HASH_SIZE];
1102
1103      for (int i = 0; i < dataflow.num_acp; i++) {
1104         if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
1105            struct acp_entry *entry = dataflow.acp[i];
1106            in_acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1107         }
1108      }
1109
1110      progress = opt_copy_propagation_local(copy_prop_ctx, block, in_acp) ||
1111                 progress;
1112   }
1113
1114   for (int i = 0; i < cfg->num_blocks; i++)
1115      delete [] out_acp[i];
1116   ralloc_free(copy_prop_ctx);
1117
1118   if (progress)
1119      invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
1120                          DEPENDENCY_INSTRUCTION_DETAIL);
1121
1122   return progress;
1123}
1124