1/* 2 * Copyright 2006 VMware, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sublicense, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the 14 * next paragraph) shall be included in all copies or substantial portions 15 * of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR 21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 24 */ 25 26#include <GL/gl.h> 27#include <GL/internal/dri_interface.h> 28#include "drm-uapi/drm_fourcc.h" 29 30#include "brw_batch.h" 31#include "brw_image.h" 32#include "brw_mipmap_tree.h" 33#include "brw_tex.h" 34#include "brw_blit.h" 35#include "brw_fbo.h" 36 37#include "brw_blorp.h" 38#include "brw_context.h" 39#include "brw_state.h" 40 41#include "main/enums.h" 42#include "main/fbobject.h" 43#include "main/formats.h" 44#include "main/glformats.h" 45#include "main/texcompress_etc.h" 46#include "main/teximage.h" 47#include "main/streaming-load-memcpy.h" 48 49#include "util/format_srgb.h" 50#include "util/u_memory.h" 51 52#include "x86/common_x86_asm.h" 53 54#define FILE_DEBUG_FLAG DEBUG_MIPTREE 55 56static void *brw_miptree_map_raw(struct brw_context *brw, 57 struct brw_mipmap_tree *mt, 58 GLbitfield mode); 59 60static void brw_miptree_unmap_raw(struct brw_mipmap_tree *mt); 61 62/** 63 * Return true if the format that will be used to access the miptree is 64 * CCS_E-compatible with the miptree's linear/non-sRGB format. 65 * 66 * Why use the linear format? Well, although the miptree may be specified with 67 * an sRGB format, the usage of that color space/format can be toggled. Since 68 * our HW tends to support more linear formats than sRGB ones, we use this 69 * format variant for check for CCS_E compatibility. 70 */ 71static bool 72format_ccs_e_compat_with_miptree(const struct intel_device_info *devinfo, 73 const struct brw_mipmap_tree *mt, 74 enum isl_format access_format) 75{ 76 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E); 77 78 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format); 79 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format); 80 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format); 81} 82 83/* Determine if CCS_E is supported for a given platform and mesa format. */ 84static bool 85format_supports_ccs_e(const struct brw_context *brw, mesa_format format) 86{ 87 /* For now compression is only enabled for integer formats even though 88 * there exist supported floating point formats also. This is a heuristic 89 * decision based on current public benchmarks. In none of the cases these 90 * formats provided any improvement but a few cases were seen to regress. 91 * Hence these are left to to be enabled in the future when they are known 92 * to improve things. 93 */ 94 if (_mesa_get_format_datatype(format) == GL_FLOAT) 95 return false; 96 97 /* Many window system buffers are sRGB even if they are never rendered as 98 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the 99 * surface is used as sRGB, we fall back to CCS_D. 100 */ 101 mesa_format linear_format = _mesa_get_srgb_format_linear(format); 102 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format); 103 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format); 104} 105 106/** 107 * Determine depth format corresponding to a depth+stencil format, 108 * for separate stencil. 109 */ 110mesa_format 111brw_depth_format_for_depthstencil_format(mesa_format format) { 112 switch (format) { 113 case MESA_FORMAT_Z24_UNORM_S8_UINT: 114 return MESA_FORMAT_Z24_UNORM_X8_UINT; 115 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT: 116 return MESA_FORMAT_Z_FLOAT32; 117 default: 118 return format; 119 } 120} 121 122static bool 123create_mapping_table(GLenum target, unsigned first_level, unsigned last_level, 124 unsigned depth0, struct brw_mipmap_level *table) 125{ 126 for (unsigned level = first_level; level <= last_level; level++) { 127 const unsigned d = 128 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0; 129 130 table[level].slice = calloc(d, sizeof(*table[0].slice)); 131 if (!table[level].slice) 132 goto unwind; 133 } 134 135 return true; 136 137unwind: 138 for (unsigned level = first_level; level <= last_level; level++) 139 free(table[level].slice); 140 141 return false; 142} 143 144static bool 145needs_separate_stencil(const struct brw_context *brw, 146 struct brw_mipmap_tree *mt, 147 mesa_format format) 148{ 149 const struct intel_device_info *devinfo = &brw->screen->devinfo; 150 151 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL) 152 return false; 153 154 if (devinfo->must_use_separate_stencil) 155 return true; 156 157 return brw->has_separate_stencil && brw->has_hiz; 158} 159 160/** 161 * Choose the aux usage for this miptree. This function must be called fairly 162 * late in the miptree create process after we have a tiling. 163 */ 164static void 165brw_miptree_choose_aux_usage(struct brw_context *brw, 166 struct brw_mipmap_tree *mt) 167{ 168 assert(mt->aux_usage == ISL_AUX_USAGE_NONE); 169 170 if (_mesa_is_format_color_format(mt->format)) { 171 if (mt->surf.samples > 1) { 172 mt->aux_usage = ISL_AUX_USAGE_MCS; 173 } else if (!INTEL_DEBUG(DEBUG_NO_RBC) && 174 format_supports_ccs_e(brw, mt->format)) { 175 mt->aux_usage = ISL_AUX_USAGE_CCS_E; 176 } else if (brw->mesa_format_supports_render[mt->format]) { 177 mt->aux_usage = ISL_AUX_USAGE_CCS_D; 178 } 179 } else if (isl_surf_usage_is_depth(mt->surf.usage) && brw->has_hiz) { 180 mt->aux_usage = ISL_AUX_USAGE_HIZ; 181 } 182 183 /* We can do fast-clear on all auxiliary surface types that are 184 * allocated through the normal texture creation paths. 185 */ 186 if (mt->aux_usage != ISL_AUX_USAGE_NONE) 187 mt->supports_fast_clear = true; 188} 189 190 191/** 192 * Choose an appropriate uncompressed format for a requested 193 * compressed format, if unsupported. 194 */ 195mesa_format 196brw_lower_compressed_format(struct brw_context *brw, mesa_format format) 197{ 198 const struct intel_device_info *devinfo = &brw->screen->devinfo; 199 200 /* No need to lower ETC formats on these platforms, 201 * they are supported natively. 202 */ 203 if (devinfo->ver >= 8 || devinfo->is_baytrail) 204 return format; 205 206 switch (format) { 207 case MESA_FORMAT_ETC1_RGB8: 208 return MESA_FORMAT_R8G8B8X8_UNORM; 209 case MESA_FORMAT_ETC2_RGB8: 210 return MESA_FORMAT_R8G8B8X8_UNORM; 211 case MESA_FORMAT_ETC2_SRGB8: 212 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC: 213 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: 214 return MESA_FORMAT_B8G8R8A8_SRGB; 215 case MESA_FORMAT_ETC2_RGBA8_EAC: 216 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1: 217 return MESA_FORMAT_R8G8B8A8_UNORM; 218 case MESA_FORMAT_ETC2_R11_EAC: 219 return MESA_FORMAT_R_UNORM16; 220 case MESA_FORMAT_ETC2_SIGNED_R11_EAC: 221 return MESA_FORMAT_R_SNORM16; 222 case MESA_FORMAT_ETC2_RG11_EAC: 223 return MESA_FORMAT_RG_UNORM16; 224 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC: 225 return MESA_FORMAT_RG_SNORM16; 226 default: 227 /* Non ETC1 / ETC2 format */ 228 return format; 229 } 230} 231 232unsigned 233brw_get_num_logical_layers(const struct brw_mipmap_tree *mt, unsigned level) 234{ 235 if (mt->surf.dim == ISL_SURF_DIM_3D) 236 return minify(mt->surf.logical_level0_px.depth, level); 237 else 238 return mt->surf.logical_level0_px.array_len; 239} 240 241UNUSED static unsigned 242get_num_phys_layers(const struct isl_surf *surf, unsigned level) 243{ 244 /* In case of physical dimensions one needs to consider also the layout. 245 * See isl_calc_phys_level0_extent_sa(). 246 */ 247 if (surf->dim != ISL_SURF_DIM_3D) 248 return surf->phys_level0_sa.array_len; 249 250 if (surf->dim_layout == ISL_DIM_LAYOUT_GFX4_2D) 251 return minify(surf->phys_level0_sa.array_len, level); 252 253 return minify(surf->phys_level0_sa.depth, level); 254} 255 256/** \brief Assert that the level and layer are valid for the miptree. */ 257void 258brw_miptree_check_level_layer(const struct brw_mipmap_tree *mt, 259 uint32_t level, 260 uint32_t layer) 261{ 262 (void) mt; 263 (void) level; 264 (void) layer; 265 266 assert(level >= mt->first_level); 267 assert(level <= mt->last_level); 268 assert(layer < get_num_phys_layers(&mt->surf, level)); 269} 270 271static enum isl_aux_state ** 272create_aux_state_map(struct brw_mipmap_tree *mt, 273 enum isl_aux_state initial) 274{ 275 const uint32_t levels = mt->last_level + 1; 276 277 uint32_t total_slices = 0; 278 for (uint32_t level = 0; level < levels; level++) 279 total_slices += brw_get_num_logical_layers(mt, level); 280 281 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *); 282 283 /* We're going to allocate a single chunk of data for both the per-level 284 * reference array and the arrays of aux_state. This makes cleanup 285 * significantly easier. 286 */ 287 const size_t total_size = per_level_array_size + 288 total_slices * sizeof(enum isl_aux_state); 289 void *data = malloc(total_size); 290 if (data == NULL) 291 return NULL; 292 293 enum isl_aux_state **per_level_arr = data; 294 enum isl_aux_state *s = data + per_level_array_size; 295 for (uint32_t level = 0; level < levels; level++) { 296 per_level_arr[level] = s; 297 const unsigned level_layers = brw_get_num_logical_layers(mt, level); 298 for (uint32_t a = 0; a < level_layers; a++) 299 *(s++) = initial; 300 } 301 assert((void *)s == data + total_size); 302 303 return per_level_arr; 304} 305 306static void 307free_aux_state_map(enum isl_aux_state **state) 308{ 309 free(state); 310} 311 312static bool 313need_to_retile_as_linear(struct brw_context *brw, unsigned blt_pitch, 314 enum isl_tiling tiling, unsigned samples) 315{ 316 if (samples > 1) 317 return false; 318 319 if (tiling == ISL_TILING_LINEAR) 320 return false; 321 322 if (blt_pitch >= 32768) { 323 perf_debug("blt pitch %u too large to blit, falling back to untiled", 324 blt_pitch); 325 return true; 326 } 327 328 return false; 329} 330 331static bool 332need_to_retile_as_x(const struct brw_context *brw, uint64_t size, 333 enum isl_tiling tiling) 334{ 335 const struct intel_device_info *devinfo = &brw->screen->devinfo; 336 337 /* If the BO is too large to fit in the aperture, we need to use the 338 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't 339 * handle Y-tiling, so we need to fall back to X. 340 */ 341 if (devinfo->ver < 6 && size >= brw->max_gtt_map_object_size && 342 tiling == ISL_TILING_Y0) 343 return true; 344 345 return false; 346} 347 348static struct brw_mipmap_tree * 349make_surface(struct brw_context *brw, GLenum target, mesa_format format, 350 unsigned first_level, unsigned last_level, 351 unsigned width0, unsigned height0, unsigned depth0, 352 unsigned num_samples, isl_tiling_flags_t tiling_flags, 353 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags, 354 unsigned row_pitch_B, struct brw_bo *bo) 355{ 356 struct brw_mipmap_tree *mt = calloc(sizeof(*mt), 1); 357 if (!mt) 358 return NULL; 359 360 if (!create_mapping_table(target, first_level, last_level, depth0, 361 mt->level)) { 362 free(mt); 363 return NULL; 364 } 365 366 mt->refcount = 1; 367 368 if (target == GL_TEXTURE_CUBE_MAP || 369 target == GL_TEXTURE_CUBE_MAP_ARRAY) 370 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT; 371 372 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n", 373 __func__, 374 _mesa_enum_to_string(target), 375 _mesa_get_format_name(format), 376 num_samples, width0, height0, depth0, 377 first_level, last_level, mt); 378 379 struct isl_surf_init_info init_info = { 380 .dim = get_isl_surf_dim(target), 381 .format = translate_tex_format(brw, format, false), 382 .width = width0, 383 .height = height0, 384 .depth = target == GL_TEXTURE_3D ? depth0 : 1, 385 .levels = last_level - first_level + 1, 386 .array_len = target == GL_TEXTURE_3D ? 1 : depth0, 387 .samples = num_samples, 388 .row_pitch_B = row_pitch_B, 389 .usage = isl_usage_flags, 390 .tiling_flags = tiling_flags, 391 }; 392 393 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info)) 394 goto fail; 395 396 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although 397 * on gfx7 platforms we also need to create Y-tiled copies of stencil for 398 * texturing since the hardware can't sample from W-tiled surfaces. For 399 * everything else, check for corner cases needing special treatment. 400 */ 401 bool is_depth_stencil = 402 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT); 403 if (!is_depth_stencil) { 404 if (need_to_retile_as_linear(brw, brw_miptree_blt_pitch(mt), 405 mt->surf.tiling, mt->surf.samples)) { 406 init_info.tiling_flags = 1u << ISL_TILING_LINEAR; 407 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info)) 408 goto fail; 409 } else if (need_to_retile_as_x(brw, mt->surf.size_B, mt->surf.tiling)) { 410 init_info.tiling_flags = 1u << ISL_TILING_X; 411 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info)) 412 goto fail; 413 } 414 } 415 416 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore 417 * the size may not be multiple of row_pitch. 418 * See isl_apply_surface_padding(). 419 */ 420 if (mt->surf.tiling != ISL_TILING_LINEAR) 421 assert(mt->surf.size_B % mt->surf.row_pitch_B == 0); 422 423 if (!bo) { 424 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree", 425 mt->surf.size_B, 426 BRW_MEMZONE_OTHER, 427 isl_tiling_to_i915_tiling( 428 mt->surf.tiling), 429 mt->surf.row_pitch_B, alloc_flags); 430 if (!mt->bo) 431 goto fail; 432 } else { 433 mt->bo = bo; 434 } 435 436 mt->first_level = first_level; 437 mt->last_level = last_level; 438 mt->target = target; 439 mt->format = format; 440 mt->aux_state = NULL; 441 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8; 442 mt->compressed = _mesa_is_format_compressed(format); 443 mt->drm_modifier = DRM_FORMAT_MOD_INVALID; 444 445 return mt; 446 447fail: 448 brw_miptree_release(&mt); 449 return NULL; 450} 451 452/* Return the usual surface usage flags for the given format. */ 453static isl_surf_usage_flags_t 454mt_surf_usage(mesa_format format) 455{ 456 switch(_mesa_get_format_base_format(format)) { 457 case GL_DEPTH_COMPONENT: 458 return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT; 459 case GL_DEPTH_STENCIL: 460 return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT | 461 ISL_SURF_USAGE_TEXTURE_BIT; 462 case GL_STENCIL_INDEX: 463 return ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_TEXTURE_BIT; 464 default: 465 return ISL_SURF_USAGE_RENDER_TARGET_BIT | ISL_SURF_USAGE_TEXTURE_BIT; 466 } 467} 468 469static struct brw_mipmap_tree * 470miptree_create(struct brw_context *brw, 471 GLenum target, 472 mesa_format format, 473 GLuint first_level, 474 GLuint last_level, 475 GLuint width0, 476 GLuint height0, 477 GLuint depth0, 478 GLuint num_samples, 479 enum brw_miptree_create_flags flags) 480{ 481 const struct intel_device_info *devinfo = &brw->screen->devinfo; 482 const uint32_t alloc_flags = 483 (flags & MIPTREE_CREATE_BUSY || num_samples > 1) ? BO_ALLOC_BUSY : 0; 484 isl_tiling_flags_t tiling_flags = ISL_TILING_ANY_MASK; 485 486 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */ 487 if (devinfo->ver < 6 && _mesa_is_format_color_format(format)) 488 tiling_flags &= ~ISL_TILING_Y0_BIT; 489 490 mesa_format mt_fmt = format; 491 if (!_mesa_is_format_color_format(format) && devinfo->ver >= 6) { 492 /* Fix up the Z miptree format for how we're splitting out separate 493 * stencil. Gfx7 expects there to be no stencil bits in its depth buffer. 494 */ 495 mt_fmt = brw_depth_format_for_depthstencil_format(format); 496 } 497 498 struct brw_mipmap_tree *mt = 499 make_surface(brw, target, mt_fmt, first_level, last_level, 500 width0, height0, depth0, num_samples, 501 tiling_flags, mt_surf_usage(mt_fmt), 502 alloc_flags, 0, NULL); 503 504 if (mt == NULL) 505 return NULL; 506 507 if (brw_miptree_needs_fake_etc(brw, mt)) { 508 mesa_format decomp_format = brw_lower_compressed_format(brw, format); 509 mt->shadow_mt = make_surface(brw, target, decomp_format, first_level, 510 last_level, width0, height0, depth0, 511 num_samples, tiling_flags, 512 mt_surf_usage(decomp_format), 513 alloc_flags, 0, NULL); 514 515 if (mt->shadow_mt == NULL) { 516 brw_miptree_release(&mt); 517 return NULL; 518 } 519 } 520 521 if (needs_separate_stencil(brw, mt, format)) { 522 mt->stencil_mt = 523 make_surface(brw, target, MESA_FORMAT_S_UINT8, first_level, last_level, 524 width0, height0, depth0, num_samples, 525 ISL_TILING_W_BIT, mt_surf_usage(MESA_FORMAT_S_UINT8), 526 alloc_flags, 0, NULL); 527 if (mt->stencil_mt == NULL) { 528 brw_miptree_release(&mt); 529 return NULL; 530 } 531 } 532 533 if (!(flags & MIPTREE_CREATE_NO_AUX)) 534 brw_miptree_choose_aux_usage(brw, mt); 535 536 return mt; 537} 538 539struct brw_mipmap_tree * 540brw_miptree_create(struct brw_context *brw, 541 GLenum target, 542 mesa_format format, 543 GLuint first_level, 544 GLuint last_level, 545 GLuint width0, 546 GLuint height0, 547 GLuint depth0, 548 GLuint num_samples, 549 enum brw_miptree_create_flags flags) 550{ 551 assert(num_samples > 0); 552 553 struct brw_mipmap_tree *mt = miptree_create( 554 brw, target, format, 555 first_level, last_level, 556 width0, height0, depth0, num_samples, 557 flags); 558 if (!mt) 559 return NULL; 560 561 mt->offset = 0; 562 563 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only 564 * compress clear color so we wait until an actual fast-clear to allocate 565 * it. 566 */ 567 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D && 568 !brw_miptree_alloc_aux(brw, mt)) { 569 mt->aux_usage = ISL_AUX_USAGE_NONE; 570 mt->supports_fast_clear = false; 571 } 572 573 return mt; 574} 575 576struct brw_mipmap_tree * 577brw_miptree_create_for_bo(struct brw_context *brw, 578 struct brw_bo *bo, 579 mesa_format format, 580 uint32_t offset, 581 uint32_t width, 582 uint32_t height, 583 uint32_t depth, 584 int pitch, 585 enum isl_tiling tiling, 586 enum brw_miptree_create_flags flags) 587{ 588 const struct intel_device_info *devinfo = &brw->screen->devinfo; 589 struct brw_mipmap_tree *mt; 590 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D; 591 const GLenum base_format = _mesa_get_format_base_format(format); 592 593 if ((base_format == GL_DEPTH_COMPONENT || 594 base_format == GL_DEPTH_STENCIL)) { 595 const mesa_format mt_fmt = (devinfo->ver < 6) ? format : 596 brw_depth_format_for_depthstencil_format(format); 597 mt = make_surface(brw, target, mt_fmt, 598 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT, 599 mt_surf_usage(mt_fmt), 600 0, pitch, bo); 601 if (!mt) 602 return NULL; 603 604 brw_bo_reference(bo); 605 606 if (!(flags & MIPTREE_CREATE_NO_AUX)) 607 brw_miptree_choose_aux_usage(brw, mt); 608 609 return mt; 610 } else if (format == MESA_FORMAT_S_UINT8) { 611 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8, 612 0, 0, width, height, depth, 1, 613 ISL_TILING_W_BIT, 614 mt_surf_usage(MESA_FORMAT_S_UINT8), 615 0, pitch, bo); 616 if (!mt) 617 return NULL; 618 619 assert(bo->size >= mt->surf.size_B); 620 621 brw_bo_reference(bo); 622 return mt; 623 } 624 625 /* Nothing will be able to use this miptree with the BO if the offset isn't 626 * aligned. 627 */ 628 if (tiling != ISL_TILING_LINEAR) 629 assert(offset % 4096 == 0); 630 631 /* miptrees can't handle negative pitch. If you need flipping of images, 632 * that's outside of the scope of the mt. 633 */ 634 assert(pitch >= 0); 635 636 mt = make_surface(brw, target, format, 637 0, 0, width, height, depth, 1, 638 1lu << tiling, 639 mt_surf_usage(format), 640 0, pitch, bo); 641 if (!mt) 642 return NULL; 643 644 brw_bo_reference(bo); 645 mt->bo = bo; 646 mt->offset = offset; 647 648 if (!(flags & MIPTREE_CREATE_NO_AUX)) { 649 brw_miptree_choose_aux_usage(brw, mt); 650 651 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can 652 * only compress clear color so we wait until an actual fast-clear to 653 * allocate it. 654 */ 655 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D && 656 !brw_miptree_alloc_aux(brw, mt)) { 657 mt->aux_usage = ISL_AUX_USAGE_NONE; 658 mt->supports_fast_clear = false; 659 } 660 } 661 662 return mt; 663} 664 665static struct brw_mipmap_tree * 666miptree_create_for_planar_image(struct brw_context *brw, 667 __DRIimage *image, GLenum target, 668 enum isl_tiling tiling) 669{ 670 const struct brw_image_format *f = image->planar_format; 671 struct brw_mipmap_tree *planar_mt = NULL; 672 673 for (int i = 0; i < f->nplanes; i++) { 674 const int index = f->planes[i].buffer_index; 675 const uint32_t dri_format = f->planes[i].dri_format; 676 const mesa_format format = driImageFormatToGLFormat(dri_format); 677 const uint32_t width = image->width >> f->planes[i].width_shift; 678 const uint32_t height = image->height >> f->planes[i].height_shift; 679 680 /* Disable creation of the texture's aux buffers because the driver 681 * exposes no EGL API to manage them. That is, there is no API for 682 * resolving the aux buffer's content to the main buffer nor for 683 * invalidating the aux buffer's content. 684 */ 685 struct brw_mipmap_tree *mt = 686 brw_miptree_create_for_bo(brw, image->bo, format, 687 image->offsets[index], 688 width, height, 1, 689 image->strides[index], 690 tiling, 691 MIPTREE_CREATE_NO_AUX); 692 if (mt == NULL) { 693 brw_miptree_release(&planar_mt); 694 return NULL; 695 } 696 697 mt->target = target; 698 699 if (i == 0) 700 planar_mt = mt; 701 else 702 planar_mt->plane[i - 1] = mt; 703 } 704 705 planar_mt->drm_modifier = image->modifier; 706 707 return planar_mt; 708} 709 710static bool 711create_ccs_buf_for_image(struct brw_context *brw, 712 __DRIimage *image, 713 struct brw_mipmap_tree *mt, 714 enum isl_aux_state initial_state) 715{ 716 struct isl_surf temp_ccs_surf = {0,}; 717 718 /* CCS is only supported for very simple miptrees */ 719 assert(image->aux_offset != 0 && image->aux_pitch != 0); 720 assert(image->tile_x == 0 && image->tile_y == 0); 721 assert(mt->surf.samples == 1); 722 assert(mt->surf.levels == 1); 723 assert(mt->surf.logical_level0_px.depth == 1); 724 assert(mt->surf.logical_level0_px.array_len == 1); 725 assert(mt->first_level == 0); 726 assert(mt->last_level == 0); 727 728 /* We shouldn't already have a CCS */ 729 assert(!mt->aux_buf); 730 731 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, NULL, 732 &temp_ccs_surf, image->aux_pitch)) 733 return false; 734 735 assert(image->aux_offset < image->bo->size); 736 assert(temp_ccs_surf.size_B <= image->bo->size - image->aux_offset); 737 738 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1); 739 if (mt->aux_buf == NULL) 740 return false; 741 742 mt->aux_state = create_aux_state_map(mt, initial_state); 743 if (!mt->aux_state) { 744 free(mt->aux_buf); 745 mt->aux_buf = NULL; 746 return false; 747 } 748 749 /* On gfx10+ we start using an extra space in the aux buffer to store the 750 * indirect clear color. However, if we imported an image from the window 751 * system with CCS, we don't have the extra space at the end of the aux 752 * buffer. So create a new bo here that will store that clear color. 753 */ 754 if (brw->isl_dev.ss.clear_color_state_size > 0) { 755 mt->aux_buf->clear_color_bo = 756 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo", 757 brw->isl_dev.ss.clear_color_state_size, 758 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0, 759 BO_ALLOC_ZEROED); 760 if (!mt->aux_buf->clear_color_bo) { 761 free(mt->aux_buf); 762 mt->aux_buf = NULL; 763 return false; 764 } 765 } 766 767 mt->aux_buf->bo = image->bo; 768 brw_bo_reference(image->bo); 769 770 mt->aux_buf->offset = image->aux_offset; 771 mt->aux_buf->surf = temp_ccs_surf; 772 773 return true; 774} 775 776struct brw_mipmap_tree * 777brw_miptree_create_for_dri_image(struct brw_context *brw, 778 __DRIimage *image, GLenum target, 779 mesa_format format, 780 bool allow_internal_aux) 781{ 782 uint32_t bo_tiling, bo_swizzle; 783 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle); 784 785 const struct isl_drm_modifier_info *mod_info = 786 isl_drm_modifier_get_info(image->modifier); 787 788 const enum isl_tiling tiling = 789 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling); 790 791 if (image->planar_format && image->planar_format->nplanes > 1) 792 return miptree_create_for_planar_image(brw, image, target, tiling); 793 794 if (image->planar_format) 795 assert(image->planar_format->planes[0].dri_format == image->dri_format); 796 797 if (!brw->ctx.TextureFormatSupported[format]) { 798 /* The texture storage paths in core Mesa detect if the driver does not 799 * support the user-requested format, and then searches for a 800 * fallback format. The DRIimage code bypasses core Mesa, though. So we 801 * do the fallbacks here for important formats. 802 * 803 * We must support DRM_FOURCC_XBGR8888 textures because the Android 804 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which 805 * the Chrome OS compositor consumes as dma_buf EGLImages. 806 */ 807 format = _mesa_format_fallback_rgbx_to_rgba(format); 808 } 809 810 if (!brw->ctx.TextureFormatSupported[format]) 811 return NULL; 812 813 enum brw_miptree_create_flags mt_create_flags = 0; 814 815 /* If this image comes in from a window system, we have different 816 * requirements than if it comes in via an EGL import operation. Window 817 * system images can use any form of auxiliary compression we wish because 818 * they get "flushed" before being handed off to the window system and we 819 * have the opportunity to do resolves. Non window-system images, on the 820 * other hand, have no resolve point so we can't have aux without a 821 * modifier. 822 */ 823 if (!allow_internal_aux) 824 mt_create_flags |= MIPTREE_CREATE_NO_AUX; 825 826 /* If we have a modifier which specifies aux, don't create one yet */ 827 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) 828 mt_create_flags |= MIPTREE_CREATE_NO_AUX; 829 830 /* Disable creation of the texture's aux buffers because the driver exposes 831 * no EGL API to manage them. That is, there is no API for resolving the aux 832 * buffer's content to the main buffer nor for invalidating the aux buffer's 833 * content. 834 */ 835 struct brw_mipmap_tree *mt = 836 brw_miptree_create_for_bo(brw, image->bo, format, 837 image->offset, image->width, image->height, 1, 838 image->pitch, tiling, mt_create_flags); 839 if (mt == NULL) 840 return NULL; 841 842 mt->target = target; 843 mt->level[0].level_x = image->tile_x; 844 mt->level[0].level_y = image->tile_y; 845 mt->drm_modifier = image->modifier; 846 847 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION 848 * for EGL images from non-tile aligned sufaces in gfx4 hw and earlier which has 849 * trouble resolving back to destination image due to alignment issues. 850 */ 851 const struct intel_device_info *devinfo = &brw->screen->devinfo; 852 if (!devinfo->has_surface_tile_offset) { 853 uint32_t draw_x, draw_y; 854 brw_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y); 855 856 if (draw_x != 0 || draw_y != 0) { 857 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__); 858 brw_miptree_release(&mt); 859 return NULL; 860 } 861 } 862 863 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) { 864 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E); 865 866 mt->aux_usage = mod_info->aux_usage; 867 /* If we are a window system buffer, then we can support fast-clears 868 * even if the modifier doesn't support them by doing a partial resolve 869 * as part of the flush operation. 870 */ 871 mt->supports_fast_clear = 872 allow_internal_aux || mod_info->supports_clear_color; 873 874 /* We don't know the actual state of the surface when we get it but we 875 * can make a pretty good guess based on the modifier. What we do know 876 * for sure is that it isn't in the AUX_INVALID state, so we just assume 877 * a worst case of compression. 878 */ 879 enum isl_aux_state initial_state = 880 isl_drm_modifier_get_default_aux_state(image->modifier); 881 882 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) { 883 brw_miptree_release(&mt); 884 return NULL; 885 } 886 } 887 888 /* Don't assume coherency for imported EGLimages. We don't know what 889 * external clients are going to do with it. They may scan it out. 890 */ 891 image->bo->cache_coherent = false; 892 893 return mt; 894} 895 896/** 897 * For a singlesample renderbuffer, this simply wraps the given BO with a 898 * miptree. 899 * 900 * For a multisample renderbuffer, this wraps the window system's 901 * (singlesample) BO with a singlesample miptree attached to the 902 * brw_renderbuffer, then creates a multisample miptree attached to irb->mt 903 * that will contain the actual rendering (which is lazily resolved to 904 * irb->singlesample_mt). 905 */ 906bool 907brw_update_winsys_renderbuffer_miptree(struct brw_context *intel, 908 struct brw_renderbuffer *irb, 909 struct brw_mipmap_tree *singlesample_mt, 910 uint32_t width, uint32_t height, 911 uint32_t pitch) 912{ 913 struct brw_mipmap_tree *multisample_mt = NULL; 914 struct gl_renderbuffer *rb = &irb->Base.Base; 915 mesa_format format = rb->Format; 916 const unsigned num_samples = MAX2(rb->NumSamples, 1); 917 918 /* Only the front and back buffers, which are color buffers, are allocated 919 * through the image loader. 920 */ 921 assert(_mesa_get_format_base_format(format) == GL_RGB || 922 _mesa_get_format_base_format(format) == GL_RGBA); 923 924 assert(singlesample_mt); 925 926 if (num_samples == 1) { 927 brw_miptree_release(&irb->mt); 928 irb->mt = singlesample_mt; 929 930 assert(!irb->singlesample_mt); 931 } else { 932 brw_miptree_release(&irb->singlesample_mt); 933 irb->singlesample_mt = singlesample_mt; 934 935 if (!irb->mt || 936 irb->mt->surf.logical_level0_px.width != width || 937 irb->mt->surf.logical_level0_px.height != height) { 938 multisample_mt = brw_miptree_create_for_renderbuffer(intel, 939 format, 940 width, 941 height, 942 num_samples); 943 if (!multisample_mt) 944 goto fail; 945 946 irb->need_downsample = false; 947 brw_miptree_release(&irb->mt); 948 irb->mt = multisample_mt; 949 } 950 } 951 return true; 952 953fail: 954 brw_miptree_release(&irb->mt); 955 return false; 956} 957 958struct brw_mipmap_tree* 959brw_miptree_create_for_renderbuffer(struct brw_context *brw, 960 mesa_format format, 961 uint32_t width, 962 uint32_t height, 963 uint32_t num_samples) 964{ 965 struct brw_mipmap_tree *mt; 966 uint32_t depth = 1; 967 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D; 968 969 mt = brw_miptree_create(brw, target, format, 0, 0, 970 width, height, depth, num_samples, 971 MIPTREE_CREATE_BUSY); 972 if (!mt) 973 goto fail; 974 975 return mt; 976 977fail: 978 brw_miptree_release(&mt); 979 return NULL; 980} 981 982void 983brw_miptree_reference(struct brw_mipmap_tree **dst, 984 struct brw_mipmap_tree *src) 985{ 986 if (*dst == src) 987 return; 988 989 brw_miptree_release(dst); 990 991 if (src) { 992 src->refcount++; 993 DBG("%s %p refcount now %d\n", __func__, src, src->refcount); 994 } 995 996 *dst = src; 997} 998 999static void 1000brw_miptree_aux_buffer_free(struct brw_miptree_aux_buffer *aux_buf) 1001{ 1002 if (aux_buf == NULL) 1003 return; 1004 1005 brw_bo_unreference(aux_buf->bo); 1006 brw_bo_unreference(aux_buf->clear_color_bo); 1007 1008 free(aux_buf); 1009} 1010 1011void 1012brw_miptree_release(struct brw_mipmap_tree **mt) 1013{ 1014 if (!*mt) 1015 return; 1016 1017 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1); 1018 if (--(*mt)->refcount <= 0) { 1019 GLuint i; 1020 1021 DBG("%s deleting %p\n", __func__, *mt); 1022 1023 brw_bo_unreference((*mt)->bo); 1024 brw_miptree_release(&(*mt)->stencil_mt); 1025 brw_miptree_release(&(*mt)->shadow_mt); 1026 brw_miptree_aux_buffer_free((*mt)->aux_buf); 1027 free_aux_state_map((*mt)->aux_state); 1028 1029 brw_miptree_release(&(*mt)->plane[0]); 1030 brw_miptree_release(&(*mt)->plane[1]); 1031 1032 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) { 1033 free((*mt)->level[i].slice); 1034 } 1035 1036 free(*mt); 1037 } 1038 *mt = NULL; 1039} 1040 1041 1042void 1043brw_get_image_dims(struct gl_texture_image *image, 1044 int *width, int *height, int *depth) 1045{ 1046 switch (image->TexObject->Target) { 1047 case GL_TEXTURE_1D_ARRAY: 1048 /* For a 1D Array texture the OpenGL API will treat the image height as 1049 * the number of array slices. For Intel hardware, we treat the 1D array 1050 * as a 2D Array with a height of 1. So, here we want to swap image 1051 * height and depth. 1052 */ 1053 assert(image->Depth == 1); 1054 *width = image->Width; 1055 *height = 1; 1056 *depth = image->Height; 1057 break; 1058 case GL_TEXTURE_CUBE_MAP: 1059 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even 1060 * though we really have 6 slices. 1061 */ 1062 assert(image->Depth == 1); 1063 *width = image->Width; 1064 *height = image->Height; 1065 *depth = 6; 1066 break; 1067 default: 1068 *width = image->Width; 1069 *height = image->Height; 1070 *depth = image->Depth; 1071 break; 1072 } 1073} 1074 1075/** 1076 * Can the image be pulled into a unified mipmap tree? This mirrors 1077 * the completeness test in a lot of ways. 1078 * 1079 * Not sure whether I want to pass gl_texture_image here. 1080 */ 1081bool 1082brw_miptree_match_image(struct brw_mipmap_tree *mt, 1083 struct gl_texture_image *image) 1084{ 1085 struct brw_texture_image *brw_image = brw_texture_image(image); 1086 GLuint level = brw_image->base.Base.Level; 1087 int width, height, depth; 1088 1089 /* glTexImage* choose the texture object based on the target passed in, and 1090 * objects can't change targets over their lifetimes, so this should be 1091 * true. 1092 */ 1093 assert(image->TexObject->Target == mt->target); 1094 1095 mesa_format mt_format = mt->format; 1096 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt) 1097 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT; 1098 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt) 1099 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT; 1100 1101 if (_mesa_get_srgb_format_linear(image->TexFormat) != 1102 _mesa_get_srgb_format_linear(mt_format)) 1103 return false; 1104 1105 brw_get_image_dims(image, &width, &height, &depth); 1106 1107 if (mt->target == GL_TEXTURE_CUBE_MAP) 1108 depth = 6; 1109 1110 if (level >= mt->surf.levels) 1111 return false; 1112 1113 const unsigned level_depth = 1114 mt->surf.dim == ISL_SURF_DIM_3D ? 1115 minify(mt->surf.logical_level0_px.depth, level) : 1116 mt->surf.logical_level0_px.array_len; 1117 1118 return width == minify(mt->surf.logical_level0_px.width, level) && 1119 height == minify(mt->surf.logical_level0_px.height, level) && 1120 depth == level_depth && 1121 MAX2(image->NumSamples, 1) == mt->surf.samples; 1122} 1123 1124void 1125brw_miptree_get_image_offset(const struct brw_mipmap_tree *mt, 1126 GLuint level, GLuint slice, 1127 GLuint *x, GLuint *y) 1128{ 1129 if (level == 0 && slice == 0) { 1130 *x = mt->level[0].level_x; 1131 *y = mt->level[0].level_y; 1132 return; 1133 } 1134 1135 uint32_t x_offset_sa, y_offset_sa, z_offset_sa, array_offset; 1136 1137 /* Miptree itself can have an offset only if it represents a single 1138 * slice in an imported buffer object. 1139 * See brw_miptree_create_for_dri_image(). 1140 */ 1141 assert(mt->level[0].level_x == 0); 1142 assert(mt->level[0].level_y == 0); 1143 1144 /* Given level is relative to level zero while the miptree may be 1145 * represent just a subset of all levels starting from 'first_level'. 1146 */ 1147 assert(level >= mt->first_level); 1148 level -= mt->first_level; 1149 1150 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0; 1151 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice; 1152 isl_surf_get_image_offset_el(&mt->surf, level, slice, z, 1153 &x_offset_sa, &y_offset_sa, 1154 &z_offset_sa, &array_offset); 1155 1156 *x = x_offset_sa; 1157 *y = y_offset_sa; 1158 assert(z_offset_sa == 0); 1159 assert(array_offset == 0); 1160} 1161 1162/** 1163 * Compute the offset (in bytes) from the start of the BO to the given x 1164 * and y coordinate. For tiled BOs, caller must ensure that x and y are 1165 * multiples of the tile size. 1166 */ 1167uint32_t 1168brw_miptree_get_aligned_offset(const struct brw_mipmap_tree *mt, 1169 uint32_t x, uint32_t y) 1170{ 1171 int cpp = mt->cpp; 1172 uint32_t pitch = mt->surf.row_pitch_B; 1173 1174 switch (mt->surf.tiling) { 1175 default: 1176 unreachable("not reached"); 1177 case ISL_TILING_LINEAR: 1178 return y * pitch + x * cpp; 1179 case ISL_TILING_X: 1180 assert((x % (512 / cpp)) == 0); 1181 assert((y % 8) == 0); 1182 return y * pitch + x / (512 / cpp) * 4096; 1183 case ISL_TILING_Y0: 1184 assert((x % (128 / cpp)) == 0); 1185 assert((y % 32) == 0); 1186 return y * pitch + x / (128 / cpp) * 4096; 1187 } 1188} 1189 1190/** 1191 * Rendering with tiled buffers requires that the base address of the buffer 1192 * be aligned to a page boundary. For renderbuffers, and sometimes with 1193 * textures, we may want the surface to point at a texture image level that 1194 * isn't at a page boundary. 1195 * 1196 * This function returns an appropriately-aligned base offset 1197 * according to the tiling restrictions, plus any required x/y offset 1198 * from there. 1199 */ 1200uint32_t 1201brw_miptree_get_tile_offsets(const struct brw_mipmap_tree *mt, 1202 GLuint level, GLuint slice, 1203 uint32_t *tile_x, 1204 uint32_t *tile_y) 1205{ 1206 uint32_t x, y; 1207 uint32_t mask_x, mask_y; 1208 1209 isl_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y); 1210 brw_miptree_get_image_offset(mt, level, slice, &x, &y); 1211 1212 *tile_x = x & mask_x; 1213 *tile_y = y & mask_y; 1214 1215 return brw_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y); 1216} 1217 1218static void 1219brw_miptree_copy_slice_sw(struct brw_context *brw, 1220 struct brw_mipmap_tree *src_mt, 1221 unsigned src_level, unsigned src_layer, 1222 struct brw_mipmap_tree *dst_mt, 1223 unsigned dst_level, unsigned dst_layer, 1224 unsigned width, unsigned height) 1225{ 1226 void *src, *dst; 1227 ptrdiff_t src_stride, dst_stride; 1228 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8); 1229 1230 brw_miptree_map(brw, src_mt, 1231 src_level, src_layer, 1232 0, 0, 1233 width, height, 1234 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT, 1235 &src, &src_stride); 1236 1237 brw_miptree_map(brw, dst_mt, 1238 dst_level, dst_layer, 1239 0, 0, 1240 width, height, 1241 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | 1242 BRW_MAP_DIRECT_BIT, 1243 &dst, &dst_stride); 1244 1245 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n", 1246 _mesa_get_format_name(src_mt->format), 1247 src_mt, src, src_stride, 1248 _mesa_get_format_name(dst_mt->format), 1249 dst_mt, dst, dst_stride, 1250 width, height); 1251 1252 int row_size = cpp * width; 1253 if (src_stride == row_size && 1254 dst_stride == row_size) { 1255 memcpy(dst, src, row_size * height); 1256 } else { 1257 for (int i = 0; i < height; i++) { 1258 memcpy(dst, src, row_size); 1259 dst += dst_stride; 1260 src += src_stride; 1261 } 1262 } 1263 1264 brw_miptree_unmap(brw, dst_mt, dst_level, dst_layer); 1265 brw_miptree_unmap(brw, src_mt, src_level, src_layer); 1266 1267 /* Don't forget to copy the stencil data over, too. We could have skipped 1268 * passing BRW_MAP_DIRECT_BIT, but that would have meant brw_miptree_map 1269 * shuffling the two data sources in/out of temporary storage instead of 1270 * the direct mapping we get this way. 1271 */ 1272 if (dst_mt->stencil_mt) { 1273 assert(src_mt->stencil_mt); 1274 brw_miptree_copy_slice_sw(brw, 1275 src_mt->stencil_mt, src_level, src_layer, 1276 dst_mt->stencil_mt, dst_level, dst_layer, 1277 width, height); 1278 } 1279} 1280 1281void 1282brw_miptree_copy_slice(struct brw_context *brw, 1283 struct brw_mipmap_tree *src_mt, 1284 unsigned src_level, unsigned src_layer, 1285 struct brw_mipmap_tree *dst_mt, 1286 unsigned dst_level, unsigned dst_layer) 1287{ 1288 const struct intel_device_info *devinfo = &brw->screen->devinfo; 1289 mesa_format format = src_mt->format; 1290 unsigned width = minify(src_mt->surf.phys_level0_sa.width, 1291 src_level - src_mt->first_level); 1292 unsigned height = minify(src_mt->surf.phys_level0_sa.height, 1293 src_level - src_mt->first_level); 1294 1295 assert(src_layer < get_num_phys_layers(&src_mt->surf, 1296 src_level - src_mt->first_level)); 1297 1298 assert(_mesa_get_srgb_format_linear(src_mt->format) == 1299 _mesa_get_srgb_format_linear(dst_mt->format)); 1300 1301 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n", 1302 _mesa_get_format_name(src_mt->format), 1303 src_mt, src_level, src_layer, 1304 _mesa_get_format_name(dst_mt->format), 1305 dst_mt, dst_level, dst_layer, 1306 width, height); 1307 1308 if (devinfo->ver >= 6) { 1309 /* On gfx6 and above, we just use blorp. It's faster than the blitter 1310 * and can handle everything without software fallbacks. 1311 */ 1312 brw_blorp_copy_miptrees(brw, 1313 src_mt, src_level, src_layer, 1314 dst_mt, dst_level, dst_layer, 1315 0, 0, 0, 0, width, height); 1316 1317 if (src_mt->stencil_mt) { 1318 assert(dst_mt->stencil_mt); 1319 brw_blorp_copy_miptrees(brw, 1320 src_mt->stencil_mt, src_level, src_layer, 1321 dst_mt->stencil_mt, dst_level, dst_layer, 1322 0, 0, 0, 0, width, height); 1323 } 1324 return; 1325 } 1326 1327 if (dst_mt->compressed) { 1328 unsigned int i, j; 1329 _mesa_get_format_block_size(dst_mt->format, &i, &j); 1330 height = ALIGN_NPOT(height, j) / j; 1331 width = ALIGN_NPOT(width, i) / i; 1332 } 1333 1334 /* Gfx4-5 doesn't support separate stencil */ 1335 assert(!src_mt->stencil_mt); 1336 1337 uint32_t dst_x, dst_y, src_x, src_y; 1338 brw_miptree_get_image_offset(dst_mt, dst_level, dst_layer, &dst_x, &dst_y); 1339 brw_miptree_get_image_offset(src_mt, src_level, src_layer, &src_x, &src_y); 1340 1341 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n", 1342 _mesa_get_format_name(src_mt->format), 1343 src_mt, src_x, src_y, src_mt->surf.row_pitch_B, 1344 _mesa_get_format_name(dst_mt->format), 1345 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch_B, 1346 width, height); 1347 1348 if (!brw_miptree_blit(brw, 1349 src_mt, src_level, src_layer, 0, 0, false, 1350 dst_mt, dst_level, dst_layer, 0, 0, false, 1351 width, height, COLOR_LOGICOP_COPY)) { 1352 perf_debug("miptree validate blit for %s failed\n", 1353 _mesa_get_format_name(format)); 1354 1355 brw_miptree_copy_slice_sw(brw, 1356 src_mt, src_level, src_layer, 1357 dst_mt, dst_level, dst_layer, 1358 width, height); 1359 } 1360} 1361 1362/** 1363 * Copies the image's current data to the given miptree, and associates that 1364 * miptree with the image. 1365 */ 1366void 1367brw_miptree_copy_teximage(struct brw_context *brw, 1368 struct brw_texture_image *brw_image, 1369 struct brw_mipmap_tree *dst_mt) 1370{ 1371 struct brw_mipmap_tree *src_mt = brw_image->mt; 1372 struct brw_texture_object *intel_obj = 1373 brw_texture_object(brw_image->base.Base.TexObject); 1374 int level = brw_image->base.Base.Level; 1375 const unsigned face = brw_image->base.Base.Face; 1376 unsigned start_layer, end_layer; 1377 1378 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) { 1379 assert(face == 0); 1380 assert(brw_image->base.Base.Height); 1381 start_layer = 0; 1382 end_layer = brw_image->base.Base.Height - 1; 1383 } else if (face > 0) { 1384 start_layer = face; 1385 end_layer = face; 1386 } else { 1387 assert(brw_image->base.Base.Depth); 1388 start_layer = 0; 1389 end_layer = brw_image->base.Base.Depth - 1; 1390 } 1391 1392 for (unsigned i = start_layer; i <= end_layer; i++) { 1393 brw_miptree_copy_slice(brw, src_mt, level, i, dst_mt, level, i); 1394 } 1395 1396 brw_miptree_reference(&brw_image->mt, dst_mt); 1397 intel_obj->needs_validate = true; 1398} 1399 1400static struct brw_miptree_aux_buffer * 1401brw_alloc_aux_buffer(struct brw_context *brw, 1402 const struct isl_surf *aux_surf, 1403 bool wants_memset, 1404 uint8_t memset_value) 1405{ 1406 struct brw_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1); 1407 if (!buf) 1408 return false; 1409 1410 uint64_t size = aux_surf->size_B; 1411 1412 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0; 1413 if (has_indirect_clear) { 1414 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we 1415 * will set a pointer to a dword somewhere that contains the color. So, 1416 * allocate the space for the clear color value here on the aux buffer. 1417 */ 1418 buf->clear_color_offset = size; 1419 size += brw->isl_dev.ss.clear_color_state_size; 1420 } 1421 1422 /* If the buffer needs to be initialised (requiring the buffer to be 1423 * immediately mapped to cpu space for writing), do not use the gpu access 1424 * flag which can cause an unnecessary delay if the backing pages happened 1425 * to be just used by the GPU. 1426 */ 1427 const bool alloc_zeroed = wants_memset && memset_value == 0; 1428 const bool needs_memset = 1429 !alloc_zeroed && (wants_memset || has_indirect_clear); 1430 const uint32_t alloc_flags = 1431 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY); 1432 1433 /* ISL has stricter set of alignment rules then the drm allocator. 1434 * Therefore one can pass the ISL dimensions in terms of bytes instead of 1435 * trying to recalculate based on different format block sizes. 1436 */ 1437 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size, 1438 BRW_MEMZONE_OTHER, I915_TILING_Y, 1439 aux_surf->row_pitch_B, alloc_flags); 1440 if (!buf->bo) { 1441 free(buf); 1442 return NULL; 1443 } 1444 1445 /* Initialize the bo to the desired value */ 1446 if (needs_memset) { 1447 assert(!(alloc_flags & BO_ALLOC_BUSY)); 1448 1449 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW); 1450 if (map == NULL) { 1451 brw_miptree_aux_buffer_free(buf); 1452 return NULL; 1453 } 1454 1455 /* Memset the aux_surf portion of the BO. */ 1456 if (wants_memset) 1457 memset(map, memset_value, aux_surf->size_B); 1458 1459 /* Zero the indirect clear color to match ::fast_clear_color. */ 1460 if (has_indirect_clear) { 1461 memset((char *)map + buf->clear_color_offset, 0, 1462 brw->isl_dev.ss.clear_color_state_size); 1463 } 1464 1465 brw_bo_unmap(buf->bo); 1466 } 1467 1468 if (has_indirect_clear) { 1469 buf->clear_color_bo = buf->bo; 1470 brw_bo_reference(buf->clear_color_bo); 1471 } 1472 1473 buf->surf = *aux_surf; 1474 1475 return buf; 1476} 1477 1478 1479/** 1480 * Helper for brw_miptree_alloc_aux() that sets 1481 * \c mt->level[level].has_hiz. Return true if and only if 1482 * \c has_hiz was set. 1483 */ 1484static bool 1485brw_miptree_level_enable_hiz(struct brw_context *brw, 1486 struct brw_mipmap_tree *mt, 1487 uint32_t level) 1488{ 1489 const struct intel_device_info *devinfo = &brw->screen->devinfo; 1490 1491 assert(mt->aux_buf); 1492 assert(mt->surf.size_B > 0); 1493 1494 if (devinfo->verx10 >= 75) { 1495 uint32_t width = minify(mt->surf.phys_level0_sa.width, level); 1496 uint32_t height = minify(mt->surf.phys_level0_sa.height, level); 1497 1498 /* Disable HiZ for LOD > 0 unless the width is 8 aligned 1499 * and the height is 4 aligned. This allows our HiZ support 1500 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0, 1501 * we can grow the width & height to allow the HiZ op to 1502 * force the proper size alignments. 1503 */ 1504 if (level > 0 && ((width & 7) || (height & 3))) { 1505 DBG("mt %p level %d: HiZ DISABLED\n", mt, level); 1506 return false; 1507 } 1508 } 1509 1510 DBG("mt %p level %d: HiZ enabled\n", mt, level); 1511 mt->level[level].has_hiz = true; 1512 return true; 1513} 1514 1515 1516/** 1517 * Allocate the initial aux surface for a miptree based on mt->aux_usage 1518 * 1519 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we 1520 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only 1521 * compress clear color so we wait until an actual fast-clear to allocate it. 1522 */ 1523bool 1524brw_miptree_alloc_aux(struct brw_context *brw, struct brw_mipmap_tree *mt) 1525{ 1526 assert(mt->aux_buf == NULL); 1527 1528 /* Get the aux buf allocation parameters for this miptree. */ 1529 enum isl_aux_state initial_state; 1530 uint8_t memset_value; 1531 struct isl_surf aux_surf = {0,}; 1532 bool aux_surf_ok = false; 1533 1534 switch (mt->aux_usage) { 1535 case ISL_AUX_USAGE_NONE: 1536 aux_surf.size_B = 0; 1537 aux_surf_ok = true; 1538 break; 1539 case ISL_AUX_USAGE_HIZ: 1540 initial_state = ISL_AUX_STATE_AUX_INVALID; 1541 memset_value = 0; 1542 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf); 1543 break; 1544 case ISL_AUX_USAGE_MCS: 1545 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326: 1546 * 1547 * When MCS buffer is enabled and bound to MSRT, it is required that 1548 * it is cleared prior to any rendering. 1549 * 1550 * Since we don't use the MCS buffer for any purpose other than 1551 * rendering, it makes sense to just clear it immediately upon 1552 * allocation. 1553 * 1554 * Note: the clear value for MCS buffers is all 1's, so we memset to 1555 * 0xff. 1556 */ 1557 initial_state = ISL_AUX_STATE_CLEAR; 1558 memset_value = 0xFF; 1559 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf); 1560 break; 1561 case ISL_AUX_USAGE_CCS_D: 1562 case ISL_AUX_USAGE_CCS_E: 1563 /* When CCS_E is used, we need to ensure that the CCS starts off in a 1564 * valid state. From the Sky Lake PRM, "MCS Buffer for Render 1565 * Target(s)": 1566 * 1567 * "If Software wants to enable Color Compression without Fast 1568 * clear, Software needs to initialize MCS with zeros." 1569 * 1570 * A CCS value of 0 indicates that the corresponding block is in the 1571 * pass-through state which is what we want. 1572 * 1573 * For CCS_D, do the same thing. On gfx9+, this avoids having any 1574 * undefined bits in the aux buffer. 1575 */ 1576 initial_state = ISL_AUX_STATE_PASS_THROUGH; 1577 memset_value = 0; 1578 aux_surf_ok = 1579 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, NULL, &aux_surf, 0); 1580 break; 1581 1582 default: 1583 unreachable("Invalid aux usage"); 1584 } 1585 1586 /* We should have a valid aux_surf. */ 1587 if (!aux_surf_ok) 1588 return false; 1589 1590 /* No work is needed for a zero-sized auxiliary buffer. */ 1591 if (aux_surf.size_B == 0) 1592 return true; 1593 1594 /* Create the aux_state for the auxiliary buffer. */ 1595 mt->aux_state = create_aux_state_map(mt, initial_state); 1596 if (mt->aux_state == NULL) 1597 return false; 1598 1599 /* Allocate the auxiliary buffer. */ 1600 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID; 1601 mt->aux_buf = brw_alloc_aux_buffer(brw, &aux_surf, needs_memset, 1602 memset_value); 1603 if (mt->aux_buf == NULL) { 1604 free_aux_state_map(mt->aux_state); 1605 mt->aux_state = NULL; 1606 return false; 1607 } 1608 1609 /* Perform aux_usage-specific initialization. */ 1610 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) { 1611 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) 1612 brw_miptree_level_enable_hiz(brw, mt, level); 1613 } 1614 1615 return true; 1616} 1617 1618 1619/** 1620 * Can the miptree sample using the hiz buffer? 1621 */ 1622bool 1623brw_miptree_sample_with_hiz(struct brw_context *brw, 1624 struct brw_mipmap_tree *mt) 1625{ 1626 const struct intel_device_info *devinfo = &brw->screen->devinfo; 1627 1628 if (!devinfo->has_sample_with_hiz) { 1629 return false; 1630 } 1631 1632 if (!mt->aux_buf) { 1633 return false; 1634 } 1635 1636 for (unsigned level = 0; level < mt->surf.levels; ++level) { 1637 if (!brw_miptree_level_has_hiz(mt, level)) 1638 return false; 1639 } 1640 1641 /* From the BDW PRM (Volume 2d: Command Reference: Structures 1642 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode): 1643 * 1644 * "If this field is set to AUX_HIZ, Number of Multisamples must be 1645 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D. 1646 * 1647 * There is no such blurb for 1D textures, but there is sufficient evidence 1648 * that this is broken on SKL+. 1649 */ 1650 return (mt->surf.samples == 1 && 1651 mt->target != GL_TEXTURE_3D && 1652 mt->target != GL_TEXTURE_1D /* gfx9+ restriction */); 1653} 1654 1655static bool 1656level_has_aux(const struct brw_mipmap_tree *mt, uint32_t level) 1657{ 1658 return isl_aux_usage_has_hiz(mt->aux_usage) ? 1659 brw_miptree_level_has_hiz(mt, level) : 1660 mt->aux_usage != ISL_AUX_USAGE_NONE && mt->aux_buf; 1661} 1662 1663/** 1664 * Does the miptree slice have hiz enabled? 1665 */ 1666bool 1667brw_miptree_level_has_hiz(const struct brw_mipmap_tree *mt, uint32_t level) 1668{ 1669 brw_miptree_check_level_layer(mt, level, 0); 1670 return mt->level[level].has_hiz; 1671} 1672 1673static inline uint32_t 1674miptree_level_range_length(const struct brw_mipmap_tree *mt, 1675 uint32_t start_level, uint32_t num_levels) 1676{ 1677 assert(start_level >= mt->first_level); 1678 assert(start_level <= mt->last_level); 1679 1680 if (num_levels == INTEL_REMAINING_LAYERS) 1681 num_levels = mt->last_level - start_level + 1; 1682 /* Check for overflow */ 1683 assert(start_level + num_levels >= start_level); 1684 assert(start_level + num_levels <= mt->last_level + 1); 1685 1686 return num_levels; 1687} 1688 1689static inline uint32_t 1690miptree_layer_range_length(const struct brw_mipmap_tree *mt, uint32_t level, 1691 uint32_t start_layer, uint32_t num_layers) 1692{ 1693 assert(level <= mt->last_level); 1694 1695 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level); 1696 assert(start_layer < total_num_layers); 1697 if (num_layers == INTEL_REMAINING_LAYERS) 1698 num_layers = total_num_layers - start_layer; 1699 /* Check for overflow */ 1700 assert(start_layer + num_layers >= start_layer); 1701 assert(start_layer + num_layers <= total_num_layers); 1702 1703 return num_layers; 1704} 1705 1706bool 1707brw_miptree_has_color_unresolved(const struct brw_mipmap_tree *mt, 1708 unsigned start_level, unsigned num_levels, 1709 unsigned start_layer, unsigned num_layers) 1710{ 1711 assert(_mesa_is_format_color_format(mt->format)); 1712 1713 if (!mt->aux_buf) 1714 return false; 1715 1716 /* Clamp the level range to fit the miptree */ 1717 num_levels = miptree_level_range_length(mt, start_level, num_levels); 1718 1719 for (uint32_t l = 0; l < num_levels; l++) { 1720 const uint32_t level = start_level + l; 1721 const uint32_t level_layers = 1722 miptree_layer_range_length(mt, level, start_layer, num_layers); 1723 for (unsigned a = 0; a < level_layers; a++) { 1724 enum isl_aux_state aux_state = 1725 brw_miptree_get_aux_state(mt, level, start_layer + a); 1726 assert(aux_state != ISL_AUX_STATE_AUX_INVALID); 1727 if (aux_state != ISL_AUX_STATE_PASS_THROUGH) 1728 return true; 1729 } 1730 } 1731 1732 return false; 1733} 1734 1735static void 1736brw_miptree_check_color_resolve(const struct brw_context *brw, 1737 const struct brw_mipmap_tree *mt, 1738 unsigned level, unsigned layer) 1739{ 1740 if (!mt->aux_buf) 1741 return; 1742 1743 /* Fast color clear is supported for mipmapped surfaces only on Gfx8+. */ 1744 assert(brw->screen->devinfo.ver >= 8 || 1745 (level == 0 && mt->first_level == 0 && mt->last_level == 0)); 1746 1747 /* Compression of arrayed msaa surfaces is supported. */ 1748 if (mt->surf.samples > 1) 1749 return; 1750 1751 /* Fast color clear is supported for non-msaa arrays only on Gfx8+. */ 1752 assert(brw->screen->devinfo.ver >= 8 || 1753 (layer == 0 && 1754 mt->surf.logical_level0_px.depth == 1 && 1755 mt->surf.logical_level0_px.array_len == 1)); 1756 1757 (void)level; 1758 (void)layer; 1759} 1760 1761void 1762brw_miptree_prepare_access(struct brw_context *brw, 1763 struct brw_mipmap_tree *mt, 1764 uint32_t start_level, uint32_t num_levels, 1765 uint32_t start_layer, uint32_t num_layers, 1766 enum isl_aux_usage aux_usage, 1767 bool fast_clear_supported) 1768{ 1769 const uint32_t clamped_levels = 1770 miptree_level_range_length(mt, start_level, num_levels); 1771 for (uint32_t l = 0; l < clamped_levels; l++) { 1772 const uint32_t level = start_level + l; 1773 if (!level_has_aux(mt, level)) 1774 continue; 1775 1776 const uint32_t level_layers = 1777 miptree_layer_range_length(mt, level, start_layer, num_layers); 1778 for (uint32_t a = 0; a < level_layers; a++) { 1779 const uint32_t layer = start_layer + a; 1780 const enum isl_aux_state aux_state = 1781 brw_miptree_get_aux_state(mt, level, layer); 1782 const enum isl_aux_op aux_op = 1783 isl_aux_prepare_access(aux_state, aux_usage, fast_clear_supported); 1784 1785 if (aux_op == ISL_AUX_OP_NONE) { 1786 /* Nothing to do here. */ 1787 } else if (isl_aux_usage_has_mcs(mt->aux_usage)) { 1788 assert(aux_op == ISL_AUX_OP_PARTIAL_RESOLVE); 1789 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1); 1790 } else if (isl_aux_usage_has_hiz(mt->aux_usage)) { 1791 brw_hiz_exec(brw, mt, level, layer, 1, aux_op); 1792 } else { 1793 assert(isl_aux_usage_has_ccs(mt->aux_usage)); 1794 brw_miptree_check_color_resolve(brw, mt, level, layer); 1795 brw_blorp_resolve_color(brw, mt, level, layer, aux_op); 1796 } 1797 1798 const enum isl_aux_state new_state = 1799 isl_aux_state_transition_aux_op(aux_state, mt->aux_usage, aux_op); 1800 brw_miptree_set_aux_state(brw, mt, level, layer, 1, new_state); 1801 } 1802 } 1803} 1804 1805void 1806brw_miptree_finish_write(struct brw_context *brw, 1807 struct brw_mipmap_tree *mt, uint32_t level, 1808 uint32_t start_layer, uint32_t num_layers, 1809 enum isl_aux_usage aux_usage) 1810{ 1811 const struct intel_device_info *devinfo = &brw->screen->devinfo; 1812 1813 if (mt->format == MESA_FORMAT_S_UINT8 && devinfo->ver <= 7) { 1814 mt->shadow_needs_update = true; 1815 } else if (brw_miptree_has_etc_shadow(brw, mt)) { 1816 mt->shadow_needs_update = true; 1817 } 1818 1819 if (!level_has_aux(mt, level)) 1820 return; 1821 1822 const uint32_t level_layers = 1823 miptree_layer_range_length(mt, level, start_layer, num_layers); 1824 1825 for (uint32_t a = 0; a < level_layers; a++) { 1826 const uint32_t layer = start_layer + a; 1827 const enum isl_aux_state aux_state = 1828 brw_miptree_get_aux_state(mt, level, layer); 1829 const enum isl_aux_state new_aux_state = 1830 isl_aux_state_transition_write(aux_state, aux_usage, false); 1831 brw_miptree_set_aux_state(brw, mt, level, layer, 1, new_aux_state); 1832 } 1833} 1834 1835enum isl_aux_state 1836brw_miptree_get_aux_state(const struct brw_mipmap_tree *mt, 1837 uint32_t level, uint32_t layer) 1838{ 1839 brw_miptree_check_level_layer(mt, level, layer); 1840 1841 if (_mesa_is_format_color_format(mt->format)) { 1842 assert(mt->aux_buf != NULL); 1843 assert(mt->surf.samples == 1 || 1844 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY); 1845 } else if (mt->format == MESA_FORMAT_S_UINT8) { 1846 unreachable("Cannot get aux state for stencil"); 1847 } else { 1848 assert(brw_miptree_level_has_hiz(mt, level)); 1849 } 1850 1851 return mt->aux_state[level][layer]; 1852} 1853 1854void 1855brw_miptree_set_aux_state(struct brw_context *brw, 1856 struct brw_mipmap_tree *mt, uint32_t level, 1857 uint32_t start_layer, uint32_t num_layers, 1858 enum isl_aux_state aux_state) 1859{ 1860 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers); 1861 1862 if (_mesa_is_format_color_format(mt->format)) { 1863 assert(mt->aux_buf != NULL); 1864 assert(mt->surf.samples == 1 || 1865 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY); 1866 } else if (mt->format == MESA_FORMAT_S_UINT8) { 1867 unreachable("Cannot get aux state for stencil"); 1868 } else { 1869 assert(brw_miptree_level_has_hiz(mt, level)); 1870 } 1871 1872 for (unsigned a = 0; a < num_layers; a++) { 1873 if (mt->aux_state[level][start_layer + a] != aux_state) { 1874 mt->aux_state[level][start_layer + a] = aux_state; 1875 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE; 1876 } 1877 } 1878} 1879 1880/* On Gfx9 color buffers may be compressed by the hardware (lossless 1881 * compression). There are, however, format restrictions and care needs to be 1882 * taken that the sampler engine is capable for re-interpreting a buffer with 1883 * format different the buffer was originally written with. 1884 * 1885 * For example, SRGB formats are not compressible and the sampler engine isn't 1886 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying 1887 * color buffer needs to be resolved so that the sampling surface can be 1888 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being 1889 * set). 1890 */ 1891static bool 1892can_texture_with_ccs(struct brw_context *brw, 1893 struct brw_mipmap_tree *mt, 1894 enum isl_format view_format) 1895{ 1896 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E) 1897 return false; 1898 1899 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo, 1900 mt, view_format)) { 1901 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n", 1902 isl_format_get_name(view_format), 1903 _mesa_get_format_name(mt->format)); 1904 return false; 1905 } 1906 1907 return true; 1908} 1909 1910enum isl_aux_usage 1911brw_miptree_texture_aux_usage(struct brw_context *brw, 1912 struct brw_mipmap_tree *mt, 1913 enum isl_format view_format, 1914 enum gfx9_astc5x5_wa_tex_type astc5x5_wa_bits) 1915{ 1916 assert(brw->screen->devinfo.ver == 9 || astc5x5_wa_bits == 0); 1917 1918 /* On gfx9, ASTC 5x5 textures cannot live in the sampler cache along side 1919 * CCS or HiZ compressed textures. See gfx9_apply_astc5x5_wa_flush() for 1920 * details. 1921 */ 1922 if ((astc5x5_wa_bits & GFX9_ASTC5X5_WA_TEX_TYPE_ASTC5x5) && 1923 mt->aux_usage != ISL_AUX_USAGE_MCS) 1924 return ISL_AUX_USAGE_NONE; 1925 1926 switch (mt->aux_usage) { 1927 case ISL_AUX_USAGE_HIZ: 1928 if (brw_miptree_sample_with_hiz(brw, mt)) 1929 return ISL_AUX_USAGE_HIZ; 1930 break; 1931 1932 case ISL_AUX_USAGE_MCS: 1933 return ISL_AUX_USAGE_MCS; 1934 1935 case ISL_AUX_USAGE_CCS_D: 1936 case ISL_AUX_USAGE_CCS_E: 1937 if (!mt->aux_buf) { 1938 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D); 1939 return ISL_AUX_USAGE_NONE; 1940 } 1941 1942 /* If we don't have any unresolved color, report an aux usage of 1943 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the 1944 * aux surface and we can save some bandwidth. 1945 */ 1946 if (!brw_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS, 1947 0, INTEL_REMAINING_LAYERS)) 1948 return ISL_AUX_USAGE_NONE; 1949 1950 if (can_texture_with_ccs(brw, mt, view_format)) 1951 return ISL_AUX_USAGE_CCS_E; 1952 break; 1953 1954 default: 1955 break; 1956 } 1957 1958 return ISL_AUX_USAGE_NONE; 1959} 1960 1961static bool 1962isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b) 1963{ 1964 /* On gfx8 and earlier, the hardware was only capable of handling 0/1 clear 1965 * values so sRGB curve application was a no-op for all fast-clearable 1966 * formats. 1967 * 1968 * On gfx9+, the hardware supports arbitrary clear values. For sRGB clear 1969 * values, the hardware interprets the floats, not as what would be 1970 * returned from the sampler (or written by the shader), but as being 1971 * between format conversion and sRGB curve application. This means that 1972 * we can switch between sRGB and UNORM without having to whack the clear 1973 * color. 1974 */ 1975 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b); 1976} 1977 1978void 1979brw_miptree_prepare_texture(struct brw_context *brw, 1980 struct brw_mipmap_tree *mt, 1981 enum isl_format view_format, 1982 uint32_t start_level, uint32_t num_levels, 1983 uint32_t start_layer, uint32_t num_layers, 1984 enum gfx9_astc5x5_wa_tex_type astc5x5_wa_bits) 1985{ 1986 enum isl_aux_usage aux_usage = 1987 brw_miptree_texture_aux_usage(brw, mt, view_format, astc5x5_wa_bits); 1988 1989 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE; 1990 1991 /* Clear color is specified as ints or floats and the conversion is done by 1992 * the sampler. If we have a texture view, we would have to perform the 1993 * clear color conversion manually. Just disable clear color. 1994 */ 1995 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format)) 1996 clear_supported = false; 1997 1998 brw_miptree_prepare_access(brw, mt, start_level, num_levels, 1999 start_layer, num_layers, 2000 aux_usage, clear_supported); 2001} 2002 2003void 2004brw_miptree_prepare_image(struct brw_context *brw, struct brw_mipmap_tree *mt) 2005{ 2006 /* The data port doesn't understand any compression */ 2007 brw_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS, 2008 0, INTEL_REMAINING_LAYERS, 2009 ISL_AUX_USAGE_NONE, false); 2010} 2011 2012enum isl_aux_usage 2013brw_miptree_render_aux_usage(struct brw_context *brw, 2014 struct brw_mipmap_tree *mt, 2015 enum isl_format render_format, 2016 bool blend_enabled, 2017 bool draw_aux_disabled) 2018{ 2019 struct intel_device_info *devinfo = &brw->screen->devinfo; 2020 2021 if (draw_aux_disabled) 2022 return ISL_AUX_USAGE_NONE; 2023 2024 switch (mt->aux_usage) { 2025 case ISL_AUX_USAGE_MCS: 2026 assert(mt->aux_buf); 2027 return ISL_AUX_USAGE_MCS; 2028 2029 case ISL_AUX_USAGE_CCS_D: 2030 case ISL_AUX_USAGE_CCS_E: 2031 if (!mt->aux_buf) { 2032 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D); 2033 return ISL_AUX_USAGE_NONE; 2034 } 2035 2036 /* gfx9+ hardware technically supports non-0/1 clear colors with sRGB 2037 * formats. However, there are issues with blending where it doesn't 2038 * properly apply the sRGB curve to the clear color when blending. 2039 */ 2040 if (devinfo->ver >= 9 && blend_enabled && 2041 isl_format_is_srgb(render_format) && 2042 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format)) 2043 return ISL_AUX_USAGE_NONE; 2044 2045 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E && 2046 format_ccs_e_compat_with_miptree(&brw->screen->devinfo, 2047 mt, render_format)) 2048 return ISL_AUX_USAGE_CCS_E; 2049 2050 /* Otherwise, we have to fall back to CCS_D */ 2051 return ISL_AUX_USAGE_CCS_D; 2052 2053 default: 2054 return ISL_AUX_USAGE_NONE; 2055 } 2056} 2057 2058void 2059brw_miptree_prepare_render(struct brw_context *brw, 2060 struct brw_mipmap_tree *mt, uint32_t level, 2061 uint32_t start_layer, uint32_t layer_count, 2062 enum isl_aux_usage aux_usage) 2063{ 2064 brw_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count, 2065 aux_usage, aux_usage != ISL_AUX_USAGE_NONE); 2066} 2067 2068void 2069brw_miptree_finish_render(struct brw_context *brw, 2070 struct brw_mipmap_tree *mt, uint32_t level, 2071 uint32_t start_layer, uint32_t layer_count, 2072 enum isl_aux_usage aux_usage) 2073{ 2074 assert(_mesa_is_format_color_format(mt->format)); 2075 2076 brw_miptree_finish_write(brw, mt, level, start_layer, layer_count, 2077 aux_usage); 2078} 2079 2080void 2081brw_miptree_prepare_depth(struct brw_context *brw, 2082 struct brw_mipmap_tree *mt, uint32_t level, 2083 uint32_t start_layer, uint32_t layer_count) 2084{ 2085 brw_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count, 2086 mt->aux_usage, mt->aux_buf != NULL); 2087} 2088 2089void 2090brw_miptree_finish_depth(struct brw_context *brw, 2091 struct brw_mipmap_tree *mt, uint32_t level, 2092 uint32_t start_layer, uint32_t layer_count, 2093 bool depth_written) 2094{ 2095 if (depth_written) { 2096 brw_miptree_finish_write(brw, mt, level, start_layer, layer_count, 2097 mt->aux_usage); 2098 } 2099} 2100 2101void 2102brw_miptree_prepare_external(struct brw_context *brw, 2103 struct brw_mipmap_tree *mt) 2104{ 2105 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE; 2106 bool supports_fast_clear = false; 2107 2108 const struct isl_drm_modifier_info *mod_info = 2109 isl_drm_modifier_get_info(mt->drm_modifier); 2110 2111 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) { 2112 /* CCS_E is the only supported aux for external images and it's only 2113 * supported on very simple images. 2114 */ 2115 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E); 2116 assert(_mesa_is_format_color_format(mt->format)); 2117 assert(mt->first_level == 0 && mt->last_level == 0); 2118 assert(mt->surf.logical_level0_px.depth == 1); 2119 assert(mt->surf.logical_level0_px.array_len == 1); 2120 assert(mt->surf.samples == 1); 2121 assert(mt->aux_buf != NULL); 2122 2123 aux_usage = mod_info->aux_usage; 2124 supports_fast_clear = mod_info->supports_clear_color; 2125 } 2126 2127 brw_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS, 2128 0, INTEL_REMAINING_LAYERS, 2129 aux_usage, supports_fast_clear); 2130} 2131 2132void 2133brw_miptree_finish_external(struct brw_context *brw, 2134 struct brw_mipmap_tree *mt) 2135{ 2136 if (!mt->aux_buf) 2137 return; 2138 2139 /* We don't know the actual aux state of the aux surface. The previous 2140 * owner could have given it to us in a number of different states. 2141 * Because we don't know the aux state, we reset the aux state to the 2142 * least common denominator of possible valid states. 2143 */ 2144 enum isl_aux_state default_aux_state = 2145 isl_drm_modifier_get_default_aux_state(mt->drm_modifier); 2146 assert(mt->last_level == mt->first_level); 2147 brw_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS, 2148 default_aux_state); 2149} 2150 2151/** 2152 * Make it possible to share the BO backing the given miptree with another 2153 * process or another miptree. 2154 * 2155 * Fast color clears are unsafe with shared buffers, so we need to resolve and 2156 * then discard the MCS buffer, if present. We also set the no_ccs flag to 2157 * ensure that no MCS buffer gets allocated in the future. 2158 * 2159 * HiZ is similarly unsafe with shared buffers. 2160 */ 2161void 2162brw_miptree_make_shareable(struct brw_context *brw, 2163 struct brw_mipmap_tree *mt) 2164{ 2165 /* MCS buffers are also used for multisample buffers, but we can't resolve 2166 * away a multisample MCS buffer because it's an integral part of how the 2167 * pixel data is stored. Fortunately this code path should never be 2168 * reached for multisample buffers. 2169 */ 2170 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE || 2171 mt->surf.samples == 1); 2172 2173 brw_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS, 2174 0, INTEL_REMAINING_LAYERS, 2175 ISL_AUX_USAGE_NONE, false); 2176 2177 if (mt->aux_buf) { 2178 brw_miptree_aux_buffer_free(mt->aux_buf); 2179 mt->aux_buf = NULL; 2180 2181 /* Make future calls of brw_miptree_level_has_hiz() return false. */ 2182 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) { 2183 mt->level[l].has_hiz = false; 2184 } 2185 2186 free(mt->aux_state); 2187 mt->aux_state = NULL; 2188 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE; 2189 } 2190 2191 mt->aux_usage = ISL_AUX_USAGE_NONE; 2192 mt->supports_fast_clear = false; 2193} 2194 2195 2196/** 2197 * \brief Get pointer offset into stencil buffer. 2198 * 2199 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we 2200 * must decode the tile's layout in software. 2201 * 2202 * See 2203 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile 2204 * Format. 2205 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm 2206 * 2207 * Even though the returned offset is always positive, the return type is 2208 * signed due to 2209 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137 2210 * mesa: Fix return type of _mesa_get_format_bytes() (#37351) 2211 */ 2212static intptr_t 2213brw_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled) 2214{ 2215 uint32_t tile_size = 4096; 2216 uint32_t tile_width = 64; 2217 uint32_t tile_height = 64; 2218 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */ 2219 2220 uint32_t tile_x = x / tile_width; 2221 uint32_t tile_y = y / tile_height; 2222 2223 /* The byte's address relative to the tile's base addres. */ 2224 uint32_t byte_x = x % tile_width; 2225 uint32_t byte_y = y % tile_height; 2226 2227 uintptr_t u = tile_y * row_size 2228 + tile_x * tile_size 2229 + 512 * (byte_x / 8) 2230 + 64 * (byte_y / 8) 2231 + 32 * ((byte_y / 4) % 2) 2232 + 16 * ((byte_x / 4) % 2) 2233 + 8 * ((byte_y / 2) % 2) 2234 + 4 * ((byte_x / 2) % 2) 2235 + 2 * (byte_y % 2) 2236 + 1 * (byte_x % 2); 2237 2238 if (swizzled) { 2239 /* adjust for bit6 swizzling */ 2240 if (((byte_x / 8) % 2) == 1) { 2241 if (((byte_y / 8) % 2) == 0) { 2242 u += 64; 2243 } else { 2244 u -= 64; 2245 } 2246 } 2247 } 2248 2249 return u; 2250} 2251 2252void 2253brw_miptree_updownsample(struct brw_context *brw, 2254 struct brw_mipmap_tree *src, 2255 struct brw_mipmap_tree *dst) 2256{ 2257 unsigned src_w = src->surf.logical_level0_px.width; 2258 unsigned src_h = src->surf.logical_level0_px.height; 2259 unsigned dst_w = dst->surf.logical_level0_px.width; 2260 unsigned dst_h = dst->surf.logical_level0_px.height; 2261 2262 brw_blorp_blit_miptrees(brw, 2263 src, 0 /* level */, 0 /* layer */, 2264 src->format, SWIZZLE_XYZW, 2265 dst, 0 /* level */, 0 /* layer */, dst->format, 2266 0, 0, src_w, src_h, 2267 0, 0, dst_w, dst_h, 2268 GL_NEAREST, false, false /*mirror x, y*/, 2269 false, false); 2270 2271 if (src->stencil_mt) { 2272 src_w = src->stencil_mt->surf.logical_level0_px.width; 2273 src_h = src->stencil_mt->surf.logical_level0_px.height; 2274 dst_w = dst->stencil_mt->surf.logical_level0_px.width; 2275 dst_h = dst->stencil_mt->surf.logical_level0_px.height; 2276 2277 brw_blorp_blit_miptrees(brw, 2278 src->stencil_mt, 0 /* level */, 0 /* layer */, 2279 src->stencil_mt->format, SWIZZLE_XYZW, 2280 dst->stencil_mt, 0 /* level */, 0 /* layer */, 2281 dst->stencil_mt->format, 2282 0, 0, src_w, src_h, 2283 0, 0, dst_w, dst_h, 2284 GL_NEAREST, false, false /*mirror x, y*/, 2285 false, false /* decode/encode srgb */); 2286 } 2287} 2288 2289void 2290brw_update_r8stencil(struct brw_context *brw, 2291 struct brw_mipmap_tree *mt) 2292{ 2293 const struct intel_device_info *devinfo = &brw->screen->devinfo; 2294 2295 assert(devinfo->ver >= 7); 2296 struct brw_mipmap_tree *src = 2297 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt; 2298 if (!src || devinfo->ver >= 8) 2299 return; 2300 2301 assert(src->surf.size_B > 0); 2302 2303 if (!mt->shadow_mt) { 2304 assert(devinfo->ver > 6); /* Handle MIPTREE_LAYOUT_GFX6_HIZ_STENCIL */ 2305 mt->shadow_mt = make_surface( 2306 brw, 2307 src->target, 2308 MESA_FORMAT_R_UINT8, 2309 src->first_level, src->last_level, 2310 src->surf.logical_level0_px.width, 2311 src->surf.logical_level0_px.height, 2312 src->surf.dim == ISL_SURF_DIM_3D ? 2313 src->surf.logical_level0_px.depth : 2314 src->surf.logical_level0_px.array_len, 2315 src->surf.samples, 2316 ISL_TILING_Y0_BIT, 2317 ISL_SURF_USAGE_TEXTURE_BIT, 2318 BO_ALLOC_BUSY, 0, NULL); 2319 assert(mt->shadow_mt); 2320 } 2321 2322 if (src->shadow_needs_update == false) 2323 return; 2324 2325 struct brw_mipmap_tree *dst = mt->shadow_mt; 2326 2327 for (int level = src->first_level; level <= src->last_level; level++) { 2328 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ? 2329 minify(src->surf.phys_level0_sa.depth, level) : 2330 src->surf.phys_level0_sa.array_len; 2331 2332 for (unsigned layer = 0; layer < depth; layer++) { 2333 brw_blorp_copy_miptrees(brw, 2334 src, level, layer, 2335 dst, level, layer, 2336 0, 0, 0, 0, 2337 minify(src->surf.logical_level0_px.width, 2338 level), 2339 minify(src->surf.logical_level0_px.height, 2340 level)); 2341 } 2342 } 2343 2344 brw_cache_flush_for_read(brw, dst->bo); 2345 src->shadow_needs_update = false; 2346} 2347 2348static void * 2349brw_miptree_map_raw(struct brw_context *brw, 2350 struct brw_mipmap_tree *mt, 2351 GLbitfield mode) 2352{ 2353 struct brw_bo *bo = mt->bo; 2354 2355 if (brw_batch_references(&brw->batch, bo)) 2356 brw_batch_flush(brw); 2357 2358 return brw_bo_map(brw, bo, mode); 2359} 2360 2361static void 2362brw_miptree_unmap_raw(struct brw_mipmap_tree *mt) 2363{ 2364 brw_bo_unmap(mt->bo); 2365} 2366 2367static void 2368brw_miptree_unmap_map(struct brw_context *brw, 2369 struct brw_mipmap_tree *mt, 2370 struct brw_miptree_map *map, 2371 unsigned int level, unsigned int slice) 2372{ 2373 brw_miptree_unmap_raw(mt); 2374} 2375 2376static void 2377brw_miptree_map_map(struct brw_context *brw, 2378 struct brw_mipmap_tree *mt, 2379 struct brw_miptree_map *map, 2380 unsigned int level, unsigned int slice) 2381{ 2382 unsigned int bw, bh; 2383 void *base; 2384 unsigned int image_x, image_y; 2385 intptr_t x = map->x; 2386 intptr_t y = map->y; 2387 2388 /* For compressed formats, the stride is the number of bytes per 2389 * row of blocks. brw_miptree_get_image_offset() already does 2390 * the divide. 2391 */ 2392 _mesa_get_format_block_size(mt->format, &bw, &bh); 2393 assert(y % bh == 0); 2394 assert(x % bw == 0); 2395 y /= bh; 2396 x /= bw; 2397 2398 brw_miptree_access_raw(brw, mt, level, slice, 2399 map->mode & GL_MAP_WRITE_BIT); 2400 2401 base = brw_miptree_map_raw(brw, mt, map->mode); 2402 2403 if (base == NULL) 2404 map->ptr = NULL; 2405 else { 2406 base += mt->offset; 2407 2408 /* Note that in the case of cube maps, the caller must have passed the 2409 * slice number referencing the face. 2410 */ 2411 brw_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); 2412 x += image_x; 2413 y += image_y; 2414 2415 map->stride = mt->surf.row_pitch_B; 2416 map->ptr = base + y * map->stride + x * mt->cpp; 2417 } 2418 2419 DBG("%s: %d,%d %dx%d from mt %p (%s) " 2420 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__, 2421 map->x, map->y, map->w, map->h, 2422 mt, _mesa_get_format_name(mt->format), 2423 x, y, map->ptr, map->stride); 2424 2425 map->unmap = brw_miptree_unmap_map; 2426} 2427 2428static void 2429brw_miptree_unmap_blit(struct brw_context *brw, 2430 struct brw_mipmap_tree *mt, 2431 struct brw_miptree_map *map, 2432 unsigned int level, 2433 unsigned int slice) 2434{ 2435 const struct intel_device_info *devinfo = &brw->screen->devinfo; 2436 struct gl_context *ctx = &brw->ctx; 2437 2438 brw_miptree_unmap_raw(map->linear_mt); 2439 2440 if (map->mode & GL_MAP_WRITE_BIT) { 2441 if (devinfo->ver >= 6) { 2442 brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0, 2443 mt, level, slice, 2444 0, 0, map->x, map->y, map->w, map->h); 2445 } else { 2446 bool ok = brw_miptree_copy(brw, 2447 map->linear_mt, 0, 0, 0, 0, 2448 mt, level, slice, map->x, map->y, 2449 map->w, map->h); 2450 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping"); 2451 } 2452 } 2453 2454 brw_miptree_release(&map->linear_mt); 2455} 2456 2457/* Compute extent parameters for use with tiled_memcpy functions. 2458 * xs are in units of bytes and ys are in units of strides. 2459 */ 2460static inline void 2461tile_extents(struct brw_mipmap_tree *mt, struct brw_miptree_map *map, 2462 unsigned int level, unsigned int slice, unsigned int *x1_B, 2463 unsigned int *x2_B, unsigned int *y1_el, unsigned int *y2_el) 2464{ 2465 unsigned int block_width, block_height; 2466 unsigned int x0_el, y0_el; 2467 2468 _mesa_get_format_block_size(mt->format, &block_width, &block_height); 2469 2470 assert(map->x % block_width == 0); 2471 assert(map->y % block_height == 0); 2472 2473 brw_miptree_get_image_offset(mt, level, slice, &x0_el, &y0_el); 2474 *x1_B = (map->x / block_width + x0_el) * mt->cpp; 2475 *y1_el = map->y / block_height + y0_el; 2476 *x2_B = (DIV_ROUND_UP(map->x + map->w, block_width) + x0_el) * mt->cpp; 2477 *y2_el = DIV_ROUND_UP(map->y + map->h, block_height) + y0_el; 2478} 2479 2480static void 2481brw_miptree_unmap_tiled_memcpy(struct brw_context *brw, 2482 struct brw_mipmap_tree *mt, 2483 struct brw_miptree_map *map, 2484 unsigned int level, 2485 unsigned int slice) 2486{ 2487 if (map->mode & GL_MAP_WRITE_BIT) { 2488 unsigned int x1, x2, y1, y2; 2489 tile_extents(mt, map, level, slice, &x1, &x2, &y1, &y2); 2490 2491 char *dst = brw_miptree_map_raw(brw, mt, map->mode | MAP_RAW); 2492 dst += mt->offset; 2493 2494 isl_memcpy_linear_to_tiled( 2495 x1, x2, y1, y2, dst, map->ptr, mt->surf.row_pitch_B, map->stride, 2496 brw->has_swizzling, mt->surf.tiling, ISL_MEMCPY); 2497 2498 brw_miptree_unmap_raw(mt); 2499 } 2500 align_free(map->buffer); 2501 map->buffer = map->ptr = NULL; 2502} 2503 2504/** 2505 * Determine which copy function to use for the given format combination 2506 * 2507 * The only two possible copy functions which are ever returned are a 2508 * direct memcpy and a RGBA <-> BGRA copy function. Since RGBA -> BGRA and 2509 * BGRA -> RGBA are exactly the same operation (and memcpy is obviously 2510 * symmetric), it doesn't matter whether the copy is from the tiled image 2511 * to the untiled or vice versa. The copy function required is the same in 2512 * either case so this function can be used. 2513 * 2514 * \param[in] tiledFormat The format of the tiled image 2515 * \param[in] format The GL format of the client data 2516 * \param[in] type The GL type of the client data 2517 * \param[out] mem_copy Will be set to one of either the standard 2518 * library's memcpy or a different copy function 2519 * that performs an RGBA to BGRA conversion 2520 * \param[out] cpp Number of bytes per channel 2521 * 2522 * \return true if the format and type combination are valid 2523 */ 2524isl_memcpy_type 2525brw_miptree_get_memcpy_type(mesa_format tiledFormat, GLenum format, GLenum type, 2526 uint32_t *cpp) 2527{ 2528 if (type == GL_UNSIGNED_INT_8_8_8_8_REV && 2529 !(format == GL_RGBA || format == GL_BGRA)) 2530 return ISL_MEMCPY_INVALID; /* Invalid type/format combination */ 2531 2532 if ((tiledFormat == MESA_FORMAT_L_UNORM8 && format == GL_LUMINANCE) || 2533 (tiledFormat == MESA_FORMAT_A_UNORM8 && format == GL_ALPHA)) { 2534 *cpp = 1; 2535 return ISL_MEMCPY; 2536 } else if ((tiledFormat == MESA_FORMAT_B8G8R8A8_UNORM) || 2537 (tiledFormat == MESA_FORMAT_B8G8R8X8_UNORM) || 2538 (tiledFormat == MESA_FORMAT_B8G8R8A8_SRGB) || 2539 (tiledFormat == MESA_FORMAT_B8G8R8X8_SRGB)) { 2540 *cpp = 4; 2541 if (format == GL_BGRA) { 2542 return ISL_MEMCPY; 2543 } else if (format == GL_RGBA) { 2544 return ISL_MEMCPY_BGRA8; 2545 } 2546 } else if ((tiledFormat == MESA_FORMAT_R8G8B8A8_UNORM) || 2547 (tiledFormat == MESA_FORMAT_R8G8B8X8_UNORM) || 2548 (tiledFormat == MESA_FORMAT_R8G8B8A8_SRGB) || 2549 (tiledFormat == MESA_FORMAT_R8G8B8X8_SRGB)) { 2550 *cpp = 4; 2551 if (format == GL_BGRA) { 2552 /* Copying from RGBA to BGRA is the same as BGRA to RGBA so we can 2553 * use the same function. 2554 */ 2555 return ISL_MEMCPY_BGRA8; 2556 } else if (format == GL_RGBA) { 2557 return ISL_MEMCPY; 2558 } 2559 } 2560 2561 return ISL_MEMCPY_INVALID; 2562} 2563 2564static void 2565brw_miptree_map_tiled_memcpy(struct brw_context *brw, 2566 struct brw_mipmap_tree *mt, 2567 struct brw_miptree_map *map, 2568 unsigned int level, unsigned int slice) 2569{ 2570 brw_miptree_access_raw(brw, mt, level, slice, 2571 map->mode & GL_MAP_WRITE_BIT); 2572 2573 unsigned int x1, x2, y1, y2; 2574 tile_extents(mt, map, level, slice, &x1, &x2, &y1, &y2); 2575 map->stride = ALIGN(_mesa_format_row_stride(mt->format, map->w), 16); 2576 2577 /* The tiling and detiling functions require that the linear buffer 2578 * has proper 16-byte alignment (that is, its `x0` is 16-byte 2579 * aligned). Here we over-allocate the linear buffer by enough 2580 * bytes to get the proper alignment. 2581 */ 2582 map->buffer = align_malloc(map->stride * (y2 - y1) + (x1 & 0xf), 16); 2583 map->ptr = (char *)map->buffer + (x1 & 0xf); 2584 assert(map->buffer); 2585 2586 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { 2587 char *src = brw_miptree_map_raw(brw, mt, map->mode | MAP_RAW); 2588 src += mt->offset; 2589 2590 const isl_memcpy_type copy_type = 2591#if defined(USE_SSE41) 2592 cpu_has_sse4_1 ? ISL_MEMCPY_STREAMING_LOAD : 2593#endif 2594 ISL_MEMCPY; 2595 2596 isl_memcpy_tiled_to_linear( 2597 x1, x2, y1, y2, map->ptr, src, map->stride, 2598 mt->surf.row_pitch_B, brw->has_swizzling, mt->surf.tiling, 2599 copy_type); 2600 2601 brw_miptree_unmap_raw(mt); 2602 } 2603 2604 map->unmap = brw_miptree_unmap_tiled_memcpy; 2605} 2606 2607static void 2608brw_miptree_map_blit(struct brw_context *brw, 2609 struct brw_mipmap_tree *mt, 2610 struct brw_miptree_map *map, 2611 unsigned int level, unsigned int slice) 2612{ 2613 const struct intel_device_info *devinfo = &brw->screen->devinfo; 2614 map->linear_mt = make_surface(brw, GL_TEXTURE_2D, mt->format, 2615 0, 0, map->w, map->h, 1, 1, 2616 ISL_TILING_LINEAR_BIT, 2617 ISL_SURF_USAGE_RENDER_TARGET_BIT | 2618 ISL_SURF_USAGE_TEXTURE_BIT, 2619 0, 0, NULL); 2620 2621 if (!map->linear_mt) { 2622 fprintf(stderr, "Failed to allocate blit temporary\n"); 2623 goto fail; 2624 } 2625 map->stride = map->linear_mt->surf.row_pitch_B; 2626 2627 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no 2628 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless 2629 * invalidate is set, since we'll be writing the whole rectangle from our 2630 * temporary buffer back out. 2631 */ 2632 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { 2633 if (devinfo->ver >= 6) { 2634 brw_blorp_copy_miptrees(brw, mt, level, slice, 2635 map->linear_mt, 0, 0, 2636 map->x, map->y, 0, 0, map->w, map->h); 2637 } else { 2638 if (!brw_miptree_copy(brw, 2639 mt, level, slice, map->x, map->y, 2640 map->linear_mt, 0, 0, 0, 0, 2641 map->w, map->h)) { 2642 fprintf(stderr, "Failed to blit\n"); 2643 goto fail; 2644 } 2645 } 2646 } 2647 2648 map->ptr = brw_miptree_map_raw(brw, map->linear_mt, map->mode); 2649 2650 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__, 2651 map->x, map->y, map->w, map->h, 2652 mt, _mesa_get_format_name(mt->format), 2653 level, slice, map->ptr, map->stride); 2654 2655 map->unmap = brw_miptree_unmap_blit; 2656 return; 2657 2658fail: 2659 brw_miptree_release(&map->linear_mt); 2660 map->ptr = NULL; 2661 map->stride = 0; 2662} 2663 2664/** 2665 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA. 2666 */ 2667#if defined(USE_SSE41) 2668static void 2669brw_miptree_unmap_movntdqa(struct brw_context *brw, 2670 struct brw_mipmap_tree *mt, 2671 struct brw_miptree_map *map, 2672 unsigned int level, 2673 unsigned int slice) 2674{ 2675 align_free(map->buffer); 2676 map->buffer = NULL; 2677 map->ptr = NULL; 2678} 2679 2680static void 2681brw_miptree_map_movntdqa(struct brw_context *brw, 2682 struct brw_mipmap_tree *mt, 2683 struct brw_miptree_map *map, 2684 unsigned int level, unsigned int slice) 2685{ 2686 assert(map->mode & GL_MAP_READ_BIT); 2687 assert(!(map->mode & GL_MAP_WRITE_BIT)); 2688 2689 brw_miptree_access_raw(brw, mt, level, slice, false); 2690 2691 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__, 2692 map->x, map->y, map->w, map->h, 2693 mt, _mesa_get_format_name(mt->format), 2694 level, slice, map->ptr, map->stride); 2695 2696 /* Map the original image */ 2697 uint32_t image_x; 2698 uint32_t image_y; 2699 brw_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); 2700 image_x += map->x; 2701 image_y += map->y; 2702 2703 void *src = brw_miptree_map_raw(brw, mt, map->mode); 2704 if (!src) 2705 return; 2706 2707 src += mt->offset; 2708 2709 src += image_y * mt->surf.row_pitch_B; 2710 src += image_x * mt->cpp; 2711 2712 /* Due to the pixel offsets for the particular image being mapped, our 2713 * src pointer may not be 16-byte aligned. However, if the pitch is 2714 * divisible by 16, then the amount by which it's misaligned will remain 2715 * consistent from row to row. 2716 */ 2717 assert((mt->surf.row_pitch_B % 16) == 0); 2718 const int misalignment = ((uintptr_t) src) & 15; 2719 2720 /* Create an untiled temporary buffer for the mapping. */ 2721 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w); 2722 2723 map->stride = ALIGN(misalignment + width_bytes, 16); 2724 2725 map->buffer = align_malloc(map->stride * map->h, 16); 2726 /* Offset the destination so it has the same misalignment as src. */ 2727 map->ptr = map->buffer + misalignment; 2728 2729 assert((((uintptr_t) map->ptr) & 15) == misalignment); 2730 2731 for (uint32_t y = 0; y < map->h; y++) { 2732 void *dst_ptr = map->ptr + y * map->stride; 2733 void *src_ptr = src + y * mt->surf.row_pitch_B; 2734 2735 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes); 2736 } 2737 2738 brw_miptree_unmap_raw(mt); 2739 2740 map->unmap = brw_miptree_unmap_movntdqa; 2741} 2742#endif 2743 2744static void 2745brw_miptree_unmap_s8(struct brw_context *brw, 2746 struct brw_mipmap_tree *mt, 2747 struct brw_miptree_map *map, 2748 unsigned int level, 2749 unsigned int slice) 2750{ 2751 if (map->mode & GL_MAP_WRITE_BIT) { 2752 unsigned int image_x, image_y; 2753 uint8_t *untiled_s8_map = map->ptr; 2754 uint8_t *tiled_s8_map = brw_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT); 2755 2756 brw_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); 2757 2758 for (uint32_t y = 0; y < map->h; y++) { 2759 for (uint32_t x = 0; x < map->w; x++) { 2760 ptrdiff_t offset = brw_offset_S8(mt->surf.row_pitch_B, 2761 image_x + x + map->x, 2762 image_y + y + map->y, 2763 brw->has_swizzling); 2764 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x]; 2765 } 2766 } 2767 2768 brw_miptree_unmap_raw(mt); 2769 } 2770 2771 free(map->buffer); 2772} 2773 2774static void 2775brw_miptree_map_s8(struct brw_context *brw, 2776 struct brw_mipmap_tree *mt, 2777 struct brw_miptree_map *map, 2778 unsigned int level, unsigned int slice) 2779{ 2780 map->stride = map->w; 2781 map->buffer = map->ptr = malloc(map->stride * map->h); 2782 if (!map->buffer) 2783 return; 2784 2785 brw_miptree_access_raw(brw, mt, level, slice, 2786 map->mode & GL_MAP_WRITE_BIT); 2787 2788 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no 2789 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless 2790 * invalidate is set, since we'll be writing the whole rectangle from our 2791 * temporary buffer back out. 2792 */ 2793 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { 2794 uint8_t *untiled_s8_map = map->ptr; 2795 uint8_t *tiled_s8_map = brw_miptree_map_raw(brw, mt, GL_MAP_READ_BIT); 2796 unsigned int image_x, image_y; 2797 2798 brw_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); 2799 2800 for (uint32_t y = 0; y < map->h; y++) { 2801 for (uint32_t x = 0; x < map->w; x++) { 2802 ptrdiff_t offset = brw_offset_S8(mt->surf.row_pitch_B, 2803 x + image_x + map->x, 2804 y + image_y + map->y, 2805 brw->has_swizzling); 2806 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset]; 2807 } 2808 } 2809 2810 brw_miptree_unmap_raw(mt); 2811 2812 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__, 2813 map->x, map->y, map->w, map->h, 2814 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride); 2815 } else { 2816 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__, 2817 map->x, map->y, map->w, map->h, 2818 mt, map->ptr, map->stride); 2819 } 2820 2821 map->unmap = brw_miptree_unmap_s8; 2822} 2823 2824/** 2825 * Mapping functions for packed depth/stencil miptrees backed by real separate 2826 * miptrees for depth and stencil. 2827 * 2828 * On gfx7, and to support HiZ pre-gfx7, we have to have the stencil buffer 2829 * separate from the depth buffer. Yet at the GL API level, we have to expose 2830 * packed depth/stencil textures and FBO attachments, and Mesa core expects to 2831 * be able to map that memory for texture storage and glReadPixels-type 2832 * operations. We give Mesa core that access by mallocing a temporary and 2833 * copying the data between the actual backing store and the temporary. 2834 */ 2835static void 2836brw_miptree_unmap_depthstencil(struct brw_context *brw, 2837 struct brw_mipmap_tree *mt, 2838 struct brw_miptree_map *map, 2839 unsigned int level, 2840 unsigned int slice) 2841{ 2842 struct brw_mipmap_tree *z_mt = mt; 2843 struct brw_mipmap_tree *s_mt = mt->stencil_mt; 2844 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32; 2845 2846 if (map->mode & GL_MAP_WRITE_BIT) { 2847 uint32_t *packed_map = map->ptr; 2848 uint8_t *s_map = brw_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT); 2849 uint32_t *z_map = brw_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT); 2850 unsigned int s_image_x, s_image_y; 2851 unsigned int z_image_x, z_image_y; 2852 2853 brw_miptree_get_image_offset(s_mt, level, slice, 2854 &s_image_x, &s_image_y); 2855 brw_miptree_get_image_offset(z_mt, level, slice, 2856 &z_image_x, &z_image_y); 2857 2858 for (uint32_t y = 0; y < map->h; y++) { 2859 for (uint32_t x = 0; x < map->w; x++) { 2860 ptrdiff_t s_offset = brw_offset_S8(s_mt->surf.row_pitch_B, 2861 x + s_image_x + map->x, 2862 y + s_image_y + map->y, 2863 brw->has_swizzling); 2864 ptrdiff_t z_offset = ((y + z_image_y + map->y) * 2865 (z_mt->surf.row_pitch_B / 4) + 2866 (x + z_image_x + map->x)); 2867 2868 if (map_z32f_x24s8) { 2869 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0]; 2870 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1]; 2871 } else { 2872 uint32_t packed = packed_map[y * map->w + x]; 2873 s_map[s_offset] = packed >> 24; 2874 z_map[z_offset] = packed; 2875 } 2876 } 2877 } 2878 2879 brw_miptree_unmap_raw(s_mt); 2880 brw_miptree_unmap_raw(z_mt); 2881 2882 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n", 2883 __func__, 2884 map->x, map->y, map->w, map->h, 2885 z_mt, _mesa_get_format_name(z_mt->format), 2886 map->x + z_image_x, map->y + z_image_y, 2887 s_mt, map->x + s_image_x, map->y + s_image_y, 2888 map->ptr, map->stride); 2889 } 2890 2891 free(map->buffer); 2892} 2893 2894static void 2895brw_miptree_map_depthstencil(struct brw_context *brw, 2896 struct brw_mipmap_tree *mt, 2897 struct brw_miptree_map *map, 2898 unsigned int level, unsigned int slice) 2899{ 2900 struct brw_mipmap_tree *z_mt = mt; 2901 struct brw_mipmap_tree *s_mt = mt->stencil_mt; 2902 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32; 2903 int packed_bpp = map_z32f_x24s8 ? 8 : 4; 2904 2905 map->stride = map->w * packed_bpp; 2906 map->buffer = map->ptr = malloc(map->stride * map->h); 2907 if (!map->buffer) 2908 return; 2909 2910 brw_miptree_access_raw(brw, z_mt, level, slice, 2911 map->mode & GL_MAP_WRITE_BIT); 2912 brw_miptree_access_raw(brw, s_mt, level, slice, 2913 map->mode & GL_MAP_WRITE_BIT); 2914 2915 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no 2916 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless 2917 * invalidate is set, since we'll be writing the whole rectangle from our 2918 * temporary buffer back out. 2919 */ 2920 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { 2921 uint32_t *packed_map = map->ptr; 2922 uint8_t *s_map = brw_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT); 2923 uint32_t *z_map = brw_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT); 2924 unsigned int s_image_x, s_image_y; 2925 unsigned int z_image_x, z_image_y; 2926 2927 brw_miptree_get_image_offset(s_mt, level, slice, 2928 &s_image_x, &s_image_y); 2929 brw_miptree_get_image_offset(z_mt, level, slice, 2930 &z_image_x, &z_image_y); 2931 2932 for (uint32_t y = 0; y < map->h; y++) { 2933 for (uint32_t x = 0; x < map->w; x++) { 2934 int map_x = map->x + x, map_y = map->y + y; 2935 ptrdiff_t s_offset = brw_offset_S8(s_mt->surf.row_pitch_B, 2936 map_x + s_image_x, 2937 map_y + s_image_y, 2938 brw->has_swizzling); 2939 ptrdiff_t z_offset = ((map_y + z_image_y) * 2940 (z_mt->surf.row_pitch_B / 4) + 2941 (map_x + z_image_x)); 2942 uint8_t s = s_map[s_offset]; 2943 uint32_t z = z_map[z_offset]; 2944 2945 if (map_z32f_x24s8) { 2946 packed_map[(y * map->w + x) * 2 + 0] = z; 2947 packed_map[(y * map->w + x) * 2 + 1] = s; 2948 } else { 2949 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff); 2950 } 2951 } 2952 } 2953 2954 brw_miptree_unmap_raw(s_mt); 2955 brw_miptree_unmap_raw(z_mt); 2956 2957 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n", 2958 __func__, 2959 map->x, map->y, map->w, map->h, 2960 z_mt, map->x + z_image_x, map->y + z_image_y, 2961 s_mt, map->x + s_image_x, map->y + s_image_y, 2962 map->ptr, map->stride); 2963 } else { 2964 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__, 2965 map->x, map->y, map->w, map->h, 2966 mt, map->ptr, map->stride); 2967 } 2968 2969 map->unmap = brw_miptree_unmap_depthstencil; 2970} 2971 2972/** 2973 * Create and attach a map to the miptree at (level, slice). Return the 2974 * attached map. 2975 */ 2976static struct brw_miptree_map* 2977brw_miptree_attach_map(struct brw_mipmap_tree *mt, 2978 unsigned int level, 2979 unsigned int slice, 2980 unsigned int x, 2981 unsigned int y, 2982 unsigned int w, 2983 unsigned int h, 2984 GLbitfield mode) 2985{ 2986 struct brw_miptree_map *map = calloc(1, sizeof(*map)); 2987 2988 if (!map) 2989 return NULL; 2990 2991 assert(mt->level[level].slice[slice].map == NULL); 2992 mt->level[level].slice[slice].map = map; 2993 2994 map->mode = mode; 2995 map->x = x; 2996 map->y = y; 2997 map->w = w; 2998 map->h = h; 2999 3000 return map; 3001} 3002 3003/** 3004 * Release the map at (level, slice). 3005 */ 3006static void 3007brw_miptree_release_map(struct brw_mipmap_tree *mt, 3008 unsigned int level, 3009 unsigned int slice) 3010{ 3011 struct brw_miptree_map **map; 3012 3013 map = &mt->level[level].slice[slice].map; 3014 free(*map); 3015 *map = NULL; 3016} 3017 3018static bool 3019can_blit_slice(struct brw_mipmap_tree *mt, 3020 const struct brw_miptree_map *map) 3021{ 3022 /* See brw_miptree_blit() for details on the 32k pitch limit. */ 3023 const unsigned src_blt_pitch = brw_miptree_blt_pitch(mt); 3024 const unsigned dst_blt_pitch = ALIGN(map->w * mt->cpp, 64); 3025 return src_blt_pitch < 32768 && dst_blt_pitch < 32768; 3026} 3027 3028static bool 3029use_blitter_to_map(struct brw_context *brw, 3030 struct brw_mipmap_tree *mt, 3031 const struct brw_miptree_map *map) 3032{ 3033 const struct intel_device_info *devinfo = &brw->screen->devinfo; 3034 3035 if (devinfo->has_llc && 3036 /* It's probably not worth swapping to the blit ring because of 3037 * all the overhead involved. 3038 */ 3039 !(map->mode & GL_MAP_WRITE_BIT) && 3040 !mt->compressed && 3041 (mt->surf.tiling == ISL_TILING_X || 3042 /* Prior to Sandybridge, the blitter can't handle Y tiling */ 3043 (devinfo->ver >= 6 && mt->surf.tiling == ISL_TILING_Y0) || 3044 /* Fast copy blit on skl+ supports all tiling formats. */ 3045 devinfo->ver >= 9) && 3046 can_blit_slice(mt, map)) 3047 return true; 3048 3049 if (mt->surf.tiling != ISL_TILING_LINEAR && 3050 mt->bo->size >= brw->max_gtt_map_object_size) { 3051 assert(can_blit_slice(mt, map)); 3052 return true; 3053 } 3054 3055 return false; 3056} 3057 3058/** 3059 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may 3060 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer 3061 * arithmetic overflow. 3062 * 3063 * If you call this function and use \a out_stride, then you're doing pointer 3064 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all 3065 * bugs. The caller must still take care to avoid 32-bit overflow errors in 3066 * all arithmetic expressions that contain buffer offsets and pixel sizes, 3067 * which usually have type uint32_t or GLuint. 3068 */ 3069void 3070brw_miptree_map(struct brw_context *brw, 3071 struct brw_mipmap_tree *mt, 3072 unsigned int level, 3073 unsigned int slice, 3074 unsigned int x, 3075 unsigned int y, 3076 unsigned int w, 3077 unsigned int h, 3078 GLbitfield mode, 3079 void **out_ptr, 3080 ptrdiff_t *out_stride) 3081{ 3082 const struct intel_device_info *devinfo = &brw->screen->devinfo; 3083 struct brw_miptree_map *map; 3084 3085 assert(mt->surf.samples == 1); 3086 3087 map = brw_miptree_attach_map(mt, level, slice, x, y, w, h, mode); 3088 if (!map){ 3089 *out_ptr = NULL; 3090 *out_stride = 0; 3091 return; 3092 } 3093 3094 if (mt->format == MESA_FORMAT_S_UINT8) { 3095 brw_miptree_map_s8(brw, mt, map, level, slice); 3096 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) { 3097 brw_miptree_map_depthstencil(brw, mt, map, level, slice); 3098 } else if (use_blitter_to_map(brw, mt, map)) { 3099 brw_miptree_map_blit(brw, mt, map, level, slice); 3100 } else if (mt->surf.tiling != ISL_TILING_LINEAR && devinfo->ver > 4) { 3101 brw_miptree_map_tiled_memcpy(brw, mt, map, level, slice); 3102#if defined(USE_SSE41) 3103 } else if (!(mode & GL_MAP_WRITE_BIT) && 3104 !mt->compressed && cpu_has_sse4_1 && 3105 (mt->surf.row_pitch_B % 16 == 0)) { 3106 brw_miptree_map_movntdqa(brw, mt, map, level, slice); 3107#endif 3108 } else { 3109 if (mt->surf.tiling != ISL_TILING_LINEAR) 3110 perf_debug("brw_miptree_map: mapping via gtt"); 3111 brw_miptree_map_map(brw, mt, map, level, slice); 3112 } 3113 3114 *out_ptr = map->ptr; 3115 *out_stride = map->stride; 3116 3117 if (map->ptr == NULL) 3118 brw_miptree_release_map(mt, level, slice); 3119} 3120 3121void 3122brw_miptree_unmap(struct brw_context *brw, 3123 struct brw_mipmap_tree *mt, 3124 unsigned int level, 3125 unsigned int slice) 3126{ 3127 struct brw_miptree_map *map = mt->level[level].slice[slice].map; 3128 3129 assert(mt->surf.samples == 1); 3130 3131 if (!map) 3132 return; 3133 3134 DBG("%s: mt %p (%s) level %d slice %d\n", __func__, 3135 mt, _mesa_get_format_name(mt->format), level, slice); 3136 3137 if (map->unmap) 3138 map->unmap(brw, mt, map, level, slice); 3139 3140 brw_miptree_release_map(mt, level, slice); 3141} 3142 3143enum isl_surf_dim 3144get_isl_surf_dim(GLenum target) 3145{ 3146 switch (target) { 3147 case GL_TEXTURE_1D: 3148 case GL_TEXTURE_1D_ARRAY: 3149 return ISL_SURF_DIM_1D; 3150 3151 case GL_TEXTURE_2D: 3152 case GL_TEXTURE_2D_ARRAY: 3153 case GL_TEXTURE_RECTANGLE: 3154 case GL_TEXTURE_CUBE_MAP: 3155 case GL_TEXTURE_CUBE_MAP_ARRAY: 3156 case GL_TEXTURE_2D_MULTISAMPLE: 3157 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY: 3158 case GL_TEXTURE_EXTERNAL_OES: 3159 return ISL_SURF_DIM_2D; 3160 3161 case GL_TEXTURE_3D: 3162 return ISL_SURF_DIM_3D; 3163 } 3164 3165 unreachable("Invalid texture target"); 3166} 3167 3168enum isl_dim_layout 3169get_isl_dim_layout(const struct intel_device_info *devinfo, 3170 enum isl_tiling tiling, GLenum target) 3171{ 3172 switch (target) { 3173 case GL_TEXTURE_1D: 3174 case GL_TEXTURE_1D_ARRAY: 3175 return (devinfo->ver >= 9 && tiling == ISL_TILING_LINEAR ? 3176 ISL_DIM_LAYOUT_GFX9_1D : ISL_DIM_LAYOUT_GFX4_2D); 3177 3178 case GL_TEXTURE_2D: 3179 case GL_TEXTURE_2D_ARRAY: 3180 case GL_TEXTURE_RECTANGLE: 3181 case GL_TEXTURE_2D_MULTISAMPLE: 3182 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY: 3183 case GL_TEXTURE_EXTERNAL_OES: 3184 return ISL_DIM_LAYOUT_GFX4_2D; 3185 3186 case GL_TEXTURE_CUBE_MAP: 3187 case GL_TEXTURE_CUBE_MAP_ARRAY: 3188 return (devinfo->ver == 4 ? ISL_DIM_LAYOUT_GFX4_3D : 3189 ISL_DIM_LAYOUT_GFX4_2D); 3190 3191 case GL_TEXTURE_3D: 3192 return (devinfo->ver >= 9 ? 3193 ISL_DIM_LAYOUT_GFX4_2D : ISL_DIM_LAYOUT_GFX4_3D); 3194 } 3195 3196 unreachable("Invalid texture target"); 3197} 3198 3199bool 3200brw_miptree_set_clear_color(struct brw_context *brw, 3201 struct brw_mipmap_tree *mt, 3202 union isl_color_value clear_color) 3203{ 3204 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) { 3205 mt->fast_clear_color = clear_color; 3206 if (mt->aux_buf->clear_color_bo) { 3207 /* We can't update the clear color while the hardware is still using 3208 * the previous one for a resolve or sampling from it. Make sure that 3209 * there are no pending commands at this point. 3210 */ 3211 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL); 3212 for (int i = 0; i < 4; i++) { 3213 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo, 3214 mt->aux_buf->clear_color_offset + i * 4, 3215 mt->fast_clear_color.u32[i]); 3216 } 3217 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE); 3218 } 3219 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE; 3220 return true; 3221 } 3222 return false; 3223} 3224 3225union isl_color_value 3226brw_miptree_get_clear_color(const struct brw_mipmap_tree *mt, 3227 struct brw_bo **clear_color_bo, 3228 uint64_t *clear_color_offset) 3229{ 3230 assert(mt->aux_buf); 3231 3232 *clear_color_bo = mt->aux_buf->clear_color_bo; 3233 *clear_color_offset = mt->aux_buf->clear_color_offset; 3234 return mt->fast_clear_color; 3235} 3236 3237static void 3238brw_miptree_update_etc_shadow(struct brw_context *brw, 3239 struct brw_mipmap_tree *mt, 3240 unsigned int level, 3241 unsigned int slice, 3242 int level_w, 3243 int level_h) 3244{ 3245 ptrdiff_t etc_stride, shadow_stride; 3246 void *mptr, *sptr; 3247 struct brw_mipmap_tree *smt = mt->shadow_mt; 3248 3249 assert(brw_miptree_has_etc_shadow(brw, mt)); 3250 3251 brw_miptree_map(brw, mt, level, slice, 0, 0, level_w, level_h, 3252 GL_MAP_READ_BIT, &mptr, &etc_stride); 3253 brw_miptree_map(brw, smt, level, slice, 0, 0, level_w, level_h, 3254 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT, 3255 &sptr, &shadow_stride); 3256 3257 if (mt->format == MESA_FORMAT_ETC1_RGB8) { 3258 _mesa_etc1_unpack_rgba8888(sptr, shadow_stride, mptr, etc_stride, 3259 level_w, level_h); 3260 } else { 3261 /* destination and source images must have the same swizzle */ 3262 bool is_bgra = (smt->format == MESA_FORMAT_B8G8R8A8_SRGB); 3263 _mesa_unpack_etc2_format(sptr, shadow_stride, mptr, etc_stride, 3264 level_w, level_h, mt->format, is_bgra); 3265 } 3266 3267 brw_miptree_unmap(brw, mt, level, slice); 3268 brw_miptree_unmap(brw, smt, level, slice); 3269} 3270 3271void 3272brw_miptree_update_etc_shadow_levels(struct brw_context *brw, 3273 struct brw_mipmap_tree *mt) 3274{ 3275 struct brw_mipmap_tree *smt; 3276 int num_slices; 3277 3278 assert(mt); 3279 assert(mt->surf.size_B > 0); 3280 assert(brw_miptree_has_etc_shadow(brw, mt)); 3281 3282 smt = mt->shadow_mt; 3283 num_slices = smt->surf.logical_level0_px.array_len; 3284 3285 for (int level = smt->first_level; level <= smt->last_level; level++) { 3286 int level_w = minify(smt->surf.logical_level0_px.width, 3287 level - smt->first_level); 3288 int level_h = minify(smt->surf.logical_level0_px.height, 3289 level - smt->first_level); 3290 3291 for (unsigned int slice = 0; slice < num_slices; slice++) { 3292 brw_miptree_update_etc_shadow(brw, mt, level, slice, level_w, 3293 level_h); 3294 } 3295 } 3296 3297 mt->shadow_needs_update = false; 3298} 3299