1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/** 27 * \file rastpos.c 28 * Raster position operations. 29 */ 30 31#include "glheader.h" 32#include "context.h" 33#include "feedback.h" 34#include "macros.h" 35#include "mtypes.h" 36#include "rastpos.h" 37#include "state.h" 38#include "main/light.h" 39#include "main/viewport.h" 40#include "util/bitscan.h" 41 42 43 44/** 45 * Clip a point against the view volume. 46 * 47 * \param v vertex vector describing the point to clip. 48 * 49 * \return zero if outside view volume, or one if inside. 50 */ 51static GLuint 52viewclip_point_xy( const GLfloat v[] ) 53{ 54 if ( v[0] > v[3] || v[0] < -v[3] 55 || v[1] > v[3] || v[1] < -v[3] ) { 56 return 0; 57 } 58 else { 59 return 1; 60 } 61} 62 63 64/** 65 * Clip a point against the near Z clipping planes. 66 * 67 * \param v vertex vector describing the point to clip. 68 * 69 * \return zero if outside view volume, or one if inside. 70 */ 71static GLuint 72viewclip_point_near_z( const GLfloat v[] ) 73{ 74 if (v[2] < -v[3]) { 75 return 0; 76 } 77 else { 78 return 1; 79 } 80} 81 82 83/** 84 * Clip a point against the far Z clipping planes. 85 * 86 * \param v vertex vector describing the point to clip. 87 * 88 * \return zero if outside view volume, or one if inside. 89 */ 90static GLuint 91viewclip_point_far_z( const GLfloat v[] ) 92{ 93 if (v[2] > v[3]) { 94 return 0; 95 } 96 else { 97 return 1; 98 } 99} 100 101 102/** 103 * Clip a point against the user clipping planes. 104 * 105 * \param ctx GL context. 106 * \param v vertex vector describing the point to clip. 107 * 108 * \return zero if the point was clipped, or one otherwise. 109 */ 110static GLuint 111userclip_point( struct gl_context *ctx, const GLfloat v[] ) 112{ 113 GLbitfield mask = ctx->Transform.ClipPlanesEnabled; 114 while (mask) { 115 const int p = u_bit_scan(&mask); 116 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0] 117 + v[1] * ctx->Transform._ClipUserPlane[p][1] 118 + v[2] * ctx->Transform._ClipUserPlane[p][2] 119 + v[3] * ctx->Transform._ClipUserPlane[p][3]; 120 121 if (dot < 0.0F) { 122 return 0; 123 } 124 } 125 126 return 1; 127} 128 129 130/** 131 * Compute lighting for the raster position. RGB modes computed. 132 * \param ctx the context 133 * \param vertex vertex location 134 * \param normal normal vector 135 * \param Rcolor returned color 136 * \param Rspec returned specular color (if separate specular enabled) 137 */ 138static void 139shade_rastpos(struct gl_context *ctx, 140 const GLfloat vertex[4], 141 const GLfloat normal[3], 142 GLfloat Rcolor[4], 143 GLfloat Rspec[4]) 144{ 145 /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor; 146 GLbitfield mask; 147 GLfloat diffuseColor[4], specularColor[4]; /* for RGB mode only */ 148 149 _mesa_update_light_materials(ctx); 150 151 COPY_3V(diffuseColor, base[0]); 152 diffuseColor[3] = CLAMP( 153 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F ); 154 ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0); 155 156 mask = ctx->Light._EnabledLights; 157 while (mask) { 158 const int i = u_bit_scan(&mask); 159 struct gl_light *light = &ctx->Light.Light[i]; 160 struct gl_light_uniforms *lu = &ctx->Light.LightSource[i]; 161 GLfloat attenuation = 1.0; 162 GLfloat VP[3]; /* vector from vertex to light pos */ 163 GLfloat n_dot_VP; 164 GLfloat diffuseContrib[3], specularContrib[3]; 165 166 if (!(light->_Flags & LIGHT_POSITIONAL)) { 167 /* light at infinity */ 168 COPY_3V(VP, light->_VP_inf_norm); 169 attenuation = light->_VP_inf_spot_attenuation; 170 } 171 else { 172 /* local/positional light */ 173 GLfloat d; 174 175 /* VP = vector from vertex pos to light[i].pos */ 176 SUB_3V(VP, light->_Position, vertex); 177 /* d = length(VP) */ 178 d = (GLfloat) LEN_3FV( VP ); 179 if (d > 1.0e-6F) { 180 /* normalize VP */ 181 GLfloat invd = 1.0F / d; 182 SELF_SCALE_SCALAR_3V(VP, invd); 183 } 184 185 /* atti */ 186 attenuation = 1.0F / (lu->ConstantAttenuation + d * 187 (lu->LinearAttenuation + d * 188 lu->QuadraticAttenuation)); 189 190 if (light->_Flags & LIGHT_SPOT) { 191 GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection); 192 193 if (PV_dot_dir<lu->_CosCutoff) { 194 continue; 195 } 196 else { 197 GLfloat spot = powf(PV_dot_dir, lu->SpotExponent); 198 attenuation *= spot; 199 } 200 } 201 } 202 203 if (attenuation < 1e-3F) 204 continue; 205 206 n_dot_VP = DOT3( normal, VP ); 207 208 if (n_dot_VP < 0.0F) { 209 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]); 210 continue; 211 } 212 213 /* Ambient + diffuse */ 214 COPY_3V(diffuseContrib, light->_MatAmbient[0]); 215 ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]); 216 217 /* Specular */ 218 { 219 const GLfloat *h; 220 GLfloat n_dot_h; 221 222 ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0); 223 224 if (ctx->Light.Model.LocalViewer) { 225 GLfloat v[3]; 226 COPY_3V(v, vertex); 227 NORMALIZE_3FV(v); 228 SUB_3V(VP, VP, v); 229 NORMALIZE_3FV(VP); 230 h = VP; 231 } 232 else if (light->_Flags & LIGHT_POSITIONAL) { 233 ACC_3V(VP, ctx->_EyeZDir); 234 NORMALIZE_3FV(VP); 235 h = VP; 236 } 237 else { 238 h = light->_h_inf_norm; 239 } 240 241 n_dot_h = DOT3(normal, h); 242 243 if (n_dot_h > 0.0F) { 244 GLfloat shine; 245 GLfloat spec_coef; 246 247 shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0]; 248 spec_coef = powf(n_dot_h, shine); 249 250 if (spec_coef > 1.0e-10F) { 251 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) { 252 ACC_SCALE_SCALAR_3V( specularContrib, spec_coef, 253 light->_MatSpecular[0]); 254 } 255 else { 256 ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef, 257 light->_MatSpecular[0]); 258 } 259 } 260 } 261 } 262 263 ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib ); 264 ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib ); 265 } 266 267 Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F); 268 Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F); 269 Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F); 270 Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F); 271 Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F); 272 Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F); 273 Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F); 274 Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F); 275} 276 277 278/** 279 * Do texgen needed for glRasterPos. 280 * \param ctx rendering context 281 * \param vObj object-space vertex coordinate 282 * \param vEye eye-space vertex coordinate 283 * \param normal vertex normal 284 * \param unit texture unit number 285 * \param texcoord incoming texcoord and resulting texcoord 286 */ 287static void 288compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4], 289 const GLfloat normal[3], GLuint unit, GLfloat texcoord[4]) 290{ 291 const struct gl_fixedfunc_texture_unit *texUnit = 292 &ctx->Texture.FixedFuncUnit[unit]; 293 294 /* always compute sphere map terms, just in case */ 295 GLfloat u[3], two_nu, rx, ry, rz, m, mInv; 296 COPY_3V(u, vEye); 297 NORMALIZE_3FV(u); 298 two_nu = 2.0F * DOT3(normal, u); 299 rx = u[0] - normal[0] * two_nu; 300 ry = u[1] - normal[1] * two_nu; 301 rz = u[2] - normal[2] * two_nu; 302 m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F); 303 if (m > 0.0F) 304 mInv = 0.5F * (1.0f / sqrtf(m)); 305 else 306 mInv = 0.0F; 307 308 if (texUnit->TexGenEnabled & S_BIT) { 309 switch (texUnit->GenS.Mode) { 310 case GL_OBJECT_LINEAR: 311 texcoord[0] = DOT4(vObj, texUnit->ObjectPlane[GEN_S]); 312 break; 313 case GL_EYE_LINEAR: 314 texcoord[0] = DOT4(vEye, texUnit->EyePlane[GEN_S]); 315 break; 316 case GL_SPHERE_MAP: 317 texcoord[0] = rx * mInv + 0.5F; 318 break; 319 case GL_REFLECTION_MAP: 320 texcoord[0] = rx; 321 break; 322 case GL_NORMAL_MAP: 323 texcoord[0] = normal[0]; 324 break; 325 default: 326 _mesa_problem(ctx, "Bad S texgen in compute_texgen()"); 327 return; 328 } 329 } 330 331 if (texUnit->TexGenEnabled & T_BIT) { 332 switch (texUnit->GenT.Mode) { 333 case GL_OBJECT_LINEAR: 334 texcoord[1] = DOT4(vObj, texUnit->ObjectPlane[GEN_T]); 335 break; 336 case GL_EYE_LINEAR: 337 texcoord[1] = DOT4(vEye, texUnit->EyePlane[GEN_T]); 338 break; 339 case GL_SPHERE_MAP: 340 texcoord[1] = ry * mInv + 0.5F; 341 break; 342 case GL_REFLECTION_MAP: 343 texcoord[1] = ry; 344 break; 345 case GL_NORMAL_MAP: 346 texcoord[1] = normal[1]; 347 break; 348 default: 349 _mesa_problem(ctx, "Bad T texgen in compute_texgen()"); 350 return; 351 } 352 } 353 354 if (texUnit->TexGenEnabled & R_BIT) { 355 switch (texUnit->GenR.Mode) { 356 case GL_OBJECT_LINEAR: 357 texcoord[2] = DOT4(vObj, texUnit->ObjectPlane[GEN_R]); 358 break; 359 case GL_EYE_LINEAR: 360 texcoord[2] = DOT4(vEye, texUnit->EyePlane[GEN_R]); 361 break; 362 case GL_REFLECTION_MAP: 363 texcoord[2] = rz; 364 break; 365 case GL_NORMAL_MAP: 366 texcoord[2] = normal[2]; 367 break; 368 default: 369 _mesa_problem(ctx, "Bad R texgen in compute_texgen()"); 370 return; 371 } 372 } 373 374 if (texUnit->TexGenEnabled & Q_BIT) { 375 switch (texUnit->GenQ.Mode) { 376 case GL_OBJECT_LINEAR: 377 texcoord[3] = DOT4(vObj, texUnit->ObjectPlane[GEN_Q]); 378 break; 379 case GL_EYE_LINEAR: 380 texcoord[3] = DOT4(vEye, texUnit->EyePlane[GEN_Q]); 381 break; 382 default: 383 _mesa_problem(ctx, "Bad Q texgen in compute_texgen()"); 384 return; 385 } 386 } 387} 388 389 390/** 391 * glRasterPos transformation. Typically called via ctx->Driver.RasterPos(). 392 * 393 * \param vObj vertex position in object space 394 */ 395void 396_mesa_RasterPos(struct gl_context *ctx, const GLfloat vObj[4]) 397{ 398 ctx->PopAttribState |= GL_CURRENT_BIT; 399 400 if (_mesa_arb_vertex_program_enabled(ctx)) { 401 /* XXX implement this */ 402 _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos"); 403 return; 404 } 405 else { 406 GLfloat eye[4], clip[4], ndc[3], d; 407 GLfloat *norm, eyenorm[3]; 408 GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL]; 409 float scale[3], translate[3]; 410 411 /* apply modelview matrix: eye = MV * obj */ 412 TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj ); 413 /* apply projection matrix: clip = Proj * eye */ 414 TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye ); 415 416 /* clip to view volume. */ 417 if (!ctx->Transform.DepthClampNear) { 418 if (viewclip_point_near_z(clip) == 0) { 419 ctx->Current.RasterPosValid = GL_FALSE; 420 return; 421 } 422 } 423 if (!ctx->Transform.DepthClampFar) { 424 if (viewclip_point_far_z(clip) == 0) { 425 ctx->Current.RasterPosValid = GL_FALSE; 426 return; 427 } 428 } 429 if (!ctx->Transform.RasterPositionUnclipped) { 430 if (viewclip_point_xy(clip) == 0) { 431 ctx->Current.RasterPosValid = GL_FALSE; 432 return; 433 } 434 } 435 436 /* clip to user clipping planes */ 437 if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) { 438 ctx->Current.RasterPosValid = GL_FALSE; 439 return; 440 } 441 442 /* ndc = clip / W */ 443 d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3]; 444 ndc[0] = clip[0] * d; 445 ndc[1] = clip[1] * d; 446 ndc[2] = clip[2] * d; 447 /* wincoord = viewport_mapping(ndc) */ 448 _mesa_get_viewport_xform(ctx, 0, scale, translate); 449 ctx->Current.RasterPos[0] = ndc[0] * scale[0] + translate[0]; 450 ctx->Current.RasterPos[1] = ndc[1] * scale[1] + translate[1]; 451 ctx->Current.RasterPos[2] = ndc[2] * scale[2] + translate[2]; 452 ctx->Current.RasterPos[3] = clip[3]; 453 454 if (ctx->Transform.DepthClampNear && 455 ctx->Transform.DepthClampFar) { 456 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3], 457 ctx->ViewportArray[0].Near, 458 ctx->ViewportArray[0].Far); 459 } else { 460 /* Clamp against near and far plane separately */ 461 if (ctx->Transform.DepthClampNear) { 462 ctx->Current.RasterPos[3] = MAX2(ctx->Current.RasterPos[3], 463 ctx->ViewportArray[0].Near); 464 } 465 466 if (ctx->Transform.DepthClampFar) { 467 ctx->Current.RasterPos[3] = MIN2(ctx->Current.RasterPos[3], 468 ctx->ViewportArray[0].Far); 469 } 470 } 471 472 /* compute raster distance */ 473 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT) 474 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0]; 475 else 476 ctx->Current.RasterDistance = 477 sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] ); 478 479 /* compute transformed normal vector (for lighting or texgen) */ 480 if (ctx->_NeedEyeCoords) { 481 const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv; 482 TRANSFORM_NORMAL( eyenorm, objnorm, inv ); 483 norm = eyenorm; 484 } 485 else { 486 norm = objnorm; 487 } 488 489 /* update raster color */ 490 if (ctx->Light.Enabled) { 491 /* lighting */ 492 shade_rastpos( ctx, vObj, norm, 493 ctx->Current.RasterColor, 494 ctx->Current.RasterSecondaryColor ); 495 } 496 else { 497 /* use current color */ 498 COPY_4FV(ctx->Current.RasterColor, 499 ctx->Current.Attrib[VERT_ATTRIB_COLOR0]); 500 COPY_4FV(ctx->Current.RasterSecondaryColor, 501 ctx->Current.Attrib[VERT_ATTRIB_COLOR1]); 502 } 503 504 /* texture coords */ 505 { 506 GLuint u; 507 for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) { 508 GLfloat tc[4]; 509 COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]); 510 if (ctx->Texture.FixedFuncUnit[u].TexGenEnabled) { 511 compute_texgen(ctx, vObj, eye, norm, u, tc); 512 } 513 TRANSFORM_POINT(ctx->Current.RasterTexCoords[u], 514 ctx->TextureMatrixStack[u].Top->m, tc); 515 } 516 } 517 518 ctx->Current.RasterPosValid = GL_TRUE; 519 } 520 521 if (ctx->RenderMode == GL_SELECT) { 522 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] ); 523 } 524} 525 526 527/** 528 * Helper function for all the RasterPos functions. 529 */ 530static void 531rasterpos(GLfloat x, GLfloat y, GLfloat z, GLfloat w) 532{ 533 GET_CURRENT_CONTEXT(ctx); 534 GLfloat p[4]; 535 536 p[0] = x; 537 p[1] = y; 538 p[2] = z; 539 p[3] = w; 540 541 FLUSH_VERTICES(ctx, 0, 0); 542 FLUSH_CURRENT(ctx, 0); 543 544 if (ctx->NewState) 545 _mesa_update_state( ctx ); 546 547 ctx->Driver.RasterPos(ctx, p); 548} 549 550 551void GLAPIENTRY 552_mesa_RasterPos2d(GLdouble x, GLdouble y) 553{ 554 rasterpos((GLfloat)x, (GLfloat)y, (GLfloat)0.0, (GLfloat)1.0); 555} 556 557void GLAPIENTRY 558_mesa_RasterPos2f(GLfloat x, GLfloat y) 559{ 560 rasterpos(x, y, 0.0F, 1.0F); 561} 562 563void GLAPIENTRY 564_mesa_RasterPos2i(GLint x, GLint y) 565{ 566 rasterpos((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); 567} 568 569void GLAPIENTRY 570_mesa_RasterPos2s(GLshort x, GLshort y) 571{ 572 rasterpos(x, y, 0.0F, 1.0F); 573} 574 575void GLAPIENTRY 576_mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z) 577{ 578 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); 579} 580 581void GLAPIENTRY 582_mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z) 583{ 584 rasterpos(x, y, z, 1.0F); 585} 586 587void GLAPIENTRY 588_mesa_RasterPos3i(GLint x, GLint y, GLint z) 589{ 590 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); 591} 592 593void GLAPIENTRY 594_mesa_RasterPos3s(GLshort x, GLshort y, GLshort z) 595{ 596 rasterpos(x, y, z, 1.0F); 597} 598 599void GLAPIENTRY 600_mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w) 601{ 602 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); 603} 604 605void GLAPIENTRY 606_mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) 607{ 608 rasterpos(x, y, z, w); 609} 610 611void GLAPIENTRY 612_mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w) 613{ 614 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); 615} 616 617void GLAPIENTRY 618_mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w) 619{ 620 rasterpos(x, y, z, w); 621} 622 623void GLAPIENTRY 624_mesa_RasterPos2dv(const GLdouble *v) 625{ 626 rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); 627} 628 629void GLAPIENTRY 630_mesa_RasterPos2fv(const GLfloat *v) 631{ 632 rasterpos(v[0], v[1], 0.0F, 1.0F); 633} 634 635void GLAPIENTRY 636_mesa_RasterPos2iv(const GLint *v) 637{ 638 rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); 639} 640 641void GLAPIENTRY 642_mesa_RasterPos2sv(const GLshort *v) 643{ 644 rasterpos(v[0], v[1], 0.0F, 1.0F); 645} 646 647void GLAPIENTRY 648_mesa_RasterPos3dv(const GLdouble *v) 649{ 650 rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); 651} 652 653void GLAPIENTRY 654_mesa_RasterPos3fv(const GLfloat *v) 655{ 656 rasterpos(v[0], v[1], v[2], 1.0F); 657} 658 659void GLAPIENTRY 660_mesa_RasterPos3iv(const GLint *v) 661{ 662 rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); 663} 664 665void GLAPIENTRY 666_mesa_RasterPos3sv(const GLshort *v) 667{ 668 rasterpos(v[0], v[1], v[2], 1.0F); 669} 670 671void GLAPIENTRY 672_mesa_RasterPos4dv(const GLdouble *v) 673{ 674 rasterpos((GLfloat) v[0], (GLfloat) v[1], 675 (GLfloat) v[2], (GLfloat) v[3]); 676} 677 678void GLAPIENTRY 679_mesa_RasterPos4fv(const GLfloat *v) 680{ 681 rasterpos(v[0], v[1], v[2], v[3]); 682} 683 684void GLAPIENTRY 685_mesa_RasterPos4iv(const GLint *v) 686{ 687 rasterpos((GLfloat) v[0], (GLfloat) v[1], 688 (GLfloat) v[2], (GLfloat) v[3]); 689} 690 691void GLAPIENTRY 692_mesa_RasterPos4sv(const GLshort *v) 693{ 694 rasterpos(v[0], v[1], v[2], v[3]); 695} 696 697 698/**********************************************************************/ 699/*** GL_ARB_window_pos / GL_MESA_window_pos ***/ 700/**********************************************************************/ 701 702 703/** 704 * All glWindowPosMESA and glWindowPosARB commands call this function to 705 * update the current raster position. 706 */ 707static void 708window_pos3f(GLfloat x, GLfloat y, GLfloat z) 709{ 710 GET_CURRENT_CONTEXT(ctx); 711 GLfloat z2; 712 713 FLUSH_VERTICES(ctx, 0, GL_CURRENT_BIT); 714 FLUSH_CURRENT(ctx, 0); 715 716 z2 = CLAMP(z, 0.0F, 1.0F) 717 * (ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near) 718 + ctx->ViewportArray[0].Near; 719 720 /* set raster position */ 721 ctx->Current.RasterPos[0] = x; 722 ctx->Current.RasterPos[1] = y; 723 ctx->Current.RasterPos[2] = z2; 724 ctx->Current.RasterPos[3] = 1.0F; 725 726 ctx->Current.RasterPosValid = GL_TRUE; 727 728 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT) 729 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0]; 730 else 731 ctx->Current.RasterDistance = 0.0; 732 733 /* raster color = current color or index */ 734 ctx->Current.RasterColor[0] 735 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F); 736 ctx->Current.RasterColor[1] 737 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F); 738 ctx->Current.RasterColor[2] 739 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F); 740 ctx->Current.RasterColor[3] 741 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F); 742 ctx->Current.RasterSecondaryColor[0] 743 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F); 744 ctx->Current.RasterSecondaryColor[1] 745 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F); 746 ctx->Current.RasterSecondaryColor[2] 747 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F); 748 ctx->Current.RasterSecondaryColor[3] 749 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F); 750 751 /* raster texcoord = current texcoord */ 752 { 753 GLuint texSet; 754 for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) { 755 assert(texSet < ARRAY_SIZE(ctx->Current.RasterTexCoords)); 756 COPY_4FV( ctx->Current.RasterTexCoords[texSet], 757 ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] ); 758 } 759 } 760 761 if (ctx->RenderMode==GL_SELECT) { 762 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] ); 763 } 764} 765 766 767/* This is just to support the GL_MESA_window_pos version */ 768static void 769window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) 770{ 771 GET_CURRENT_CONTEXT(ctx); 772 window_pos3f(x, y, z); 773 ctx->Current.RasterPos[3] = w; 774} 775 776 777void GLAPIENTRY 778_mesa_WindowPos2d(GLdouble x, GLdouble y) 779{ 780 window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); 781} 782 783void GLAPIENTRY 784_mesa_WindowPos2f(GLfloat x, GLfloat y) 785{ 786 window_pos4f(x, y, 0.0F, 1.0F); 787} 788 789void GLAPIENTRY 790_mesa_WindowPos2i(GLint x, GLint y) 791{ 792 window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); 793} 794 795void GLAPIENTRY 796_mesa_WindowPos2s(GLshort x, GLshort y) 797{ 798 window_pos4f(x, y, 0.0F, 1.0F); 799} 800 801void GLAPIENTRY 802_mesa_WindowPos3d(GLdouble x, GLdouble y, GLdouble z) 803{ 804 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); 805} 806 807void GLAPIENTRY 808_mesa_WindowPos3f(GLfloat x, GLfloat y, GLfloat z) 809{ 810 window_pos4f(x, y, z, 1.0F); 811} 812 813void GLAPIENTRY 814_mesa_WindowPos3i(GLint x, GLint y, GLint z) 815{ 816 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); 817} 818 819void GLAPIENTRY 820_mesa_WindowPos3s(GLshort x, GLshort y, GLshort z) 821{ 822 window_pos4f(x, y, z, 1.0F); 823} 824 825void GLAPIENTRY 826_mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w) 827{ 828 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); 829} 830 831void GLAPIENTRY 832_mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w) 833{ 834 window_pos4f(x, y, z, w); 835} 836 837void GLAPIENTRY 838_mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w) 839{ 840 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); 841} 842 843void GLAPIENTRY 844_mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w) 845{ 846 window_pos4f(x, y, z, w); 847} 848 849void GLAPIENTRY 850_mesa_WindowPos2dv(const GLdouble *v) 851{ 852 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); 853} 854 855void GLAPIENTRY 856_mesa_WindowPos2fv(const GLfloat *v) 857{ 858 window_pos4f(v[0], v[1], 0.0F, 1.0F); 859} 860 861void GLAPIENTRY 862_mesa_WindowPos2iv(const GLint *v) 863{ 864 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); 865} 866 867void GLAPIENTRY 868_mesa_WindowPos2sv(const GLshort *v) 869{ 870 window_pos4f(v[0], v[1], 0.0F, 1.0F); 871} 872 873void GLAPIENTRY 874_mesa_WindowPos3dv(const GLdouble *v) 875{ 876 window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); 877} 878 879void GLAPIENTRY 880_mesa_WindowPos3fv(const GLfloat *v) 881{ 882 window_pos4f(v[0], v[1], v[2], 1.0); 883} 884 885void GLAPIENTRY 886_mesa_WindowPos3iv(const GLint *v) 887{ 888 window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); 889} 890 891void GLAPIENTRY 892_mesa_WindowPos3sv(const GLshort *v) 893{ 894 window_pos4f(v[0], v[1], v[2], 1.0F); 895} 896 897void GLAPIENTRY 898_mesa_WindowPos4dvMESA(const GLdouble *v) 899{ 900 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 901 (GLfloat) v[2], (GLfloat) v[3]); 902} 903 904void GLAPIENTRY 905_mesa_WindowPos4fvMESA(const GLfloat *v) 906{ 907 window_pos4f(v[0], v[1], v[2], v[3]); 908} 909 910void GLAPIENTRY 911_mesa_WindowPos4ivMESA(const GLint *v) 912{ 913 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 914 (GLfloat) v[2], (GLfloat) v[3]); 915} 916 917void GLAPIENTRY 918_mesa_WindowPos4svMESA(const GLshort *v) 919{ 920 window_pos4f(v[0], v[1], v[2], v[3]); 921} 922 923 924#if 0 925 926/* 927 * OpenGL implementation of glWindowPos*MESA() 928 */ 929void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w ) 930{ 931 GLfloat fx, fy; 932 933 /* Push current matrix mode and viewport attributes */ 934 glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT ); 935 936 /* Setup projection parameters */ 937 glMatrixMode( GL_PROJECTION ); 938 glPushMatrix(); 939 glLoadIdentity(); 940 glMatrixMode( GL_MODELVIEW ); 941 glPushMatrix(); 942 glLoadIdentity(); 943 944 glDepthRange( z, z ); 945 glViewport( (int) x - 1, (int) y - 1, 2, 2 ); 946 947 /* set the raster (window) position */ 948 fx = x - (int) x; 949 fy = y - (int) y; 950 glRasterPos4f( fx, fy, 0.0, w ); 951 952 /* restore matrices, viewport and matrix mode */ 953 glPopMatrix(); 954 glMatrixMode( GL_PROJECTION ); 955 glPopMatrix(); 956 957 glPopAttrib(); 958} 959 960#endif 961 962 963/**********************************************************************/ 964/** \name Initialization */ 965/**********************************************************************/ 966/*@{*/ 967 968/** 969 * Initialize the context current raster position information. 970 * 971 * \param ctx GL context. 972 * 973 * Initialize the current raster position information in 974 * __struct gl_contextRec::Current, and adds the extension entry points to the 975 * dispatcher. 976 */ 977void _mesa_init_rastpos( struct gl_context * ctx ) 978{ 979 unsigned i; 980 981 ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 ); 982 ctx->Current.RasterDistance = 0.0; 983 ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 ); 984 ASSIGN_4V( ctx->Current.RasterSecondaryColor, 0.0, 0.0, 0.0, 1.0 ); 985 for (i = 0; i < ARRAY_SIZE(ctx->Current.RasterTexCoords); i++) 986 ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 ); 987 ctx->Current.RasterPosValid = GL_TRUE; 988} 989 990/*@}*/ 991