1/* 2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved. 3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved. 4 * Copyright © 2010 Intel Corporation 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 23 * DEALINGS IN THE SOFTWARE. 24 */ 25 26/** 27 * \file ir_to_mesa.cpp 28 * 29 * Translate GLSL IR to Mesa's gl_program representation. 30 */ 31 32#include <stdio.h> 33#include "main/macros.h" 34#include "main/mtypes.h" 35#include "main/shaderapi.h" 36#include "main/shaderobj.h" 37#include "main/uniforms.h" 38#include "main/glspirv.h" 39#include "compiler/glsl/ast.h" 40#include "compiler/glsl/ir.h" 41#include "compiler/glsl/ir_expression_flattening.h" 42#include "compiler/glsl/ir_visitor.h" 43#include "compiler/glsl/ir_optimization.h" 44#include "compiler/glsl/ir_uniform.h" 45#include "compiler/glsl/glsl_parser_extras.h" 46#include "compiler/glsl_types.h" 47#include "compiler/glsl/linker.h" 48#include "compiler/glsl/program.h" 49#include "compiler/glsl/shader_cache.h" 50#include "compiler/glsl/string_to_uint_map.h" 51#include "program/prog_instruction.h" 52#include "program/prog_optimize.h" 53#include "program/prog_print.h" 54#include "program/program.h" 55#include "program/prog_parameter.h" 56 57 58static int swizzle_for_size(int size); 59 60namespace { 61 62class src_reg; 63class dst_reg; 64 65/** 66 * This struct is a corresponding struct to Mesa prog_src_register, with 67 * wider fields. 68 */ 69class src_reg { 70public: 71 src_reg(gl_register_file file, int index, const glsl_type *type) 72 { 73 this->file = file; 74 this->index = index; 75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) 76 this->swizzle = swizzle_for_size(type->vector_elements); 77 else 78 this->swizzle = SWIZZLE_XYZW; 79 this->negate = 0; 80 this->reladdr = NULL; 81 } 82 83 src_reg() 84 { 85 this->file = PROGRAM_UNDEFINED; 86 this->index = 0; 87 this->swizzle = 0; 88 this->negate = 0; 89 this->reladdr = NULL; 90 } 91 92 explicit src_reg(dst_reg reg); 93 94 gl_register_file file; /**< PROGRAM_* from Mesa */ 95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */ 96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */ 97 int negate; /**< NEGATE_XYZW mask from mesa */ 98 /** Register index should be offset by the integer in this reg. */ 99 src_reg *reladdr; 100}; 101 102class dst_reg { 103public: 104 dst_reg(gl_register_file file, int writemask) 105 { 106 this->file = file; 107 this->index = 0; 108 this->writemask = writemask; 109 this->reladdr = NULL; 110 } 111 112 dst_reg() 113 { 114 this->file = PROGRAM_UNDEFINED; 115 this->index = 0; 116 this->writemask = 0; 117 this->reladdr = NULL; 118 } 119 120 explicit dst_reg(src_reg reg); 121 122 gl_register_file file; /**< PROGRAM_* from Mesa */ 123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */ 124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */ 125 /** Register index should be offset by the integer in this reg. */ 126 src_reg *reladdr; 127}; 128 129} /* anonymous namespace */ 130 131src_reg::src_reg(dst_reg reg) 132{ 133 this->file = reg.file; 134 this->index = reg.index; 135 this->swizzle = SWIZZLE_XYZW; 136 this->negate = 0; 137 this->reladdr = reg.reladdr; 138} 139 140dst_reg::dst_reg(src_reg reg) 141{ 142 this->file = reg.file; 143 this->index = reg.index; 144 this->writemask = WRITEMASK_XYZW; 145 this->reladdr = reg.reladdr; 146} 147 148namespace { 149 150class ir_to_mesa_instruction : public exec_node { 151public: 152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction) 153 154 enum prog_opcode op; 155 dst_reg dst; 156 src_reg src[3]; 157 /** Pointer to the ir source this tree came from for debugging */ 158 ir_instruction *ir; 159 bool saturate; 160 int sampler; /**< sampler index */ 161 int tex_target; /**< One of TEXTURE_*_INDEX */ 162 GLboolean tex_shadow; 163}; 164 165class variable_storage : public exec_node { 166public: 167 variable_storage(ir_variable *var, gl_register_file file, int index) 168 : file(file), index(index), var(var) 169 { 170 /* empty */ 171 } 172 173 gl_register_file file; 174 int index; 175 ir_variable *var; /* variable that maps to this, if any */ 176}; 177 178class function_entry : public exec_node { 179public: 180 ir_function_signature *sig; 181 182 /** 183 * identifier of this function signature used by the program. 184 * 185 * At the point that Mesa instructions for function calls are 186 * generated, we don't know the address of the first instruction of 187 * the function body. So we make the BranchTarget that is called a 188 * small integer and rewrite them during set_branchtargets(). 189 */ 190 int sig_id; 191 192 /** 193 * Pointer to first instruction of the function body. 194 * 195 * Set during function body emits after main() is processed. 196 */ 197 ir_to_mesa_instruction *bgn_inst; 198 199 /** 200 * Index of the first instruction of the function body in actual 201 * Mesa IR. 202 * 203 * Set after convertion from ir_to_mesa_instruction to prog_instruction. 204 */ 205 int inst; 206 207 /** Storage for the return value. */ 208 src_reg return_reg; 209}; 210 211class ir_to_mesa_visitor : public ir_visitor { 212public: 213 ir_to_mesa_visitor(); 214 ~ir_to_mesa_visitor(); 215 216 function_entry *current_function; 217 218 struct gl_context *ctx; 219 struct gl_program *prog; 220 struct gl_shader_program *shader_program; 221 struct gl_shader_compiler_options *options; 222 223 int next_temp; 224 225 variable_storage *find_variable_storage(const ir_variable *var); 226 227 src_reg get_temp(const glsl_type *type); 228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr); 229 230 src_reg src_reg_for_float(float val); 231 232 /** 233 * \name Visit methods 234 * 235 * As typical for the visitor pattern, there must be one \c visit method for 236 * each concrete subclass of \c ir_instruction. Virtual base classes within 237 * the hierarchy should not have \c visit methods. 238 */ 239 /*@{*/ 240 virtual void visit(ir_variable *); 241 virtual void visit(ir_loop *); 242 virtual void visit(ir_loop_jump *); 243 virtual void visit(ir_function_signature *); 244 virtual void visit(ir_function *); 245 virtual void visit(ir_expression *); 246 virtual void visit(ir_swizzle *); 247 virtual void visit(ir_dereference_variable *); 248 virtual void visit(ir_dereference_array *); 249 virtual void visit(ir_dereference_record *); 250 virtual void visit(ir_assignment *); 251 virtual void visit(ir_constant *); 252 virtual void visit(ir_call *); 253 virtual void visit(ir_return *); 254 virtual void visit(ir_discard *); 255 virtual void visit(ir_demote *); 256 virtual void visit(ir_texture *); 257 virtual void visit(ir_if *); 258 virtual void visit(ir_emit_vertex *); 259 virtual void visit(ir_end_primitive *); 260 virtual void visit(ir_barrier *); 261 /*@}*/ 262 263 src_reg result; 264 265 /** List of variable_storage */ 266 exec_list variables; 267 268 /** List of function_entry */ 269 exec_list function_signatures; 270 int next_signature_id; 271 272 /** List of ir_to_mesa_instruction */ 273 exec_list instructions; 274 275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op); 276 277 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op, 278 dst_reg dst, src_reg src0); 279 280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op, 281 dst_reg dst, src_reg src0, src_reg src1); 282 283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op, 284 dst_reg dst, 285 src_reg src0, src_reg src1, src_reg src2); 286 287 /** 288 * Emit the correct dot-product instruction for the type of arguments 289 */ 290 ir_to_mesa_instruction * emit_dp(ir_instruction *ir, 291 dst_reg dst, 292 src_reg src0, 293 src_reg src1, 294 unsigned elements); 295 296 void emit_scalar(ir_instruction *ir, enum prog_opcode op, 297 dst_reg dst, src_reg src0); 298 299 void emit_scalar(ir_instruction *ir, enum prog_opcode op, 300 dst_reg dst, src_reg src0, src_reg src1); 301 302 bool try_emit_mad(ir_expression *ir, 303 int mul_operand); 304 bool try_emit_mad_for_and_not(ir_expression *ir, 305 int mul_operand); 306 307 void emit_swz(ir_expression *ir); 308 309 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op, 310 dst_reg dst, 311 const src_reg &src0, const src_reg &src1); 312 313 inline void emit_sne(ir_expression *ir, dst_reg dst, 314 const src_reg &src0, const src_reg &src1) 315 { 316 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1); 317 } 318 319 inline void emit_seq(ir_expression *ir, dst_reg dst, 320 const src_reg &src0, const src_reg &src1) 321 { 322 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1); 323 } 324 325 bool process_move_condition(ir_rvalue *ir); 326 327 void copy_propagate(void); 328 329 void *mem_ctx; 330}; 331 332} /* anonymous namespace */ 333 334static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL); 335 336static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP); 337 338static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X); 339 340static int 341swizzle_for_size(int size) 342{ 343 static const int size_swizzles[4] = { 344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X), 345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y), 346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z), 347 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W), 348 }; 349 350 assert((size >= 1) && (size <= 4)); 351 return size_swizzles[size - 1]; 352} 353 354ir_to_mesa_instruction * 355ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op, 356 dst_reg dst, 357 src_reg src0, src_reg src1, src_reg src2) 358{ 359 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction(); 360 int num_reladdr = 0; 361 362 /* If we have to do relative addressing, we want to load the ARL 363 * reg directly for one of the regs, and preload the other reladdr 364 * sources into temps. 365 */ 366 num_reladdr += dst.reladdr != NULL; 367 num_reladdr += src0.reladdr != NULL; 368 num_reladdr += src1.reladdr != NULL; 369 num_reladdr += src2.reladdr != NULL; 370 371 reladdr_to_temp(ir, &src2, &num_reladdr); 372 reladdr_to_temp(ir, &src1, &num_reladdr); 373 reladdr_to_temp(ir, &src0, &num_reladdr); 374 375 if (dst.reladdr) { 376 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr); 377 num_reladdr--; 378 } 379 assert(num_reladdr == 0); 380 381 inst->op = op; 382 inst->dst = dst; 383 inst->src[0] = src0; 384 inst->src[1] = src1; 385 inst->src[2] = src2; 386 inst->ir = ir; 387 388 this->instructions.push_tail(inst); 389 390 return inst; 391} 392 393 394ir_to_mesa_instruction * 395ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op, 396 dst_reg dst, src_reg src0, src_reg src1) 397{ 398 return emit(ir, op, dst, src0, src1, undef_src); 399} 400 401ir_to_mesa_instruction * 402ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op, 403 dst_reg dst, src_reg src0) 404{ 405 assert(dst.writemask != 0); 406 return emit(ir, op, dst, src0, undef_src, undef_src); 407} 408 409ir_to_mesa_instruction * 410ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op) 411{ 412 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src); 413} 414 415ir_to_mesa_instruction * 416ir_to_mesa_visitor::emit_dp(ir_instruction *ir, 417 dst_reg dst, src_reg src0, src_reg src1, 418 unsigned elements) 419{ 420 static const enum prog_opcode dot_opcodes[] = { 421 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4 422 }; 423 424 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1); 425} 426 427/** 428 * Emits Mesa scalar opcodes to produce unique answers across channels. 429 * 430 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X 431 * channel determines the result across all channels. So to do a vec4 432 * of this operation, we want to emit a scalar per source channel used 433 * to produce dest channels. 434 */ 435void 436ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op, 437 dst_reg dst, 438 src_reg orig_src0, src_reg orig_src1) 439{ 440 int i, j; 441 int done_mask = ~dst.writemask; 442 443 /* Mesa RCP is a scalar operation splatting results to all channels, 444 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our 445 * dst channels. 446 */ 447 for (i = 0; i < 4; i++) { 448 GLuint this_mask = (1 << i); 449 ir_to_mesa_instruction *inst; 450 src_reg src0 = orig_src0; 451 src_reg src1 = orig_src1; 452 453 if (done_mask & this_mask) 454 continue; 455 456 GLuint src0_swiz = GET_SWZ(src0.swizzle, i); 457 GLuint src1_swiz = GET_SWZ(src1.swizzle, i); 458 for (j = i + 1; j < 4; j++) { 459 /* If there is another enabled component in the destination that is 460 * derived from the same inputs, generate its value on this pass as 461 * well. 462 */ 463 if (!(done_mask & (1 << j)) && 464 GET_SWZ(src0.swizzle, j) == src0_swiz && 465 GET_SWZ(src1.swizzle, j) == src1_swiz) { 466 this_mask |= (1 << j); 467 } 468 } 469 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz, 470 src0_swiz, src0_swiz); 471 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz, 472 src1_swiz, src1_swiz); 473 474 inst = emit(ir, op, dst, src0, src1); 475 inst->dst.writemask = this_mask; 476 done_mask |= this_mask; 477 } 478} 479 480void 481ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op, 482 dst_reg dst, src_reg src0) 483{ 484 src_reg undef = undef_src; 485 486 undef.swizzle = SWIZZLE_XXXX; 487 488 emit_scalar(ir, op, dst, src0, undef); 489} 490 491src_reg 492ir_to_mesa_visitor::src_reg_for_float(float val) 493{ 494 src_reg src(PROGRAM_CONSTANT, -1, NULL); 495 496 src.index = _mesa_add_unnamed_constant(this->prog->Parameters, 497 (const gl_constant_value *)&val, 1, &src.swizzle); 498 499 return src; 500} 501 502static int 503type_size(const struct glsl_type *type) 504{ 505 return type->count_vec4_slots(false, false); 506} 507 508/** 509 * In the initial pass of codegen, we assign temporary numbers to 510 * intermediate results. (not SSA -- variable assignments will reuse 511 * storage). Actual register allocation for the Mesa VM occurs in a 512 * pass over the Mesa IR later. 513 */ 514src_reg 515ir_to_mesa_visitor::get_temp(const glsl_type *type) 516{ 517 src_reg src; 518 519 src.file = PROGRAM_TEMPORARY; 520 src.index = next_temp; 521 src.reladdr = NULL; 522 next_temp += type_size(type); 523 524 if (type->is_array() || type->is_struct()) { 525 src.swizzle = SWIZZLE_NOOP; 526 } else { 527 src.swizzle = swizzle_for_size(type->vector_elements); 528 } 529 src.negate = 0; 530 531 return src; 532} 533 534variable_storage * 535ir_to_mesa_visitor::find_variable_storage(const ir_variable *var) 536{ 537 foreach_in_list(variable_storage, entry, &this->variables) { 538 if (entry->var == var) 539 return entry; 540 } 541 542 return NULL; 543} 544 545void 546ir_to_mesa_visitor::visit(ir_variable *ir) 547{ 548 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) { 549 unsigned int i; 550 const ir_state_slot *const slots = ir->get_state_slots(); 551 assert(slots != NULL); 552 553 /* Check if this statevar's setup in the STATE file exactly 554 * matches how we'll want to reference it as a 555 * struct/array/whatever. If not, then we need to move it into 556 * temporary storage and hope that it'll get copy-propagated 557 * out. 558 */ 559 for (i = 0; i < ir->get_num_state_slots(); i++) { 560 if (slots[i].swizzle != SWIZZLE_XYZW) { 561 break; 562 } 563 } 564 565 variable_storage *storage; 566 dst_reg dst; 567 if (i == ir->get_num_state_slots()) { 568 /* We'll set the index later. */ 569 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1); 570 this->variables.push_tail(storage); 571 572 dst = undef_dst; 573 } else { 574 /* The variable_storage constructor allocates slots based on the size 575 * of the type. However, this had better match the number of state 576 * elements that we're going to copy into the new temporary. 577 */ 578 assert((int) ir->get_num_state_slots() == type_size(ir->type)); 579 580 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY, 581 this->next_temp); 582 this->variables.push_tail(storage); 583 this->next_temp += type_size(ir->type); 584 585 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL)); 586 } 587 588 589 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) { 590 int index = _mesa_add_state_reference(this->prog->Parameters, 591 slots[i].tokens); 592 593 if (storage->file == PROGRAM_STATE_VAR) { 594 if (storage->index == -1) { 595 storage->index = index; 596 } else { 597 assert(index == storage->index + (int)i); 598 } 599 } else { 600 src_reg src(PROGRAM_STATE_VAR, index, NULL); 601 src.swizzle = slots[i].swizzle; 602 emit(ir, OPCODE_MOV, dst, src); 603 /* even a float takes up a whole vec4 reg in a struct/array. */ 604 dst.index++; 605 } 606 } 607 608 if (storage->file == PROGRAM_TEMPORARY && 609 dst.index != storage->index + (int) ir->get_num_state_slots()) { 610 linker_error(this->shader_program, 611 "failed to load builtin uniform `%s' " 612 "(%d/%d regs loaded)\n", 613 ir->name, dst.index - storage->index, 614 type_size(ir->type)); 615 } 616 } 617} 618 619void 620ir_to_mesa_visitor::visit(ir_loop *ir) 621{ 622 emit(NULL, OPCODE_BGNLOOP); 623 624 visit_exec_list(&ir->body_instructions, this); 625 626 emit(NULL, OPCODE_ENDLOOP); 627} 628 629void 630ir_to_mesa_visitor::visit(ir_loop_jump *ir) 631{ 632 switch (ir->mode) { 633 case ir_loop_jump::jump_break: 634 emit(NULL, OPCODE_BRK); 635 break; 636 case ir_loop_jump::jump_continue: 637 emit(NULL, OPCODE_CONT); 638 break; 639 } 640} 641 642 643void 644ir_to_mesa_visitor::visit(ir_function_signature *ir) 645{ 646 assert(0); 647 (void)ir; 648} 649 650void 651ir_to_mesa_visitor::visit(ir_function *ir) 652{ 653 /* Ignore function bodies other than main() -- we shouldn't see calls to 654 * them since they should all be inlined before we get to ir_to_mesa. 655 */ 656 if (strcmp(ir->name, "main") == 0) { 657 const ir_function_signature *sig; 658 exec_list empty; 659 660 sig = ir->matching_signature(NULL, &empty, false); 661 662 assert(sig); 663 664 foreach_in_list(ir_instruction, ir, &sig->body) { 665 ir->accept(this); 666 } 667 } 668} 669 670bool 671ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand) 672{ 673 int nonmul_operand = 1 - mul_operand; 674 src_reg a, b, c; 675 676 ir_expression *expr = ir->operands[mul_operand]->as_expression(); 677 if (!expr || expr->operation != ir_binop_mul) 678 return false; 679 680 expr->operands[0]->accept(this); 681 a = this->result; 682 expr->operands[1]->accept(this); 683 b = this->result; 684 ir->operands[nonmul_operand]->accept(this); 685 c = this->result; 686 687 this->result = get_temp(ir->type); 688 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c); 689 690 return true; 691} 692 693/** 694 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b)) 695 * 696 * The logic values are 1.0 for true and 0.0 for false. Logical-and is 697 * implemented using multiplication, and logical-or is implemented using 698 * addition. Logical-not can be implemented as (true - x), or (1.0 - x). 699 * As result, the logical expression (a & !b) can be rewritten as: 700 * 701 * - a * !b 702 * - a * (1 - b) 703 * - (a * 1) - (a * b) 704 * - a + -(a * b) 705 * - a + (a * -b) 706 * 707 * This final expression can be implemented as a single MAD(a, -b, a) 708 * instruction. 709 */ 710bool 711ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand) 712{ 713 const int other_operand = 1 - try_operand; 714 src_reg a, b; 715 716 ir_expression *expr = ir->operands[try_operand]->as_expression(); 717 if (!expr || expr->operation != ir_unop_logic_not) 718 return false; 719 720 ir->operands[other_operand]->accept(this); 721 a = this->result; 722 expr->operands[0]->accept(this); 723 b = this->result; 724 725 b.negate = ~b.negate; 726 727 this->result = get_temp(ir->type); 728 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a); 729 730 return true; 731} 732 733void 734ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir, 735 src_reg *reg, int *num_reladdr) 736{ 737 if (!reg->reladdr) 738 return; 739 740 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr); 741 742 if (*num_reladdr != 1) { 743 src_reg temp = get_temp(glsl_type::vec4_type); 744 745 emit(ir, OPCODE_MOV, dst_reg(temp), *reg); 746 *reg = temp; 747 } 748 749 (*num_reladdr)--; 750} 751 752void 753ir_to_mesa_visitor::emit_swz(ir_expression *ir) 754{ 755 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ. 756 * This means that each of the operands is either an immediate value of -1, 757 * 0, or 1, or is a component from one source register (possibly with 758 * negation). 759 */ 760 uint8_t components[4] = { 0 }; 761 bool negate[4] = { false }; 762 ir_variable *var = NULL; 763 764 for (unsigned i = 0; i < ir->type->vector_elements; i++) { 765 ir_rvalue *op = ir->operands[i]; 766 767 assert(op->type->is_scalar()); 768 769 while (op != NULL) { 770 switch (op->ir_type) { 771 case ir_type_constant: { 772 773 assert(op->type->is_scalar()); 774 775 const ir_constant *const c = op->as_constant(); 776 if (c->is_one()) { 777 components[i] = SWIZZLE_ONE; 778 } else if (c->is_zero()) { 779 components[i] = SWIZZLE_ZERO; 780 } else if (c->is_negative_one()) { 781 components[i] = SWIZZLE_ONE; 782 negate[i] = true; 783 } else { 784 assert(!"SWZ constant must be 0.0 or 1.0."); 785 } 786 787 op = NULL; 788 break; 789 } 790 791 case ir_type_dereference_variable: { 792 ir_dereference_variable *const deref = 793 (ir_dereference_variable *) op; 794 795 assert((var == NULL) || (deref->var == var)); 796 components[i] = SWIZZLE_X; 797 var = deref->var; 798 op = NULL; 799 break; 800 } 801 802 case ir_type_expression: { 803 ir_expression *const expr = (ir_expression *) op; 804 805 assert(expr->operation == ir_unop_neg); 806 negate[i] = true; 807 808 op = expr->operands[0]; 809 break; 810 } 811 812 case ir_type_swizzle: { 813 ir_swizzle *const swiz = (ir_swizzle *) op; 814 815 components[i] = swiz->mask.x; 816 op = swiz->val; 817 break; 818 } 819 820 default: 821 assert(!"Should not get here."); 822 return; 823 } 824 } 825 } 826 827 assert(var != NULL); 828 829 ir_dereference_variable *const deref = 830 new(mem_ctx) ir_dereference_variable(var); 831 832 this->result.file = PROGRAM_UNDEFINED; 833 deref->accept(this); 834 if (this->result.file == PROGRAM_UNDEFINED) { 835 printf("Failed to get tree for expression operand:\n"); 836 deref->print(); 837 printf("\n"); 838 exit(1); 839 } 840 841 src_reg src; 842 843 src = this->result; 844 src.swizzle = MAKE_SWIZZLE4(components[0], 845 components[1], 846 components[2], 847 components[3]); 848 src.negate = ((unsigned(negate[0]) << 0) 849 | (unsigned(negate[1]) << 1) 850 | (unsigned(negate[2]) << 2) 851 | (unsigned(negate[3]) << 3)); 852 853 /* Storage for our result. Ideally for an assignment we'd be using the 854 * actual storage for the result here, instead. 855 */ 856 const src_reg result_src = get_temp(ir->type); 857 dst_reg result_dst = dst_reg(result_src); 858 859 /* Limit writes to the channels that will be used by result_src later. 860 * This does limit this temp's use as a temporary for multi-instruction 861 * sequences. 862 */ 863 result_dst.writemask = (1 << ir->type->vector_elements) - 1; 864 865 emit(ir, OPCODE_SWZ, result_dst, src); 866 this->result = result_src; 867} 868 869void 870ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir, 871 enum prog_opcode op, 872 dst_reg dst, 873 const src_reg &src0, 874 const src_reg &src1) 875{ 876 src_reg difference; 877 src_reg abs_difference = get_temp(glsl_type::vec4_type); 878 const src_reg zero = src_reg_for_float(0.0); 879 880 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that 881 * consumes the generated IR is pretty dumb, take special care when one 882 * of the operands is zero. 883 * 884 * Similarly, x != y is equivalent to -abs(x-y) < 0. 885 */ 886 if (src0.file == zero.file && 887 src0.index == zero.index && 888 src0.swizzle == zero.swizzle) { 889 difference = src1; 890 } else if (src1.file == zero.file && 891 src1.index == zero.index && 892 src1.swizzle == zero.swizzle) { 893 difference = src0; 894 } else { 895 difference = get_temp(glsl_type::vec4_type); 896 897 src_reg tmp_src = src0; 898 tmp_src.negate = ~tmp_src.negate; 899 900 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1); 901 } 902 903 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference); 904 905 abs_difference.negate = ~abs_difference.negate; 906 emit(ir, op, dst, abs_difference, zero); 907} 908 909void 910ir_to_mesa_visitor::visit(ir_expression *ir) 911{ 912 unsigned int operand; 913 src_reg op[ARRAY_SIZE(ir->operands)]; 914 src_reg result_src; 915 dst_reg result_dst; 916 917 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c) 918 */ 919 if (ir->operation == ir_binop_add) { 920 if (try_emit_mad(ir, 1)) 921 return; 922 if (try_emit_mad(ir, 0)) 923 return; 924 } 925 926 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b)) 927 */ 928 if (ir->operation == ir_binop_logic_and) { 929 if (try_emit_mad_for_and_not(ir, 1)) 930 return; 931 if (try_emit_mad_for_and_not(ir, 0)) 932 return; 933 } 934 935 if (ir->operation == ir_quadop_vector) { 936 this->emit_swz(ir); 937 return; 938 } 939 940 for (operand = 0; operand < ir->num_operands; operand++) { 941 this->result.file = PROGRAM_UNDEFINED; 942 ir->operands[operand]->accept(this); 943 if (this->result.file == PROGRAM_UNDEFINED) { 944 printf("Failed to get tree for expression operand:\n"); 945 ir->operands[operand]->print(); 946 printf("\n"); 947 exit(1); 948 } 949 op[operand] = this->result; 950 951 /* Matrix expression operands should have been broken down to vector 952 * operations already. 953 */ 954 assert(!ir->operands[operand]->type->is_matrix()); 955 } 956 957 int vector_elements = ir->operands[0]->type->vector_elements; 958 if (ir->operands[1]) { 959 vector_elements = MAX2(vector_elements, 960 ir->operands[1]->type->vector_elements); 961 } 962 963 this->result.file = PROGRAM_UNDEFINED; 964 965 /* Storage for our result. Ideally for an assignment we'd be using 966 * the actual storage for the result here, instead. 967 */ 968 result_src = get_temp(ir->type); 969 /* convenience for the emit functions below. */ 970 result_dst = dst_reg(result_src); 971 /* Limit writes to the channels that will be used by result_src later. 972 * This does limit this temp's use as a temporary for multi-instruction 973 * sequences. 974 */ 975 result_dst.writemask = (1 << ir->type->vector_elements) - 1; 976 977 switch (ir->operation) { 978 case ir_unop_logic_not: 979 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many 980 * older GPUs implement SEQ using multiple instructions (i915 uses two 981 * SGE instructions and a MUL instruction). Since our logic values are 982 * 0.0 and 1.0, 1-x also implements !x. 983 */ 984 op[0].negate = ~op[0].negate; 985 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0)); 986 break; 987 case ir_unop_neg: 988 op[0].negate = ~op[0].negate; 989 result_src = op[0]; 990 break; 991 case ir_unop_abs: 992 emit(ir, OPCODE_ABS, result_dst, op[0]); 993 break; 994 case ir_unop_sign: 995 emit(ir, OPCODE_SSG, result_dst, op[0]); 996 break; 997 case ir_unop_rcp: 998 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]); 999 break; 1000 1001 case ir_unop_exp2: 1002 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]); 1003 break; 1004 case ir_unop_exp: 1005 assert(!"not reached: should be handled by exp_to_exp2"); 1006 break; 1007 case ir_unop_log: 1008 assert(!"not reached: should be handled by log_to_log2"); 1009 break; 1010 case ir_unop_log2: 1011 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]); 1012 break; 1013 case ir_unop_sin: 1014 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]); 1015 break; 1016 case ir_unop_cos: 1017 emit_scalar(ir, OPCODE_COS, result_dst, op[0]); 1018 break; 1019 1020 case ir_unop_dFdx: 1021 emit(ir, OPCODE_DDX, result_dst, op[0]); 1022 break; 1023 case ir_unop_dFdy: 1024 emit(ir, OPCODE_DDY, result_dst, op[0]); 1025 break; 1026 1027 case ir_unop_saturate: { 1028 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV, 1029 result_dst, op[0]); 1030 inst->saturate = true; 1031 break; 1032 } 1033 1034 case ir_binop_add: 1035 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]); 1036 break; 1037 case ir_binop_sub: 1038 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]); 1039 break; 1040 1041 case ir_binop_mul: 1042 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]); 1043 break; 1044 case ir_binop_div: 1045 assert(!"not reached: should be handled by ir_div_to_mul_rcp"); 1046 break; 1047 case ir_binop_mod: 1048 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */ 1049 assert(ir->type->is_integer_32()); 1050 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]); 1051 break; 1052 1053 case ir_binop_less: 1054 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]); 1055 break; 1056 case ir_binop_gequal: 1057 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]); 1058 break; 1059 case ir_binop_equal: 1060 emit_seq(ir, result_dst, op[0], op[1]); 1061 break; 1062 case ir_binop_nequal: 1063 emit_sne(ir, result_dst, op[0], op[1]); 1064 break; 1065 case ir_binop_all_equal: 1066 /* "==" operator producing a scalar boolean. */ 1067 if (ir->operands[0]->type->is_vector() || 1068 ir->operands[1]->type->is_vector()) { 1069 src_reg temp = get_temp(glsl_type::vec4_type); 1070 emit_sne(ir, dst_reg(temp), op[0], op[1]); 1071 1072 /* After the dot-product, the value will be an integer on the 1073 * range [0,4]. Zero becomes 1.0, and positive values become zero. 1074 */ 1075 emit_dp(ir, result_dst, temp, temp, vector_elements); 1076 1077 /* Negating the result of the dot-product gives values on the range 1078 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This 1079 * achieved using SGE. 1080 */ 1081 src_reg sge_src = result_src; 1082 sge_src.negate = ~sge_src.negate; 1083 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0)); 1084 } else { 1085 emit_seq(ir, result_dst, op[0], op[1]); 1086 } 1087 break; 1088 case ir_binop_any_nequal: 1089 /* "!=" operator producing a scalar boolean. */ 1090 if (ir->operands[0]->type->is_vector() || 1091 ir->operands[1]->type->is_vector()) { 1092 src_reg temp = get_temp(glsl_type::vec4_type); 1093 if (ir->operands[0]->type->is_boolean() && 1094 ir->operands[1]->as_constant() && 1095 ir->operands[1]->as_constant()->is_zero()) { 1096 temp = op[0]; 1097 } else { 1098 emit_sne(ir, dst_reg(temp), op[0], op[1]); 1099 } 1100 1101 /* After the dot-product, the value will be an integer on the 1102 * range [0,4]. Zero stays zero, and positive values become 1.0. 1103 */ 1104 ir_to_mesa_instruction *const dp = 1105 emit_dp(ir, result_dst, temp, temp, vector_elements); 1106 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) { 1107 /* The clamping to [0,1] can be done for free in the fragment 1108 * shader with a saturate. 1109 */ 1110 dp->saturate = true; 1111 } else { 1112 /* Negating the result of the dot-product gives values on the range 1113 * [-4, 0]. Zero stays zero, and negative values become 1.0. This 1114 * achieved using SLT. 1115 */ 1116 src_reg slt_src = result_src; 1117 slt_src.negate = ~slt_src.negate; 1118 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0)); 1119 } 1120 } else { 1121 emit_sne(ir, result_dst, op[0], op[1]); 1122 } 1123 break; 1124 1125 case ir_binop_logic_xor: 1126 emit_sne(ir, result_dst, op[0], op[1]); 1127 break; 1128 1129 case ir_binop_logic_or: { 1130 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) { 1131 /* After the addition, the value will be an integer on the 1132 * range [0,2]. Zero stays zero, and positive values become 1.0. 1133 */ 1134 ir_to_mesa_instruction *add = 1135 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]); 1136 add->saturate = true; 1137 } else { 1138 /* The Boolean arguments are stored as float 0.0 and 1.0. If either 1139 * value is 1.0, the result of the logcal-or should be 1.0. If both 1140 * values are 0.0, the result should be 0.0. This is exactly what 1141 * MAX does. 1142 */ 1143 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]); 1144 } 1145 break; 1146 } 1147 1148 case ir_binop_logic_and: 1149 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */ 1150 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]); 1151 break; 1152 1153 case ir_binop_dot: 1154 assert(ir->operands[0]->type->is_vector()); 1155 assert(ir->operands[0]->type == ir->operands[1]->type); 1156 emit_dp(ir, result_dst, op[0], op[1], 1157 ir->operands[0]->type->vector_elements); 1158 break; 1159 1160 case ir_unop_sqrt: 1161 /* sqrt(x) = x * rsq(x). */ 1162 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]); 1163 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]); 1164 /* For incoming channels <= 0, set the result to 0. */ 1165 op[0].negate = ~op[0].negate; 1166 emit(ir, OPCODE_CMP, result_dst, 1167 op[0], result_src, src_reg_for_float(0.0)); 1168 break; 1169 case ir_unop_rsq: 1170 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]); 1171 break; 1172 case ir_unop_i2f: 1173 case ir_unop_u2f: 1174 case ir_unop_b2f: 1175 case ir_unop_b2i: 1176 case ir_unop_i2u: 1177 case ir_unop_u2i: 1178 /* Mesa IR lacks types, ints are stored as truncated floats. */ 1179 result_src = op[0]; 1180 break; 1181 case ir_unop_f2i: 1182 case ir_unop_f2u: 1183 emit(ir, OPCODE_TRUNC, result_dst, op[0]); 1184 break; 1185 case ir_unop_f2b: 1186 case ir_unop_i2b: 1187 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0)); 1188 break; 1189 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway 1190 case ir_unop_bitcast_f2u: 1191 case ir_unop_bitcast_i2f: 1192 case ir_unop_bitcast_u2f: 1193 break; 1194 case ir_unop_trunc: 1195 emit(ir, OPCODE_TRUNC, result_dst, op[0]); 1196 break; 1197 case ir_unop_ceil: 1198 op[0].negate = ~op[0].negate; 1199 emit(ir, OPCODE_FLR, result_dst, op[0]); 1200 result_src.negate = ~result_src.negate; 1201 break; 1202 case ir_unop_floor: 1203 emit(ir, OPCODE_FLR, result_dst, op[0]); 1204 break; 1205 case ir_unop_fract: 1206 emit(ir, OPCODE_FRC, result_dst, op[0]); 1207 break; 1208 case ir_unop_pack_snorm_2x16: 1209 case ir_unop_pack_snorm_4x8: 1210 case ir_unop_pack_unorm_2x16: 1211 case ir_unop_pack_unorm_4x8: 1212 case ir_unop_pack_half_2x16: 1213 case ir_unop_pack_double_2x32: 1214 case ir_unop_unpack_snorm_2x16: 1215 case ir_unop_unpack_snorm_4x8: 1216 case ir_unop_unpack_unorm_2x16: 1217 case ir_unop_unpack_unorm_4x8: 1218 case ir_unop_unpack_half_2x16: 1219 case ir_unop_unpack_double_2x32: 1220 case ir_unop_bitfield_reverse: 1221 case ir_unop_bit_count: 1222 case ir_unop_find_msb: 1223 case ir_unop_find_lsb: 1224 case ir_unop_d2f: 1225 case ir_unop_f2d: 1226 case ir_unop_d2i: 1227 case ir_unop_i2d: 1228 case ir_unop_d2u: 1229 case ir_unop_u2d: 1230 case ir_unop_d2b: 1231 case ir_unop_frexp_sig: 1232 case ir_unop_frexp_exp: 1233 assert(!"not supported"); 1234 break; 1235 case ir_binop_min: 1236 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]); 1237 break; 1238 case ir_binop_max: 1239 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]); 1240 break; 1241 case ir_binop_pow: 1242 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]); 1243 break; 1244 1245 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since 1246 * hardware backends have no way to avoid Mesa IR generation 1247 * even if they don't use it, we need to emit "something" and 1248 * continue. 1249 */ 1250 case ir_binop_lshift: 1251 case ir_binop_rshift: 1252 case ir_binop_bit_and: 1253 case ir_binop_bit_xor: 1254 case ir_binop_bit_or: 1255 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]); 1256 break; 1257 1258 case ir_unop_bit_not: 1259 case ir_unop_round_even: 1260 emit(ir, OPCODE_MOV, result_dst, op[0]); 1261 break; 1262 1263 case ir_binop_ubo_load: 1264 assert(!"not supported"); 1265 break; 1266 1267 case ir_triop_lrp: 1268 /* ir_triop_lrp operands are (x, y, a) while 1269 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program. 1270 */ 1271 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]); 1272 break; 1273 1274 case ir_triop_csel: 1275 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP 1276 * selects src1 if src0 is < 0, src2 otherwise. 1277 */ 1278 op[0].negate = ~op[0].negate; 1279 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]); 1280 break; 1281 1282 case ir_binop_vector_extract: 1283 case ir_triop_fma: 1284 case ir_triop_bitfield_extract: 1285 case ir_triop_vector_insert: 1286 case ir_quadop_bitfield_insert: 1287 case ir_binop_ldexp: 1288 case ir_binop_carry: 1289 case ir_binop_borrow: 1290 case ir_binop_abs_sub: 1291 case ir_binop_add_sat: 1292 case ir_binop_sub_sat: 1293 case ir_binop_avg: 1294 case ir_binop_avg_round: 1295 case ir_binop_mul_32x16: 1296 case ir_binop_imul_high: 1297 case ir_unop_interpolate_at_centroid: 1298 case ir_binop_interpolate_at_offset: 1299 case ir_binop_interpolate_at_sample: 1300 case ir_unop_dFdx_coarse: 1301 case ir_unop_dFdx_fine: 1302 case ir_unop_dFdy_coarse: 1303 case ir_unop_dFdy_fine: 1304 case ir_unop_subroutine_to_int: 1305 case ir_unop_get_buffer_size: 1306 case ir_unop_bitcast_u642d: 1307 case ir_unop_bitcast_i642d: 1308 case ir_unop_bitcast_d2u64: 1309 case ir_unop_bitcast_d2i64: 1310 case ir_unop_i642i: 1311 case ir_unop_u642i: 1312 case ir_unop_i642u: 1313 case ir_unop_u642u: 1314 case ir_unop_i642b: 1315 case ir_unop_i642f: 1316 case ir_unop_u642f: 1317 case ir_unop_i642d: 1318 case ir_unop_u642d: 1319 case ir_unop_i2i64: 1320 case ir_unop_u2i64: 1321 case ir_unop_b2i64: 1322 case ir_unop_f2i64: 1323 case ir_unop_d2i64: 1324 case ir_unop_i2u64: 1325 case ir_unop_u2u64: 1326 case ir_unop_f2u64: 1327 case ir_unop_d2u64: 1328 case ir_unop_u642i64: 1329 case ir_unop_i642u64: 1330 case ir_unop_pack_int_2x32: 1331 case ir_unop_unpack_int_2x32: 1332 case ir_unop_pack_uint_2x32: 1333 case ir_unop_unpack_uint_2x32: 1334 case ir_unop_pack_sampler_2x32: 1335 case ir_unop_unpack_sampler_2x32: 1336 case ir_unop_pack_image_2x32: 1337 case ir_unop_unpack_image_2x32: 1338 case ir_unop_atan: 1339 case ir_binop_atan2: 1340 case ir_unop_clz: 1341 case ir_unop_f162f: 1342 case ir_unop_f2f16: 1343 case ir_unop_f2fmp: 1344 case ir_unop_f162b: 1345 case ir_unop_b2f16: 1346 case ir_unop_i2i: 1347 case ir_unop_i2imp: 1348 case ir_unop_u2u: 1349 case ir_unop_u2ump: 1350 assert(!"not supported"); 1351 break; 1352 1353 case ir_unop_ssbo_unsized_array_length: 1354 case ir_unop_implicitly_sized_array_length: 1355 case ir_quadop_vector: 1356 /* This operation should have already been handled. 1357 */ 1358 assert(!"Should not get here."); 1359 break; 1360 } 1361 1362 this->result = result_src; 1363} 1364 1365 1366void 1367ir_to_mesa_visitor::visit(ir_swizzle *ir) 1368{ 1369 src_reg src; 1370 int i; 1371 int swizzle[4] = {0}; 1372 1373 /* Note that this is only swizzles in expressions, not those on the left 1374 * hand side of an assignment, which do write masking. See ir_assignment 1375 * for that. 1376 */ 1377 1378 ir->val->accept(this); 1379 src = this->result; 1380 assert(src.file != PROGRAM_UNDEFINED); 1381 assert(ir->type->vector_elements > 0); 1382 1383 for (i = 0; i < 4; i++) { 1384 if (i < ir->type->vector_elements) { 1385 switch (i) { 1386 case 0: 1387 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x); 1388 break; 1389 case 1: 1390 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y); 1391 break; 1392 case 2: 1393 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z); 1394 break; 1395 case 3: 1396 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w); 1397 break; 1398 } 1399 } else { 1400 /* If the type is smaller than a vec4, replicate the last 1401 * channel out. 1402 */ 1403 swizzle[i] = swizzle[ir->type->vector_elements - 1]; 1404 } 1405 } 1406 1407 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); 1408 1409 this->result = src; 1410} 1411 1412void 1413ir_to_mesa_visitor::visit(ir_dereference_variable *ir) 1414{ 1415 variable_storage *entry = find_variable_storage(ir->var); 1416 ir_variable *var = ir->var; 1417 1418 if (!entry) { 1419 switch (var->data.mode) { 1420 case ir_var_uniform: 1421 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM, 1422 var->data.param_index); 1423 this->variables.push_tail(entry); 1424 break; 1425 case ir_var_shader_in: 1426 /* The linker assigns locations for varyings and attributes, 1427 * including deprecated builtins (like gl_Color), 1428 * user-assigned generic attributes (glBindVertexLocation), 1429 * and user-defined varyings. 1430 */ 1431 assert(var->data.location != -1); 1432 entry = new(mem_ctx) variable_storage(var, 1433 PROGRAM_INPUT, 1434 var->data.location); 1435 break; 1436 case ir_var_shader_out: 1437 assert(var->data.location != -1); 1438 entry = new(mem_ctx) variable_storage(var, 1439 PROGRAM_OUTPUT, 1440 var->data.location); 1441 break; 1442 case ir_var_system_value: 1443 entry = new(mem_ctx) variable_storage(var, 1444 PROGRAM_SYSTEM_VALUE, 1445 var->data.location); 1446 break; 1447 case ir_var_auto: 1448 case ir_var_temporary: 1449 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY, 1450 this->next_temp); 1451 this->variables.push_tail(entry); 1452 1453 next_temp += type_size(var->type); 1454 break; 1455 } 1456 1457 if (!entry) { 1458 printf("Failed to make storage for %s\n", var->name); 1459 exit(1); 1460 } 1461 } 1462 1463 this->result = src_reg(entry->file, entry->index, var->type); 1464} 1465 1466void 1467ir_to_mesa_visitor::visit(ir_dereference_array *ir) 1468{ 1469 ir_constant *index; 1470 src_reg src; 1471 int element_size = type_size(ir->type); 1472 1473 index = ir->array_index->constant_expression_value(ralloc_parent(ir)); 1474 1475 ir->array->accept(this); 1476 src = this->result; 1477 1478 if (index) { 1479 src.index += index->value.i[0] * element_size; 1480 } else { 1481 /* Variable index array dereference. It eats the "vec4" of the 1482 * base of the array and an index that offsets the Mesa register 1483 * index. 1484 */ 1485 ir->array_index->accept(this); 1486 1487 src_reg index_reg; 1488 1489 if (element_size == 1) { 1490 index_reg = this->result; 1491 } else { 1492 index_reg = get_temp(glsl_type::float_type); 1493 1494 emit(ir, OPCODE_MUL, dst_reg(index_reg), 1495 this->result, src_reg_for_float(element_size)); 1496 } 1497 1498 /* If there was already a relative address register involved, add the 1499 * new and the old together to get the new offset. 1500 */ 1501 if (src.reladdr != NULL) { 1502 src_reg accum_reg = get_temp(glsl_type::float_type); 1503 1504 emit(ir, OPCODE_ADD, dst_reg(accum_reg), 1505 index_reg, *src.reladdr); 1506 1507 index_reg = accum_reg; 1508 } 1509 1510 src.reladdr = ralloc(mem_ctx, src_reg); 1511 memcpy(src.reladdr, &index_reg, sizeof(index_reg)); 1512 } 1513 1514 /* If the type is smaller than a vec4, replicate the last channel out. */ 1515 if (ir->type->is_scalar() || ir->type->is_vector()) 1516 src.swizzle = swizzle_for_size(ir->type->vector_elements); 1517 else 1518 src.swizzle = SWIZZLE_NOOP; 1519 1520 this->result = src; 1521} 1522 1523void 1524ir_to_mesa_visitor::visit(ir_dereference_record *ir) 1525{ 1526 unsigned int i; 1527 const glsl_type *struct_type = ir->record->type; 1528 int offset = 0; 1529 1530 ir->record->accept(this); 1531 1532 assert(ir->field_idx >= 0); 1533 for (i = 0; i < struct_type->length; i++) { 1534 if (i == (unsigned) ir->field_idx) 1535 break; 1536 offset += type_size(struct_type->fields.structure[i].type); 1537 } 1538 1539 /* If the type is smaller than a vec4, replicate the last channel out. */ 1540 if (ir->type->is_scalar() || ir->type->is_vector()) 1541 this->result.swizzle = swizzle_for_size(ir->type->vector_elements); 1542 else 1543 this->result.swizzle = SWIZZLE_NOOP; 1544 1545 this->result.index += offset; 1546} 1547 1548/** 1549 * We want to be careful in assignment setup to hit the actual storage 1550 * instead of potentially using a temporary like we might with the 1551 * ir_dereference handler. 1552 */ 1553static dst_reg 1554get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v) 1555{ 1556 /* The LHS must be a dereference. If the LHS is a variable indexed array 1557 * access of a vector, it must be separated into a series conditional moves 1558 * before reaching this point (see ir_vec_index_to_cond_assign). 1559 */ 1560 assert(ir->as_dereference()); 1561 ir_dereference_array *deref_array = ir->as_dereference_array(); 1562 if (deref_array) { 1563 assert(!deref_array->array->type->is_vector()); 1564 } 1565 1566 /* Use the rvalue deref handler for the most part. We'll ignore 1567 * swizzles in it and write swizzles using writemask, though. 1568 */ 1569 ir->accept(v); 1570 return dst_reg(v->result); 1571} 1572 1573/* Calculate the sampler index and also calculate the base uniform location 1574 * for struct members. 1575 */ 1576static void 1577calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref, 1578 unsigned *offset, unsigned *array_elements, 1579 unsigned *location) 1580{ 1581 if (deref->ir_type == ir_type_dereference_variable) 1582 return; 1583 1584 switch (deref->ir_type) { 1585 case ir_type_dereference_array: { 1586 ir_dereference_array *deref_arr = deref->as_dereference_array(); 1587 1588 void *mem_ctx = ralloc_parent(deref_arr); 1589 ir_constant *array_index = 1590 deref_arr->array_index->constant_expression_value(mem_ctx); 1591 1592 if (!array_index) { 1593 /* GLSL 1.10 and 1.20 allowed variable sampler array indices, 1594 * while GLSL 1.30 requires that the array indices be 1595 * constant integer expressions. We don't expect any driver 1596 * to actually work with a really variable array index, so 1597 * all that would work would be an unrolled loop counter that ends 1598 * up being constant above. 1599 */ 1600 ralloc_strcat(&prog->data->InfoLog, 1601 "warning: Variable sampler array index unsupported.\n" 1602 "This feature of the language was removed in GLSL 1.20 " 1603 "and is unlikely to be supported for 1.10 in Mesa.\n"); 1604 } else { 1605 *offset += array_index->value.u[0] * *array_elements; 1606 } 1607 1608 *array_elements *= deref_arr->array->type->length; 1609 1610 calc_sampler_offsets(prog, deref_arr->array->as_dereference(), 1611 offset, array_elements, location); 1612 break; 1613 } 1614 1615 case ir_type_dereference_record: { 1616 ir_dereference_record *deref_record = deref->as_dereference_record(); 1617 unsigned field_index = deref_record->field_idx; 1618 *location += 1619 deref_record->record->type->struct_location_offset(field_index); 1620 calc_sampler_offsets(prog, deref_record->record->as_dereference(), 1621 offset, array_elements, location); 1622 break; 1623 } 1624 1625 default: 1626 unreachable("Invalid deref type"); 1627 break; 1628 } 1629} 1630 1631static int 1632get_sampler_uniform_value(class ir_dereference *sampler, 1633 struct gl_shader_program *shader_program, 1634 const struct gl_program *prog) 1635{ 1636 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target); 1637 ir_variable *var = sampler->variable_referenced(); 1638 unsigned location = var->data.location; 1639 unsigned array_elements = 1; 1640 unsigned offset = 0; 1641 1642 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements, 1643 &location); 1644 1645 assert(shader_program->data->UniformStorage[location].opaque[shader].active); 1646 return shader_program->data->UniformStorage[location].opaque[shader].index + 1647 offset; 1648} 1649 1650/** 1651 * Process the condition of a conditional assignment 1652 * 1653 * Examines the condition of a conditional assignment to generate the optimal 1654 * first operand of a \c CMP instruction. If the condition is a relational 1655 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be 1656 * used as the source for the \c CMP instruction. Otherwise the comparison 1657 * is processed to a boolean result, and the boolean result is used as the 1658 * operand to the CMP instruction. 1659 */ 1660bool 1661ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir) 1662{ 1663 ir_rvalue *src_ir = ir; 1664 bool negate = true; 1665 bool switch_order = false; 1666 1667 ir_expression *const expr = ir->as_expression(); 1668 if ((expr != NULL) && (expr->num_operands == 2)) { 1669 bool zero_on_left = false; 1670 1671 if (expr->operands[0]->is_zero()) { 1672 src_ir = expr->operands[1]; 1673 zero_on_left = true; 1674 } else if (expr->operands[1]->is_zero()) { 1675 src_ir = expr->operands[0]; 1676 zero_on_left = false; 1677 } 1678 1679 /* a is - 0 + - 0 + 1680 * (a < 0) T F F ( a < 0) T F F 1681 * (0 < a) F F T (-a < 0) F F T 1682 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands) 1683 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands) 1684 * 1685 * Note that exchanging the order of 0 and 'a' in the comparison simply 1686 * means that the value of 'a' should be negated. 1687 */ 1688 if (src_ir != ir) { 1689 switch (expr->operation) { 1690 case ir_binop_less: 1691 switch_order = false; 1692 negate = zero_on_left; 1693 break; 1694 1695 case ir_binop_gequal: 1696 switch_order = true; 1697 negate = zero_on_left; 1698 break; 1699 1700 default: 1701 /* This isn't the right kind of comparison afterall, so make sure 1702 * the whole condition is visited. 1703 */ 1704 src_ir = ir; 1705 break; 1706 } 1707 } 1708 } 1709 1710 src_ir->accept(this); 1711 1712 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the 1713 * condition we produced is 0.0 or 1.0. By flipping the sign, we can 1714 * choose which value OPCODE_CMP produces without an extra instruction 1715 * computing the condition. 1716 */ 1717 if (negate) 1718 this->result.negate = ~this->result.negate; 1719 1720 return switch_order; 1721} 1722 1723void 1724ir_to_mesa_visitor::visit(ir_assignment *ir) 1725{ 1726 dst_reg l; 1727 src_reg r; 1728 int i; 1729 1730 ir->rhs->accept(this); 1731 r = this->result; 1732 1733 l = get_assignment_lhs(ir->lhs, this); 1734 1735 /* FINISHME: This should really set to the correct maximal writemask for each 1736 * FINISHME: component written (in the loops below). This case can only 1737 * FINISHME: occur for matrices, arrays, and structures. 1738 */ 1739 if (ir->write_mask == 0) { 1740 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector()); 1741 l.writemask = WRITEMASK_XYZW; 1742 } else if (ir->lhs->type->is_scalar()) { 1743 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the 1744 * FINISHME: W component of fragment shader output zero, work correctly. 1745 */ 1746 l.writemask = WRITEMASK_XYZW; 1747 } else { 1748 int swizzles[4]; 1749 int first_enabled_chan = 0; 1750 int rhs_chan = 0; 1751 1752 assert(ir->lhs->type->is_vector()); 1753 l.writemask = ir->write_mask; 1754 1755 for (int i = 0; i < 4; i++) { 1756 if (l.writemask & (1 << i)) { 1757 first_enabled_chan = GET_SWZ(r.swizzle, i); 1758 break; 1759 } 1760 } 1761 1762 /* Swizzle a small RHS vector into the channels being written. 1763 * 1764 * glsl ir treats write_mask as dictating how many channels are 1765 * present on the RHS while Mesa IR treats write_mask as just 1766 * showing which channels of the vec4 RHS get written. 1767 */ 1768 for (int i = 0; i < 4; i++) { 1769 if (l.writemask & (1 << i)) 1770 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++); 1771 else 1772 swizzles[i] = first_enabled_chan; 1773 } 1774 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1], 1775 swizzles[2], swizzles[3]); 1776 } 1777 1778 assert(l.file != PROGRAM_UNDEFINED); 1779 assert(r.file != PROGRAM_UNDEFINED); 1780 1781 if (ir->condition) { 1782 const bool switch_order = this->process_move_condition(ir->condition); 1783 src_reg condition = this->result; 1784 1785 for (i = 0; i < type_size(ir->lhs->type); i++) { 1786 if (switch_order) { 1787 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r); 1788 } else { 1789 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l)); 1790 } 1791 1792 l.index++; 1793 r.index++; 1794 } 1795 } else { 1796 for (i = 0; i < type_size(ir->lhs->type); i++) { 1797 emit(ir, OPCODE_MOV, l, r); 1798 l.index++; 1799 r.index++; 1800 } 1801 } 1802} 1803 1804 1805void 1806ir_to_mesa_visitor::visit(ir_constant *ir) 1807{ 1808 src_reg src; 1809 GLfloat stack_vals[4] = { 0 }; 1810 GLfloat *values = stack_vals; 1811 unsigned int i; 1812 1813 /* Unfortunately, 4 floats is all we can get into 1814 * _mesa_add_unnamed_constant. So, make a temp to store an 1815 * aggregate constant and move each constant value into it. If we 1816 * get lucky, copy propagation will eliminate the extra moves. 1817 */ 1818 1819 if (ir->type->is_struct()) { 1820 src_reg temp_base = get_temp(ir->type); 1821 dst_reg temp = dst_reg(temp_base); 1822 1823 for (i = 0; i < ir->type->length; i++) { 1824 ir_constant *const field_value = ir->get_record_field(i); 1825 int size = type_size(field_value->type); 1826 1827 assert(size > 0); 1828 1829 field_value->accept(this); 1830 src = this->result; 1831 1832 for (unsigned j = 0; j < (unsigned int)size; j++) { 1833 emit(ir, OPCODE_MOV, temp, src); 1834 1835 src.index++; 1836 temp.index++; 1837 } 1838 } 1839 this->result = temp_base; 1840 return; 1841 } 1842 1843 if (ir->type->is_array()) { 1844 src_reg temp_base = get_temp(ir->type); 1845 dst_reg temp = dst_reg(temp_base); 1846 int size = type_size(ir->type->fields.array); 1847 1848 assert(size > 0); 1849 1850 for (i = 0; i < ir->type->length; i++) { 1851 ir->const_elements[i]->accept(this); 1852 src = this->result; 1853 for (int j = 0; j < size; j++) { 1854 emit(ir, OPCODE_MOV, temp, src); 1855 1856 src.index++; 1857 temp.index++; 1858 } 1859 } 1860 this->result = temp_base; 1861 return; 1862 } 1863 1864 if (ir->type->is_matrix()) { 1865 src_reg mat = get_temp(ir->type); 1866 dst_reg mat_column = dst_reg(mat); 1867 1868 for (i = 0; i < ir->type->matrix_columns; i++) { 1869 assert(ir->type->is_float()); 1870 values = &ir->value.f[i * ir->type->vector_elements]; 1871 1872 src = src_reg(PROGRAM_CONSTANT, -1, NULL); 1873 src.index = _mesa_add_unnamed_constant(this->prog->Parameters, 1874 (gl_constant_value *) values, 1875 ir->type->vector_elements, 1876 &src.swizzle); 1877 emit(ir, OPCODE_MOV, mat_column, src); 1878 1879 mat_column.index++; 1880 } 1881 1882 this->result = mat; 1883 return; 1884 } 1885 1886 src.file = PROGRAM_CONSTANT; 1887 switch (ir->type->base_type) { 1888 case GLSL_TYPE_FLOAT: 1889 values = &ir->value.f[0]; 1890 break; 1891 case GLSL_TYPE_UINT: 1892 for (i = 0; i < ir->type->vector_elements; i++) { 1893 values[i] = ir->value.u[i]; 1894 } 1895 break; 1896 case GLSL_TYPE_INT: 1897 for (i = 0; i < ir->type->vector_elements; i++) { 1898 values[i] = ir->value.i[i]; 1899 } 1900 break; 1901 case GLSL_TYPE_BOOL: 1902 for (i = 0; i < ir->type->vector_elements; i++) { 1903 values[i] = ir->value.b[i]; 1904 } 1905 break; 1906 default: 1907 assert(!"Non-float/uint/int/bool constant"); 1908 } 1909 1910 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type); 1911 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters, 1912 (gl_constant_value *) values, 1913 ir->type->vector_elements, 1914 &this->result.swizzle); 1915} 1916 1917void 1918ir_to_mesa_visitor::visit(ir_call *) 1919{ 1920 assert(!"ir_to_mesa: All function calls should have been inlined by now."); 1921} 1922 1923void 1924ir_to_mesa_visitor::visit(ir_texture *ir) 1925{ 1926 src_reg result_src, coord, lod_info, projector, dx, dy; 1927 dst_reg result_dst, coord_dst; 1928 ir_to_mesa_instruction *inst = NULL; 1929 prog_opcode opcode = OPCODE_NOP; 1930 1931 if (ir->op == ir_txs) 1932 this->result = src_reg_for_float(0.0); 1933 else 1934 ir->coordinate->accept(this); 1935 1936 /* Put our coords in a temp. We'll need to modify them for shadow, 1937 * projection, or LOD, so the only case we'd use it as-is is if 1938 * we're doing plain old texturing. Mesa IR optimization should 1939 * handle cleaning up our mess in that case. 1940 */ 1941 coord = get_temp(glsl_type::vec4_type); 1942 coord_dst = dst_reg(coord); 1943 emit(ir, OPCODE_MOV, coord_dst, this->result); 1944 1945 if (ir->projector) { 1946 ir->projector->accept(this); 1947 projector = this->result; 1948 } 1949 1950 /* Storage for our result. Ideally for an assignment we'd be using 1951 * the actual storage for the result here, instead. 1952 */ 1953 result_src = get_temp(glsl_type::vec4_type); 1954 result_dst = dst_reg(result_src); 1955 1956 switch (ir->op) { 1957 case ir_tex: 1958 case ir_txs: 1959 opcode = OPCODE_TEX; 1960 break; 1961 case ir_txb: 1962 opcode = OPCODE_TXB; 1963 ir->lod_info.bias->accept(this); 1964 lod_info = this->result; 1965 break; 1966 case ir_txf: 1967 /* Pretend to be TXL so the sampler, coordinate, lod are available */ 1968 case ir_txl: 1969 opcode = OPCODE_TXL; 1970 ir->lod_info.lod->accept(this); 1971 lod_info = this->result; 1972 break; 1973 case ir_txd: 1974 opcode = OPCODE_TXD; 1975 ir->lod_info.grad.dPdx->accept(this); 1976 dx = this->result; 1977 ir->lod_info.grad.dPdy->accept(this); 1978 dy = this->result; 1979 break; 1980 case ir_txf_ms: 1981 assert(!"Unexpected ir_txf_ms opcode"); 1982 break; 1983 case ir_lod: 1984 assert(!"Unexpected ir_lod opcode"); 1985 break; 1986 case ir_tg4: 1987 assert(!"Unexpected ir_tg4 opcode"); 1988 break; 1989 case ir_query_levels: 1990 assert(!"Unexpected ir_query_levels opcode"); 1991 break; 1992 case ir_samples_identical: 1993 unreachable("Unexpected ir_samples_identical opcode"); 1994 case ir_texture_samples: 1995 unreachable("Unexpected ir_texture_samples opcode"); 1996 } 1997 1998 const glsl_type *sampler_type = ir->sampler->type; 1999 2000 if (ir->projector) { 2001 if (opcode == OPCODE_TEX) { 2002 /* Slot the projector in as the last component of the coord. */ 2003 coord_dst.writemask = WRITEMASK_W; 2004 emit(ir, OPCODE_MOV, coord_dst, projector); 2005 coord_dst.writemask = WRITEMASK_XYZW; 2006 opcode = OPCODE_TXP; 2007 } else { 2008 src_reg coord_w = coord; 2009 coord_w.swizzle = SWIZZLE_WWWW; 2010 2011 /* For the other TEX opcodes there's no projective version 2012 * since the last slot is taken up by lod info. Do the 2013 * projective divide now. 2014 */ 2015 coord_dst.writemask = WRITEMASK_W; 2016 emit(ir, OPCODE_RCP, coord_dst, projector); 2017 2018 /* In the case where we have to project the coordinates "by hand," 2019 * the shadow comparator value must also be projected. 2020 */ 2021 src_reg tmp_src = coord; 2022 if (ir->shadow_comparator) { 2023 /* Slot the shadow value in as the second to last component of the 2024 * coord. 2025 */ 2026 ir->shadow_comparator->accept(this); 2027 2028 tmp_src = get_temp(glsl_type::vec4_type); 2029 dst_reg tmp_dst = dst_reg(tmp_src); 2030 2031 /* Projective division not allowed for array samplers. */ 2032 assert(!sampler_type->sampler_array); 2033 2034 tmp_dst.writemask = WRITEMASK_Z; 2035 emit(ir, OPCODE_MOV, tmp_dst, this->result); 2036 2037 tmp_dst.writemask = WRITEMASK_XY; 2038 emit(ir, OPCODE_MOV, tmp_dst, coord); 2039 } 2040 2041 coord_dst.writemask = WRITEMASK_XYZ; 2042 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w); 2043 2044 coord_dst.writemask = WRITEMASK_XYZW; 2045 coord.swizzle = SWIZZLE_XYZW; 2046 } 2047 } 2048 2049 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow 2050 * comparator was put in the correct place (and projected) by the code, 2051 * above, that handles by-hand projection. 2052 */ 2053 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) { 2054 /* Slot the shadow value in as the second to last component of the 2055 * coord. 2056 */ 2057 ir->shadow_comparator->accept(this); 2058 2059 /* XXX This will need to be updated for cubemap array samplers. */ 2060 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D && 2061 sampler_type->sampler_array) { 2062 coord_dst.writemask = WRITEMASK_W; 2063 } else { 2064 coord_dst.writemask = WRITEMASK_Z; 2065 } 2066 2067 emit(ir, OPCODE_MOV, coord_dst, this->result); 2068 coord_dst.writemask = WRITEMASK_XYZW; 2069 } 2070 2071 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) { 2072 /* Mesa IR stores lod or lod bias in the last channel of the coords. */ 2073 coord_dst.writemask = WRITEMASK_W; 2074 emit(ir, OPCODE_MOV, coord_dst, lod_info); 2075 coord_dst.writemask = WRITEMASK_XYZW; 2076 } 2077 2078 if (opcode == OPCODE_TXD) 2079 inst = emit(ir, opcode, result_dst, coord, dx, dy); 2080 else 2081 inst = emit(ir, opcode, result_dst, coord); 2082 2083 if (ir->shadow_comparator) 2084 inst->tex_shadow = GL_TRUE; 2085 2086 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program, 2087 prog); 2088 2089 switch (sampler_type->sampler_dimensionality) { 2090 case GLSL_SAMPLER_DIM_1D: 2091 inst->tex_target = (sampler_type->sampler_array) 2092 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX; 2093 break; 2094 case GLSL_SAMPLER_DIM_2D: 2095 inst->tex_target = (sampler_type->sampler_array) 2096 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX; 2097 break; 2098 case GLSL_SAMPLER_DIM_3D: 2099 inst->tex_target = TEXTURE_3D_INDEX; 2100 break; 2101 case GLSL_SAMPLER_DIM_CUBE: 2102 inst->tex_target = TEXTURE_CUBE_INDEX; 2103 break; 2104 case GLSL_SAMPLER_DIM_RECT: 2105 inst->tex_target = TEXTURE_RECT_INDEX; 2106 break; 2107 case GLSL_SAMPLER_DIM_BUF: 2108 assert(!"FINISHME: Implement ARB_texture_buffer_object"); 2109 break; 2110 case GLSL_SAMPLER_DIM_EXTERNAL: 2111 inst->tex_target = TEXTURE_EXTERNAL_INDEX; 2112 break; 2113 default: 2114 assert(!"Should not get here."); 2115 } 2116 2117 this->result = result_src; 2118} 2119 2120void 2121ir_to_mesa_visitor::visit(ir_return *ir) 2122{ 2123 /* Non-void functions should have been inlined. We may still emit RETs 2124 * from main() unless the EmitNoMainReturn option is set. 2125 */ 2126 assert(!ir->get_value()); 2127 emit(ir, OPCODE_RET); 2128} 2129 2130void 2131ir_to_mesa_visitor::visit(ir_discard *ir) 2132{ 2133 if (!ir->condition) 2134 ir->condition = new(mem_ctx) ir_constant(true); 2135 2136 ir->condition->accept(this); 2137 this->result.negate = ~this->result.negate; 2138 emit(ir, OPCODE_KIL, undef_dst, this->result); 2139} 2140 2141void 2142ir_to_mesa_visitor::visit(ir_demote *ir) 2143{ 2144 assert(!"demote statement unsupported"); 2145} 2146 2147void 2148ir_to_mesa_visitor::visit(ir_if *ir) 2149{ 2150 ir_to_mesa_instruction *if_inst; 2151 2152 ir->condition->accept(this); 2153 assert(this->result.file != PROGRAM_UNDEFINED); 2154 2155 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result); 2156 2157 this->instructions.push_tail(if_inst); 2158 2159 visit_exec_list(&ir->then_instructions, this); 2160 2161 if (!ir->else_instructions.is_empty()) { 2162 emit(ir->condition, OPCODE_ELSE); 2163 visit_exec_list(&ir->else_instructions, this); 2164 } 2165 2166 emit(ir->condition, OPCODE_ENDIF); 2167} 2168 2169void 2170ir_to_mesa_visitor::visit(ir_emit_vertex *) 2171{ 2172 assert(!"Geometry shaders not supported."); 2173} 2174 2175void 2176ir_to_mesa_visitor::visit(ir_end_primitive *) 2177{ 2178 assert(!"Geometry shaders not supported."); 2179} 2180 2181void 2182ir_to_mesa_visitor::visit(ir_barrier *) 2183{ 2184 unreachable("GLSL barrier() not supported."); 2185} 2186 2187ir_to_mesa_visitor::ir_to_mesa_visitor() 2188{ 2189 result.file = PROGRAM_UNDEFINED; 2190 next_temp = 1; 2191 next_signature_id = 1; 2192 current_function = NULL; 2193 mem_ctx = ralloc_context(NULL); 2194 ctx = NULL; 2195 prog = NULL; 2196 shader_program = NULL; 2197 options = NULL; 2198} 2199 2200ir_to_mesa_visitor::~ir_to_mesa_visitor() 2201{ 2202 ralloc_free(mem_ctx); 2203} 2204 2205static struct prog_src_register 2206mesa_src_reg_from_ir_src_reg(src_reg reg) 2207{ 2208 struct prog_src_register mesa_reg; 2209 2210 mesa_reg.File = reg.file; 2211 assert(reg.index < (1 << INST_INDEX_BITS)); 2212 mesa_reg.Index = reg.index; 2213 mesa_reg.Swizzle = reg.swizzle; 2214 mesa_reg.RelAddr = reg.reladdr != NULL; 2215 mesa_reg.Negate = reg.negate; 2216 2217 return mesa_reg; 2218} 2219 2220static void 2221set_branchtargets(ir_to_mesa_visitor *v, 2222 struct prog_instruction *mesa_instructions, 2223 int num_instructions) 2224{ 2225 int if_count = 0, loop_count = 0; 2226 int *if_stack, *loop_stack; 2227 int if_stack_pos = 0, loop_stack_pos = 0; 2228 int i, j; 2229 2230 for (i = 0; i < num_instructions; i++) { 2231 switch (mesa_instructions[i].Opcode) { 2232 case OPCODE_IF: 2233 if_count++; 2234 break; 2235 case OPCODE_BGNLOOP: 2236 loop_count++; 2237 break; 2238 case OPCODE_BRK: 2239 case OPCODE_CONT: 2240 mesa_instructions[i].BranchTarget = -1; 2241 break; 2242 default: 2243 break; 2244 } 2245 } 2246 2247 if_stack = rzalloc_array(v->mem_ctx, int, if_count); 2248 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count); 2249 2250 for (i = 0; i < num_instructions; i++) { 2251 switch (mesa_instructions[i].Opcode) { 2252 case OPCODE_IF: 2253 if_stack[if_stack_pos] = i; 2254 if_stack_pos++; 2255 break; 2256 case OPCODE_ELSE: 2257 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i; 2258 if_stack[if_stack_pos - 1] = i; 2259 break; 2260 case OPCODE_ENDIF: 2261 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i; 2262 if_stack_pos--; 2263 break; 2264 case OPCODE_BGNLOOP: 2265 loop_stack[loop_stack_pos] = i; 2266 loop_stack_pos++; 2267 break; 2268 case OPCODE_ENDLOOP: 2269 loop_stack_pos--; 2270 /* Rewrite any breaks/conts at this nesting level (haven't 2271 * already had a BranchTarget assigned) to point to the end 2272 * of the loop. 2273 */ 2274 for (j = loop_stack[loop_stack_pos]; j < i; j++) { 2275 if (mesa_instructions[j].Opcode == OPCODE_BRK || 2276 mesa_instructions[j].Opcode == OPCODE_CONT) { 2277 if (mesa_instructions[j].BranchTarget == -1) { 2278 mesa_instructions[j].BranchTarget = i; 2279 } 2280 } 2281 } 2282 /* The loop ends point at each other. */ 2283 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos]; 2284 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i; 2285 break; 2286 case OPCODE_CAL: 2287 foreach_in_list(function_entry, entry, &v->function_signatures) { 2288 if (entry->sig_id == mesa_instructions[i].BranchTarget) { 2289 mesa_instructions[i].BranchTarget = entry->inst; 2290 break; 2291 } 2292 } 2293 break; 2294 default: 2295 break; 2296 } 2297 } 2298} 2299 2300static void 2301print_program(struct prog_instruction *mesa_instructions, 2302 ir_instruction **mesa_instruction_annotation, 2303 int num_instructions) 2304{ 2305 ir_instruction *last_ir = NULL; 2306 int i; 2307 int indent = 0; 2308 2309 for (i = 0; i < num_instructions; i++) { 2310 struct prog_instruction *mesa_inst = mesa_instructions + i; 2311 ir_instruction *ir = mesa_instruction_annotation[i]; 2312 2313 fprintf(stdout, "%3d: ", i); 2314 2315 if (last_ir != ir && ir) { 2316 int j; 2317 2318 for (j = 0; j < indent; j++) { 2319 fprintf(stdout, " "); 2320 } 2321 ir->print(); 2322 printf("\n"); 2323 last_ir = ir; 2324 2325 fprintf(stdout, " "); /* line number spacing. */ 2326 } 2327 2328 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent, 2329 PROG_PRINT_DEBUG, NULL); 2330 } 2331} 2332 2333namespace { 2334 2335class add_uniform_to_shader : public program_resource_visitor { 2336public: 2337 add_uniform_to_shader(struct gl_context *ctx, 2338 struct gl_shader_program *shader_program, 2339 struct gl_program_parameter_list *params) 2340 : ctx(ctx), shader_program(shader_program), params(params), idx(-1), 2341 var(NULL) 2342 { 2343 /* empty */ 2344 } 2345 2346 void process(ir_variable *var) 2347 { 2348 this->idx = -1; 2349 this->var = var; 2350 this->program_resource_visitor::process(var, 2351 ctx->Const.UseSTD430AsDefaultPacking); 2352 var->data.param_index = this->idx; 2353 } 2354 2355private: 2356 virtual void visit_field(const glsl_type *type, const char *name, 2357 bool row_major, const glsl_type *record_type, 2358 const enum glsl_interface_packing packing, 2359 bool last_field); 2360 2361 struct gl_context *ctx; 2362 struct gl_shader_program *shader_program; 2363 struct gl_program_parameter_list *params; 2364 int idx; 2365 ir_variable *var; 2366}; 2367 2368} /* anonymous namespace */ 2369 2370void 2371add_uniform_to_shader::visit_field(const glsl_type *type, const char *name, 2372 bool /* row_major */, 2373 const glsl_type * /* record_type */, 2374 const enum glsl_interface_packing, 2375 bool /* last_field */) 2376{ 2377 /* opaque types don't use storage in the param list unless they are 2378 * bindless samplers or images. 2379 */ 2380 if (type->contains_opaque() && !var->data.bindless) 2381 return; 2382 2383 /* Add the uniform to the param list */ 2384 assert(_mesa_lookup_parameter_index(params, name) < 0); 2385 int index = _mesa_lookup_parameter_index(params, name); 2386 2387 unsigned num_params = type->arrays_of_arrays_size(); 2388 num_params = MAX2(num_params, 1); 2389 num_params *= type->without_array()->matrix_columns; 2390 2391 bool is_dual_slot = type->without_array()->is_dual_slot(); 2392 if (is_dual_slot) 2393 num_params *= 2; 2394 2395 _mesa_reserve_parameter_storage(params, num_params, num_params); 2396 index = params->NumParameters; 2397 2398 if (ctx->Const.PackedDriverUniformStorage) { 2399 for (unsigned i = 0; i < num_params; i++) { 2400 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1; 2401 unsigned comps = type->without_array()->vector_elements * dmul; 2402 if (is_dual_slot) { 2403 if (i & 0x1) 2404 comps -= 4; 2405 else 2406 comps = 4; 2407 } 2408 2409 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps, 2410 type->gl_type, NULL, NULL, false); 2411 } 2412 } else { 2413 for (unsigned i = 0; i < num_params; i++) { 2414 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4, 2415 type->gl_type, NULL, NULL, true); 2416 } 2417 } 2418 2419 /* The first part of the uniform that's processed determines the base 2420 * location of the whole uniform (for structures). 2421 */ 2422 if (this->idx < 0) 2423 this->idx = index; 2424 2425 /* Each Parameter will hold the index to the backing uniform storage. 2426 * This avoids relying on names to match parameters and uniform 2427 * storages later when associating uniform storage. 2428 */ 2429 unsigned location = -1; 2430 ASSERTED const bool found = 2431 shader_program->UniformHash->get(location, params->Parameters[index].Name); 2432 assert(found); 2433 2434 for (unsigned i = 0; i < num_params; i++) { 2435 struct gl_program_parameter *param = ¶ms->Parameters[index + i]; 2436 param->UniformStorageIndex = location; 2437 param->MainUniformStorageIndex = params->Parameters[this->idx].UniformStorageIndex; 2438 } 2439} 2440 2441/** 2442 * Generate the program parameters list for the user uniforms in a shader 2443 * 2444 * \param shader_program Linked shader program. This is only used to 2445 * emit possible link errors to the info log. 2446 * \param sh Shader whose uniforms are to be processed. 2447 * \param params Parameter list to be filled in. 2448 */ 2449void 2450_mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx, 2451 struct gl_shader_program 2452 *shader_program, 2453 struct gl_linked_shader *sh, 2454 struct gl_program_parameter_list 2455 *params) 2456{ 2457 add_uniform_to_shader add(ctx, shader_program, params); 2458 2459 foreach_in_list(ir_instruction, node, sh->ir) { 2460 ir_variable *var = node->as_variable(); 2461 2462 if ((var == NULL) || (var->data.mode != ir_var_uniform) 2463 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0)) 2464 continue; 2465 2466 add.process(var); 2467 } 2468} 2469 2470void 2471_mesa_associate_uniform_storage(struct gl_context *ctx, 2472 struct gl_shader_program *shader_program, 2473 struct gl_program *prog) 2474{ 2475 struct gl_program_parameter_list *params = prog->Parameters; 2476 gl_shader_stage shader_type = prog->info.stage; 2477 2478 _mesa_disallow_parameter_storage_realloc(params); 2479 2480 /* After adding each uniform to the parameter list, connect the storage for 2481 * the parameter with the tracking structure used by the API for the 2482 * uniform. 2483 */ 2484 unsigned last_location = unsigned(~0); 2485 for (unsigned i = 0; i < params->NumParameters; i++) { 2486 if (params->Parameters[i].Type != PROGRAM_UNIFORM) 2487 continue; 2488 2489 unsigned location = params->Parameters[i].UniformStorageIndex; 2490 2491 struct gl_uniform_storage *storage = 2492 &shader_program->data->UniformStorage[location]; 2493 2494 /* Do not associate any uniform storage to built-in uniforms */ 2495 if (storage->builtin) 2496 continue; 2497 2498 if (location != last_location) { 2499 enum gl_uniform_driver_format format = uniform_native; 2500 unsigned columns = 0; 2501 2502 int dmul; 2503 if (ctx->Const.PackedDriverUniformStorage && !prog->info.is_arb_asm) { 2504 dmul = storage->type->vector_elements * sizeof(float); 2505 } else { 2506 dmul = 4 * sizeof(float); 2507 } 2508 2509 switch (storage->type->base_type) { 2510 case GLSL_TYPE_UINT64: 2511 if (storage->type->vector_elements > 2) 2512 dmul *= 2; 2513 FALLTHROUGH; 2514 case GLSL_TYPE_UINT: 2515 case GLSL_TYPE_UINT16: 2516 case GLSL_TYPE_UINT8: 2517 assert(ctx->Const.NativeIntegers); 2518 format = uniform_native; 2519 columns = 1; 2520 break; 2521 case GLSL_TYPE_INT64: 2522 if (storage->type->vector_elements > 2) 2523 dmul *= 2; 2524 FALLTHROUGH; 2525 case GLSL_TYPE_INT: 2526 case GLSL_TYPE_INT16: 2527 case GLSL_TYPE_INT8: 2528 format = 2529 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float; 2530 columns = 1; 2531 break; 2532 case GLSL_TYPE_DOUBLE: 2533 if (storage->type->vector_elements > 2) 2534 dmul *= 2; 2535 FALLTHROUGH; 2536 case GLSL_TYPE_FLOAT: 2537 case GLSL_TYPE_FLOAT16: 2538 format = uniform_native; 2539 columns = storage->type->matrix_columns; 2540 break; 2541 case GLSL_TYPE_BOOL: 2542 format = uniform_native; 2543 columns = 1; 2544 break; 2545 case GLSL_TYPE_SAMPLER: 2546 case GLSL_TYPE_IMAGE: 2547 case GLSL_TYPE_SUBROUTINE: 2548 format = uniform_native; 2549 columns = 1; 2550 break; 2551 case GLSL_TYPE_ATOMIC_UINT: 2552 case GLSL_TYPE_ARRAY: 2553 case GLSL_TYPE_VOID: 2554 case GLSL_TYPE_STRUCT: 2555 case GLSL_TYPE_ERROR: 2556 case GLSL_TYPE_INTERFACE: 2557 case GLSL_TYPE_FUNCTION: 2558 assert(!"Should not get here."); 2559 break; 2560 } 2561 2562 unsigned pvo = params->Parameters[i].ValueOffset; 2563 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul, 2564 format, 2565 ¶ms->ParameterValues[pvo]); 2566 2567 /* When a bindless sampler/image is bound to a texture/image unit, we 2568 * have to overwrite the constant value by the resident handle 2569 * directly in the constant buffer before the next draw. One solution 2570 * is to keep track a pointer to the base of the data. 2571 */ 2572 if (storage->is_bindless && (prog->sh.NumBindlessSamplers || 2573 prog->sh.NumBindlessImages)) { 2574 unsigned array_elements = MAX2(1, storage->array_elements); 2575 2576 for (unsigned j = 0; j < array_elements; ++j) { 2577 unsigned unit = storage->opaque[shader_type].index + j; 2578 2579 if (storage->type->without_array()->is_sampler()) { 2580 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers); 2581 prog->sh.BindlessSamplers[unit].data = 2582 ¶ms->ParameterValues[pvo] + 4 * j; 2583 } else if (storage->type->without_array()->is_image()) { 2584 assert(unit >= 0 && unit < prog->sh.NumBindlessImages); 2585 prog->sh.BindlessImages[unit].data = 2586 ¶ms->ParameterValues[pvo] + 4 * j; 2587 } 2588 } 2589 } 2590 2591 /* After attaching the driver's storage to the uniform, propagate any 2592 * data from the linker's backing store. This will cause values from 2593 * initializers in the source code to be copied over. 2594 */ 2595 unsigned array_elements = MAX2(1, storage->array_elements); 2596 if (ctx->Const.PackedDriverUniformStorage && !prog->info.is_arb_asm && 2597 (storage->is_bindless || !storage->type->contains_opaque())) { 2598 const int dmul = storage->type->is_64bit() ? 2 : 1; 2599 const unsigned components = 2600 storage->type->vector_elements * 2601 storage->type->matrix_columns; 2602 2603 for (unsigned s = 0; s < storage->num_driver_storage; s++) { 2604 gl_constant_value *uni_storage = (gl_constant_value *) 2605 storage->driver_storage[s].data; 2606 memcpy(uni_storage, storage->storage, 2607 sizeof(storage->storage[0]) * components * 2608 array_elements * dmul); 2609 } 2610 } else { 2611 _mesa_propagate_uniforms_to_driver_storage(storage, 0, 2612 array_elements); 2613 } 2614 2615 last_location = location; 2616 } 2617 } 2618} 2619 2620void 2621_mesa_ensure_and_associate_uniform_storage(struct gl_context *ctx, 2622 struct gl_shader_program *shader_program, 2623 struct gl_program *prog, unsigned required_space) 2624{ 2625 /* Avoid reallocation of the program parameter list, because the uniform 2626 * storage is only associated with the original parameter list. 2627 */ 2628 _mesa_reserve_parameter_storage(prog->Parameters, required_space, 2629 required_space); 2630 2631 /* This has to be done last. Any operation the can cause 2632 * prog->ParameterValues to get reallocated (e.g., anything that adds a 2633 * program constant) has to happen before creating this linkage. 2634 */ 2635 _mesa_associate_uniform_storage(ctx, shader_program, prog); 2636} 2637 2638/* 2639 * On a basic block basis, tracks available PROGRAM_TEMPORARY register 2640 * channels for copy propagation and updates following instructions to 2641 * use the original versions. 2642 * 2643 * The ir_to_mesa_visitor lazily produces code assuming that this pass 2644 * will occur. As an example, a TXP production before this pass: 2645 * 2646 * 0: MOV TEMP[1], INPUT[4].xyyy; 2647 * 1: MOV TEMP[1].w, INPUT[4].wwww; 2648 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D; 2649 * 2650 * and after: 2651 * 2652 * 0: MOV TEMP[1], INPUT[4].xyyy; 2653 * 1: MOV TEMP[1].w, INPUT[4].wwww; 2654 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D; 2655 * 2656 * which allows for dead code elimination on TEMP[1]'s writes. 2657 */ 2658void 2659ir_to_mesa_visitor::copy_propagate(void) 2660{ 2661 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx, 2662 ir_to_mesa_instruction *, 2663 this->next_temp * 4); 2664 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4); 2665 int level = 0; 2666 2667 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) { 2668 assert(inst->dst.file != PROGRAM_TEMPORARY 2669 || inst->dst.index < this->next_temp); 2670 2671 /* First, do any copy propagation possible into the src regs. */ 2672 for (int r = 0; r < 3; r++) { 2673 ir_to_mesa_instruction *first = NULL; 2674 bool good = true; 2675 int acp_base = inst->src[r].index * 4; 2676 2677 if (inst->src[r].file != PROGRAM_TEMPORARY || 2678 inst->src[r].reladdr) 2679 continue; 2680 2681 /* See if we can find entries in the ACP consisting of MOVs 2682 * from the same src register for all the swizzled channels 2683 * of this src register reference. 2684 */ 2685 for (int i = 0; i < 4; i++) { 2686 int src_chan = GET_SWZ(inst->src[r].swizzle, i); 2687 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan]; 2688 2689 if (!copy_chan) { 2690 good = false; 2691 break; 2692 } 2693 2694 assert(acp_level[acp_base + src_chan] <= level); 2695 2696 if (!first) { 2697 first = copy_chan; 2698 } else { 2699 if (first->src[0].file != copy_chan->src[0].file || 2700 first->src[0].index != copy_chan->src[0].index) { 2701 good = false; 2702 break; 2703 } 2704 } 2705 } 2706 2707 if (good) { 2708 /* We've now validated that we can copy-propagate to 2709 * replace this src register reference. Do it. 2710 */ 2711 inst->src[r].file = first->src[0].file; 2712 inst->src[r].index = first->src[0].index; 2713 2714 int swizzle = 0; 2715 for (int i = 0; i < 4; i++) { 2716 int src_chan = GET_SWZ(inst->src[r].swizzle, i); 2717 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan]; 2718 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << 2719 (3 * i)); 2720 } 2721 inst->src[r].swizzle = swizzle; 2722 } 2723 } 2724 2725 switch (inst->op) { 2726 case OPCODE_BGNLOOP: 2727 case OPCODE_ENDLOOP: 2728 /* End of a basic block, clear the ACP entirely. */ 2729 memset(acp, 0, sizeof(*acp) * this->next_temp * 4); 2730 break; 2731 2732 case OPCODE_IF: 2733 ++level; 2734 break; 2735 2736 case OPCODE_ENDIF: 2737 case OPCODE_ELSE: 2738 /* Clear all channels written inside the block from the ACP, but 2739 * leaving those that were not touched. 2740 */ 2741 for (int r = 0; r < this->next_temp; r++) { 2742 for (int c = 0; c < 4; c++) { 2743 if (!acp[4 * r + c]) 2744 continue; 2745 2746 if (acp_level[4 * r + c] >= level) 2747 acp[4 * r + c] = NULL; 2748 } 2749 } 2750 if (inst->op == OPCODE_ENDIF) 2751 --level; 2752 break; 2753 2754 default: 2755 /* Continuing the block, clear any written channels from 2756 * the ACP. 2757 */ 2758 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) { 2759 /* Any temporary might be written, so no copy propagation 2760 * across this instruction. 2761 */ 2762 memset(acp, 0, sizeof(*acp) * this->next_temp * 4); 2763 } else if (inst->dst.file == PROGRAM_OUTPUT && 2764 inst->dst.reladdr) { 2765 /* Any output might be written, so no copy propagation 2766 * from outputs across this instruction. 2767 */ 2768 for (int r = 0; r < this->next_temp; r++) { 2769 for (int c = 0; c < 4; c++) { 2770 if (!acp[4 * r + c]) 2771 continue; 2772 2773 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT) 2774 acp[4 * r + c] = NULL; 2775 } 2776 } 2777 } else if (inst->dst.file == PROGRAM_TEMPORARY || 2778 inst->dst.file == PROGRAM_OUTPUT) { 2779 /* Clear where it's used as dst. */ 2780 if (inst->dst.file == PROGRAM_TEMPORARY) { 2781 for (int c = 0; c < 4; c++) { 2782 if (inst->dst.writemask & (1 << c)) { 2783 acp[4 * inst->dst.index + c] = NULL; 2784 } 2785 } 2786 } 2787 2788 /* Clear where it's used as src. */ 2789 for (int r = 0; r < this->next_temp; r++) { 2790 for (int c = 0; c < 4; c++) { 2791 if (!acp[4 * r + c]) 2792 continue; 2793 2794 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c); 2795 2796 if (acp[4 * r + c]->src[0].file == inst->dst.file && 2797 acp[4 * r + c]->src[0].index == inst->dst.index && 2798 inst->dst.writemask & (1 << src_chan)) 2799 { 2800 acp[4 * r + c] = NULL; 2801 } 2802 } 2803 } 2804 } 2805 break; 2806 } 2807 2808 /* If this is a copy, add it to the ACP. */ 2809 if (inst->op == OPCODE_MOV && 2810 inst->dst.file == PROGRAM_TEMPORARY && 2811 !(inst->dst.file == inst->src[0].file && 2812 inst->dst.index == inst->src[0].index) && 2813 !inst->dst.reladdr && 2814 !inst->saturate && 2815 !inst->src[0].reladdr && 2816 !inst->src[0].negate) { 2817 for (int i = 0; i < 4; i++) { 2818 if (inst->dst.writemask & (1 << i)) { 2819 acp[4 * inst->dst.index + i] = inst; 2820 acp_level[4 * inst->dst.index + i] = level; 2821 } 2822 } 2823 } 2824 } 2825 2826 ralloc_free(acp_level); 2827 ralloc_free(acp); 2828} 2829 2830 2831/** 2832 * Convert a shader's GLSL IR into a Mesa gl_program. 2833 */ 2834static struct gl_program * 2835get_mesa_program(struct gl_context *ctx, 2836 struct gl_shader_program *shader_program, 2837 struct gl_linked_shader *shader) 2838{ 2839 ir_to_mesa_visitor v; 2840 struct prog_instruction *mesa_instructions, *mesa_inst; 2841 ir_instruction **mesa_instruction_annotation; 2842 int i; 2843 struct gl_program *prog; 2844 GLenum target = _mesa_shader_stage_to_program(shader->Stage); 2845 const char *target_string = _mesa_shader_stage_to_string(shader->Stage); 2846 struct gl_shader_compiler_options *options = 2847 &ctx->Const.ShaderCompilerOptions[shader->Stage]; 2848 2849 validate_ir_tree(shader->ir); 2850 2851 prog = shader->Program; 2852 prog->Parameters = _mesa_new_parameter_list(); 2853 v.ctx = ctx; 2854 v.prog = prog; 2855 v.shader_program = shader_program; 2856 v.options = options; 2857 2858 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader, 2859 prog->Parameters); 2860 2861 /* Emit Mesa IR for main(). */ 2862 visit_exec_list(shader->ir, &v); 2863 v.emit(NULL, OPCODE_END); 2864 2865 prog->arb.NumTemporaries = v.next_temp; 2866 2867 unsigned num_instructions = v.instructions.length(); 2868 2869 mesa_instructions = rzalloc_array(prog, struct prog_instruction, 2870 num_instructions); 2871 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *, 2872 num_instructions); 2873 2874 v.copy_propagate(); 2875 2876 /* Convert ir_mesa_instructions into prog_instructions. 2877 */ 2878 mesa_inst = mesa_instructions; 2879 i = 0; 2880 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) { 2881 mesa_inst->Opcode = inst->op; 2882 if (inst->saturate) 2883 mesa_inst->Saturate = GL_TRUE; 2884 mesa_inst->DstReg.File = inst->dst.file; 2885 mesa_inst->DstReg.Index = inst->dst.index; 2886 mesa_inst->DstReg.WriteMask = inst->dst.writemask; 2887 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL; 2888 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]); 2889 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]); 2890 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]); 2891 mesa_inst->TexSrcUnit = inst->sampler; 2892 mesa_inst->TexSrcTarget = inst->tex_target; 2893 mesa_inst->TexShadow = inst->tex_shadow; 2894 mesa_instruction_annotation[i] = inst->ir; 2895 2896 /* Set IndirectRegisterFiles. */ 2897 if (mesa_inst->DstReg.RelAddr) 2898 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File; 2899 2900 /* Update program's bitmask of indirectly accessed register files */ 2901 for (unsigned src = 0; src < 3; src++) 2902 if (mesa_inst->SrcReg[src].RelAddr) 2903 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File; 2904 2905 switch (mesa_inst->Opcode) { 2906 case OPCODE_IF: 2907 if (options->MaxIfDepth == 0) { 2908 linker_warning(shader_program, 2909 "Couldn't flatten if-statement. " 2910 "This will likely result in software " 2911 "rasterization.\n"); 2912 } 2913 break; 2914 case OPCODE_BGNLOOP: 2915 if (options->EmitNoLoops) { 2916 linker_warning(shader_program, 2917 "Couldn't unroll loop. " 2918 "This will likely result in software " 2919 "rasterization.\n"); 2920 } 2921 break; 2922 case OPCODE_CONT: 2923 if (options->EmitNoCont) { 2924 linker_warning(shader_program, 2925 "Couldn't lower continue-statement. " 2926 "This will likely result in software " 2927 "rasterization.\n"); 2928 } 2929 break; 2930 case OPCODE_ARL: 2931 prog->arb.NumAddressRegs = 1; 2932 break; 2933 default: 2934 break; 2935 } 2936 2937 mesa_inst++; 2938 i++; 2939 2940 if (!shader_program->data->LinkStatus) 2941 break; 2942 } 2943 2944 if (!shader_program->data->LinkStatus) { 2945 goto fail_exit; 2946 } 2947 2948 set_branchtargets(&v, mesa_instructions, num_instructions); 2949 2950 if (ctx->_Shader->Flags & GLSL_DUMP) { 2951 fprintf(stderr, "\n"); 2952 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string, 2953 shader_program->Name); 2954 _mesa_print_ir(stderr, shader->ir, NULL); 2955 fprintf(stderr, "\n"); 2956 fprintf(stderr, "\n"); 2957 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string, 2958 shader_program->Name); 2959 print_program(mesa_instructions, mesa_instruction_annotation, 2960 num_instructions); 2961 fflush(stderr); 2962 } 2963 2964 prog->arb.Instructions = mesa_instructions; 2965 prog->arb.NumInstructions = num_instructions; 2966 2967 /* Setting this to NULL prevents a possible double free in the fail_exit 2968 * path (far below). 2969 */ 2970 mesa_instructions = NULL; 2971 2972 do_set_program_inouts(shader->ir, prog, shader->Stage); 2973 2974 prog->ShadowSamplers = shader->shadow_samplers; 2975 prog->ExternalSamplersUsed = gl_external_samplers(prog); 2976 _mesa_update_shader_textures_used(shader_program, prog); 2977 2978 /* Set the gl_FragDepth layout. */ 2979 if (target == GL_FRAGMENT_PROGRAM_ARB) { 2980 prog->info.fs.depth_layout = shader_program->FragDepthLayout; 2981 } 2982 2983 _mesa_optimize_program(prog, prog); 2984 2985 /* This has to be done last. Any operation that can cause 2986 * prog->ParameterValues to get reallocated (e.g., anything that adds a 2987 * program constant) has to happen before creating this linkage. 2988 */ 2989 _mesa_associate_uniform_storage(ctx, shader_program, prog); 2990 if (!shader_program->data->LinkStatus) { 2991 goto fail_exit; 2992 } 2993 2994 return prog; 2995 2996fail_exit: 2997 ralloc_free(mesa_instructions); 2998 _mesa_reference_program(ctx, &shader->Program, NULL); 2999 return NULL; 3000} 3001 3002extern "C" { 3003 3004/** 3005 * Link a shader. 3006 * Called via ctx->Driver.LinkShader() 3007 * This actually involves converting GLSL IR into Mesa gl_programs with 3008 * code lowering and other optimizations. 3009 */ 3010GLboolean 3011_mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog) 3012{ 3013 assert(prog->data->LinkStatus); 3014 3015 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3016 if (prog->_LinkedShaders[i] == NULL) 3017 continue; 3018 3019 bool progress; 3020 exec_list *ir = prog->_LinkedShaders[i]->ir; 3021 const struct gl_shader_compiler_options *options = 3022 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage]; 3023 3024 do { 3025 progress = false; 3026 3027 /* Lowering */ 3028 do_mat_op_to_vec(ir); 3029 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2 3030 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP 3031 | MUL64_TO_MUL_AND_MUL_HIGH 3032 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0))); 3033 3034 progress = do_common_optimization(ir, true, true, 3035 options, ctx->Const.NativeIntegers) 3036 || progress; 3037 3038 progress = lower_quadop_vector(ir, true) || progress; 3039 3040 if (options->MaxIfDepth == 0) 3041 progress = lower_discard(ir) || progress; 3042 3043 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir, 3044 options->MaxIfDepth) || progress; 3045 3046 /* If there are forms of indirect addressing that the driver 3047 * cannot handle, perform the lowering pass. 3048 */ 3049 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput 3050 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) 3051 progress = 3052 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir, 3053 options->EmitNoIndirectInput, 3054 options->EmitNoIndirectOutput, 3055 options->EmitNoIndirectTemp, 3056 options->EmitNoIndirectUniform) 3057 || progress; 3058 3059 progress = do_vec_index_to_cond_assign(ir) || progress; 3060 progress = lower_vector_insert(ir, true) || progress; 3061 } while (progress); 3062 3063 validate_ir_tree(ir); 3064 } 3065 3066 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3067 struct gl_program *linked_prog; 3068 3069 if (prog->_LinkedShaders[i] == NULL) 3070 continue; 3071 3072 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]); 3073 3074 if (linked_prog) { 3075 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]); 3076 3077 if (!ctx->Driver.ProgramStringNotify(ctx, 3078 _mesa_shader_stage_to_program(i), 3079 linked_prog)) { 3080 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program, 3081 NULL); 3082 return GL_FALSE; 3083 } 3084 } 3085 } 3086 3087 build_program_resource_list(ctx, prog, false); 3088 return prog->data->LinkStatus; 3089} 3090 3091/** 3092 * Link a GLSL shader program. Called via glLinkProgram(). 3093 */ 3094void 3095_mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog) 3096{ 3097 unsigned int i; 3098 bool spirv = false; 3099 3100 _mesa_clear_shader_program_data(ctx, prog); 3101 3102 prog->data = _mesa_create_shader_program_data(); 3103 3104 prog->data->LinkStatus = LINKING_SUCCESS; 3105 3106 for (i = 0; i < prog->NumShaders; i++) { 3107 if (!prog->Shaders[i]->CompileStatus) { 3108 linker_error(prog, "linking with uncompiled/unspecialized shader"); 3109 } 3110 3111 if (!i) { 3112 spirv = (prog->Shaders[i]->spirv_data != NULL); 3113 } else if (spirv && !prog->Shaders[i]->spirv_data) { 3114 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of 3115 * reasons LinkProgram can fail: 3116 * 3117 * "All the shader objects attached to <program> do not have the 3118 * same value for the SPIR_V_BINARY_ARB state." 3119 */ 3120 linker_error(prog, 3121 "not all attached shaders have the same " 3122 "SPIR_V_BINARY_ARB state"); 3123 } 3124 } 3125 prog->data->spirv = spirv; 3126 3127 if (prog->data->LinkStatus) { 3128 if (!spirv) 3129 link_shaders(ctx, prog); 3130 else 3131 _mesa_spirv_link_shaders(ctx, prog); 3132 } 3133 3134 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true. 3135 * Validation happens via the LinkShader call below. If LinkStatus is 3136 * LINKING_SKIPPED, then SamplersValidated will have been restored from the 3137 * shader cache. 3138 */ 3139 if (prog->data->LinkStatus == LINKING_SUCCESS) { 3140 prog->SamplersValidated = GL_TRUE; 3141 } 3142 3143 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) { 3144 prog->data->LinkStatus = LINKING_FAILURE; 3145 } 3146 3147 if (prog->data->LinkStatus != LINKING_FAILURE) 3148 _mesa_create_program_resource_hash(prog); 3149 3150 /* Return early if we are loading the shader from on-disk cache */ 3151 if (prog->data->LinkStatus == LINKING_SKIPPED) 3152 return; 3153 3154 if (ctx->_Shader->Flags & GLSL_DUMP) { 3155 if (!prog->data->LinkStatus) { 3156 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name); 3157 } 3158 3159 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) { 3160 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name); 3161 fprintf(stderr, "%s\n", prog->data->InfoLog); 3162 } 3163 } 3164 3165#ifdef ENABLE_SHADER_CACHE 3166 if (prog->data->LinkStatus) 3167 shader_cache_write_program_metadata(ctx, prog); 3168#endif 3169} 3170 3171} /* extern "C" */ 3172