1/*
2 * Copyright © 2015 Intel Corporation
3 * Copyright © 2014-2015 Broadcom
4 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 */
25
26#include "compiler/nir/nir.h"
27#include "compiler/nir/nir_builder.h"
28#include "compiler/glsl/list.h"
29
30#include "main/mtypes.h"
31#include "util/ralloc.h"
32
33#include "prog_to_nir.h"
34#include "prog_instruction.h"
35#include "prog_parameter.h"
36#include "prog_print.h"
37#include "program.h"
38
39/**
40 * \file prog_to_nir.c
41 *
42 * A translator from Mesa IR (prog_instruction.h) to NIR.  This is primarily
43 * intended to support ARB_vertex_program, ARB_fragment_program, and fixed-function
44 * vertex processing.  Full GLSL support should use glsl_to_nir instead.
45 */
46
47struct ptn_compile {
48   const struct gl_program *prog;
49   nir_builder build;
50   bool error;
51
52   nir_variable *parameters;
53   nir_variable *input_vars[VARYING_SLOT_MAX];
54   nir_variable *output_vars[VARYING_SLOT_MAX];
55   nir_variable *sysval_vars[SYSTEM_VALUE_MAX];
56   nir_variable *sampler_vars[32]; /* matches number of bits in TexSrcUnit */
57   nir_register **output_regs;
58   nir_register **temp_regs;
59
60   nir_register *addr_reg;
61};
62
63#define SWIZ(X, Y, Z, W) \
64   (unsigned[4]){ SWIZZLE_##X, SWIZZLE_##Y, SWIZZLE_##Z, SWIZZLE_##W }
65#define ptn_channel(b, src, ch) nir_channel(b, src, SWIZZLE_##ch)
66
67static nir_ssa_def *
68ptn_src_for_dest(struct ptn_compile *c, nir_alu_dest *dest)
69{
70   nir_builder *b = &c->build;
71
72   nir_alu_src src;
73   memset(&src, 0, sizeof(src));
74
75   if (dest->dest.is_ssa)
76      src.src = nir_src_for_ssa(&dest->dest.ssa);
77   else {
78      assert(!dest->dest.reg.indirect);
79      src.src = nir_src_for_reg(dest->dest.reg.reg);
80      src.src.reg.base_offset = dest->dest.reg.base_offset;
81   }
82
83   for (int i = 0; i < 4; i++)
84      src.swizzle[i] = i;
85
86   return nir_mov_alu(b, src, 4);
87}
88
89static nir_alu_dest
90ptn_get_dest(struct ptn_compile *c, const struct prog_dst_register *prog_dst)
91{
92   nir_alu_dest dest;
93
94   memset(&dest, 0, sizeof(dest));
95
96   switch (prog_dst->File) {
97   case PROGRAM_TEMPORARY:
98      dest.dest.reg.reg = c->temp_regs[prog_dst->Index];
99      break;
100   case PROGRAM_OUTPUT:
101      dest.dest.reg.reg = c->output_regs[prog_dst->Index];
102      break;
103   case PROGRAM_ADDRESS:
104      assert(prog_dst->Index == 0);
105      dest.dest.reg.reg = c->addr_reg;
106      break;
107   case PROGRAM_UNDEFINED:
108      break;
109   }
110
111   dest.write_mask = prog_dst->WriteMask;
112   dest.saturate = false;
113
114   assert(!prog_dst->RelAddr);
115
116   return dest;
117}
118
119static nir_ssa_def *
120ptn_get_src(struct ptn_compile *c, const struct prog_src_register *prog_src)
121{
122   nir_builder *b = &c->build;
123   nir_alu_src src;
124
125   memset(&src, 0, sizeof(src));
126
127   switch (prog_src->File) {
128   case PROGRAM_UNDEFINED:
129      return nir_imm_float(b, 0.0);
130   case PROGRAM_TEMPORARY:
131      assert(!prog_src->RelAddr && prog_src->Index >= 0);
132      src.src.reg.reg = c->temp_regs[prog_src->Index];
133      break;
134   case PROGRAM_INPUT: {
135      /* ARB_vertex_program doesn't allow relative addressing on vertex
136       * attributes; ARB_fragment_program has no relative addressing at all.
137       */
138      assert(!prog_src->RelAddr);
139
140      assert(prog_src->Index >= 0 && prog_src->Index < VARYING_SLOT_MAX);
141
142      nir_variable *var = c->input_vars[prog_src->Index];
143      src.src = nir_src_for_ssa(nir_load_var(b, var));
144      break;
145   }
146   case PROGRAM_SYSTEM_VALUE: {
147      assert(!prog_src->RelAddr);
148
149      assert(prog_src->Index >= 0 && prog_src->Index < SYSTEM_VALUE_MAX);
150
151      nir_variable *var = c->sysval_vars[prog_src->Index];
152      src.src = nir_src_for_ssa(nir_load_var(b, var));
153      break;
154   }
155   case PROGRAM_STATE_VAR:
156   case PROGRAM_CONSTANT: {
157      /* We actually want to look at the type in the Parameters list for this,
158       * because it lets us upload constant builtin uniforms as actual
159       * constants.
160       */
161      struct gl_program_parameter_list *plist = c->prog->Parameters;
162      gl_register_file file = prog_src->RelAddr ? prog_src->File :
163         plist->Parameters[prog_src->Index].Type;
164
165      switch (file) {
166      case PROGRAM_CONSTANT:
167         if ((c->prog->arb.IndirectRegisterFiles &
168              (1 << PROGRAM_CONSTANT)) == 0) {
169            unsigned pvo = plist->Parameters[prog_src->Index].ValueOffset;
170            float *v = (float *) plist->ParameterValues + pvo;
171            src.src = nir_src_for_ssa(nir_imm_vec4(b, v[0], v[1], v[2], v[3]));
172            break;
173         }
174         FALLTHROUGH;
175      case PROGRAM_STATE_VAR: {
176         assert(c->parameters != NULL);
177
178         nir_deref_instr *deref = nir_build_deref_var(b, c->parameters);
179
180         nir_ssa_def *index = nir_imm_int(b, prog_src->Index);
181         if (prog_src->RelAddr)
182            index = nir_iadd(b, index, nir_load_reg(b, c->addr_reg));
183         deref = nir_build_deref_array(b, deref, nir_channel(b, index, 0));
184
185         src.src = nir_src_for_ssa(nir_load_deref(b, deref));
186         break;
187      }
188      default:
189         fprintf(stderr, "bad uniform src register file: %s (%d)\n",
190                 _mesa_register_file_name(file), file);
191         abort();
192      }
193      break;
194   }
195   default:
196      fprintf(stderr, "unknown src register file: %s (%d)\n",
197              _mesa_register_file_name(prog_src->File), prog_src->File);
198      abort();
199   }
200
201   nir_ssa_def *def;
202   if (!HAS_EXTENDED_SWIZZLE(prog_src->Swizzle) &&
203       (prog_src->Negate == NEGATE_NONE || prog_src->Negate == NEGATE_XYZW)) {
204      /* The simple non-SWZ case. */
205      for (int i = 0; i < 4; i++)
206         src.swizzle[i] = GET_SWZ(prog_src->Swizzle, i);
207
208      def = nir_mov_alu(b, src, 4);
209
210      if (prog_src->Negate)
211         def = nir_fneg(b, def);
212   } else {
213      /* The SWZ instruction allows per-component zero/one swizzles, and also
214       * per-component negation.
215       */
216      nir_ssa_def *chans[4];
217      for (int i = 0; i < 4; i++) {
218         int swizzle = GET_SWZ(prog_src->Swizzle, i);
219         if (swizzle == SWIZZLE_ZERO) {
220            chans[i] = nir_imm_float(b, 0.0);
221         } else if (swizzle == SWIZZLE_ONE) {
222            chans[i] = nir_imm_float(b, 1.0);
223         } else {
224            assert(swizzle != SWIZZLE_NIL);
225            nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov);
226            nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 1, 32, NULL);
227            mov->dest.write_mask = 0x1;
228            mov->src[0] = src;
229            mov->src[0].swizzle[0] = swizzle;
230            nir_builder_instr_insert(b, &mov->instr);
231
232            chans[i] = &mov->dest.dest.ssa;
233         }
234
235         if (prog_src->Negate & (1 << i))
236            chans[i] = nir_fneg(b, chans[i]);
237      }
238      def = nir_vec4(b, chans[0], chans[1], chans[2], chans[3]);
239   }
240
241   return def;
242}
243
244static void
245ptn_alu(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
246{
247   unsigned num_srcs = nir_op_infos[op].num_inputs;
248   nir_alu_instr *instr = nir_alu_instr_create(b->shader, op);
249   unsigned i;
250
251   for (i = 0; i < num_srcs; i++)
252      instr->src[i].src = nir_src_for_ssa(src[i]);
253
254   instr->dest = dest;
255   nir_builder_instr_insert(b, &instr->instr);
256}
257
258static void
259ptn_move_dest_masked(nir_builder *b, nir_alu_dest dest,
260                     nir_ssa_def *def, unsigned write_mask)
261{
262   if (!(dest.write_mask & write_mask))
263      return;
264
265   nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov);
266   if (!mov)
267      return;
268
269   mov->dest = dest;
270   mov->dest.write_mask &= write_mask;
271   mov->src[0].src = nir_src_for_ssa(def);
272   for (unsigned i = def->num_components; i < 4; i++)
273      mov->src[0].swizzle[i] = def->num_components - 1;
274   nir_builder_instr_insert(b, &mov->instr);
275}
276
277static void
278ptn_move_dest(nir_builder *b, nir_alu_dest dest, nir_ssa_def *def)
279{
280   ptn_move_dest_masked(b, dest, def, WRITEMASK_XYZW);
281}
282
283static void
284ptn_arl(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
285{
286   ptn_move_dest(b, dest, nir_f2i32(b, nir_ffloor(b, src[0])));
287}
288
289/* EXP - Approximate Exponential Base 2
290 *  dst.x = 2^{\lfloor src.x\rfloor}
291 *  dst.y = src.x - \lfloor src.x\rfloor
292 *  dst.z = 2^{src.x}
293 *  dst.w = 1.0
294 */
295static void
296ptn_exp(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
297{
298   nir_ssa_def *srcx = ptn_channel(b, src[0], X);
299
300   ptn_move_dest_masked(b, dest, nir_fexp2(b, nir_ffloor(b, srcx)), WRITEMASK_X);
301   ptn_move_dest_masked(b, dest, nir_fsub(b, srcx, nir_ffloor(b, srcx)), WRITEMASK_Y);
302   ptn_move_dest_masked(b, dest, nir_fexp2(b, srcx), WRITEMASK_Z);
303   ptn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), WRITEMASK_W);
304}
305
306/* LOG - Approximate Logarithm Base 2
307 *  dst.x = \lfloor\log_2{|src.x|}\rfloor
308 *  dst.y = |src.x| * 2^{-\lfloor\log_2{|src.x|}\rfloor}}
309 *  dst.z = \log_2{|src.x|}
310 *  dst.w = 1.0
311 */
312static void
313ptn_log(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
314{
315   nir_ssa_def *abs_srcx = nir_fabs(b, ptn_channel(b, src[0], X));
316   nir_ssa_def *log2 = nir_flog2(b, abs_srcx);
317   nir_ssa_def *floor_log2 = nir_ffloor(b, log2);
318
319   ptn_move_dest_masked(b, dest, floor_log2, WRITEMASK_X);
320   ptn_move_dest_masked(b, dest,
321                        nir_fmul(b, abs_srcx,
322                                 nir_fexp2(b, nir_fneg(b, floor_log2))),
323                        WRITEMASK_Y);
324   ptn_move_dest_masked(b, dest, log2, WRITEMASK_Z);
325   ptn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), WRITEMASK_W);
326}
327
328/* DST - Distance Vector
329 *   dst.x = 1.0
330 *   dst.y = src0.y \times src1.y
331 *   dst.z = src0.z
332 *   dst.w = src1.w
333 */
334static void
335ptn_dst(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
336{
337   ptn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), WRITEMASK_X);
338   ptn_move_dest_masked(b, dest, nir_fmul(b, src[0], src[1]), WRITEMASK_Y);
339   ptn_move_dest_masked(b, dest, nir_mov(b, src[0]), WRITEMASK_Z);
340   ptn_move_dest_masked(b, dest, nir_mov(b, src[1]), WRITEMASK_W);
341}
342
343/* LIT - Light Coefficients
344 *  dst.x = 1.0
345 *  dst.y = max(src.x, 0.0)
346 *  dst.z = (src.x > 0.0) ? max(src.y, 0.0)^{clamp(src.w, -128.0, 128.0))} : 0
347 *  dst.w = 1.0
348 */
349static void
350ptn_lit(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
351{
352   ptn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), WRITEMASK_XW);
353
354   ptn_move_dest_masked(b, dest, nir_fmax(b, ptn_channel(b, src[0], X),
355                                          nir_imm_float(b, 0.0)), WRITEMASK_Y);
356
357   if (dest.write_mask & WRITEMASK_Z) {
358      nir_ssa_def *src0_y = ptn_channel(b, src[0], Y);
359      nir_ssa_def *wclamp = nir_fmax(b, nir_fmin(b, ptn_channel(b, src[0], W),
360                                                 nir_imm_float(b, 128.0)),
361                                     nir_imm_float(b, -128.0));
362      nir_ssa_def *pow = nir_fpow(b, nir_fmax(b, src0_y, nir_imm_float(b, 0.0)),
363                                  wclamp);
364
365      nir_ssa_def *z = nir_bcsel(b,
366                                 nir_fge(b, nir_imm_float(b, 0.0), ptn_channel(b, src[0], X)),
367                                 nir_imm_float(b, 0.0),
368                                 pow);
369
370      ptn_move_dest_masked(b, dest, z, WRITEMASK_Z);
371   }
372}
373
374/* SCS - Sine Cosine
375 *   dst.x = \cos{src.x}
376 *   dst.y = \sin{src.x}
377 *   dst.z = 0.0
378 *   dst.w = 1.0
379 */
380static void
381ptn_scs(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
382{
383   ptn_move_dest_masked(b, dest, nir_fcos(b, ptn_channel(b, src[0], X)),
384                        WRITEMASK_X);
385   ptn_move_dest_masked(b, dest, nir_fsin(b, ptn_channel(b, src[0], X)),
386                        WRITEMASK_Y);
387   ptn_move_dest_masked(b, dest, nir_imm_float(b, 0.0), WRITEMASK_Z);
388   ptn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), WRITEMASK_W);
389}
390
391static void
392ptn_slt(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
393{
394   ptn_move_dest(b, dest, nir_slt(b, src[0], src[1]));
395}
396
397static void
398ptn_sge(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
399{
400   ptn_move_dest(b, dest, nir_sge(b, src[0], src[1]));
401}
402
403static void
404ptn_xpd(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
405{
406   ptn_move_dest_masked(b, dest,
407                        nir_fsub(b,
408                                 nir_fmul(b,
409                                          nir_swizzle(b, src[0], SWIZ(Y, Z, X, W), 3),
410                                          nir_swizzle(b, src[1], SWIZ(Z, X, Y, W), 3)),
411                                 nir_fmul(b,
412                                          nir_swizzle(b, src[1], SWIZ(Y, Z, X, W), 3),
413                                          nir_swizzle(b, src[0], SWIZ(Z, X, Y, W), 3))),
414                        WRITEMASK_XYZ);
415   ptn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), WRITEMASK_W);
416}
417
418static void
419ptn_dp2(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
420{
421   ptn_move_dest(b, dest, nir_fdot2(b, src[0], src[1]));
422}
423
424static void
425ptn_dp3(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
426{
427   ptn_move_dest(b, dest, nir_fdot3(b, src[0], src[1]));
428}
429
430static void
431ptn_dp4(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
432{
433   ptn_move_dest(b, dest, nir_fdot4(b, src[0], src[1]));
434}
435
436static void
437ptn_dph(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
438{
439   ptn_move_dest(b, dest, nir_fdph(b, src[0], src[1]));
440}
441
442static void
443ptn_cmp(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
444{
445   ptn_move_dest(b, dest, nir_bcsel(b,
446                                    nir_flt(b, src[0], nir_imm_float(b, 0.0)),
447                                    src[1], src[2]));
448}
449
450static void
451ptn_lrp(nir_builder *b, nir_alu_dest dest, nir_ssa_def **src)
452{
453   ptn_move_dest(b, dest, nir_flrp(b, src[2], src[1], src[0]));
454}
455
456static void
457ptn_kil(nir_builder *b, nir_ssa_def **src)
458{
459   /* flt must be exact, because NaN shouldn't discard. (apps rely on this) */
460   b->exact = true;
461   nir_ssa_def *cmp = nir_bany(b, nir_flt(b, src[0], nir_imm_float(b, 0.0)));
462   b->exact = false;
463
464   nir_discard_if(b, cmp);
465}
466
467enum glsl_sampler_dim
468_mesa_texture_index_to_sampler_dim(gl_texture_index index, bool *is_array)
469{
470   *is_array = false;
471
472   switch (index) {
473   case TEXTURE_2D_MULTISAMPLE_INDEX:
474      return GLSL_SAMPLER_DIM_MS;
475   case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
476      *is_array = true;
477      return GLSL_SAMPLER_DIM_MS;
478   case TEXTURE_BUFFER_INDEX:
479      return GLSL_SAMPLER_DIM_BUF;
480   case TEXTURE_1D_INDEX:
481      return GLSL_SAMPLER_DIM_1D;
482   case TEXTURE_2D_INDEX:
483      return GLSL_SAMPLER_DIM_2D;
484   case TEXTURE_3D_INDEX:
485      return GLSL_SAMPLER_DIM_3D;
486   case TEXTURE_CUBE_INDEX:
487      return GLSL_SAMPLER_DIM_CUBE;
488   case TEXTURE_CUBE_ARRAY_INDEX:
489      *is_array = true;
490      return GLSL_SAMPLER_DIM_CUBE;
491   case TEXTURE_RECT_INDEX:
492      return GLSL_SAMPLER_DIM_RECT;
493   case TEXTURE_1D_ARRAY_INDEX:
494      *is_array = true;
495      return GLSL_SAMPLER_DIM_1D;
496   case TEXTURE_2D_ARRAY_INDEX:
497      *is_array = true;
498      return GLSL_SAMPLER_DIM_2D;
499   case TEXTURE_EXTERNAL_INDEX:
500      return GLSL_SAMPLER_DIM_EXTERNAL;
501   case NUM_TEXTURE_TARGETS:
502      break;
503   }
504   unreachable("unknown texture target");
505}
506
507static void
508ptn_tex(struct ptn_compile *c, nir_alu_dest dest, nir_ssa_def **src,
509        struct prog_instruction *prog_inst)
510{
511   nir_builder *b = &c->build;
512   nir_tex_instr *instr;
513   nir_texop op;
514   unsigned num_srcs;
515
516   switch (prog_inst->Opcode) {
517   case OPCODE_TEX:
518      op = nir_texop_tex;
519      num_srcs = 1;
520      break;
521   case OPCODE_TXB:
522      op = nir_texop_txb;
523      num_srcs = 2;
524      break;
525   case OPCODE_TXD:
526      op = nir_texop_txd;
527      num_srcs = 3;
528      break;
529   case OPCODE_TXL:
530      op = nir_texop_txl;
531      num_srcs = 2;
532      break;
533   case OPCODE_TXP:
534      op = nir_texop_tex;
535      num_srcs = 2;
536      break;
537   default:
538      fprintf(stderr, "unknown tex op %d\n", prog_inst->Opcode);
539      abort();
540   }
541
542   /* Deref sources */
543   num_srcs += 2;
544
545   if (prog_inst->TexShadow)
546      num_srcs++;
547
548   instr = nir_tex_instr_create(b->shader, num_srcs);
549   instr->op = op;
550   instr->dest_type = nir_type_float32;
551   instr->is_shadow = prog_inst->TexShadow;
552
553   bool is_array;
554   instr->sampler_dim = _mesa_texture_index_to_sampler_dim(prog_inst->TexSrcTarget, &is_array);
555
556   instr->coord_components =
557      glsl_get_sampler_dim_coordinate_components(instr->sampler_dim);
558
559   nir_variable *var = c->sampler_vars[prog_inst->TexSrcUnit];
560   if (!var) {
561      const struct glsl_type *type =
562         glsl_sampler_type(instr->sampler_dim, instr->is_shadow, false, GLSL_TYPE_FLOAT);
563      char samplerName[20];
564      snprintf(samplerName, sizeof(samplerName), "sampler_%d", prog_inst->TexSrcUnit);
565      var = nir_variable_create(b->shader, nir_var_uniform, type, samplerName);
566      var->data.binding = prog_inst->TexSrcUnit;
567      var->data.explicit_binding = true;
568      c->sampler_vars[prog_inst->TexSrcUnit] = var;
569   }
570
571   nir_deref_instr *deref = nir_build_deref_var(b, var);
572
573   unsigned src_number = 0;
574
575   instr->src[src_number].src = nir_src_for_ssa(&deref->dest.ssa);
576   instr->src[src_number].src_type = nir_tex_src_texture_deref;
577   src_number++;
578   instr->src[src_number].src = nir_src_for_ssa(&deref->dest.ssa);
579   instr->src[src_number].src_type = nir_tex_src_sampler_deref;
580   src_number++;
581
582   instr->src[src_number].src =
583      nir_src_for_ssa(nir_swizzle(b, src[0], SWIZ(X, Y, Z, W),
584                                  instr->coord_components));
585   instr->src[src_number].src_type = nir_tex_src_coord;
586   src_number++;
587
588   if (prog_inst->Opcode == OPCODE_TXP) {
589      instr->src[src_number].src = nir_src_for_ssa(ptn_channel(b, src[0], W));
590      instr->src[src_number].src_type = nir_tex_src_projector;
591      src_number++;
592   }
593
594   if (prog_inst->Opcode == OPCODE_TXB) {
595      instr->src[src_number].src = nir_src_for_ssa(ptn_channel(b, src[0], W));
596      instr->src[src_number].src_type = nir_tex_src_bias;
597      src_number++;
598   }
599
600   if (prog_inst->Opcode == OPCODE_TXL) {
601      instr->src[src_number].src = nir_src_for_ssa(ptn_channel(b, src[0], W));
602      instr->src[src_number].src_type = nir_tex_src_lod;
603      src_number++;
604   }
605
606   if (instr->is_shadow) {
607      if (instr->coord_components < 3)
608         instr->src[src_number].src = nir_src_for_ssa(ptn_channel(b, src[0], Z));
609      else
610         instr->src[src_number].src = nir_src_for_ssa(ptn_channel(b, src[0], W));
611
612      instr->src[src_number].src_type = nir_tex_src_comparator;
613      src_number++;
614   }
615
616   assert(src_number == num_srcs);
617
618   nir_ssa_dest_init(&instr->instr, &instr->dest, 4, 32, NULL);
619   nir_builder_instr_insert(b, &instr->instr);
620
621   /* Resolve the writemask on the texture op. */
622   ptn_move_dest(b, dest, &instr->dest.ssa);
623}
624
625static const nir_op op_trans[MAX_OPCODE] = {
626   [OPCODE_NOP] = 0,
627   [OPCODE_ABS] = nir_op_fabs,
628   [OPCODE_ADD] = nir_op_fadd,
629   [OPCODE_ARL] = 0,
630   [OPCODE_CMP] = 0,
631   [OPCODE_COS] = 0,
632   [OPCODE_DDX] = nir_op_fddx,
633   [OPCODE_DDY] = nir_op_fddy,
634   [OPCODE_DP2] = 0,
635   [OPCODE_DP3] = 0,
636   [OPCODE_DP4] = 0,
637   [OPCODE_DPH] = 0,
638   [OPCODE_DST] = 0,
639   [OPCODE_END] = 0,
640   [OPCODE_EX2] = 0,
641   [OPCODE_EXP] = 0,
642   [OPCODE_FLR] = nir_op_ffloor,
643   [OPCODE_FRC] = nir_op_ffract,
644   [OPCODE_LG2] = 0,
645   [OPCODE_LIT] = 0,
646   [OPCODE_LOG] = 0,
647   [OPCODE_LRP] = 0,
648   [OPCODE_MAD] = 0,
649   [OPCODE_MAX] = nir_op_fmax,
650   [OPCODE_MIN] = nir_op_fmin,
651   [OPCODE_MOV] = nir_op_mov,
652   [OPCODE_MUL] = nir_op_fmul,
653   [OPCODE_POW] = 0,
654   [OPCODE_RCP] = 0,
655
656   [OPCODE_RSQ] = 0,
657   [OPCODE_SCS] = 0,
658   [OPCODE_SGE] = 0,
659   [OPCODE_SIN] = 0,
660   [OPCODE_SLT] = 0,
661   [OPCODE_SSG] = nir_op_fsign,
662   [OPCODE_SUB] = nir_op_fsub,
663   [OPCODE_SWZ] = 0,
664   [OPCODE_TEX] = 0,
665   [OPCODE_TRUNC] = nir_op_ftrunc,
666   [OPCODE_TXB] = 0,
667   [OPCODE_TXD] = 0,
668   [OPCODE_TXL] = 0,
669   [OPCODE_TXP] = 0,
670   [OPCODE_XPD] = 0,
671};
672
673static void
674ptn_emit_instruction(struct ptn_compile *c, struct prog_instruction *prog_inst)
675{
676   nir_builder *b = &c->build;
677   unsigned i;
678   const unsigned op = prog_inst->Opcode;
679
680   if (op == OPCODE_END)
681      return;
682
683   nir_ssa_def *src[3];
684   for (i = 0; i < 3; i++) {
685      src[i] = ptn_get_src(c, &prog_inst->SrcReg[i]);
686   }
687   nir_alu_dest dest = ptn_get_dest(c, &prog_inst->DstReg);
688   if (c->error)
689      return;
690
691   switch (op) {
692   case OPCODE_RSQ:
693      ptn_move_dest(b, dest,
694                    nir_frsq(b, nir_fabs(b, ptn_channel(b, src[0], X))));
695      break;
696
697   case OPCODE_RCP:
698      ptn_move_dest(b, dest, nir_frcp(b, ptn_channel(b, src[0], X)));
699      break;
700
701   case OPCODE_EX2:
702      ptn_move_dest(b, dest, nir_fexp2(b, ptn_channel(b, src[0], X)));
703      break;
704
705   case OPCODE_LG2:
706      ptn_move_dest(b, dest, nir_flog2(b, ptn_channel(b, src[0], X)));
707      break;
708
709   case OPCODE_POW:
710      ptn_move_dest(b, dest, nir_fpow(b,
711                                      ptn_channel(b, src[0], X),
712                                      ptn_channel(b, src[1], X)));
713      break;
714
715   case OPCODE_COS:
716      ptn_move_dest(b, dest, nir_fcos(b, ptn_channel(b, src[0], X)));
717      break;
718
719   case OPCODE_SIN:
720      ptn_move_dest(b, dest, nir_fsin(b, ptn_channel(b, src[0], X)));
721      break;
722
723   case OPCODE_ARL:
724      ptn_arl(b, dest, src);
725      break;
726
727   case OPCODE_EXP:
728      ptn_exp(b, dest, src);
729      break;
730
731   case OPCODE_LOG:
732      ptn_log(b, dest, src);
733      break;
734
735   case OPCODE_LRP:
736      ptn_lrp(b, dest, src);
737      break;
738
739   case OPCODE_MAD:
740      ptn_move_dest(b, dest, nir_fadd(b, nir_fmul(b, src[0], src[1]), src[2]));
741      break;
742
743   case OPCODE_DST:
744      ptn_dst(b, dest, src);
745      break;
746
747   case OPCODE_LIT:
748      ptn_lit(b, dest, src);
749      break;
750
751   case OPCODE_XPD:
752      ptn_xpd(b, dest, src);
753      break;
754
755   case OPCODE_DP2:
756      ptn_dp2(b, dest, src);
757      break;
758
759   case OPCODE_DP3:
760      ptn_dp3(b, dest, src);
761      break;
762
763   case OPCODE_DP4:
764      ptn_dp4(b, dest, src);
765      break;
766
767   case OPCODE_DPH:
768      ptn_dph(b, dest, src);
769      break;
770
771   case OPCODE_KIL:
772      ptn_kil(b, src);
773      break;
774
775   case OPCODE_CMP:
776      ptn_cmp(b, dest, src);
777      break;
778
779   case OPCODE_SCS:
780      ptn_scs(b, dest, src);
781      break;
782
783   case OPCODE_SLT:
784      ptn_slt(b, dest, src);
785      break;
786
787   case OPCODE_SGE:
788      ptn_sge(b, dest, src);
789      break;
790
791   case OPCODE_TEX:
792   case OPCODE_TXB:
793   case OPCODE_TXD:
794   case OPCODE_TXL:
795   case OPCODE_TXP:
796      ptn_tex(c, dest, src, prog_inst);
797      break;
798
799   case OPCODE_SWZ:
800      /* Extended swizzles were already handled in ptn_get_src(). */
801      ptn_alu(b, nir_op_mov, dest, src);
802      break;
803
804   case OPCODE_NOP:
805      break;
806
807   default:
808      if (op_trans[op] != 0) {
809         ptn_alu(b, op_trans[op], dest, src);
810      } else {
811         fprintf(stderr, "unknown opcode: %s\n", _mesa_opcode_string(op));
812         abort();
813      }
814      break;
815   }
816
817   if (prog_inst->Saturate) {
818      assert(prog_inst->Saturate);
819      assert(!dest.dest.is_ssa);
820      ptn_move_dest(b, dest, nir_fsat(b, ptn_src_for_dest(c, &dest)));
821   }
822}
823
824/**
825 * Puts a NIR intrinsic to store of each PROGRAM_OUTPUT value to the output
826 * variables at the end of the shader.
827 *
828 * We don't generate these incrementally as the PROGRAM_OUTPUT values are
829 * written, because there's no output load intrinsic, which means we couldn't
830 * handle writemasks.
831 */
832static void
833ptn_add_output_stores(struct ptn_compile *c)
834{
835   nir_builder *b = &c->build;
836
837   nir_foreach_shader_out_variable(var, b->shader) {
838      nir_ssa_def *src = nir_load_reg(b, c->output_regs[var->data.location]);
839      if (c->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
840          var->data.location == FRAG_RESULT_DEPTH) {
841         /* result.depth has this strange convention of being the .z component of
842          * a vec4 with undefined .xyw components.  We resolve it to a scalar, to
843          * match GLSL's gl_FragDepth and the expectations of most backends.
844          */
845         src = nir_channel(b, src, 2);
846      }
847      if (c->prog->Target == GL_VERTEX_PROGRAM_ARB &&
848          (var->data.location == VARYING_SLOT_FOGC ||
849           var->data.location == VARYING_SLOT_PSIZ)) {
850         /* result.{fogcoord,psiz} is a single component value */
851         src = nir_channel(b, src, 0);
852      }
853      unsigned num_components = glsl_get_vector_elements(var->type);
854      nir_store_var(b, var, src, (1 << num_components) - 1);
855   }
856}
857
858static void
859setup_registers_and_variables(struct ptn_compile *c)
860{
861   nir_builder *b = &c->build;
862   struct nir_shader *shader = b->shader;
863
864   /* Create input variables. */
865   uint64_t inputs_read = c->prog->info.inputs_read;
866   while (inputs_read) {
867      const int i = u_bit_scan64(&inputs_read);
868
869      nir_variable *var =
870         nir_variable_create(shader, nir_var_shader_in, glsl_vec4_type(),
871                             ralloc_asprintf(shader, "in_%d", i));
872      var->data.location = i;
873      var->data.index = 0;
874
875      if (c->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
876         if (i == VARYING_SLOT_FOGC) {
877            /* fogcoord is defined as <f, 0.0, 0.0, 1.0>.  Make the actual
878             * input variable a float, and create a local containing the
879             * full vec4 value.
880             */
881            var->type = glsl_float_type();
882
883            nir_variable *fullvar =
884               nir_local_variable_create(b->impl, glsl_vec4_type(),
885                                         "fogcoord_tmp");
886
887            nir_store_var(b, fullvar,
888                          nir_vec4(b, nir_load_var(b, var),
889                                   nir_imm_float(b, 0.0),
890                                   nir_imm_float(b, 0.0),
891                                   nir_imm_float(b, 1.0)),
892                          WRITEMASK_XYZW);
893
894            /* We inserted the real input into the list so the driver has real
895             * inputs, but we set c->input_vars[i] to the temporary so we use
896             * the splatted value.
897             */
898            c->input_vars[i] = fullvar;
899            continue;
900         }
901      }
902
903      c->input_vars[i] = var;
904   }
905
906   /* Create system value variables */
907   int i;
908   BITSET_FOREACH_SET(i, c->prog->info.system_values_read, SYSTEM_VALUE_MAX) {
909      nir_variable *var =
910         nir_variable_create(shader, nir_var_system_value, glsl_vec4_type(),
911                             ralloc_asprintf(shader, "sv_%d", i));
912      var->data.location = i;
913      var->data.index = 0;
914
915      c->sysval_vars[i] = var;
916   }
917
918   /* Create output registers and variables. */
919   int max_outputs = util_last_bit(c->prog->info.outputs_written);
920   c->output_regs = rzalloc_array(c, nir_register *, max_outputs);
921
922   uint64_t outputs_written = c->prog->info.outputs_written;
923   while (outputs_written) {
924      const int i = u_bit_scan64(&outputs_written);
925
926      /* Since we can't load from outputs in the IR, we make temporaries
927       * for the outputs and emit stores to the real outputs at the end of
928       * the shader.
929       */
930      nir_register *reg = nir_local_reg_create(b->impl);
931      reg->num_components = 4;
932
933      const struct glsl_type *type;
934      if ((c->prog->Target == GL_FRAGMENT_PROGRAM_ARB && i == FRAG_RESULT_DEPTH) ||
935          (c->prog->Target == GL_VERTEX_PROGRAM_ARB && i == VARYING_SLOT_FOGC) ||
936          (c->prog->Target == GL_VERTEX_PROGRAM_ARB && i == VARYING_SLOT_PSIZ))
937         type = glsl_float_type();
938      else
939         type = glsl_vec4_type();
940
941      nir_variable *var =
942         nir_variable_create(shader, nir_var_shader_out, type,
943                             ralloc_asprintf(shader, "out_%d", i));
944      var->data.location = i;
945      var->data.index = 0;
946
947      c->output_regs[i] = reg;
948      c->output_vars[i] = var;
949   }
950
951   /* Create temporary registers. */
952   c->temp_regs = rzalloc_array(c, nir_register *,
953                                c->prog->arb.NumTemporaries);
954
955   nir_register *reg;
956   for (unsigned i = 0; i < c->prog->arb.NumTemporaries; i++) {
957      reg = nir_local_reg_create(b->impl);
958      if (!reg) {
959         c->error = true;
960         return;
961      }
962      reg->num_components = 4;
963      c->temp_regs[i] = reg;
964   }
965
966   /* Create the address register (for ARB_vertex_program). */
967   reg = nir_local_reg_create(b->impl);
968   if (!reg) {
969      c->error = true;
970      return;
971   }
972   reg->num_components = 1;
973   c->addr_reg = reg;
974}
975
976struct nir_shader *
977prog_to_nir(const struct gl_program *prog,
978            const nir_shader_compiler_options *options)
979{
980   struct ptn_compile *c;
981   struct nir_shader *s;
982   gl_shader_stage stage = _mesa_program_enum_to_shader_stage(prog->Target);
983
984   c = rzalloc(NULL, struct ptn_compile);
985   if (!c)
986      return NULL;
987   c->prog = prog;
988
989   c->build = nir_builder_init_simple_shader(stage, options, NULL);
990
991   /* Copy the shader_info from the gl_program */
992   c->build.shader->info = prog->info;
993
994   s = c->build.shader;
995
996   if (prog->Parameters->NumParameters > 0) {
997      const struct glsl_type *type =
998         glsl_array_type(glsl_vec4_type(), prog->Parameters->NumParameters, 0);
999      c->parameters =
1000         nir_variable_create(s, nir_var_uniform, type,
1001                             prog->Parameters->Parameters[0].Name);
1002   }
1003
1004   setup_registers_and_variables(c);
1005   if (unlikely(c->error))
1006      goto fail;
1007
1008   for (unsigned int i = 0; i < prog->arb.NumInstructions; i++) {
1009      ptn_emit_instruction(c, &prog->arb.Instructions[i]);
1010
1011      if (unlikely(c->error))
1012         break;
1013   }
1014
1015   ptn_add_output_stores(c);
1016
1017   s->info.name = ralloc_asprintf(s, "ARB%d", prog->Id);
1018   s->info.num_textures = util_last_bit(prog->SamplersUsed);
1019   s->info.num_ubos = 0;
1020   s->info.num_abos = 0;
1021   s->info.num_ssbos = 0;
1022   s->info.num_images = 0;
1023   s->info.uses_texture_gather = false;
1024   s->info.clip_distance_array_size = 0;
1025   s->info.cull_distance_array_size = 0;
1026   s->info.separate_shader = false;
1027   s->info.io_lowered = false;
1028
1029fail:
1030   if (c->error) {
1031      ralloc_free(s);
1032      s = NULL;
1033   }
1034   ralloc_free(c);
1035   return s;
1036}
1037