1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26#include "c99_math.h" 27#include "main/glheader.h" 28#include "main/macros.h" 29#include "main/mtypes.h" 30#include "main/teximage.h" 31#include "swrast/s_aaline.h" 32#include "swrast/s_context.h" 33#include "swrast/s_span.h" 34#include "swrast/swrast.h" 35 36 37#define SUB_PIXEL 4 38 39 40/* 41 * Info about the AA line we're rendering 42 */ 43struct LineInfo 44{ 45 GLfloat x0, y0; /* start */ 46 GLfloat x1, y1; /* end */ 47 GLfloat dx, dy; /* direction vector */ 48 GLfloat len; /* length */ 49 GLfloat halfWidth; /* half of line width */ 50 GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */ 51 /* for coverage computation */ 52 GLfloat qx0, qy0; /* quad vertices */ 53 GLfloat qx1, qy1; 54 GLfloat qx2, qy2; 55 GLfloat qx3, qy3; 56 GLfloat ex0, ey0; /* quad edge vectors */ 57 GLfloat ex1, ey1; 58 GLfloat ex2, ey2; 59 GLfloat ex3, ey3; 60 61 /* DO_Z */ 62 GLfloat zPlane[4]; 63 /* DO_RGBA - always enabled */ 64 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4]; 65 /* DO_ATTRIBS */ 66 GLfloat wPlane[4]; 67 GLfloat attrPlane[VARYING_SLOT_MAX][4][4]; 68 GLfloat lambda[VARYING_SLOT_MAX]; 69 GLfloat texWidth[VARYING_SLOT_MAX]; 70 GLfloat texHeight[VARYING_SLOT_MAX]; 71 72 SWspan span; 73}; 74 75 76 77/* 78 * Compute the equation of a plane used to interpolate line fragment data 79 * such as color, Z, texture coords, etc. 80 * Input: (x0, y0) and (x1,y1) are the endpoints of the line. 81 * z0, and z1 are the end point values to interpolate. 82 * Output: plane - the plane equation. 83 * 84 * Note: we don't really have enough parameters to specify a plane. 85 * We take the endpoints of the line and compute a plane such that 86 * the cross product of the line vector and the plane normal is 87 * parallel to the projection plane. 88 */ 89static void 90compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1, 91 GLfloat z0, GLfloat z1, GLfloat plane[4]) 92{ 93#if 0 94 /* original */ 95 const GLfloat px = x1 - x0; 96 const GLfloat py = y1 - y0; 97 const GLfloat pz = z1 - z0; 98 const GLfloat qx = -py; 99 const GLfloat qy = px; 100 const GLfloat qz = 0; 101 const GLfloat a = py * qz - pz * qy; 102 const GLfloat b = pz * qx - px * qz; 103 const GLfloat c = px * qy - py * qx; 104 const GLfloat d = -(a * x0 + b * y0 + c * z0); 105 plane[0] = a; 106 plane[1] = b; 107 plane[2] = c; 108 plane[3] = d; 109#else 110 /* simplified */ 111 const GLfloat px = x1 - x0; 112 const GLfloat py = y1 - y0; 113 const GLfloat pz = z0 - z1; 114 const GLfloat a = pz * px; 115 const GLfloat b = pz * py; 116 const GLfloat c = px * px + py * py; 117 const GLfloat d = -(a * x0 + b * y0 + c * z0); 118 if (a == 0.0F && b == 0.0F && c == 0.0F && d == 0.0F) { 119 plane[0] = 0.0F; 120 plane[1] = 0.0F; 121 plane[2] = 1.0F; 122 plane[3] = 0.0F; 123 } 124 else { 125 plane[0] = a; 126 plane[1] = b; 127 plane[2] = c; 128 plane[3] = d; 129 } 130#endif 131} 132 133 134static inline void 135constant_plane(GLfloat value, GLfloat plane[4]) 136{ 137 plane[0] = 0.0F; 138 plane[1] = 0.0F; 139 plane[2] = -1.0F; 140 plane[3] = value; 141} 142 143 144static inline GLfloat 145solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) 146{ 147 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; 148 return z; 149} 150 151#define SOLVE_PLANE(X, Y, PLANE) \ 152 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2]) 153 154 155/* 156 * Return 1 / solve_plane(). 157 */ 158static inline GLfloat 159solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]) 160{ 161 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y; 162 if (denom == 0.0F) 163 return 0.0F; 164 else 165 return -plane[2] / denom; 166} 167 168 169/* 170 * Solve plane and return clamped GLchan value. 171 */ 172static inline GLchan 173solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]) 174{ 175 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; 176#if CHAN_TYPE == GL_FLOAT 177 return CLAMP(z, 0.0F, CHAN_MAXF); 178#else 179 if (z < 0) 180 return 0; 181 else if (z > CHAN_MAX) 182 return CHAN_MAX; 183 return (GLchan) lroundf(z); 184#endif 185} 186 187 188/* 189 * Compute mipmap level of detail. 190 */ 191static inline GLfloat 192compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4], 193 GLfloat invQ, GLfloat width, GLfloat height) 194{ 195 GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width; 196 GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width; 197 GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height; 198 GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height; 199 GLfloat r1 = dudx * dudx + dudy * dudy; 200 GLfloat r2 = dvdx * dvdx + dvdy * dvdy; 201 GLfloat rho2 = r1 + r2; 202 /* return log base 2 of rho */ 203 if (rho2 == 0.0F) 204 return 0.0; 205 else 206 return logf(rho2) * 1.442695f * 0.5f;/* 1.442695 = 1/log(2) */ 207} 208 209 210 211 212/* 213 * Fill in the samples[] array with the (x,y) subpixel positions of 214 * xSamples * ySamples sample positions. 215 * Note that the four corner samples are put into the first four 216 * positions of the array. This allows us to optimize for the common 217 * case of all samples being inside the polygon. 218 */ 219static void 220make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2]) 221{ 222 const GLfloat dx = 1.0F / (GLfloat) xSamples; 223 const GLfloat dy = 1.0F / (GLfloat) ySamples; 224 GLint x, y; 225 GLint i; 226 227 i = 4; 228 for (x = 0; x < xSamples; x++) { 229 for (y = 0; y < ySamples; y++) { 230 GLint j; 231 if (x == 0 && y == 0) { 232 /* lower left */ 233 j = 0; 234 } 235 else if (x == xSamples - 1 && y == 0) { 236 /* lower right */ 237 j = 1; 238 } 239 else if (x == 0 && y == ySamples - 1) { 240 /* upper left */ 241 j = 2; 242 } 243 else if (x == xSamples - 1 && y == ySamples - 1) { 244 /* upper right */ 245 j = 3; 246 } 247 else { 248 j = i++; 249 } 250 samples[j][0] = x * dx + 0.5F * dx; 251 samples[j][1] = y * dy + 0.5F * dy; 252 } 253 } 254} 255 256 257 258/* 259 * Compute how much of the given pixel's area is inside the rectangle 260 * defined by vertices v0, v1, v2, v3. 261 * Vertices MUST be specified in counter-clockwise order. 262 * Return: coverage in [0, 1]. 263 */ 264static GLfloat 265compute_coveragef(const struct LineInfo *info, 266 GLint winx, GLint winy) 267{ 268 static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2]; 269 static GLboolean haveSamples = GL_FALSE; 270 const GLfloat x = (GLfloat) winx; 271 const GLfloat y = (GLfloat) winy; 272 GLint stop = 4, i; 273 GLfloat insideCount = SUB_PIXEL * SUB_PIXEL; 274 275 if (!haveSamples) { 276 make_sample_table(SUB_PIXEL, SUB_PIXEL, samples); 277 haveSamples = GL_TRUE; 278 } 279 280#if 0 /*DEBUG*/ 281 { 282 const GLfloat area = dx0 * dy1 - dx1 * dy0; 283 assert(area >= 0.0); 284 } 285#endif 286 287 for (i = 0; i < stop; i++) { 288 const GLfloat sx = x + samples[i][0]; 289 const GLfloat sy = y + samples[i][1]; 290 const GLfloat fx0 = sx - info->qx0; 291 const GLfloat fy0 = sy - info->qy0; 292 const GLfloat fx1 = sx - info->qx1; 293 const GLfloat fy1 = sy - info->qy1; 294 const GLfloat fx2 = sx - info->qx2; 295 const GLfloat fy2 = sy - info->qy2; 296 const GLfloat fx3 = sx - info->qx3; 297 const GLfloat fy3 = sy - info->qy3; 298 /* cross product determines if sample is inside or outside each edge */ 299 GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0); 300 GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1); 301 GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2); 302 GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3); 303 /* Check if the sample is exactly on an edge. If so, let cross be a 304 * positive or negative value depending on the direction of the edge. 305 */ 306 if (cross0 == 0.0F) 307 cross0 = info->ex0 + info->ey0; 308 if (cross1 == 0.0F) 309 cross1 = info->ex1 + info->ey1; 310 if (cross2 == 0.0F) 311 cross2 = info->ex2 + info->ey2; 312 if (cross3 == 0.0F) 313 cross3 = info->ex3 + info->ey3; 314 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) { 315 /* point is outside quadrilateral */ 316 insideCount -= 1.0F; 317 stop = SUB_PIXEL * SUB_PIXEL; 318 } 319 } 320 if (stop == 4) 321 return 1.0F; 322 else 323 return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL)); 324} 325 326 327typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line, 328 int ix, int iy); 329 330 331 332/* 333 * Draw an AA line segment (called many times per line when stippling) 334 */ 335static void 336segment(struct gl_context *ctx, 337 struct LineInfo *line, 338 plot_func plot, 339 GLfloat t0, GLfloat t1) 340{ 341 const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx; 342 const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy; 343 /* compute the actual segment's endpoints */ 344 const GLfloat x0 = line->x0 + t0 * line->dx; 345 const GLfloat y0 = line->y0 + t0 * line->dy; 346 const GLfloat x1 = line->x0 + t1 * line->dx; 347 const GLfloat y1 = line->y0 + t1 * line->dy; 348 349 /* compute vertices of the line-aligned quadrilateral */ 350 line->qx0 = x0 - line->yAdj; 351 line->qy0 = y0 + line->xAdj; 352 line->qx1 = x0 + line->yAdj; 353 line->qy1 = y0 - line->xAdj; 354 line->qx2 = x1 + line->yAdj; 355 line->qy2 = y1 - line->xAdj; 356 line->qx3 = x1 - line->yAdj; 357 line->qy3 = y1 + line->xAdj; 358 /* compute the quad's edge vectors (for coverage calc) */ 359 line->ex0 = line->qx1 - line->qx0; 360 line->ey0 = line->qy1 - line->qy0; 361 line->ex1 = line->qx2 - line->qx1; 362 line->ey1 = line->qy2 - line->qy1; 363 line->ex2 = line->qx3 - line->qx2; 364 line->ey2 = line->qy3 - line->qy2; 365 line->ex3 = line->qx0 - line->qx3; 366 line->ey3 = line->qy0 - line->qy3; 367 368 if (absDx > absDy) { 369 /* X-major line */ 370 GLfloat dydx = line->dy / line->dx; 371 GLfloat xLeft, xRight, yBot, yTop; 372 GLint ix, ixRight; 373 if (x0 < x1) { 374 xLeft = x0 - line->halfWidth; 375 xRight = x1 + line->halfWidth; 376 if (line->dy >= 0.0F) { 377 yBot = y0 - 3.0F * line->halfWidth; 378 yTop = y0 + line->halfWidth; 379 } 380 else { 381 yBot = y0 - line->halfWidth; 382 yTop = y0 + 3.0F * line->halfWidth; 383 } 384 } 385 else { 386 xLeft = x1 - line->halfWidth; 387 xRight = x0 + line->halfWidth; 388 if (line->dy <= 0.0F) { 389 yBot = y1 - 3.0F * line->halfWidth; 390 yTop = y1 + line->halfWidth; 391 } 392 else { 393 yBot = y1 - line->halfWidth; 394 yTop = y1 + 3.0F * line->halfWidth; 395 } 396 } 397 398 /* scan along the line, left-to-right */ 399 ixRight = (GLint) (xRight + 1.0F); 400 401 /*printf("avg span height: %g\n", yTop - yBot);*/ 402 for (ix = (GLint) xLeft; ix < ixRight; ix++) { 403 const GLint iyBot = (GLint) yBot; 404 const GLint iyTop = (GLint) (yTop + 1.0F); 405 GLint iy; 406 /* scan across the line, bottom-to-top */ 407 for (iy = iyBot; iy < iyTop; iy++) { 408 plot(ctx, line, ix, iy); 409 } 410 yBot += dydx; 411 yTop += dydx; 412 } 413 } 414 else { 415 /* Y-major line */ 416 GLfloat dxdy = line->dx / line->dy; 417 GLfloat yBot, yTop, xLeft, xRight; 418 GLint iy, iyTop; 419 if (y0 < y1) { 420 yBot = y0 - line->halfWidth; 421 yTop = y1 + line->halfWidth; 422 if (line->dx >= 0.0F) { 423 xLeft = x0 - 3.0F * line->halfWidth; 424 xRight = x0 + line->halfWidth; 425 } 426 else { 427 xLeft = x0 - line->halfWidth; 428 xRight = x0 + 3.0F * line->halfWidth; 429 } 430 } 431 else { 432 yBot = y1 - line->halfWidth; 433 yTop = y0 + line->halfWidth; 434 if (line->dx <= 0.0F) { 435 xLeft = x1 - 3.0F * line->halfWidth; 436 xRight = x1 + line->halfWidth; 437 } 438 else { 439 xLeft = x1 - line->halfWidth; 440 xRight = x1 + 3.0F * line->halfWidth; 441 } 442 } 443 444 /* scan along the line, bottom-to-top */ 445 iyTop = (GLint) (yTop + 1.0F); 446 447 /*printf("avg span width: %g\n", xRight - xLeft);*/ 448 for (iy = (GLint) yBot; iy < iyTop; iy++) { 449 const GLint ixLeft = (GLint) xLeft; 450 const GLint ixRight = (GLint) (xRight + 1.0F); 451 GLint ix; 452 /* scan across the line, left-to-right */ 453 for (ix = ixLeft; ix < ixRight; ix++) { 454 plot(ctx, line, ix, iy); 455 } 456 xLeft += dxdy; 457 xRight += dxdy; 458 } 459 } 460} 461 462 463#define NAME(x) aa_rgba_##x 464#define DO_Z 465#include "s_aalinetemp.h" 466 467 468#define NAME(x) aa_general_rgba_##x 469#define DO_Z 470#define DO_ATTRIBS 471#include "s_aalinetemp.h" 472 473 474 475void 476_swrast_choose_aa_line_function(struct gl_context *ctx) 477{ 478 SWcontext *swrast = SWRAST_CONTEXT(ctx); 479 480 assert(ctx->Line.SmoothFlag); 481 482 if (ctx->Texture._EnabledCoordUnits != 0 483 || _swrast_use_fragment_program(ctx) 484 || (ctx->Light.Enabled && 485 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR) 486 || ctx->Fog.ColorSumEnabled 487 || swrast->_FogEnabled) { 488 swrast->Line = aa_general_rgba_line; 489 } 490 else { 491 swrast->Line = aa_rgba_line; 492 } 493} 494