1/*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26#include "c99_math.h"
27#include "main/glheader.h"
28#include "main/macros.h"
29#include "main/mtypes.h"
30#include "main/teximage.h"
31#include "swrast/s_aaline.h"
32#include "swrast/s_context.h"
33#include "swrast/s_span.h"
34#include "swrast/swrast.h"
35
36
37#define SUB_PIXEL 4
38
39
40/*
41 * Info about the AA line we're rendering
42 */
43struct LineInfo
44{
45   GLfloat x0, y0;        /* start */
46   GLfloat x1, y1;        /* end */
47   GLfloat dx, dy;        /* direction vector */
48   GLfloat len;           /* length */
49   GLfloat halfWidth;     /* half of line width */
50   GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
51   /* for coverage computation */
52   GLfloat qx0, qy0;      /* quad vertices */
53   GLfloat qx1, qy1;
54   GLfloat qx2, qy2;
55   GLfloat qx3, qy3;
56   GLfloat ex0, ey0;      /* quad edge vectors */
57   GLfloat ex1, ey1;
58   GLfloat ex2, ey2;
59   GLfloat ex3, ey3;
60
61   /* DO_Z */
62   GLfloat zPlane[4];
63   /* DO_RGBA - always enabled */
64   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
65   /* DO_ATTRIBS */
66   GLfloat wPlane[4];
67   GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
68   GLfloat lambda[VARYING_SLOT_MAX];
69   GLfloat texWidth[VARYING_SLOT_MAX];
70   GLfloat texHeight[VARYING_SLOT_MAX];
71
72   SWspan span;
73};
74
75
76
77/*
78 * Compute the equation of a plane used to interpolate line fragment data
79 * such as color, Z, texture coords, etc.
80 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
81 *        z0, and z1 are the end point values to interpolate.
82 * Output:  plane - the plane equation.
83 *
84 * Note: we don't really have enough parameters to specify a plane.
85 * We take the endpoints of the line and compute a plane such that
86 * the cross product of the line vector and the plane normal is
87 * parallel to the projection plane.
88 */
89static void
90compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
91              GLfloat z0, GLfloat z1, GLfloat plane[4])
92{
93#if 0
94   /* original */
95   const GLfloat px = x1 - x0;
96   const GLfloat py = y1 - y0;
97   const GLfloat pz = z1 - z0;
98   const GLfloat qx = -py;
99   const GLfloat qy = px;
100   const GLfloat qz = 0;
101   const GLfloat a = py * qz - pz * qy;
102   const GLfloat b = pz * qx - px * qz;
103   const GLfloat c = px * qy - py * qx;
104   const GLfloat d = -(a * x0 + b * y0 + c * z0);
105   plane[0] = a;
106   plane[1] = b;
107   plane[2] = c;
108   plane[3] = d;
109#else
110   /* simplified */
111   const GLfloat px = x1 - x0;
112   const GLfloat py = y1 - y0;
113   const GLfloat pz = z0 - z1;
114   const GLfloat a = pz * px;
115   const GLfloat b = pz * py;
116   const GLfloat c = px * px + py * py;
117   const GLfloat d = -(a * x0 + b * y0 + c * z0);
118   if (a == 0.0F && b == 0.0F && c == 0.0F && d == 0.0F) {
119      plane[0] = 0.0F;
120      plane[1] = 0.0F;
121      plane[2] = 1.0F;
122      plane[3] = 0.0F;
123   }
124   else {
125      plane[0] = a;
126      plane[1] = b;
127      plane[2] = c;
128      plane[3] = d;
129   }
130#endif
131}
132
133
134static inline void
135constant_plane(GLfloat value, GLfloat plane[4])
136{
137   plane[0] = 0.0F;
138   plane[1] = 0.0F;
139   plane[2] = -1.0F;
140   plane[3] = value;
141}
142
143
144static inline GLfloat
145solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
146{
147   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
148   return z;
149}
150
151#define SOLVE_PLANE(X, Y, PLANE) \
152   ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
153
154
155/*
156 * Return 1 / solve_plane().
157 */
158static inline GLfloat
159solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
160{
161   const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
162   if (denom == 0.0F)
163      return 0.0F;
164   else
165      return -plane[2] / denom;
166}
167
168
169/*
170 * Solve plane and return clamped GLchan value.
171 */
172static inline GLchan
173solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
174{
175   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
176#if CHAN_TYPE == GL_FLOAT
177   return CLAMP(z, 0.0F, CHAN_MAXF);
178#else
179   if (z < 0)
180      return 0;
181   else if (z > CHAN_MAX)
182      return CHAN_MAX;
183   return (GLchan) lroundf(z);
184#endif
185}
186
187
188/*
189 * Compute mipmap level of detail.
190 */
191static inline GLfloat
192compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
193               GLfloat invQ, GLfloat width, GLfloat height)
194{
195   GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
196   GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
197   GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
198   GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
199   GLfloat r1 = dudx * dudx + dudy * dudy;
200   GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
201   GLfloat rho2 = r1 + r2;
202   /* return log base 2 of rho */
203   if (rho2 == 0.0F)
204      return 0.0;
205   else
206      return logf(rho2) * 1.442695f * 0.5f;/* 1.442695 = 1/log(2) */
207}
208
209
210
211
212/*
213 * Fill in the samples[] array with the (x,y) subpixel positions of
214 * xSamples * ySamples sample positions.
215 * Note that the four corner samples are put into the first four
216 * positions of the array.  This allows us to optimize for the common
217 * case of all samples being inside the polygon.
218 */
219static void
220make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
221{
222   const GLfloat dx = 1.0F / (GLfloat) xSamples;
223   const GLfloat dy = 1.0F / (GLfloat) ySamples;
224   GLint x, y;
225   GLint i;
226
227   i = 4;
228   for (x = 0; x < xSamples; x++) {
229      for (y = 0; y < ySamples; y++) {
230         GLint j;
231         if (x == 0 && y == 0) {
232            /* lower left */
233            j = 0;
234         }
235         else if (x == xSamples - 1 && y == 0) {
236            /* lower right */
237            j = 1;
238         }
239         else if (x == 0 && y == ySamples - 1) {
240            /* upper left */
241            j = 2;
242         }
243         else if (x == xSamples - 1 && y == ySamples - 1) {
244            /* upper right */
245            j = 3;
246         }
247         else {
248            j = i++;
249         }
250         samples[j][0] = x * dx + 0.5F * dx;
251         samples[j][1] = y * dy + 0.5F * dy;
252      }
253   }
254}
255
256
257
258/*
259 * Compute how much of the given pixel's area is inside the rectangle
260 * defined by vertices v0, v1, v2, v3.
261 * Vertices MUST be specified in counter-clockwise order.
262 * Return:  coverage in [0, 1].
263 */
264static GLfloat
265compute_coveragef(const struct LineInfo *info,
266                  GLint winx, GLint winy)
267{
268   static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
269   static GLboolean haveSamples = GL_FALSE;
270   const GLfloat x = (GLfloat) winx;
271   const GLfloat y = (GLfloat) winy;
272   GLint stop = 4, i;
273   GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
274
275   if (!haveSamples) {
276      make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
277      haveSamples = GL_TRUE;
278   }
279
280#if 0 /*DEBUG*/
281   {
282      const GLfloat area = dx0 * dy1 - dx1 * dy0;
283      assert(area >= 0.0);
284   }
285#endif
286
287   for (i = 0; i < stop; i++) {
288      const GLfloat sx = x + samples[i][0];
289      const GLfloat sy = y + samples[i][1];
290      const GLfloat fx0 = sx - info->qx0;
291      const GLfloat fy0 = sy - info->qy0;
292      const GLfloat fx1 = sx - info->qx1;
293      const GLfloat fy1 = sy - info->qy1;
294      const GLfloat fx2 = sx - info->qx2;
295      const GLfloat fy2 = sy - info->qy2;
296      const GLfloat fx3 = sx - info->qx3;
297      const GLfloat fy3 = sy - info->qy3;
298      /* cross product determines if sample is inside or outside each edge */
299      GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
300      GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
301      GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
302      GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
303      /* Check if the sample is exactly on an edge.  If so, let cross be a
304       * positive or negative value depending on the direction of the edge.
305       */
306      if (cross0 == 0.0F)
307         cross0 = info->ex0 + info->ey0;
308      if (cross1 == 0.0F)
309         cross1 = info->ex1 + info->ey1;
310      if (cross2 == 0.0F)
311         cross2 = info->ex2 + info->ey2;
312      if (cross3 == 0.0F)
313         cross3 = info->ex3 + info->ey3;
314      if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
315         /* point is outside quadrilateral */
316         insideCount -= 1.0F;
317         stop = SUB_PIXEL * SUB_PIXEL;
318      }
319   }
320   if (stop == 4)
321      return 1.0F;
322   else
323      return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
324}
325
326
327typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
328                          int ix, int iy);
329
330
331
332/*
333 * Draw an AA line segment (called many times per line when stippling)
334 */
335static void
336segment(struct gl_context *ctx,
337        struct LineInfo *line,
338        plot_func plot,
339        GLfloat t0, GLfloat t1)
340{
341   const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
342   const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
343   /* compute the actual segment's endpoints */
344   const GLfloat x0 = line->x0 + t0 * line->dx;
345   const GLfloat y0 = line->y0 + t0 * line->dy;
346   const GLfloat x1 = line->x0 + t1 * line->dx;
347   const GLfloat y1 = line->y0 + t1 * line->dy;
348
349   /* compute vertices of the line-aligned quadrilateral */
350   line->qx0 = x0 - line->yAdj;
351   line->qy0 = y0 + line->xAdj;
352   line->qx1 = x0 + line->yAdj;
353   line->qy1 = y0 - line->xAdj;
354   line->qx2 = x1 + line->yAdj;
355   line->qy2 = y1 - line->xAdj;
356   line->qx3 = x1 - line->yAdj;
357   line->qy3 = y1 + line->xAdj;
358   /* compute the quad's edge vectors (for coverage calc) */
359   line->ex0 = line->qx1 - line->qx0;
360   line->ey0 = line->qy1 - line->qy0;
361   line->ex1 = line->qx2 - line->qx1;
362   line->ey1 = line->qy2 - line->qy1;
363   line->ex2 = line->qx3 - line->qx2;
364   line->ey2 = line->qy3 - line->qy2;
365   line->ex3 = line->qx0 - line->qx3;
366   line->ey3 = line->qy0 - line->qy3;
367
368   if (absDx > absDy) {
369      /* X-major line */
370      GLfloat dydx = line->dy / line->dx;
371      GLfloat xLeft, xRight, yBot, yTop;
372      GLint ix, ixRight;
373      if (x0 < x1) {
374         xLeft = x0 - line->halfWidth;
375         xRight = x1 + line->halfWidth;
376         if (line->dy >= 0.0F) {
377            yBot = y0 - 3.0F * line->halfWidth;
378            yTop = y0 + line->halfWidth;
379         }
380         else {
381            yBot = y0 - line->halfWidth;
382            yTop = y0 + 3.0F * line->halfWidth;
383         }
384      }
385      else {
386         xLeft = x1 - line->halfWidth;
387         xRight = x0 + line->halfWidth;
388         if (line->dy <= 0.0F) {
389            yBot = y1 - 3.0F * line->halfWidth;
390            yTop = y1 + line->halfWidth;
391         }
392         else {
393            yBot = y1 - line->halfWidth;
394            yTop = y1 + 3.0F * line->halfWidth;
395         }
396      }
397
398      /* scan along the line, left-to-right */
399      ixRight = (GLint) (xRight + 1.0F);
400
401      /*printf("avg span height: %g\n", yTop - yBot);*/
402      for (ix = (GLint) xLeft; ix < ixRight; ix++) {
403         const GLint iyBot = (GLint) yBot;
404         const GLint iyTop = (GLint) (yTop + 1.0F);
405         GLint iy;
406         /* scan across the line, bottom-to-top */
407         for (iy = iyBot; iy < iyTop; iy++) {
408            plot(ctx, line, ix, iy);
409         }
410         yBot += dydx;
411         yTop += dydx;
412      }
413   }
414   else {
415      /* Y-major line */
416      GLfloat dxdy = line->dx / line->dy;
417      GLfloat yBot, yTop, xLeft, xRight;
418      GLint iy, iyTop;
419      if (y0 < y1) {
420         yBot = y0 - line->halfWidth;
421         yTop = y1 + line->halfWidth;
422         if (line->dx >= 0.0F) {
423            xLeft = x0 - 3.0F * line->halfWidth;
424            xRight = x0 + line->halfWidth;
425         }
426         else {
427            xLeft = x0 - line->halfWidth;
428            xRight = x0 + 3.0F * line->halfWidth;
429         }
430      }
431      else {
432         yBot = y1 - line->halfWidth;
433         yTop = y0 + line->halfWidth;
434         if (line->dx <= 0.0F) {
435            xLeft = x1 - 3.0F * line->halfWidth;
436            xRight = x1 + line->halfWidth;
437         }
438         else {
439            xLeft = x1 - line->halfWidth;
440            xRight = x1 + 3.0F * line->halfWidth;
441         }
442      }
443
444      /* scan along the line, bottom-to-top */
445      iyTop = (GLint) (yTop + 1.0F);
446
447      /*printf("avg span width: %g\n", xRight - xLeft);*/
448      for (iy = (GLint) yBot; iy < iyTop; iy++) {
449         const GLint ixLeft = (GLint) xLeft;
450         const GLint ixRight = (GLint) (xRight + 1.0F);
451         GLint ix;
452         /* scan across the line, left-to-right */
453         for (ix = ixLeft; ix < ixRight; ix++) {
454            plot(ctx, line, ix, iy);
455         }
456         xLeft += dxdy;
457         xRight += dxdy;
458      }
459   }
460}
461
462
463#define NAME(x) aa_rgba_##x
464#define DO_Z
465#include "s_aalinetemp.h"
466
467
468#define NAME(x)  aa_general_rgba_##x
469#define DO_Z
470#define DO_ATTRIBS
471#include "s_aalinetemp.h"
472
473
474
475void
476_swrast_choose_aa_line_function(struct gl_context *ctx)
477{
478   SWcontext *swrast = SWRAST_CONTEXT(ctx);
479
480   assert(ctx->Line.SmoothFlag);
481
482   if (ctx->Texture._EnabledCoordUnits != 0
483       || _swrast_use_fragment_program(ctx)
484       || (ctx->Light.Enabled &&
485           ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
486       || ctx->Fog.ColorSumEnabled
487       || swrast->_FogEnabled) {
488      swrast->Line = aa_general_rgba_line;
489   }
490   else {
491      swrast->Line = aa_rgba_line;
492   }
493}
494