1/* 2 * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io> 3 * Copyright (C) 2019-2020 Collabora, Ltd. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 25#include "compiler.h" 26#include "midgard_ops.h" 27 28void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new) 29{ 30 mir_foreach_src(ins, i) { 31 if (ins->src[i] == old) 32 ins->src[i] = new; 33 } 34} 35 36void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new) 37{ 38 if (ins->dest == old) 39 ins->dest = new; 40} 41 42static void 43mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle) 44{ 45 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) { 46 if (ins->src[i] != old) continue; 47 48 ins->src[i] = new; 49 mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]); 50 } 51} 52 53void 54mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new) 55{ 56 mir_foreach_instr_global(ctx, ins) { 57 mir_rewrite_index_src_single(ins, old, new); 58 } 59} 60 61void 62mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle) 63{ 64 mir_foreach_instr_global(ctx, ins) { 65 mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle); 66 } 67} 68 69void 70mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new) 71{ 72 mir_foreach_instr_global(ctx, ins) { 73 mir_rewrite_index_dst_single(ins, old, new); 74 } 75 76 /* Implicitly written before the shader */ 77 if (ctx->blend_input == old) 78 ctx->blend_input = new; 79 80 if (ctx->blend_src1 == old) 81 ctx->blend_src1 = new; 82} 83 84void 85mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new) 86{ 87 mir_rewrite_index_src(ctx, old, new); 88 mir_rewrite_index_dst(ctx, old, new); 89} 90 91unsigned 92mir_use_count(compiler_context *ctx, unsigned value) 93{ 94 unsigned used_count = 0; 95 96 mir_foreach_instr_global(ctx, ins) { 97 if (mir_has_arg(ins, value)) 98 ++used_count; 99 } 100 101 if (ctx->blend_input == value) 102 ++used_count; 103 104 if (ctx->blend_src1 == value) 105 ++used_count; 106 107 return used_count; 108} 109 110/* Checks if a value is used only once (or totally dead), which is an important 111 * heuristic to figure out if certain optimizations are Worth It (TM) */ 112 113bool 114mir_single_use(compiler_context *ctx, unsigned value) 115{ 116 /* We can replicate constants in places so who cares */ 117 if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) 118 return true; 119 120 return mir_use_count(ctx, value) <= 1; 121} 122 123bool 124mir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle) 125{ 126 bool is_int = midgard_is_integer_op(ins->op); 127 128 if (is_int) { 129 if (ins->src_shift[i]) return true; 130 } else { 131 if (ins->src_neg[i]) return true; 132 if (ins->src_abs[i]) return true; 133 } 134 135 if (ins->dest_type != ins->src_types[i]) return true; 136 137 if (check_swizzle) { 138 for (unsigned c = 0; c < 16; ++c) { 139 if (!(ins->mask & (1 << c))) continue; 140 if (ins->swizzle[i][c] != c) return true; 141 } 142 } 143 144 return false; 145} 146 147bool 148mir_nontrivial_outmod(midgard_instruction *ins) 149{ 150 bool is_int = midgard_is_integer_op(ins->op); 151 unsigned mod = ins->outmod; 152 153 if (ins->dest_type != ins->src_types[1]) 154 return true; 155 156 if (is_int) 157 return mod != midgard_outmod_keeplo; 158 else 159 return mod != midgard_outmod_none; 160} 161 162/* 128 / sz = exp2(log2(128 / sz)) 163 * = exp2(log2(128) - log2(sz)) 164 * = exp2(7 - log2(sz)) 165 * = 1 << (7 - log2(sz)) 166 */ 167 168static unsigned 169mir_components_for_bits(unsigned bits) 170{ 171 return 1 << (7 - util_logbase2(bits)); 172} 173 174unsigned 175mir_components_for_type(nir_alu_type T) 176{ 177 unsigned sz = nir_alu_type_get_type_size(T); 178 return mir_components_for_bits(sz); 179} 180 181uint16_t 182mir_from_bytemask(uint16_t bytemask, unsigned bits) 183{ 184 unsigned value = 0; 185 unsigned count = bits / 8; 186 187 for (unsigned c = 0, d = 0; c < 16; c += count, ++d) { 188 bool a = (bytemask & (1 << c)) != 0; 189 190 for (unsigned q = c; q < count; ++q) 191 assert(((bytemask & (1 << q)) != 0) == a); 192 193 value |= (a << d); 194 } 195 196 return value; 197} 198 199/* Rounds up a bytemask to fill a given component count. Iterate each 200 * component, and check if any bytes in the component are masked on */ 201 202uint16_t 203mir_round_bytemask_up(uint16_t mask, unsigned bits) 204{ 205 unsigned bytes = bits / 8; 206 unsigned maxmask = mask_of(bytes); 207 unsigned channels = mir_components_for_bits(bits); 208 209 for (unsigned c = 0; c < channels; ++c) { 210 unsigned submask = maxmask << (c * bytes); 211 212 if (mask & submask) 213 mask |= submask; 214 } 215 216 return mask; 217} 218 219/* Grabs the per-byte mask of an instruction (as opposed to per-component) */ 220 221uint16_t 222mir_bytemask(midgard_instruction *ins) 223{ 224 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type); 225 return pan_to_bytemask(type_size, ins->mask); 226} 227 228void 229mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask) 230{ 231 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type); 232 ins->mask = mir_from_bytemask(bytemask, type_size); 233} 234 235/* Checks if we should use an upper destination override, rather than the lower 236 * one in the IR. Returns zero if no, returns the bytes to shift otherwise */ 237 238signed 239mir_upper_override(midgard_instruction *ins, unsigned inst_size) 240{ 241 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type); 242 243 /* If the sizes are the same, there's nothing to override */ 244 if (type_size == inst_size) 245 return -1; 246 247 /* There are 16 bytes per vector, so there are (16/bytes) 248 * components per vector. So the magic half is half of 249 * (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits 250 * */ 251 252 unsigned threshold = mir_components_for_bits(type_size) >> 1; 253 254 /* How many components did we shift over? */ 255 unsigned zeroes = __builtin_ctz(ins->mask); 256 257 /* Did we hit the threshold? */ 258 return (zeroes >= threshold) ? threshold : 0; 259} 260 261/* Creates a mask of the components of a node read by an instruction, by 262 * analyzing the swizzle with respect to the instruction's mask. E.g.: 263 * 264 * fadd r0.xz, r1.yyyy, r2.zwyx 265 * 266 * will return a mask of Z/Y for r2 267 */ 268 269static uint16_t 270mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, unsigned bits) 271{ 272 unsigned cmask = 0; 273 274 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) { 275 if (!(inmask & (1 << c))) continue; 276 cmask |= (1 << swizzle[c]); 277 } 278 279 return pan_to_bytemask(bits, cmask); 280} 281 282uint16_t 283mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i) 284{ 285 /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */ 286 if (ins->compact_branch && ins->branch.conditional && (i == 0)) 287 return 0xF; 288 289 /* ALU ops act componentwise so we need to pay attention to 290 * their mask. Texture/ldst does not so we don't clamp source 291 * readmasks based on the writemask */ 292 unsigned qmask = ~0; 293 294 /* Handle dot products and things */ 295 if (ins->type == TAG_ALU_4 && !ins->compact_branch) { 296 unsigned props = alu_opcode_props[ins->op].props; 297 298 unsigned channel_override = GET_CHANNEL_COUNT(props); 299 300 if (channel_override) 301 qmask = mask_of(channel_override); 302 else 303 qmask = ins->mask; 304 } 305 306 return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask, 307 nir_alu_type_get_type_size(ins->src_types[i])); 308} 309 310uint16_t 311mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node) 312{ 313 uint16_t mask = 0; 314 315 if (node == ~0) 316 return 0; 317 318 mir_foreach_src(ins, i) { 319 if (ins->src[i] != node) continue; 320 mask |= mir_bytemask_of_read_components_index(ins, i); 321 } 322 323 return mask; 324} 325 326/* Register allocation occurs after instruction scheduling, which is fine until 327 * we start needing to spill registers and therefore insert instructions into 328 * an already-scheduled program. We don't have to be terribly efficient about 329 * this, since spilling is already slow. So just semantically we need to insert 330 * the instruction into a new bundle before/after the bundle of the instruction 331 * in question */ 332 333static midgard_bundle 334mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins) 335{ 336 midgard_instruction *u = mir_upload_ins(ctx, ins); 337 338 midgard_bundle bundle = { 339 .tag = ins.type, 340 .instruction_count = 1, 341 .instructions = { u }, 342 }; 343 344 if (bundle.tag == TAG_ALU_4) { 345 assert(OP_IS_MOVE(u->op)); 346 u->unit = UNIT_VMUL; 347 348 size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu); 349 bundle.padding = ~(bytes_emitted - 1) & 0xF; 350 bundle.control = ins.type | u->unit; 351 } 352 353 return bundle; 354} 355 356static unsigned 357mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block) 358{ 359 midgard_bundle *bundles = 360 (midgard_bundle *) block->bundles.data; 361 362 size_t count = (block->bundles.size / sizeof(midgard_bundle)); 363 364 for (unsigned i = 0; i < count; ++i) { 365 for (unsigned j = 0; j < bundles[i].instruction_count; ++j) { 366 if (bundles[i].instructions[j] == tag) 367 return i; 368 } 369 } 370 371 mir_print_instruction(tag); 372 unreachable("Instruction not scheduled in block"); 373} 374 375void 376mir_insert_instruction_before_scheduled( 377 compiler_context *ctx, 378 midgard_block *block, 379 midgard_instruction *tag, 380 midgard_instruction ins) 381{ 382 unsigned before = mir_bundle_idx_for_ins(tag, block); 383 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle); 384 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1); 385 386 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data; 387 memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle)); 388 midgard_bundle *before_bundle = bundles + before + 1; 389 390 midgard_bundle new = mir_bundle_for_op(ctx, ins); 391 memcpy(bundles + before, &new, sizeof(new)); 392 393 list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link); 394 block->quadword_count += midgard_tag_props[new.tag].size; 395} 396 397void 398mir_insert_instruction_after_scheduled( 399 compiler_context *ctx, 400 midgard_block *block, 401 midgard_instruction *tag, 402 midgard_instruction ins) 403{ 404 /* We need to grow the bundles array to add our new bundle */ 405 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle); 406 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1); 407 408 /* Find the bundle that we want to insert after */ 409 unsigned after = mir_bundle_idx_for_ins(tag, block); 410 411 /* All the bundles after that one, we move ahead by one */ 412 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data; 413 memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle)); 414 midgard_bundle *after_bundle = bundles + after; 415 416 midgard_bundle new = mir_bundle_for_op(ctx, ins); 417 memcpy(bundles + after + 1, &new, sizeof(new)); 418 list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link); 419 block->quadword_count += midgard_tag_props[new.tag].size; 420} 421 422/* Flip the first-two arguments of a (binary) op. Currently ALU 423 * only, no known uses for ldst/tex */ 424 425void 426mir_flip(midgard_instruction *ins) 427{ 428 unsigned temp = ins->src[0]; 429 ins->src[0] = ins->src[1]; 430 ins->src[1] = temp; 431 432 assert(ins->type == TAG_ALU_4); 433 434 temp = ins->src_types[0]; 435 ins->src_types[0] = ins->src_types[1]; 436 ins->src_types[1] = temp; 437 438 temp = ins->src_abs[0]; 439 ins->src_abs[0] = ins->src_abs[1]; 440 ins->src_abs[1] = temp; 441 442 temp = ins->src_neg[0]; 443 ins->src_neg[0] = ins->src_neg[1]; 444 ins->src_neg[1] = temp; 445 446 temp = ins->src_invert[0]; 447 ins->src_invert[0] = ins->src_invert[1]; 448 ins->src_invert[1] = temp; 449 450 unsigned temp_swizzle[16]; 451 memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0])); 452 memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0])); 453 memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0])); 454} 455 456/* Before squashing, calculate ctx->temp_count just by observing the MIR */ 457 458void 459mir_compute_temp_count(compiler_context *ctx) 460{ 461 if (ctx->temp_count) 462 return; 463 464 unsigned max_dest = 0; 465 466 mir_foreach_instr_global(ctx, ins) { 467 if (ins->dest < SSA_FIXED_MINIMUM) 468 max_dest = MAX2(max_dest, ins->dest + 1); 469 } 470 471 ctx->temp_count = max_dest; 472} 473