1/*
2 * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 * Copyright (C) 2019-2020 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#include "compiler.h"
26#include "midgard_ops.h"
27
28void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
29{
30        mir_foreach_src(ins, i) {
31                if (ins->src[i] == old)
32                        ins->src[i] = new;
33        }
34}
35
36void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
37{
38        if (ins->dest == old)
39                ins->dest = new;
40}
41
42static void
43mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
44{
45        for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
46                if (ins->src[i] != old) continue;
47
48                ins->src[i] = new;
49                mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
50        }
51}
52
53void
54mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
55{
56        mir_foreach_instr_global(ctx, ins) {
57                mir_rewrite_index_src_single(ins, old, new);
58        }
59}
60
61void
62mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
63{
64        mir_foreach_instr_global(ctx, ins) {
65                mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
66        }
67}
68
69void
70mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
71{
72        mir_foreach_instr_global(ctx, ins) {
73                mir_rewrite_index_dst_single(ins, old, new);
74        }
75
76        /* Implicitly written before the shader */
77        if (ctx->blend_input == old)
78                ctx->blend_input = new;
79
80        if (ctx->blend_src1 == old)
81                ctx->blend_src1 = new;
82}
83
84void
85mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
86{
87        mir_rewrite_index_src(ctx, old, new);
88        mir_rewrite_index_dst(ctx, old, new);
89}
90
91unsigned
92mir_use_count(compiler_context *ctx, unsigned value)
93{
94        unsigned used_count = 0;
95
96        mir_foreach_instr_global(ctx, ins) {
97                if (mir_has_arg(ins, value))
98                        ++used_count;
99        }
100
101        if (ctx->blend_input == value)
102                ++used_count;
103
104        if (ctx->blend_src1 == value)
105                ++used_count;
106
107        return used_count;
108}
109
110/* Checks if a value is used only once (or totally dead), which is an important
111 * heuristic to figure out if certain optimizations are Worth It (TM) */
112
113bool
114mir_single_use(compiler_context *ctx, unsigned value)
115{
116        /* We can replicate constants in places so who cares */
117        if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
118                return true;
119
120        return mir_use_count(ctx, value) <= 1;
121}
122
123bool
124mir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle)
125{
126        bool is_int = midgard_is_integer_op(ins->op);
127
128        if (is_int) {
129                if (ins->src_shift[i]) return true;
130        } else {
131                if (ins->src_neg[i]) return true;
132                if (ins->src_abs[i]) return true;
133        }
134
135        if (ins->dest_type != ins->src_types[i]) return true;
136
137        if (check_swizzle) {
138                for (unsigned c = 0; c < 16; ++c) {
139                        if (!(ins->mask & (1 << c))) continue;
140                        if (ins->swizzle[i][c] != c) return true;
141                }
142        }
143
144        return false;
145}
146
147bool
148mir_nontrivial_outmod(midgard_instruction *ins)
149{
150        bool is_int = midgard_is_integer_op(ins->op);
151        unsigned mod = ins->outmod;
152
153        if (ins->dest_type != ins->src_types[1])
154                return true;
155
156        if (is_int)
157                return mod != midgard_outmod_keeplo;
158        else
159                return mod != midgard_outmod_none;
160}
161
162/* 128 / sz = exp2(log2(128 / sz))
163 *          = exp2(log2(128) - log2(sz))
164 *          = exp2(7 - log2(sz))
165 *          = 1 << (7 - log2(sz))
166 */
167
168static unsigned
169mir_components_for_bits(unsigned bits)
170{
171        return 1 << (7 - util_logbase2(bits));
172}
173
174unsigned
175mir_components_for_type(nir_alu_type T)
176{
177        unsigned sz = nir_alu_type_get_type_size(T);
178        return mir_components_for_bits(sz);
179}
180
181uint16_t
182mir_from_bytemask(uint16_t bytemask, unsigned bits)
183{
184        unsigned value = 0;
185        unsigned count = bits / 8;
186
187        for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
188                bool a = (bytemask & (1 << c)) != 0;
189
190                for (unsigned q = c; q < count; ++q)
191                        assert(((bytemask & (1 << q)) != 0) == a);
192
193                value |= (a << d);
194        }
195
196        return value;
197}
198
199/* Rounds up a bytemask to fill a given component count. Iterate each
200 * component, and check if any bytes in the component are masked on */
201
202uint16_t
203mir_round_bytemask_up(uint16_t mask, unsigned bits)
204{
205        unsigned bytes = bits / 8;
206        unsigned maxmask = mask_of(bytes);
207        unsigned channels = mir_components_for_bits(bits);
208
209        for (unsigned c = 0; c < channels; ++c) {
210                unsigned submask = maxmask << (c * bytes);
211
212                if (mask & submask)
213                        mask |= submask;
214        }
215
216        return mask;
217}
218
219/* Grabs the per-byte mask of an instruction (as opposed to per-component) */
220
221uint16_t
222mir_bytemask(midgard_instruction *ins)
223{
224        unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
225        return pan_to_bytemask(type_size, ins->mask);
226}
227
228void
229mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
230{
231        unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
232        ins->mask = mir_from_bytemask(bytemask, type_size);
233}
234
235/* Checks if we should use an upper destination override, rather than the lower
236 * one in the IR. Returns zero if no, returns the bytes to shift otherwise */
237
238signed
239mir_upper_override(midgard_instruction *ins, unsigned inst_size)
240{
241        unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
242
243        /* If the sizes are the same, there's nothing to override */
244        if (type_size == inst_size)
245                return -1;
246
247        /* There are 16 bytes per vector, so there are (16/bytes)
248         * components per vector. So the magic half is half of
249         * (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits
250         * */
251
252        unsigned threshold = mir_components_for_bits(type_size) >> 1;
253
254        /* How many components did we shift over? */
255        unsigned zeroes = __builtin_ctz(ins->mask);
256
257        /* Did we hit the threshold? */
258        return (zeroes >= threshold) ? threshold : 0;
259}
260
261/* Creates a mask of the components of a node read by an instruction, by
262 * analyzing the swizzle with respect to the instruction's mask. E.g.:
263 *
264 *  fadd r0.xz, r1.yyyy, r2.zwyx
265 *
266 * will return a mask of Z/Y for r2
267 */
268
269static uint16_t
270mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, unsigned bits)
271{
272        unsigned cmask = 0;
273
274        for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
275                if (!(inmask & (1 << c))) continue;
276                cmask |= (1 << swizzle[c]);
277        }
278
279        return pan_to_bytemask(bits, cmask);
280}
281
282uint16_t
283mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
284{
285        /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
286        if (ins->compact_branch && ins->branch.conditional && (i == 0))
287                return 0xF;
288
289        /* ALU ops act componentwise so we need to pay attention to
290         * their mask. Texture/ldst does not so we don't clamp source
291         * readmasks based on the writemask */
292        unsigned qmask = ~0;
293
294        /* Handle dot products and things */
295        if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
296                unsigned props = alu_opcode_props[ins->op].props;
297
298                unsigned channel_override = GET_CHANNEL_COUNT(props);
299
300                if (channel_override)
301                        qmask = mask_of(channel_override);
302                else
303                        qmask = ins->mask;
304        }
305
306        return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask,
307                nir_alu_type_get_type_size(ins->src_types[i]));
308}
309
310uint16_t
311mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
312{
313        uint16_t mask = 0;
314
315        if (node == ~0)
316                return 0;
317
318        mir_foreach_src(ins, i) {
319                if (ins->src[i] != node) continue;
320                mask |= mir_bytemask_of_read_components_index(ins, i);
321        }
322
323        return mask;
324}
325
326/* Register allocation occurs after instruction scheduling, which is fine until
327 * we start needing to spill registers and therefore insert instructions into
328 * an already-scheduled program. We don't have to be terribly efficient about
329 * this, since spilling is already slow. So just semantically we need to insert
330 * the instruction into a new bundle before/after the bundle of the instruction
331 * in question */
332
333static midgard_bundle
334mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
335{
336        midgard_instruction *u = mir_upload_ins(ctx, ins);
337
338        midgard_bundle bundle = {
339                .tag = ins.type,
340                .instruction_count = 1,
341                .instructions = { u },
342        };
343
344        if (bundle.tag == TAG_ALU_4) {
345                assert(OP_IS_MOVE(u->op));
346                u->unit = UNIT_VMUL;
347
348                size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
349                bundle.padding = ~(bytes_emitted - 1) & 0xF;
350                bundle.control = ins.type | u->unit;
351        }
352
353        return bundle;
354}
355
356static unsigned
357mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
358{
359        midgard_bundle *bundles =
360                (midgard_bundle *) block->bundles.data;
361
362        size_t count = (block->bundles.size / sizeof(midgard_bundle));
363
364        for (unsigned i = 0; i < count; ++i) {
365                for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
366                        if (bundles[i].instructions[j] == tag)
367                                return i;
368                }
369        }
370
371        mir_print_instruction(tag);
372        unreachable("Instruction not scheduled in block");
373}
374
375void
376mir_insert_instruction_before_scheduled(
377        compiler_context *ctx,
378        midgard_block *block,
379        midgard_instruction *tag,
380        midgard_instruction ins)
381{
382        unsigned before = mir_bundle_idx_for_ins(tag, block);
383        size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
384        UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
385
386        midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
387        memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
388        midgard_bundle *before_bundle = bundles + before + 1;
389
390        midgard_bundle new = mir_bundle_for_op(ctx, ins);
391        memcpy(bundles + before, &new, sizeof(new));
392
393        list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
394        block->quadword_count += midgard_tag_props[new.tag].size;
395}
396
397void
398mir_insert_instruction_after_scheduled(
399        compiler_context *ctx,
400        midgard_block *block,
401        midgard_instruction *tag,
402        midgard_instruction ins)
403{
404        /* We need to grow the bundles array to add our new bundle */
405        size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
406        UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
407
408        /* Find the bundle that we want to insert after */
409        unsigned after = mir_bundle_idx_for_ins(tag, block);
410
411        /* All the bundles after that one, we move ahead by one */
412        midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
413        memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
414        midgard_bundle *after_bundle = bundles + after;
415
416        midgard_bundle new = mir_bundle_for_op(ctx, ins);
417        memcpy(bundles + after + 1, &new, sizeof(new));
418        list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
419        block->quadword_count += midgard_tag_props[new.tag].size;
420}
421
422/* Flip the first-two arguments of a (binary) op. Currently ALU
423 * only, no known uses for ldst/tex */
424
425void
426mir_flip(midgard_instruction *ins)
427{
428        unsigned temp = ins->src[0];
429        ins->src[0] = ins->src[1];
430        ins->src[1] = temp;
431
432        assert(ins->type == TAG_ALU_4);
433
434        temp = ins->src_types[0];
435        ins->src_types[0] = ins->src_types[1];
436        ins->src_types[1] = temp;
437
438        temp = ins->src_abs[0];
439        ins->src_abs[0] = ins->src_abs[1];
440        ins->src_abs[1] = temp;
441
442        temp = ins->src_neg[0];
443        ins->src_neg[0] = ins->src_neg[1];
444        ins->src_neg[1] = temp;
445
446        temp = ins->src_invert[0];
447        ins->src_invert[0] = ins->src_invert[1];
448        ins->src_invert[1] = temp;
449
450        unsigned temp_swizzle[16];
451        memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
452        memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
453        memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
454}
455
456/* Before squashing, calculate ctx->temp_count just by observing the MIR */
457
458void
459mir_compute_temp_count(compiler_context *ctx)
460{
461        if (ctx->temp_count)
462                return;
463
464        unsigned max_dest = 0;
465
466        mir_foreach_instr_global(ctx, ins) {
467                if (ins->dest < SSA_FIXED_MINIMUM)
468                        max_dest = MAX2(max_dest, ins->dest + 1);
469        }
470
471        ctx->temp_count = max_dest;
472}
473