17ec681f3Smrg/* 27ec681f3Smrg * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io> 37ec681f3Smrg * Copyright (C) 2019-2020 Collabora, Ltd. 47ec681f3Smrg * 57ec681f3Smrg * Permission is hereby granted, free of charge, to any person obtaining a 67ec681f3Smrg * copy of this software and associated documentation files (the "Software"), 77ec681f3Smrg * to deal in the Software without restriction, including without limitation 87ec681f3Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 97ec681f3Smrg * and/or sell copies of the Software, and to permit persons to whom the 107ec681f3Smrg * Software is furnished to do so, subject to the following conditions: 117ec681f3Smrg * 127ec681f3Smrg * The above copyright notice and this permission notice (including the next 137ec681f3Smrg * paragraph) shall be included in all copies or substantial portions of the 147ec681f3Smrg * Software. 157ec681f3Smrg * 167ec681f3Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 177ec681f3Smrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 187ec681f3Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 197ec681f3Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 207ec681f3Smrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 217ec681f3Smrg * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 227ec681f3Smrg * SOFTWARE. 237ec681f3Smrg */ 247ec681f3Smrg 257ec681f3Smrg#include "compiler.h" 267ec681f3Smrg#include "midgard_ops.h" 277ec681f3Smrg 287ec681f3Smrgvoid mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new) 297ec681f3Smrg{ 307ec681f3Smrg mir_foreach_src(ins, i) { 317ec681f3Smrg if (ins->src[i] == old) 327ec681f3Smrg ins->src[i] = new; 337ec681f3Smrg } 347ec681f3Smrg} 357ec681f3Smrg 367ec681f3Smrgvoid mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new) 377ec681f3Smrg{ 387ec681f3Smrg if (ins->dest == old) 397ec681f3Smrg ins->dest = new; 407ec681f3Smrg} 417ec681f3Smrg 427ec681f3Smrgstatic void 437ec681f3Smrgmir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle) 447ec681f3Smrg{ 457ec681f3Smrg for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) { 467ec681f3Smrg if (ins->src[i] != old) continue; 477ec681f3Smrg 487ec681f3Smrg ins->src[i] = new; 497ec681f3Smrg mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]); 507ec681f3Smrg } 517ec681f3Smrg} 527ec681f3Smrg 537ec681f3Smrgvoid 547ec681f3Smrgmir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new) 557ec681f3Smrg{ 567ec681f3Smrg mir_foreach_instr_global(ctx, ins) { 577ec681f3Smrg mir_rewrite_index_src_single(ins, old, new); 587ec681f3Smrg } 597ec681f3Smrg} 607ec681f3Smrg 617ec681f3Smrgvoid 627ec681f3Smrgmir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle) 637ec681f3Smrg{ 647ec681f3Smrg mir_foreach_instr_global(ctx, ins) { 657ec681f3Smrg mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle); 667ec681f3Smrg } 677ec681f3Smrg} 687ec681f3Smrg 697ec681f3Smrgvoid 707ec681f3Smrgmir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new) 717ec681f3Smrg{ 727ec681f3Smrg mir_foreach_instr_global(ctx, ins) { 737ec681f3Smrg mir_rewrite_index_dst_single(ins, old, new); 747ec681f3Smrg } 757ec681f3Smrg 767ec681f3Smrg /* Implicitly written before the shader */ 777ec681f3Smrg if (ctx->blend_input == old) 787ec681f3Smrg ctx->blend_input = new; 797ec681f3Smrg 807ec681f3Smrg if (ctx->blend_src1 == old) 817ec681f3Smrg ctx->blend_src1 = new; 827ec681f3Smrg} 837ec681f3Smrg 847ec681f3Smrgvoid 857ec681f3Smrgmir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new) 867ec681f3Smrg{ 877ec681f3Smrg mir_rewrite_index_src(ctx, old, new); 887ec681f3Smrg mir_rewrite_index_dst(ctx, old, new); 897ec681f3Smrg} 907ec681f3Smrg 917ec681f3Smrgunsigned 927ec681f3Smrgmir_use_count(compiler_context *ctx, unsigned value) 937ec681f3Smrg{ 947ec681f3Smrg unsigned used_count = 0; 957ec681f3Smrg 967ec681f3Smrg mir_foreach_instr_global(ctx, ins) { 977ec681f3Smrg if (mir_has_arg(ins, value)) 987ec681f3Smrg ++used_count; 997ec681f3Smrg } 1007ec681f3Smrg 1017ec681f3Smrg if (ctx->blend_input == value) 1027ec681f3Smrg ++used_count; 1037ec681f3Smrg 1047ec681f3Smrg if (ctx->blend_src1 == value) 1057ec681f3Smrg ++used_count; 1067ec681f3Smrg 1077ec681f3Smrg return used_count; 1087ec681f3Smrg} 1097ec681f3Smrg 1107ec681f3Smrg/* Checks if a value is used only once (or totally dead), which is an important 1117ec681f3Smrg * heuristic to figure out if certain optimizations are Worth It (TM) */ 1127ec681f3Smrg 1137ec681f3Smrgbool 1147ec681f3Smrgmir_single_use(compiler_context *ctx, unsigned value) 1157ec681f3Smrg{ 1167ec681f3Smrg /* We can replicate constants in places so who cares */ 1177ec681f3Smrg if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) 1187ec681f3Smrg return true; 1197ec681f3Smrg 1207ec681f3Smrg return mir_use_count(ctx, value) <= 1; 1217ec681f3Smrg} 1227ec681f3Smrg 1237ec681f3Smrgbool 1247ec681f3Smrgmir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle) 1257ec681f3Smrg{ 1267ec681f3Smrg bool is_int = midgard_is_integer_op(ins->op); 1277ec681f3Smrg 1287ec681f3Smrg if (is_int) { 1297ec681f3Smrg if (ins->src_shift[i]) return true; 1307ec681f3Smrg } else { 1317ec681f3Smrg if (ins->src_neg[i]) return true; 1327ec681f3Smrg if (ins->src_abs[i]) return true; 1337ec681f3Smrg } 1347ec681f3Smrg 1357ec681f3Smrg if (ins->dest_type != ins->src_types[i]) return true; 1367ec681f3Smrg 1377ec681f3Smrg if (check_swizzle) { 1387ec681f3Smrg for (unsigned c = 0; c < 16; ++c) { 1397ec681f3Smrg if (!(ins->mask & (1 << c))) continue; 1407ec681f3Smrg if (ins->swizzle[i][c] != c) return true; 1417ec681f3Smrg } 1427ec681f3Smrg } 1437ec681f3Smrg 1447ec681f3Smrg return false; 1457ec681f3Smrg} 1467ec681f3Smrg 1477ec681f3Smrgbool 1487ec681f3Smrgmir_nontrivial_outmod(midgard_instruction *ins) 1497ec681f3Smrg{ 1507ec681f3Smrg bool is_int = midgard_is_integer_op(ins->op); 1517ec681f3Smrg unsigned mod = ins->outmod; 1527ec681f3Smrg 1537ec681f3Smrg if (ins->dest_type != ins->src_types[1]) 1547ec681f3Smrg return true; 1557ec681f3Smrg 1567ec681f3Smrg if (is_int) 1577ec681f3Smrg return mod != midgard_outmod_keeplo; 1587ec681f3Smrg else 1597ec681f3Smrg return mod != midgard_outmod_none; 1607ec681f3Smrg} 1617ec681f3Smrg 1627ec681f3Smrg/* 128 / sz = exp2(log2(128 / sz)) 1637ec681f3Smrg * = exp2(log2(128) - log2(sz)) 1647ec681f3Smrg * = exp2(7 - log2(sz)) 1657ec681f3Smrg * = 1 << (7 - log2(sz)) 1667ec681f3Smrg */ 1677ec681f3Smrg 1687ec681f3Smrgstatic unsigned 1697ec681f3Smrgmir_components_for_bits(unsigned bits) 1707ec681f3Smrg{ 1717ec681f3Smrg return 1 << (7 - util_logbase2(bits)); 1727ec681f3Smrg} 1737ec681f3Smrg 1747ec681f3Smrgunsigned 1757ec681f3Smrgmir_components_for_type(nir_alu_type T) 1767ec681f3Smrg{ 1777ec681f3Smrg unsigned sz = nir_alu_type_get_type_size(T); 1787ec681f3Smrg return mir_components_for_bits(sz); 1797ec681f3Smrg} 1807ec681f3Smrg 1817ec681f3Smrguint16_t 1827ec681f3Smrgmir_from_bytemask(uint16_t bytemask, unsigned bits) 1837ec681f3Smrg{ 1847ec681f3Smrg unsigned value = 0; 1857ec681f3Smrg unsigned count = bits / 8; 1867ec681f3Smrg 1877ec681f3Smrg for (unsigned c = 0, d = 0; c < 16; c += count, ++d) { 1887ec681f3Smrg bool a = (bytemask & (1 << c)) != 0; 1897ec681f3Smrg 1907ec681f3Smrg for (unsigned q = c; q < count; ++q) 1917ec681f3Smrg assert(((bytemask & (1 << q)) != 0) == a); 1927ec681f3Smrg 1937ec681f3Smrg value |= (a << d); 1947ec681f3Smrg } 1957ec681f3Smrg 1967ec681f3Smrg return value; 1977ec681f3Smrg} 1987ec681f3Smrg 1997ec681f3Smrg/* Rounds up a bytemask to fill a given component count. Iterate each 2007ec681f3Smrg * component, and check if any bytes in the component are masked on */ 2017ec681f3Smrg 2027ec681f3Smrguint16_t 2037ec681f3Smrgmir_round_bytemask_up(uint16_t mask, unsigned bits) 2047ec681f3Smrg{ 2057ec681f3Smrg unsigned bytes = bits / 8; 2067ec681f3Smrg unsigned maxmask = mask_of(bytes); 2077ec681f3Smrg unsigned channels = mir_components_for_bits(bits); 2087ec681f3Smrg 2097ec681f3Smrg for (unsigned c = 0; c < channels; ++c) { 2107ec681f3Smrg unsigned submask = maxmask << (c * bytes); 2117ec681f3Smrg 2127ec681f3Smrg if (mask & submask) 2137ec681f3Smrg mask |= submask; 2147ec681f3Smrg } 2157ec681f3Smrg 2167ec681f3Smrg return mask; 2177ec681f3Smrg} 2187ec681f3Smrg 2197ec681f3Smrg/* Grabs the per-byte mask of an instruction (as opposed to per-component) */ 2207ec681f3Smrg 2217ec681f3Smrguint16_t 2227ec681f3Smrgmir_bytemask(midgard_instruction *ins) 2237ec681f3Smrg{ 2247ec681f3Smrg unsigned type_size = nir_alu_type_get_type_size(ins->dest_type); 2257ec681f3Smrg return pan_to_bytemask(type_size, ins->mask); 2267ec681f3Smrg} 2277ec681f3Smrg 2287ec681f3Smrgvoid 2297ec681f3Smrgmir_set_bytemask(midgard_instruction *ins, uint16_t bytemask) 2307ec681f3Smrg{ 2317ec681f3Smrg unsigned type_size = nir_alu_type_get_type_size(ins->dest_type); 2327ec681f3Smrg ins->mask = mir_from_bytemask(bytemask, type_size); 2337ec681f3Smrg} 2347ec681f3Smrg 2357ec681f3Smrg/* Checks if we should use an upper destination override, rather than the lower 2367ec681f3Smrg * one in the IR. Returns zero if no, returns the bytes to shift otherwise */ 2377ec681f3Smrg 2387ec681f3Smrgsigned 2397ec681f3Smrgmir_upper_override(midgard_instruction *ins, unsigned inst_size) 2407ec681f3Smrg{ 2417ec681f3Smrg unsigned type_size = nir_alu_type_get_type_size(ins->dest_type); 2427ec681f3Smrg 2437ec681f3Smrg /* If the sizes are the same, there's nothing to override */ 2447ec681f3Smrg if (type_size == inst_size) 2457ec681f3Smrg return -1; 2467ec681f3Smrg 2477ec681f3Smrg /* There are 16 bytes per vector, so there are (16/bytes) 2487ec681f3Smrg * components per vector. So the magic half is half of 2497ec681f3Smrg * (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits 2507ec681f3Smrg * */ 2517ec681f3Smrg 2527ec681f3Smrg unsigned threshold = mir_components_for_bits(type_size) >> 1; 2537ec681f3Smrg 2547ec681f3Smrg /* How many components did we shift over? */ 2557ec681f3Smrg unsigned zeroes = __builtin_ctz(ins->mask); 2567ec681f3Smrg 2577ec681f3Smrg /* Did we hit the threshold? */ 2587ec681f3Smrg return (zeroes >= threshold) ? threshold : 0; 2597ec681f3Smrg} 2607ec681f3Smrg 2617ec681f3Smrg/* Creates a mask of the components of a node read by an instruction, by 2627ec681f3Smrg * analyzing the swizzle with respect to the instruction's mask. E.g.: 2637ec681f3Smrg * 2647ec681f3Smrg * fadd r0.xz, r1.yyyy, r2.zwyx 2657ec681f3Smrg * 2667ec681f3Smrg * will return a mask of Z/Y for r2 2677ec681f3Smrg */ 2687ec681f3Smrg 2697ec681f3Smrgstatic uint16_t 2707ec681f3Smrgmir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, unsigned bits) 2717ec681f3Smrg{ 2727ec681f3Smrg unsigned cmask = 0; 2737ec681f3Smrg 2747ec681f3Smrg for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) { 2757ec681f3Smrg if (!(inmask & (1 << c))) continue; 2767ec681f3Smrg cmask |= (1 << swizzle[c]); 2777ec681f3Smrg } 2787ec681f3Smrg 2797ec681f3Smrg return pan_to_bytemask(bits, cmask); 2807ec681f3Smrg} 2817ec681f3Smrg 2827ec681f3Smrguint16_t 2837ec681f3Smrgmir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i) 2847ec681f3Smrg{ 2857ec681f3Smrg /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */ 2867ec681f3Smrg if (ins->compact_branch && ins->branch.conditional && (i == 0)) 2877ec681f3Smrg return 0xF; 2887ec681f3Smrg 2897ec681f3Smrg /* ALU ops act componentwise so we need to pay attention to 2907ec681f3Smrg * their mask. Texture/ldst does not so we don't clamp source 2917ec681f3Smrg * readmasks based on the writemask */ 2927ec681f3Smrg unsigned qmask = ~0; 2937ec681f3Smrg 2947ec681f3Smrg /* Handle dot products and things */ 2957ec681f3Smrg if (ins->type == TAG_ALU_4 && !ins->compact_branch) { 2967ec681f3Smrg unsigned props = alu_opcode_props[ins->op].props; 2977ec681f3Smrg 2987ec681f3Smrg unsigned channel_override = GET_CHANNEL_COUNT(props); 2997ec681f3Smrg 3007ec681f3Smrg if (channel_override) 3017ec681f3Smrg qmask = mask_of(channel_override); 3027ec681f3Smrg else 3037ec681f3Smrg qmask = ins->mask; 3047ec681f3Smrg } 3057ec681f3Smrg 3067ec681f3Smrg return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask, 3077ec681f3Smrg nir_alu_type_get_type_size(ins->src_types[i])); 3087ec681f3Smrg} 3097ec681f3Smrg 3107ec681f3Smrguint16_t 3117ec681f3Smrgmir_bytemask_of_read_components(midgard_instruction *ins, unsigned node) 3127ec681f3Smrg{ 3137ec681f3Smrg uint16_t mask = 0; 3147ec681f3Smrg 3157ec681f3Smrg if (node == ~0) 3167ec681f3Smrg return 0; 3177ec681f3Smrg 3187ec681f3Smrg mir_foreach_src(ins, i) { 3197ec681f3Smrg if (ins->src[i] != node) continue; 3207ec681f3Smrg mask |= mir_bytemask_of_read_components_index(ins, i); 3217ec681f3Smrg } 3227ec681f3Smrg 3237ec681f3Smrg return mask; 3247ec681f3Smrg} 3257ec681f3Smrg 3267ec681f3Smrg/* Register allocation occurs after instruction scheduling, which is fine until 3277ec681f3Smrg * we start needing to spill registers and therefore insert instructions into 3287ec681f3Smrg * an already-scheduled program. We don't have to be terribly efficient about 3297ec681f3Smrg * this, since spilling is already slow. So just semantically we need to insert 3307ec681f3Smrg * the instruction into a new bundle before/after the bundle of the instruction 3317ec681f3Smrg * in question */ 3327ec681f3Smrg 3337ec681f3Smrgstatic midgard_bundle 3347ec681f3Smrgmir_bundle_for_op(compiler_context *ctx, midgard_instruction ins) 3357ec681f3Smrg{ 3367ec681f3Smrg midgard_instruction *u = mir_upload_ins(ctx, ins); 3377ec681f3Smrg 3387ec681f3Smrg midgard_bundle bundle = { 3397ec681f3Smrg .tag = ins.type, 3407ec681f3Smrg .instruction_count = 1, 3417ec681f3Smrg .instructions = { u }, 3427ec681f3Smrg }; 3437ec681f3Smrg 3447ec681f3Smrg if (bundle.tag == TAG_ALU_4) { 3457ec681f3Smrg assert(OP_IS_MOVE(u->op)); 3467ec681f3Smrg u->unit = UNIT_VMUL; 3477ec681f3Smrg 3487ec681f3Smrg size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu); 3497ec681f3Smrg bundle.padding = ~(bytes_emitted - 1) & 0xF; 3507ec681f3Smrg bundle.control = ins.type | u->unit; 3517ec681f3Smrg } 3527ec681f3Smrg 3537ec681f3Smrg return bundle; 3547ec681f3Smrg} 3557ec681f3Smrg 3567ec681f3Smrgstatic unsigned 3577ec681f3Smrgmir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block) 3587ec681f3Smrg{ 3597ec681f3Smrg midgard_bundle *bundles = 3607ec681f3Smrg (midgard_bundle *) block->bundles.data; 3617ec681f3Smrg 3627ec681f3Smrg size_t count = (block->bundles.size / sizeof(midgard_bundle)); 3637ec681f3Smrg 3647ec681f3Smrg for (unsigned i = 0; i < count; ++i) { 3657ec681f3Smrg for (unsigned j = 0; j < bundles[i].instruction_count; ++j) { 3667ec681f3Smrg if (bundles[i].instructions[j] == tag) 3677ec681f3Smrg return i; 3687ec681f3Smrg } 3697ec681f3Smrg } 3707ec681f3Smrg 3717ec681f3Smrg mir_print_instruction(tag); 3727ec681f3Smrg unreachable("Instruction not scheduled in block"); 3737ec681f3Smrg} 3747ec681f3Smrg 3757ec681f3Smrgvoid 3767ec681f3Smrgmir_insert_instruction_before_scheduled( 3777ec681f3Smrg compiler_context *ctx, 3787ec681f3Smrg midgard_block *block, 3797ec681f3Smrg midgard_instruction *tag, 3807ec681f3Smrg midgard_instruction ins) 3817ec681f3Smrg{ 3827ec681f3Smrg unsigned before = mir_bundle_idx_for_ins(tag, block); 3837ec681f3Smrg size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle); 3847ec681f3Smrg UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1); 3857ec681f3Smrg 3867ec681f3Smrg midgard_bundle *bundles = (midgard_bundle *) block->bundles.data; 3877ec681f3Smrg memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle)); 3887ec681f3Smrg midgard_bundle *before_bundle = bundles + before + 1; 3897ec681f3Smrg 3907ec681f3Smrg midgard_bundle new = mir_bundle_for_op(ctx, ins); 3917ec681f3Smrg memcpy(bundles + before, &new, sizeof(new)); 3927ec681f3Smrg 3937ec681f3Smrg list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link); 3947ec681f3Smrg block->quadword_count += midgard_tag_props[new.tag].size; 3957ec681f3Smrg} 3967ec681f3Smrg 3977ec681f3Smrgvoid 3987ec681f3Smrgmir_insert_instruction_after_scheduled( 3997ec681f3Smrg compiler_context *ctx, 4007ec681f3Smrg midgard_block *block, 4017ec681f3Smrg midgard_instruction *tag, 4027ec681f3Smrg midgard_instruction ins) 4037ec681f3Smrg{ 4047ec681f3Smrg /* We need to grow the bundles array to add our new bundle */ 4057ec681f3Smrg size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle); 4067ec681f3Smrg UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1); 4077ec681f3Smrg 4087ec681f3Smrg /* Find the bundle that we want to insert after */ 4097ec681f3Smrg unsigned after = mir_bundle_idx_for_ins(tag, block); 4107ec681f3Smrg 4117ec681f3Smrg /* All the bundles after that one, we move ahead by one */ 4127ec681f3Smrg midgard_bundle *bundles = (midgard_bundle *) block->bundles.data; 4137ec681f3Smrg memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle)); 4147ec681f3Smrg midgard_bundle *after_bundle = bundles + after; 4157ec681f3Smrg 4167ec681f3Smrg midgard_bundle new = mir_bundle_for_op(ctx, ins); 4177ec681f3Smrg memcpy(bundles + after + 1, &new, sizeof(new)); 4187ec681f3Smrg list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link); 4197ec681f3Smrg block->quadword_count += midgard_tag_props[new.tag].size; 4207ec681f3Smrg} 4217ec681f3Smrg 4227ec681f3Smrg/* Flip the first-two arguments of a (binary) op. Currently ALU 4237ec681f3Smrg * only, no known uses for ldst/tex */ 4247ec681f3Smrg 4257ec681f3Smrgvoid 4267ec681f3Smrgmir_flip(midgard_instruction *ins) 4277ec681f3Smrg{ 4287ec681f3Smrg unsigned temp = ins->src[0]; 4297ec681f3Smrg ins->src[0] = ins->src[1]; 4307ec681f3Smrg ins->src[1] = temp; 4317ec681f3Smrg 4327ec681f3Smrg assert(ins->type == TAG_ALU_4); 4337ec681f3Smrg 4347ec681f3Smrg temp = ins->src_types[0]; 4357ec681f3Smrg ins->src_types[0] = ins->src_types[1]; 4367ec681f3Smrg ins->src_types[1] = temp; 4377ec681f3Smrg 4387ec681f3Smrg temp = ins->src_abs[0]; 4397ec681f3Smrg ins->src_abs[0] = ins->src_abs[1]; 4407ec681f3Smrg ins->src_abs[1] = temp; 4417ec681f3Smrg 4427ec681f3Smrg temp = ins->src_neg[0]; 4437ec681f3Smrg ins->src_neg[0] = ins->src_neg[1]; 4447ec681f3Smrg ins->src_neg[1] = temp; 4457ec681f3Smrg 4467ec681f3Smrg temp = ins->src_invert[0]; 4477ec681f3Smrg ins->src_invert[0] = ins->src_invert[1]; 4487ec681f3Smrg ins->src_invert[1] = temp; 4497ec681f3Smrg 4507ec681f3Smrg unsigned temp_swizzle[16]; 4517ec681f3Smrg memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0])); 4527ec681f3Smrg memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0])); 4537ec681f3Smrg memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0])); 4547ec681f3Smrg} 4557ec681f3Smrg 4567ec681f3Smrg/* Before squashing, calculate ctx->temp_count just by observing the MIR */ 4577ec681f3Smrg 4587ec681f3Smrgvoid 4597ec681f3Smrgmir_compute_temp_count(compiler_context *ctx) 4607ec681f3Smrg{ 4617ec681f3Smrg if (ctx->temp_count) 4627ec681f3Smrg return; 4637ec681f3Smrg 4647ec681f3Smrg unsigned max_dest = 0; 4657ec681f3Smrg 4667ec681f3Smrg mir_foreach_instr_global(ctx, ins) { 4677ec681f3Smrg if (ins->dest < SSA_FIXED_MINIMUM) 4687ec681f3Smrg max_dest = MAX2(max_dest, ins->dest + 1); 4697ec681f3Smrg } 4707ec681f3Smrg 4717ec681f3Smrg ctx->temp_count = max_dest; 4727ec681f3Smrg} 473