1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28/** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors.  Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary.  This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers.  For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers.  Each node has a register class it needs to be
60 * assigned to.  Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with.  Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers.  We do
70 * this during ra_set_finalize().
71 */
72
73#include <stdbool.h>
74#include <stdlib.h>
75
76#include "blob.h"
77#include "ralloc.h"
78#include "main/macros.h"
79#include "util/bitset.h"
80#include "util/u_dynarray.h"
81#include "u_math.h"
82#include "register_allocate.h"
83#include "register_allocate_internal.h"
84
85/**
86 * Creates a set of registers for the allocator.
87 *
88 * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
89 * using ralloc_free().
90 */
91struct ra_regs *
92ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
93{
94   unsigned int i;
95   struct ra_regs *regs;
96
97   regs = rzalloc(mem_ctx, struct ra_regs);
98   regs->count = count;
99   regs->regs = rzalloc_array(regs, struct ra_reg, count);
100
101   for (i = 0; i < count; i++) {
102      regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
103                                              BITSET_WORDS(count));
104      BITSET_SET(regs->regs[i].conflicts, i);
105
106      util_dynarray_init(&regs->regs[i].conflict_list,
107                         need_conflict_lists ? regs->regs : NULL);
108      if (need_conflict_lists)
109         util_dynarray_append(&regs->regs[i].conflict_list, unsigned int, i);
110   }
111
112   return regs;
113}
114
115/**
116 * The register allocator by default prefers to allocate low register numbers,
117 * since it was written for hardware (gen4/5 Intel) that is limited in its
118 * multithreadedness by the number of registers used in a given shader.
119 *
120 * However, for hardware without that restriction, densely packed register
121 * allocation can put serious constraints on instruction scheduling.  This
122 * function tells the allocator to rotate around the registers if possible as
123 * it allocates the nodes.
124 */
125void
126ra_set_allocate_round_robin(struct ra_regs *regs)
127{
128   regs->round_robin = true;
129}
130
131static void
132ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
133{
134   struct ra_reg *reg1 = &regs->regs[r1];
135
136   if (reg1->conflict_list.mem_ctx) {
137      util_dynarray_append(&reg1->conflict_list, unsigned int, r2);
138   }
139   BITSET_SET(reg1->conflicts, r2);
140}
141
142void
143ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
144{
145   if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
146      ra_add_conflict_list(regs, r1, r2);
147      ra_add_conflict_list(regs, r2, r1);
148   }
149}
150
151/**
152 * Adds a conflict between base_reg and reg, and also between reg and
153 * anything that base_reg conflicts with.
154 *
155 * This can simplify code for setting up multiple register classes
156 * which are aggregates of some base hardware registers, compared to
157 * explicitly using ra_add_reg_conflict.
158 */
159void
160ra_add_transitive_reg_conflict(struct ra_regs *regs,
161                               unsigned int base_reg, unsigned int reg)
162{
163   ra_add_reg_conflict(regs, reg, base_reg);
164
165   util_dynarray_foreach(&regs->regs[base_reg].conflict_list, unsigned int,
166                         r2p) {
167      ra_add_reg_conflict(regs, reg, *r2p);
168   }
169}
170
171/**
172 * Set up conflicts between base_reg and it's two half registers reg0 and
173 * reg1, but take care to not add conflicts between reg0 and reg1.
174 *
175 * This is useful for architectures where full size registers are aliased by
176 * two half size registers (eg 32 bit float and 16 bit float registers).
177 */
178void
179ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
180                                    unsigned int base_reg, unsigned int reg0, unsigned int reg1)
181{
182   ra_add_reg_conflict(regs, reg0, base_reg);
183   ra_add_reg_conflict(regs, reg1, base_reg);
184
185   util_dynarray_foreach(&regs->regs[base_reg].conflict_list, unsigned int, i) {
186      unsigned int conflict = *i;
187      if (conflict != reg1)
188         ra_add_reg_conflict(regs, reg0, conflict);
189      if (conflict != reg0)
190         ra_add_reg_conflict(regs, reg1, conflict);
191   }
192}
193
194/**
195 * Makes every conflict on the given register transitive.  In other words,
196 * every register that conflicts with r will now conflict with every other
197 * register conflicting with r.
198 *
199 * This can simplify code for setting up multiple register classes
200 * which are aggregates of some base hardware registers, compared to
201 * explicitly using ra_add_reg_conflict.
202 */
203void
204ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
205{
206   struct ra_reg *reg = &regs->regs[r];
207   int c;
208
209   BITSET_FOREACH_SET(c, reg->conflicts, regs->count) {
210      struct ra_reg *other = &regs->regs[c];
211      unsigned i;
212      for (i = 0; i < BITSET_WORDS(regs->count); i++)
213         other->conflicts[i] |= reg->conflicts[i];
214   }
215}
216
217struct ra_class *
218ra_alloc_reg_class(struct ra_regs *regs)
219{
220   struct ra_class *class;
221
222   regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
223                            regs->class_count + 1);
224
225   class = rzalloc(regs, struct ra_class);
226   class->regset = regs;
227
228   /* Users may rely on the class index being allocated in order starting from 0. */
229   class->index = regs->class_count++;
230   regs->classes[class->index] = class;
231
232   class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
233
234   return class;
235}
236
237/**
238 * Creates a register class for contiguous register groups of a base register
239 * set.
240 *
241 * A reg set using this type of register class must use only this type of
242 * register class.
243 */
244struct ra_class *
245ra_alloc_contig_reg_class(struct ra_regs *regs, int contig_len)
246{
247   struct ra_class *c = ra_alloc_reg_class(regs);
248
249   assert(contig_len != 0);
250   c->contig_len = contig_len;
251
252   return c;
253}
254
255struct ra_class *
256ra_get_class_from_index(struct ra_regs *regs, unsigned int class)
257{
258   return regs->classes[class];
259}
260
261unsigned int
262ra_class_index(struct ra_class *c)
263{
264   return c->index;
265}
266
267void
268ra_class_add_reg(struct ra_class *class, unsigned int r)
269{
270   assert(r < class->regset->count);
271   assert(r + class->contig_len <= class->regset->count);
272
273   BITSET_SET(class->regs, r);
274   class->p++;
275}
276
277/**
278 * Returns true if the register belongs to the given class.
279 */
280static bool
281reg_belongs_to_class(unsigned int r, struct ra_class *c)
282{
283   return BITSET_TEST(c->regs, r);
284}
285
286/**
287 * Must be called after all conflicts and register classes have been
288 * set up and before the register set is used for allocation.
289 * To avoid costly q value computation, use the q_values paramater
290 * to pass precomputed q values to this function.
291 */
292void
293ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
294{
295   unsigned int b, c;
296
297   for (b = 0; b < regs->class_count; b++) {
298      regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
299   }
300
301   if (q_values) {
302      for (b = 0; b < regs->class_count; b++) {
303         for (c = 0; c < regs->class_count; c++) {
304            regs->classes[b]->q[c] = q_values[b][c];
305         }
306      }
307   } else {
308      /* Compute, for each class B and C, how many regs of B an
309       * allocation to C could conflict with.
310       */
311      for (b = 0; b < regs->class_count; b++) {
312         for (c = 0; c < regs->class_count; c++) {
313            struct ra_class *class_b = regs->classes[b];
314            struct ra_class *class_c = regs->classes[c];
315
316            if (class_b->contig_len && class_c->contig_len) {
317               if (class_b->contig_len == 1 && class_c->contig_len == 1) {
318                  /* If both classes are single registers, then they only
319                   * conflict if there are any regs shared between them.  This
320                   * is a cheap test for a common case.
321                   */
322                  class_b->q[c] = 0;
323                  for (int i = 0; i < BITSET_WORDS(regs->count); i++) {
324                     if (class_b->regs[i] & class_c->regs[i]) {
325                        class_b->q[c] = 1;
326                        break;
327                     }
328                  }
329               } else {
330                  int max_possible_conflicts = class_b->contig_len + class_c->contig_len - 1;
331
332                  unsigned int max_conflicts = 0;
333                  unsigned int rc;
334                  BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) {
335                     int start = MAX2(0, (int)rc - class_b->contig_len + 1);
336                     int end = MIN2(regs->count, rc + class_c->contig_len);
337                     unsigned int conflicts = 0;
338                     for (int i = start; i < end; i++) {
339                        if (BITSET_TEST(class_b->regs, i))
340                           conflicts++;
341                     }
342                     max_conflicts = MAX2(max_conflicts, conflicts);
343                     /* Unless a class has some restriction like the register
344                      * bases are all aligned, then we should quickly find this
345                      * limit and exit the loop.
346                      */
347                     if (max_conflicts == max_possible_conflicts)
348                        break;
349                  }
350                  class_b->q[c] = max_conflicts;
351               }
352            } else {
353               /* If you're doing contiguous classes, you have to be all in
354                * because I don't want to deal with it.
355                */
356               assert(!class_b->contig_len && !class_c->contig_len);
357
358               unsigned int rc;
359               int max_conflicts = 0;
360
361               BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) {
362                  int conflicts = 0;
363
364                  util_dynarray_foreach(&regs->regs[rc].conflict_list,
365                                       unsigned int, rbp) {
366                     unsigned int rb = *rbp;
367                     if (reg_belongs_to_class(rb, regs->classes[b]))
368                        conflicts++;
369                  }
370                  max_conflicts = MAX2(max_conflicts, conflicts);
371               }
372               regs->classes[b]->q[c] = max_conflicts;
373            }
374         }
375      }
376   }
377
378   for (b = 0; b < regs->count; b++) {
379      util_dynarray_fini(&regs->regs[b].conflict_list);
380   }
381
382   bool all_contig = true;
383   for (int c = 0; c < regs->class_count; c++)
384      all_contig &= regs->classes[c]->contig_len != 0;
385   if (all_contig) {
386      /* In this case, we never need the conflicts lists (and it would probably
387       * be a mistake to look at conflicts when doing contiguous classes!), so
388       * free them.  TODO: Avoid the allocation in the first place.
389       */
390      for (int i = 0; i < regs->count; i++) {
391         ralloc_free(regs->regs[i].conflicts);
392         regs->regs[i].conflicts = NULL;
393      }
394   }
395}
396
397void
398ra_set_serialize(const struct ra_regs *regs, struct blob *blob)
399{
400   blob_write_uint32(blob, regs->count);
401   blob_write_uint32(blob, regs->class_count);
402
403   bool is_contig = regs->classes[0]->contig_len != 0;
404   blob_write_uint8(blob, is_contig);
405
406   if (!is_contig) {
407      for (unsigned int r = 0; r < regs->count; r++) {
408         struct ra_reg *reg = &regs->regs[r];
409         blob_write_bytes(blob, reg->conflicts, BITSET_WORDS(regs->count) *
410                                                sizeof(BITSET_WORD));
411         assert(util_dynarray_num_elements(&reg->conflict_list, unsigned int) == 0);
412      }
413   }
414
415   for (unsigned int c = 0; c < regs->class_count; c++) {
416      struct ra_class *class = regs->classes[c];
417      blob_write_bytes(blob, class->regs, BITSET_WORDS(regs->count) *
418                                          sizeof(BITSET_WORD));
419      blob_write_uint32(blob, class->contig_len);
420      blob_write_uint32(blob, class->p);
421      blob_write_bytes(blob, class->q, regs->class_count * sizeof(*class->q));
422   }
423
424   blob_write_uint32(blob, regs->round_robin);
425}
426
427struct ra_regs *
428ra_set_deserialize(void *mem_ctx, struct blob_reader *blob)
429{
430   unsigned int reg_count = blob_read_uint32(blob);
431   unsigned int class_count = blob_read_uint32(blob);
432   bool is_contig = blob_read_uint8(blob);
433
434   struct ra_regs *regs = ra_alloc_reg_set(mem_ctx, reg_count, false);
435   assert(regs->count == reg_count);
436
437   if (is_contig) {
438      for (int i = 0; i < regs->count; i++) {
439         ralloc_free(regs->regs[i].conflicts);
440         regs->regs[i].conflicts = NULL;
441      }
442   } else {
443      for (unsigned int r = 0; r < reg_count; r++) {
444         struct ra_reg *reg = &regs->regs[r];
445         blob_copy_bytes(blob, reg->conflicts, BITSET_WORDS(reg_count) *
446                                             sizeof(BITSET_WORD));
447      }
448   }
449
450   assert(regs->classes == NULL);
451   regs->classes = ralloc_array(regs->regs, struct ra_class *, class_count);
452   regs->class_count = class_count;
453
454   for (unsigned int c = 0; c < class_count; c++) {
455      struct ra_class *class = rzalloc(regs, struct ra_class);
456      regs->classes[c] = class;
457      class->regset = regs;
458      class->index = c;
459
460      class->regs = ralloc_array(class, BITSET_WORD, BITSET_WORDS(reg_count));
461      blob_copy_bytes(blob, class->regs, BITSET_WORDS(reg_count) *
462                                         sizeof(BITSET_WORD));
463
464      class->contig_len = blob_read_uint32(blob);
465      class->p = blob_read_uint32(blob);
466
467      class->q = ralloc_array(regs->classes[c], unsigned int, class_count);
468      blob_copy_bytes(blob, class->q, class_count * sizeof(*class->q));
469   }
470
471   regs->round_robin = blob_read_uint32(blob);
472
473   return regs;
474}
475
476static void
477ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
478{
479   BITSET_SET(g->nodes[n1].adjacency, n2);
480
481   assert(n1 != n2);
482
483   int n1_class = g->nodes[n1].class;
484   int n2_class = g->nodes[n2].class;
485   g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
486
487   util_dynarray_append(&g->nodes[n1].adjacency_list, unsigned int, n2);
488}
489
490static void
491ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
492{
493   BITSET_CLEAR(g->nodes[n1].adjacency, n2);
494
495   assert(n1 != n2);
496
497   int n1_class = g->nodes[n1].class;
498   int n2_class = g->nodes[n2].class;
499   g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
500
501   util_dynarray_delete_unordered(&g->nodes[n1].adjacency_list, unsigned int,
502                                  n2);
503}
504
505static void
506ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
507{
508   if (alloc <= g->alloc)
509      return;
510
511   /* If we always have a whole number of BITSET_WORDs, it makes it much
512    * easier to memset the top of the growing bitsets.
513    */
514   assert(g->alloc % BITSET_WORDBITS == 0);
515   alloc = align64(alloc, BITSET_WORDBITS);
516
517   g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
518
519   unsigned g_bitset_count = BITSET_WORDS(g->alloc);
520   unsigned bitset_count = BITSET_WORDS(alloc);
521   /* For nodes already in the graph, we just have to grow the adjacency set */
522   for (unsigned i = 0; i < g->alloc; i++) {
523      assert(g->nodes[i].adjacency != NULL);
524      g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
525                                        g_bitset_count, bitset_count);
526   }
527
528   /* For new nodes, we have to fully initialize them */
529   for (unsigned i = g->alloc; i < alloc; i++) {
530      memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
531      g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
532      util_dynarray_init(&g->nodes[i].adjacency_list, g);
533      g->nodes[i].q_total = 0;
534
535      g->nodes[i].forced_reg = NO_REG;
536      g->nodes[i].reg = NO_REG;
537   }
538
539   /* These are scratch values and don't need to be zeroed.  We'll clear them
540    * as part of ra_select() setup.
541    */
542   g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
543   g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
544
545   g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
546                                  bitset_count);
547   g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
548   g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
549                                 bitset_count);
550   g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
551                                bitset_count);
552
553   g->alloc = alloc;
554}
555
556struct ra_graph *
557ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
558{
559   struct ra_graph *g;
560
561   g = rzalloc(NULL, struct ra_graph);
562   g->regs = regs;
563   g->count = count;
564   ra_realloc_interference_graph(g, count);
565
566   return g;
567}
568
569void
570ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
571{
572   g->count = count;
573   if (count > g->alloc)
574      ra_realloc_interference_graph(g, g->alloc * 2);
575}
576
577void ra_set_select_reg_callback(struct ra_graph *g,
578                                ra_select_reg_callback callback,
579                                void *data)
580{
581   g->select_reg_callback = callback;
582   g->select_reg_callback_data = data;
583}
584
585void
586ra_set_node_class(struct ra_graph *g,
587                  unsigned int n, struct ra_class *class)
588{
589   g->nodes[n].class = class->index;
590}
591
592struct ra_class *
593ra_get_node_class(struct ra_graph *g,
594                  unsigned int n)
595{
596   return g->regs->classes[g->nodes[n].class];
597}
598
599unsigned int
600ra_add_node(struct ra_graph *g, struct ra_class *class)
601{
602   unsigned int n = g->count;
603   ra_resize_interference_graph(g, g->count + 1);
604
605   ra_set_node_class(g, n, class);
606
607   return n;
608}
609
610void
611ra_add_node_interference(struct ra_graph *g,
612                         unsigned int n1, unsigned int n2)
613{
614   assert(n1 < g->count && n2 < g->count);
615   if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
616      ra_add_node_adjacency(g, n1, n2);
617      ra_add_node_adjacency(g, n2, n1);
618   }
619}
620
621void
622ra_reset_node_interference(struct ra_graph *g, unsigned int n)
623{
624   util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
625      ra_node_remove_adjacency(g, *n2p, n);
626   }
627
628   memset(g->nodes[n].adjacency, 0,
629          BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
630   util_dynarray_clear(&g->nodes[n].adjacency_list);
631}
632
633static void
634update_pq_info(struct ra_graph *g, unsigned int n)
635{
636   int i = n / BITSET_WORDBITS;
637   int n_class = g->nodes[n].class;
638   if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
639      BITSET_SET(g->tmp.pq_test, n);
640   } else if (g->tmp.min_q_total[i] != UINT_MAX) {
641      /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
642       * that we don't update while we have stale data and accidentally mark
643       * it as non-stale.  Also, in order to remain consistent with the old
644       * naive implementation of the algorithm, we do a lexicographical sort
645       * to ensure that we always choose the node with the highest node index.
646       */
647      if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
648          (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
649           n > g->tmp.min_q_node[i])) {
650         g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
651         g->tmp.min_q_node[i] = n;
652      }
653   }
654}
655
656static void
657add_node_to_stack(struct ra_graph *g, unsigned int n)
658{
659   int n_class = g->nodes[n].class;
660
661   assert(!BITSET_TEST(g->tmp.in_stack, n));
662
663   util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
664      unsigned int n2 = *n2p;
665      unsigned int n2_class = g->nodes[n2].class;
666
667      if (!BITSET_TEST(g->tmp.in_stack, n2) &&
668          !BITSET_TEST(g->tmp.reg_assigned, n2)) {
669         assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
670         g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
671         update_pq_info(g, n2);
672      }
673   }
674
675   g->tmp.stack[g->tmp.stack_count] = n;
676   g->tmp.stack_count++;
677   BITSET_SET(g->tmp.in_stack, n);
678
679   /* Flag the min_q_total for n's block as dirty so it gets recalculated */
680   g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
681}
682
683/**
684 * Simplifies the interference graph by pushing all
685 * trivially-colorable nodes into a stack of nodes to be colored,
686 * removing them from the graph, and rinsing and repeating.
687 *
688 * If we encounter a case where we can't push any nodes on the stack, then
689 * we optimistically choose a node and push it on the stack. We heuristically
690 * push the node with the lowest total q value, since it has the fewest
691 * neighbors and therefore is most likely to be allocated.
692 */
693static void
694ra_simplify(struct ra_graph *g)
695{
696   bool progress = true;
697   unsigned int stack_optimistic_start = UINT_MAX;
698
699   /* Figure out the high bit and bit mask for the first iteration of a loop
700    * over BITSET_WORDs.
701    */
702   const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
703
704   /* Do a quick pre-pass to set things up */
705   g->tmp.stack_count = 0;
706   for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
707        i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
708      g->tmp.in_stack[i] = 0;
709      g->tmp.reg_assigned[i] = 0;
710      g->tmp.pq_test[i] = 0;
711      g->tmp.min_q_total[i] = UINT_MAX;
712      g->tmp.min_q_node[i] = UINT_MAX;
713      for (int j = high_bit; j >= 0; j--) {
714         unsigned int n = i * BITSET_WORDBITS + j;
715         g->nodes[n].reg = g->nodes[n].forced_reg;
716         g->nodes[n].tmp.q_total = g->nodes[n].q_total;
717         if (g->nodes[n].reg != NO_REG)
718            g->tmp.reg_assigned[i] |= BITSET_BIT(j);
719         update_pq_info(g, n);
720      }
721   }
722
723   while (progress) {
724      unsigned int min_q_total = UINT_MAX;
725      unsigned int min_q_node = UINT_MAX;
726
727      progress = false;
728
729      for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
730           i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
731         BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
732
733         BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
734         if (skip == mask)
735            continue;
736
737         BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
738         if (pq) {
739            /* In this case, we have stuff we can immediately take off the
740             * stack.  This also means that we're guaranteed to make progress
741             * and we don't need to bother updating lowest_q_total because we
742             * know we're going to loop again before attempting to do anything
743             * optimistic.
744             */
745            for (int j = high_bit; j >= 0; j--) {
746               if (pq & BITSET_BIT(j)) {
747                  unsigned int n = i * BITSET_WORDBITS + j;
748                  assert(n < g->count);
749                  add_node_to_stack(g, n);
750                  /* add_node_to_stack() may update pq_test for this word so
751                   * we need to update our local copy.
752                   */
753                  pq = g->tmp.pq_test[i] & ~skip;
754                  progress = true;
755               }
756            }
757         } else if (!progress) {
758            if (g->tmp.min_q_total[i] == UINT_MAX) {
759               /* The min_q_total and min_q_node are dirty because we added
760                * one of these nodes to the stack.  It needs to be
761                * recalculated.
762                */
763               for (int j = high_bit; j >= 0; j--) {
764                  if (skip & BITSET_BIT(j))
765                     continue;
766
767                  unsigned int n = i * BITSET_WORDBITS + j;
768                  assert(n < g->count);
769                  if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
770                     g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
771                     g->tmp.min_q_node[i] = n;
772                  }
773               }
774            }
775            if (g->tmp.min_q_total[i] < min_q_total) {
776               min_q_node = g->tmp.min_q_node[i];
777               min_q_total = g->tmp.min_q_total[i];
778            }
779         }
780      }
781
782      if (!progress && min_q_total != UINT_MAX) {
783         if (stack_optimistic_start == UINT_MAX)
784            stack_optimistic_start = g->tmp.stack_count;
785
786         add_node_to_stack(g, min_q_node);
787         progress = true;
788      }
789   }
790
791   g->tmp.stack_optimistic_start = stack_optimistic_start;
792}
793
794bool
795ra_class_allocations_conflict(struct ra_class *c1, unsigned int r1,
796                              struct ra_class *c2, unsigned int r2)
797{
798   if (c1->contig_len) {
799      assert(c2->contig_len);
800
801      int r1_end = r1 + c1->contig_len;
802      int r2_end = r2 + c2->contig_len;
803      return !(r2 >= r1_end || r1 >= r2_end);
804   } else {
805      return BITSET_TEST(c1->regset->regs[r1].conflicts, r2);
806   }
807}
808
809static struct ra_node *
810ra_find_conflicting_neighbor(struct ra_graph *g, unsigned int n, unsigned int r)
811{
812   util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
813      unsigned int n2 = *n2p;
814
815      /* If our adjacent node is in the stack, it's not allocated yet. */
816      if (!BITSET_TEST(g->tmp.in_stack, n2) &&
817          ra_class_allocations_conflict(g->regs->classes[g->nodes[n].class], r,
818                                        g->regs->classes[g->nodes[n2].class], g->nodes[n2].reg)) {
819         return &g->nodes[n2];
820      }
821   }
822
823   return NULL;
824}
825
826/* Computes a bitfield of what regs are available for a given register
827 * selection.
828 *
829 * This lets drivers implement a more complicated policy than our simple first
830 * or round robin policies (which don't require knowing the whole bitset)
831 */
832static bool
833ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
834{
835   struct ra_class *c = g->regs->classes[g->nodes[n].class];
836
837   /* Populate with the set of regs that are in the node's class. */
838   memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
839
840   /* Remove any regs that conflict with nodes that we're adjacent to and have
841    * already colored.
842    */
843   util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
844      struct ra_node *n2 = &g->nodes[*n2p];
845      struct ra_class *n2c = g->regs->classes[n2->class];
846
847      if (!BITSET_TEST(g->tmp.in_stack, *n2p)) {
848         if (c->contig_len) {
849            int start = MAX2(0, (int)n2->reg - c->contig_len + 1);
850            int end = MIN2(g->regs->count, n2->reg + n2c->contig_len);
851            for (unsigned i = start; i < end; i++)
852               BITSET_CLEAR(regs, i);
853         } else {
854            for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
855               regs[j] &= ~g->regs->regs[n2->reg].conflicts[j];
856         }
857      }
858   }
859
860   for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
861      if (regs[i])
862         return true;
863   }
864
865   return false;
866}
867
868/**
869 * Pops nodes from the stack back into the graph, coloring them with
870 * registers as they go.
871 *
872 * If all nodes were trivially colorable, then this must succeed.  If
873 * not (optimistic coloring), then it may return false;
874 */
875static bool
876ra_select(struct ra_graph *g)
877{
878   int start_search_reg = 0;
879   BITSET_WORD *select_regs = NULL;
880
881   if (g->select_reg_callback)
882      select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
883
884   while (g->tmp.stack_count != 0) {
885      unsigned int ri;
886      unsigned int r = -1;
887      int n = g->tmp.stack[g->tmp.stack_count - 1];
888      struct ra_class *c = g->regs->classes[g->nodes[n].class];
889
890      /* set this to false even if we return here so that
891       * ra_get_best_spill_node() considers this node later.
892       */
893      BITSET_CLEAR(g->tmp.in_stack, n);
894
895      if (g->select_reg_callback) {
896         if (!ra_compute_available_regs(g, n, select_regs)) {
897            free(select_regs);
898            return false;
899         }
900
901         r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data);
902         assert(r < g->regs->count);
903      } else {
904         /* Find the lowest-numbered reg which is not used by a member
905          * of the graph adjacent to us.
906          */
907         for (ri = 0; ri < g->regs->count; ri++) {
908            r = (start_search_reg + ri) % g->regs->count;
909            if (!reg_belongs_to_class(r, c))
910               continue;
911
912            struct ra_node *conflicting = ra_find_conflicting_neighbor(g, n, r);
913            if (!conflicting) {
914               /* Found a reg! */
915               break;
916            }
917            if (g->regs->classes[conflicting->class]->contig_len) {
918               /* Skip to point at the last base reg of the conflicting reg
919                * allocation -- the loop will increment us to check the next reg
920                * after the conflicting allocaiton.
921                */
922               unsigned conflicting_end = (conflicting->reg +
923                                           g->regs->classes[conflicting->class]->contig_len - 1);
924               assert(conflicting_end >= r);
925               ri += conflicting_end - r;
926            }
927         }
928
929         if (ri >= g->regs->count)
930            return false;
931      }
932
933      g->nodes[n].reg = r;
934      g->tmp.stack_count--;
935
936      /* Rotate the starting point except for any nodes above the lowest
937       * optimistically colorable node.  The likelihood that we will succeed
938       * at allocating optimistically colorable nodes is highly dependent on
939       * the way that the previous nodes popped off the stack are laid out.
940       * The round-robin strategy increases the fragmentation of the register
941       * file and decreases the number of nearby nodes assigned to the same
942       * color, what increases the likelihood of spilling with respect to the
943       * dense packing strategy.
944       */
945      if (g->regs->round_robin &&
946          g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
947         start_search_reg = r + 1;
948   }
949
950   free(select_regs);
951
952   return true;
953}
954
955bool
956ra_allocate(struct ra_graph *g)
957{
958   ra_simplify(g);
959   return ra_select(g);
960}
961
962unsigned int
963ra_get_node_reg(struct ra_graph *g, unsigned int n)
964{
965   if (g->nodes[n].forced_reg != NO_REG)
966      return g->nodes[n].forced_reg;
967   else
968      return g->nodes[n].reg;
969}
970
971/**
972 * Forces a node to a specific register.  This can be used to avoid
973 * creating a register class containing one node when handling data
974 * that must live in a fixed location and is known to not conflict
975 * with other forced register assignment (as is common with shader
976 * input data).  These nodes do not end up in the stack during
977 * ra_simplify(), and thus at ra_select() time it is as if they were
978 * the first popped off the stack and assigned their fixed locations.
979 * Nodes that use this function do not need to be assigned a register
980 * class.
981 *
982 * Must be called before ra_simplify().
983 */
984void
985ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
986{
987   g->nodes[n].forced_reg = reg;
988}
989
990static float
991ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
992{
993   float benefit = 0;
994   int n_class = g->nodes[n].class;
995
996   /* Define the benefit of eliminating an interference between n, n2
997    * through spilling as q(C, B) / p(C).  This is similar to the
998    * "count number of edges" approach of traditional graph coloring,
999    * but takes classes into account.
1000    */
1001   util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
1002      unsigned int n2 = *n2p;
1003      unsigned int n2_class = g->nodes[n2].class;
1004      benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
1005                  g->regs->classes[n_class]->p);
1006   }
1007
1008   return benefit;
1009}
1010
1011/**
1012 * Returns a node number to be spilled according to the cost/benefit using
1013 * the pq test, or -1 if there are no spillable nodes.
1014 */
1015int
1016ra_get_best_spill_node(struct ra_graph *g)
1017{
1018   unsigned int best_node = -1;
1019   float best_benefit = 0.0;
1020   unsigned int n;
1021
1022   /* Consider any nodes that we colored successfully or the node we failed to
1023    * color for spilling. When we failed to color a node in ra_select(), we
1024    * only considered these nodes, so spilling any other ones would not result
1025    * in us making progress.
1026    */
1027   for (n = 0; n < g->count; n++) {
1028      float cost = g->nodes[n].spill_cost;
1029      float benefit;
1030
1031      if (cost <= 0.0f)
1032         continue;
1033
1034      if (BITSET_TEST(g->tmp.in_stack, n))
1035         continue;
1036
1037      benefit = ra_get_spill_benefit(g, n);
1038
1039      if (benefit / cost > best_benefit) {
1040         best_benefit = benefit / cost;
1041         best_node = n;
1042      }
1043   }
1044
1045   return best_node;
1046}
1047
1048/**
1049 * Only nodes with a spill cost set (cost != 0.0) will be considered
1050 * for register spilling.
1051 */
1052void
1053ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
1054{
1055   g->nodes[n].spill_cost = cost;
1056}
1057