1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28/** @file register_allocate.c 29 * 30 * Graph-coloring register allocator. 31 * 32 * The basic idea of graph coloring is to make a node in a graph for 33 * every thing that needs a register (color) number assigned, and make 34 * edges in the graph between nodes that interfere (can't be allocated 35 * to the same register at the same time). 36 * 37 * During the "simplify" process, any any node with fewer edges than 38 * there are registers means that that edge can get assigned a 39 * register regardless of what its neighbors choose, so that node is 40 * pushed on a stack and removed (with its edges) from the graph. 41 * That likely causes other nodes to become trivially colorable as well. 42 * 43 * Then during the "select" process, nodes are popped off of that 44 * stack, their edges restored, and assigned a color different from 45 * their neighbors. Because they were pushed on the stack only when 46 * they were trivially colorable, any color chosen won't interfere 47 * with the registers to be popped later. 48 * 49 * The downside to most graph coloring is that real hardware often has 50 * limitations, like registers that need to be allocated to a node in 51 * pairs, or aligned on some boundary. This implementation follows 52 * the paper "Retargetable Graph-Coloring Register Allocation for 53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström. 54 * 55 * In this system, there are register classes each containing various 56 * registers, and registers may interfere with other registers. For 57 * example, one might have a class of base registers, and a class of 58 * aligned register pairs that would each interfere with their pair of 59 * the base registers. Each node has a register class it needs to be 60 * assigned to. Define p(B) to be the size of register class B, and 61 * q(B,C) to be the number of registers in B that the worst choice 62 * register in C could conflict with. Then, this system replaces the 63 * basic graph coloring test of "fewer edges from this node than there 64 * are registers" with "For this node of class B, the sum of q(B,C) 65 * for each neighbor node of class C is less than pB". 66 * 67 * A nice feature of the pq test is that q(B,C) can be computed once 68 * up front and stored in a 2-dimensional array, so that the cost of 69 * coloring a node is constant with the number of registers. We do 70 * this during ra_set_finalize(). 71 */ 72 73#include <stdbool.h> 74#include <stdlib.h> 75 76#include "blob.h" 77#include "ralloc.h" 78#include "main/macros.h" 79#include "util/bitset.h" 80#include "util/u_dynarray.h" 81#include "u_math.h" 82#include "register_allocate.h" 83#include "register_allocate_internal.h" 84 85/** 86 * Creates a set of registers for the allocator. 87 * 88 * mem_ctx is a ralloc context for the allocator. The reg set may be freed 89 * using ralloc_free(). 90 */ 91struct ra_regs * 92ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists) 93{ 94 unsigned int i; 95 struct ra_regs *regs; 96 97 regs = rzalloc(mem_ctx, struct ra_regs); 98 regs->count = count; 99 regs->regs = rzalloc_array(regs, struct ra_reg, count); 100 101 for (i = 0; i < count; i++) { 102 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD, 103 BITSET_WORDS(count)); 104 BITSET_SET(regs->regs[i].conflicts, i); 105 106 util_dynarray_init(®s->regs[i].conflict_list, 107 need_conflict_lists ? regs->regs : NULL); 108 if (need_conflict_lists) 109 util_dynarray_append(®s->regs[i].conflict_list, unsigned int, i); 110 } 111 112 return regs; 113} 114 115/** 116 * The register allocator by default prefers to allocate low register numbers, 117 * since it was written for hardware (gen4/5 Intel) that is limited in its 118 * multithreadedness by the number of registers used in a given shader. 119 * 120 * However, for hardware without that restriction, densely packed register 121 * allocation can put serious constraints on instruction scheduling. This 122 * function tells the allocator to rotate around the registers if possible as 123 * it allocates the nodes. 124 */ 125void 126ra_set_allocate_round_robin(struct ra_regs *regs) 127{ 128 regs->round_robin = true; 129} 130 131static void 132ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2) 133{ 134 struct ra_reg *reg1 = ®s->regs[r1]; 135 136 if (reg1->conflict_list.mem_ctx) { 137 util_dynarray_append(®1->conflict_list, unsigned int, r2); 138 } 139 BITSET_SET(reg1->conflicts, r2); 140} 141 142void 143ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2) 144{ 145 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) { 146 ra_add_conflict_list(regs, r1, r2); 147 ra_add_conflict_list(regs, r2, r1); 148 } 149} 150 151/** 152 * Adds a conflict between base_reg and reg, and also between reg and 153 * anything that base_reg conflicts with. 154 * 155 * This can simplify code for setting up multiple register classes 156 * which are aggregates of some base hardware registers, compared to 157 * explicitly using ra_add_reg_conflict. 158 */ 159void 160ra_add_transitive_reg_conflict(struct ra_regs *regs, 161 unsigned int base_reg, unsigned int reg) 162{ 163 ra_add_reg_conflict(regs, reg, base_reg); 164 165 util_dynarray_foreach(®s->regs[base_reg].conflict_list, unsigned int, 166 r2p) { 167 ra_add_reg_conflict(regs, reg, *r2p); 168 } 169} 170 171/** 172 * Set up conflicts between base_reg and it's two half registers reg0 and 173 * reg1, but take care to not add conflicts between reg0 and reg1. 174 * 175 * This is useful for architectures where full size registers are aliased by 176 * two half size registers (eg 32 bit float and 16 bit float registers). 177 */ 178void 179ra_add_transitive_reg_pair_conflict(struct ra_regs *regs, 180 unsigned int base_reg, unsigned int reg0, unsigned int reg1) 181{ 182 ra_add_reg_conflict(regs, reg0, base_reg); 183 ra_add_reg_conflict(regs, reg1, base_reg); 184 185 util_dynarray_foreach(®s->regs[base_reg].conflict_list, unsigned int, i) { 186 unsigned int conflict = *i; 187 if (conflict != reg1) 188 ra_add_reg_conflict(regs, reg0, conflict); 189 if (conflict != reg0) 190 ra_add_reg_conflict(regs, reg1, conflict); 191 } 192} 193 194/** 195 * Makes every conflict on the given register transitive. In other words, 196 * every register that conflicts with r will now conflict with every other 197 * register conflicting with r. 198 * 199 * This can simplify code for setting up multiple register classes 200 * which are aggregates of some base hardware registers, compared to 201 * explicitly using ra_add_reg_conflict. 202 */ 203void 204ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r) 205{ 206 struct ra_reg *reg = ®s->regs[r]; 207 int c; 208 209 BITSET_FOREACH_SET(c, reg->conflicts, regs->count) { 210 struct ra_reg *other = ®s->regs[c]; 211 unsigned i; 212 for (i = 0; i < BITSET_WORDS(regs->count); i++) 213 other->conflicts[i] |= reg->conflicts[i]; 214 } 215} 216 217struct ra_class * 218ra_alloc_reg_class(struct ra_regs *regs) 219{ 220 struct ra_class *class; 221 222 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *, 223 regs->class_count + 1); 224 225 class = rzalloc(regs, struct ra_class); 226 class->regset = regs; 227 228 /* Users may rely on the class index being allocated in order starting from 0. */ 229 class->index = regs->class_count++; 230 regs->classes[class->index] = class; 231 232 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count)); 233 234 return class; 235} 236 237/** 238 * Creates a register class for contiguous register groups of a base register 239 * set. 240 * 241 * A reg set using this type of register class must use only this type of 242 * register class. 243 */ 244struct ra_class * 245ra_alloc_contig_reg_class(struct ra_regs *regs, int contig_len) 246{ 247 struct ra_class *c = ra_alloc_reg_class(regs); 248 249 assert(contig_len != 0); 250 c->contig_len = contig_len; 251 252 return c; 253} 254 255struct ra_class * 256ra_get_class_from_index(struct ra_regs *regs, unsigned int class) 257{ 258 return regs->classes[class]; 259} 260 261unsigned int 262ra_class_index(struct ra_class *c) 263{ 264 return c->index; 265} 266 267void 268ra_class_add_reg(struct ra_class *class, unsigned int r) 269{ 270 assert(r < class->regset->count); 271 assert(r + class->contig_len <= class->regset->count); 272 273 BITSET_SET(class->regs, r); 274 class->p++; 275} 276 277/** 278 * Returns true if the register belongs to the given class. 279 */ 280static bool 281reg_belongs_to_class(unsigned int r, struct ra_class *c) 282{ 283 return BITSET_TEST(c->regs, r); 284} 285 286/** 287 * Must be called after all conflicts and register classes have been 288 * set up and before the register set is used for allocation. 289 * To avoid costly q value computation, use the q_values paramater 290 * to pass precomputed q values to this function. 291 */ 292void 293ra_set_finalize(struct ra_regs *regs, unsigned int **q_values) 294{ 295 unsigned int b, c; 296 297 for (b = 0; b < regs->class_count; b++) { 298 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count); 299 } 300 301 if (q_values) { 302 for (b = 0; b < regs->class_count; b++) { 303 for (c = 0; c < regs->class_count; c++) { 304 regs->classes[b]->q[c] = q_values[b][c]; 305 } 306 } 307 } else { 308 /* Compute, for each class B and C, how many regs of B an 309 * allocation to C could conflict with. 310 */ 311 for (b = 0; b < regs->class_count; b++) { 312 for (c = 0; c < regs->class_count; c++) { 313 struct ra_class *class_b = regs->classes[b]; 314 struct ra_class *class_c = regs->classes[c]; 315 316 if (class_b->contig_len && class_c->contig_len) { 317 if (class_b->contig_len == 1 && class_c->contig_len == 1) { 318 /* If both classes are single registers, then they only 319 * conflict if there are any regs shared between them. This 320 * is a cheap test for a common case. 321 */ 322 class_b->q[c] = 0; 323 for (int i = 0; i < BITSET_WORDS(regs->count); i++) { 324 if (class_b->regs[i] & class_c->regs[i]) { 325 class_b->q[c] = 1; 326 break; 327 } 328 } 329 } else { 330 int max_possible_conflicts = class_b->contig_len + class_c->contig_len - 1; 331 332 unsigned int max_conflicts = 0; 333 unsigned int rc; 334 BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) { 335 int start = MAX2(0, (int)rc - class_b->contig_len + 1); 336 int end = MIN2(regs->count, rc + class_c->contig_len); 337 unsigned int conflicts = 0; 338 for (int i = start; i < end; i++) { 339 if (BITSET_TEST(class_b->regs, i)) 340 conflicts++; 341 } 342 max_conflicts = MAX2(max_conflicts, conflicts); 343 /* Unless a class has some restriction like the register 344 * bases are all aligned, then we should quickly find this 345 * limit and exit the loop. 346 */ 347 if (max_conflicts == max_possible_conflicts) 348 break; 349 } 350 class_b->q[c] = max_conflicts; 351 } 352 } else { 353 /* If you're doing contiguous classes, you have to be all in 354 * because I don't want to deal with it. 355 */ 356 assert(!class_b->contig_len && !class_c->contig_len); 357 358 unsigned int rc; 359 int max_conflicts = 0; 360 361 BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) { 362 int conflicts = 0; 363 364 util_dynarray_foreach(®s->regs[rc].conflict_list, 365 unsigned int, rbp) { 366 unsigned int rb = *rbp; 367 if (reg_belongs_to_class(rb, regs->classes[b])) 368 conflicts++; 369 } 370 max_conflicts = MAX2(max_conflicts, conflicts); 371 } 372 regs->classes[b]->q[c] = max_conflicts; 373 } 374 } 375 } 376 } 377 378 for (b = 0; b < regs->count; b++) { 379 util_dynarray_fini(®s->regs[b].conflict_list); 380 } 381 382 bool all_contig = true; 383 for (int c = 0; c < regs->class_count; c++) 384 all_contig &= regs->classes[c]->contig_len != 0; 385 if (all_contig) { 386 /* In this case, we never need the conflicts lists (and it would probably 387 * be a mistake to look at conflicts when doing contiguous classes!), so 388 * free them. TODO: Avoid the allocation in the first place. 389 */ 390 for (int i = 0; i < regs->count; i++) { 391 ralloc_free(regs->regs[i].conflicts); 392 regs->regs[i].conflicts = NULL; 393 } 394 } 395} 396 397void 398ra_set_serialize(const struct ra_regs *regs, struct blob *blob) 399{ 400 blob_write_uint32(blob, regs->count); 401 blob_write_uint32(blob, regs->class_count); 402 403 bool is_contig = regs->classes[0]->contig_len != 0; 404 blob_write_uint8(blob, is_contig); 405 406 if (!is_contig) { 407 for (unsigned int r = 0; r < regs->count; r++) { 408 struct ra_reg *reg = ®s->regs[r]; 409 blob_write_bytes(blob, reg->conflicts, BITSET_WORDS(regs->count) * 410 sizeof(BITSET_WORD)); 411 assert(util_dynarray_num_elements(®->conflict_list, unsigned int) == 0); 412 } 413 } 414 415 for (unsigned int c = 0; c < regs->class_count; c++) { 416 struct ra_class *class = regs->classes[c]; 417 blob_write_bytes(blob, class->regs, BITSET_WORDS(regs->count) * 418 sizeof(BITSET_WORD)); 419 blob_write_uint32(blob, class->contig_len); 420 blob_write_uint32(blob, class->p); 421 blob_write_bytes(blob, class->q, regs->class_count * sizeof(*class->q)); 422 } 423 424 blob_write_uint32(blob, regs->round_robin); 425} 426 427struct ra_regs * 428ra_set_deserialize(void *mem_ctx, struct blob_reader *blob) 429{ 430 unsigned int reg_count = blob_read_uint32(blob); 431 unsigned int class_count = blob_read_uint32(blob); 432 bool is_contig = blob_read_uint8(blob); 433 434 struct ra_regs *regs = ra_alloc_reg_set(mem_ctx, reg_count, false); 435 assert(regs->count == reg_count); 436 437 if (is_contig) { 438 for (int i = 0; i < regs->count; i++) { 439 ralloc_free(regs->regs[i].conflicts); 440 regs->regs[i].conflicts = NULL; 441 } 442 } else { 443 for (unsigned int r = 0; r < reg_count; r++) { 444 struct ra_reg *reg = ®s->regs[r]; 445 blob_copy_bytes(blob, reg->conflicts, BITSET_WORDS(reg_count) * 446 sizeof(BITSET_WORD)); 447 } 448 } 449 450 assert(regs->classes == NULL); 451 regs->classes = ralloc_array(regs->regs, struct ra_class *, class_count); 452 regs->class_count = class_count; 453 454 for (unsigned int c = 0; c < class_count; c++) { 455 struct ra_class *class = rzalloc(regs, struct ra_class); 456 regs->classes[c] = class; 457 class->regset = regs; 458 class->index = c; 459 460 class->regs = ralloc_array(class, BITSET_WORD, BITSET_WORDS(reg_count)); 461 blob_copy_bytes(blob, class->regs, BITSET_WORDS(reg_count) * 462 sizeof(BITSET_WORD)); 463 464 class->contig_len = blob_read_uint32(blob); 465 class->p = blob_read_uint32(blob); 466 467 class->q = ralloc_array(regs->classes[c], unsigned int, class_count); 468 blob_copy_bytes(blob, class->q, class_count * sizeof(*class->q)); 469 } 470 471 regs->round_robin = blob_read_uint32(blob); 472 473 return regs; 474} 475 476static void 477ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2) 478{ 479 BITSET_SET(g->nodes[n1].adjacency, n2); 480 481 assert(n1 != n2); 482 483 int n1_class = g->nodes[n1].class; 484 int n2_class = g->nodes[n2].class; 485 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class]; 486 487 util_dynarray_append(&g->nodes[n1].adjacency_list, unsigned int, n2); 488} 489 490static void 491ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2) 492{ 493 BITSET_CLEAR(g->nodes[n1].adjacency, n2); 494 495 assert(n1 != n2); 496 497 int n1_class = g->nodes[n1].class; 498 int n2_class = g->nodes[n2].class; 499 g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class]; 500 501 util_dynarray_delete_unordered(&g->nodes[n1].adjacency_list, unsigned int, 502 n2); 503} 504 505static void 506ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc) 507{ 508 if (alloc <= g->alloc) 509 return; 510 511 /* If we always have a whole number of BITSET_WORDs, it makes it much 512 * easier to memset the top of the growing bitsets. 513 */ 514 assert(g->alloc % BITSET_WORDBITS == 0); 515 alloc = align64(alloc, BITSET_WORDBITS); 516 517 g->nodes = reralloc(g, g->nodes, struct ra_node, alloc); 518 519 unsigned g_bitset_count = BITSET_WORDS(g->alloc); 520 unsigned bitset_count = BITSET_WORDS(alloc); 521 /* For nodes already in the graph, we just have to grow the adjacency set */ 522 for (unsigned i = 0; i < g->alloc; i++) { 523 assert(g->nodes[i].adjacency != NULL); 524 g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD, 525 g_bitset_count, bitset_count); 526 } 527 528 /* For new nodes, we have to fully initialize them */ 529 for (unsigned i = g->alloc; i < alloc; i++) { 530 memset(&g->nodes[i], 0, sizeof(g->nodes[i])); 531 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count); 532 util_dynarray_init(&g->nodes[i].adjacency_list, g); 533 g->nodes[i].q_total = 0; 534 535 g->nodes[i].forced_reg = NO_REG; 536 g->nodes[i].reg = NO_REG; 537 } 538 539 /* These are scratch values and don't need to be zeroed. We'll clear them 540 * as part of ra_select() setup. 541 */ 542 g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc); 543 g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count); 544 545 g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD, 546 bitset_count); 547 g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count); 548 g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int, 549 bitset_count); 550 g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int, 551 bitset_count); 552 553 g->alloc = alloc; 554} 555 556struct ra_graph * 557ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count) 558{ 559 struct ra_graph *g; 560 561 g = rzalloc(NULL, struct ra_graph); 562 g->regs = regs; 563 g->count = count; 564 ra_realloc_interference_graph(g, count); 565 566 return g; 567} 568 569void 570ra_resize_interference_graph(struct ra_graph *g, unsigned int count) 571{ 572 g->count = count; 573 if (count > g->alloc) 574 ra_realloc_interference_graph(g, g->alloc * 2); 575} 576 577void ra_set_select_reg_callback(struct ra_graph *g, 578 ra_select_reg_callback callback, 579 void *data) 580{ 581 g->select_reg_callback = callback; 582 g->select_reg_callback_data = data; 583} 584 585void 586ra_set_node_class(struct ra_graph *g, 587 unsigned int n, struct ra_class *class) 588{ 589 g->nodes[n].class = class->index; 590} 591 592struct ra_class * 593ra_get_node_class(struct ra_graph *g, 594 unsigned int n) 595{ 596 return g->regs->classes[g->nodes[n].class]; 597} 598 599unsigned int 600ra_add_node(struct ra_graph *g, struct ra_class *class) 601{ 602 unsigned int n = g->count; 603 ra_resize_interference_graph(g, g->count + 1); 604 605 ra_set_node_class(g, n, class); 606 607 return n; 608} 609 610void 611ra_add_node_interference(struct ra_graph *g, 612 unsigned int n1, unsigned int n2) 613{ 614 assert(n1 < g->count && n2 < g->count); 615 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) { 616 ra_add_node_adjacency(g, n1, n2); 617 ra_add_node_adjacency(g, n2, n1); 618 } 619} 620 621void 622ra_reset_node_interference(struct ra_graph *g, unsigned int n) 623{ 624 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) { 625 ra_node_remove_adjacency(g, *n2p, n); 626 } 627 628 memset(g->nodes[n].adjacency, 0, 629 BITSET_WORDS(g->count) * sizeof(BITSET_WORD)); 630 util_dynarray_clear(&g->nodes[n].adjacency_list); 631} 632 633static void 634update_pq_info(struct ra_graph *g, unsigned int n) 635{ 636 int i = n / BITSET_WORDBITS; 637 int n_class = g->nodes[n].class; 638 if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) { 639 BITSET_SET(g->tmp.pq_test, n); 640 } else if (g->tmp.min_q_total[i] != UINT_MAX) { 641 /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so 642 * that we don't update while we have stale data and accidentally mark 643 * it as non-stale. Also, in order to remain consistent with the old 644 * naive implementation of the algorithm, we do a lexicographical sort 645 * to ensure that we always choose the node with the highest node index. 646 */ 647 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] || 648 (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] && 649 n > g->tmp.min_q_node[i])) { 650 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total; 651 g->tmp.min_q_node[i] = n; 652 } 653 } 654} 655 656static void 657add_node_to_stack(struct ra_graph *g, unsigned int n) 658{ 659 int n_class = g->nodes[n].class; 660 661 assert(!BITSET_TEST(g->tmp.in_stack, n)); 662 663 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) { 664 unsigned int n2 = *n2p; 665 unsigned int n2_class = g->nodes[n2].class; 666 667 if (!BITSET_TEST(g->tmp.in_stack, n2) && 668 !BITSET_TEST(g->tmp.reg_assigned, n2)) { 669 assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]); 670 g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class]; 671 update_pq_info(g, n2); 672 } 673 } 674 675 g->tmp.stack[g->tmp.stack_count] = n; 676 g->tmp.stack_count++; 677 BITSET_SET(g->tmp.in_stack, n); 678 679 /* Flag the min_q_total for n's block as dirty so it gets recalculated */ 680 g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX; 681} 682 683/** 684 * Simplifies the interference graph by pushing all 685 * trivially-colorable nodes into a stack of nodes to be colored, 686 * removing them from the graph, and rinsing and repeating. 687 * 688 * If we encounter a case where we can't push any nodes on the stack, then 689 * we optimistically choose a node and push it on the stack. We heuristically 690 * push the node with the lowest total q value, since it has the fewest 691 * neighbors and therefore is most likely to be allocated. 692 */ 693static void 694ra_simplify(struct ra_graph *g) 695{ 696 bool progress = true; 697 unsigned int stack_optimistic_start = UINT_MAX; 698 699 /* Figure out the high bit and bit mask for the first iteration of a loop 700 * over BITSET_WORDs. 701 */ 702 const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS; 703 704 /* Do a quick pre-pass to set things up */ 705 g->tmp.stack_count = 0; 706 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit; 707 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) { 708 g->tmp.in_stack[i] = 0; 709 g->tmp.reg_assigned[i] = 0; 710 g->tmp.pq_test[i] = 0; 711 g->tmp.min_q_total[i] = UINT_MAX; 712 g->tmp.min_q_node[i] = UINT_MAX; 713 for (int j = high_bit; j >= 0; j--) { 714 unsigned int n = i * BITSET_WORDBITS + j; 715 g->nodes[n].reg = g->nodes[n].forced_reg; 716 g->nodes[n].tmp.q_total = g->nodes[n].q_total; 717 if (g->nodes[n].reg != NO_REG) 718 g->tmp.reg_assigned[i] |= BITSET_BIT(j); 719 update_pq_info(g, n); 720 } 721 } 722 723 while (progress) { 724 unsigned int min_q_total = UINT_MAX; 725 unsigned int min_q_node = UINT_MAX; 726 727 progress = false; 728 729 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit; 730 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) { 731 BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit); 732 733 BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i]; 734 if (skip == mask) 735 continue; 736 737 BITSET_WORD pq = g->tmp.pq_test[i] & ~skip; 738 if (pq) { 739 /* In this case, we have stuff we can immediately take off the 740 * stack. This also means that we're guaranteed to make progress 741 * and we don't need to bother updating lowest_q_total because we 742 * know we're going to loop again before attempting to do anything 743 * optimistic. 744 */ 745 for (int j = high_bit; j >= 0; j--) { 746 if (pq & BITSET_BIT(j)) { 747 unsigned int n = i * BITSET_WORDBITS + j; 748 assert(n < g->count); 749 add_node_to_stack(g, n); 750 /* add_node_to_stack() may update pq_test for this word so 751 * we need to update our local copy. 752 */ 753 pq = g->tmp.pq_test[i] & ~skip; 754 progress = true; 755 } 756 } 757 } else if (!progress) { 758 if (g->tmp.min_q_total[i] == UINT_MAX) { 759 /* The min_q_total and min_q_node are dirty because we added 760 * one of these nodes to the stack. It needs to be 761 * recalculated. 762 */ 763 for (int j = high_bit; j >= 0; j--) { 764 if (skip & BITSET_BIT(j)) 765 continue; 766 767 unsigned int n = i * BITSET_WORDBITS + j; 768 assert(n < g->count); 769 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) { 770 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total; 771 g->tmp.min_q_node[i] = n; 772 } 773 } 774 } 775 if (g->tmp.min_q_total[i] < min_q_total) { 776 min_q_node = g->tmp.min_q_node[i]; 777 min_q_total = g->tmp.min_q_total[i]; 778 } 779 } 780 } 781 782 if (!progress && min_q_total != UINT_MAX) { 783 if (stack_optimistic_start == UINT_MAX) 784 stack_optimistic_start = g->tmp.stack_count; 785 786 add_node_to_stack(g, min_q_node); 787 progress = true; 788 } 789 } 790 791 g->tmp.stack_optimistic_start = stack_optimistic_start; 792} 793 794bool 795ra_class_allocations_conflict(struct ra_class *c1, unsigned int r1, 796 struct ra_class *c2, unsigned int r2) 797{ 798 if (c1->contig_len) { 799 assert(c2->contig_len); 800 801 int r1_end = r1 + c1->contig_len; 802 int r2_end = r2 + c2->contig_len; 803 return !(r2 >= r1_end || r1 >= r2_end); 804 } else { 805 return BITSET_TEST(c1->regset->regs[r1].conflicts, r2); 806 } 807} 808 809static struct ra_node * 810ra_find_conflicting_neighbor(struct ra_graph *g, unsigned int n, unsigned int r) 811{ 812 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) { 813 unsigned int n2 = *n2p; 814 815 /* If our adjacent node is in the stack, it's not allocated yet. */ 816 if (!BITSET_TEST(g->tmp.in_stack, n2) && 817 ra_class_allocations_conflict(g->regs->classes[g->nodes[n].class], r, 818 g->regs->classes[g->nodes[n2].class], g->nodes[n2].reg)) { 819 return &g->nodes[n2]; 820 } 821 } 822 823 return NULL; 824} 825 826/* Computes a bitfield of what regs are available for a given register 827 * selection. 828 * 829 * This lets drivers implement a more complicated policy than our simple first 830 * or round robin policies (which don't require knowing the whole bitset) 831 */ 832static bool 833ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs) 834{ 835 struct ra_class *c = g->regs->classes[g->nodes[n].class]; 836 837 /* Populate with the set of regs that are in the node's class. */ 838 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD)); 839 840 /* Remove any regs that conflict with nodes that we're adjacent to and have 841 * already colored. 842 */ 843 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) { 844 struct ra_node *n2 = &g->nodes[*n2p]; 845 struct ra_class *n2c = g->regs->classes[n2->class]; 846 847 if (!BITSET_TEST(g->tmp.in_stack, *n2p)) { 848 if (c->contig_len) { 849 int start = MAX2(0, (int)n2->reg - c->contig_len + 1); 850 int end = MIN2(g->regs->count, n2->reg + n2c->contig_len); 851 for (unsigned i = start; i < end; i++) 852 BITSET_CLEAR(regs, i); 853 } else { 854 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++) 855 regs[j] &= ~g->regs->regs[n2->reg].conflicts[j]; 856 } 857 } 858 } 859 860 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) { 861 if (regs[i]) 862 return true; 863 } 864 865 return false; 866} 867 868/** 869 * Pops nodes from the stack back into the graph, coloring them with 870 * registers as they go. 871 * 872 * If all nodes were trivially colorable, then this must succeed. If 873 * not (optimistic coloring), then it may return false; 874 */ 875static bool 876ra_select(struct ra_graph *g) 877{ 878 int start_search_reg = 0; 879 BITSET_WORD *select_regs = NULL; 880 881 if (g->select_reg_callback) 882 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD)); 883 884 while (g->tmp.stack_count != 0) { 885 unsigned int ri; 886 unsigned int r = -1; 887 int n = g->tmp.stack[g->tmp.stack_count - 1]; 888 struct ra_class *c = g->regs->classes[g->nodes[n].class]; 889 890 /* set this to false even if we return here so that 891 * ra_get_best_spill_node() considers this node later. 892 */ 893 BITSET_CLEAR(g->tmp.in_stack, n); 894 895 if (g->select_reg_callback) { 896 if (!ra_compute_available_regs(g, n, select_regs)) { 897 free(select_regs); 898 return false; 899 } 900 901 r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data); 902 assert(r < g->regs->count); 903 } else { 904 /* Find the lowest-numbered reg which is not used by a member 905 * of the graph adjacent to us. 906 */ 907 for (ri = 0; ri < g->regs->count; ri++) { 908 r = (start_search_reg + ri) % g->regs->count; 909 if (!reg_belongs_to_class(r, c)) 910 continue; 911 912 struct ra_node *conflicting = ra_find_conflicting_neighbor(g, n, r); 913 if (!conflicting) { 914 /* Found a reg! */ 915 break; 916 } 917 if (g->regs->classes[conflicting->class]->contig_len) { 918 /* Skip to point at the last base reg of the conflicting reg 919 * allocation -- the loop will increment us to check the next reg 920 * after the conflicting allocaiton. 921 */ 922 unsigned conflicting_end = (conflicting->reg + 923 g->regs->classes[conflicting->class]->contig_len - 1); 924 assert(conflicting_end >= r); 925 ri += conflicting_end - r; 926 } 927 } 928 929 if (ri >= g->regs->count) 930 return false; 931 } 932 933 g->nodes[n].reg = r; 934 g->tmp.stack_count--; 935 936 /* Rotate the starting point except for any nodes above the lowest 937 * optimistically colorable node. The likelihood that we will succeed 938 * at allocating optimistically colorable nodes is highly dependent on 939 * the way that the previous nodes popped off the stack are laid out. 940 * The round-robin strategy increases the fragmentation of the register 941 * file and decreases the number of nearby nodes assigned to the same 942 * color, what increases the likelihood of spilling with respect to the 943 * dense packing strategy. 944 */ 945 if (g->regs->round_robin && 946 g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start) 947 start_search_reg = r + 1; 948 } 949 950 free(select_regs); 951 952 return true; 953} 954 955bool 956ra_allocate(struct ra_graph *g) 957{ 958 ra_simplify(g); 959 return ra_select(g); 960} 961 962unsigned int 963ra_get_node_reg(struct ra_graph *g, unsigned int n) 964{ 965 if (g->nodes[n].forced_reg != NO_REG) 966 return g->nodes[n].forced_reg; 967 else 968 return g->nodes[n].reg; 969} 970 971/** 972 * Forces a node to a specific register. This can be used to avoid 973 * creating a register class containing one node when handling data 974 * that must live in a fixed location and is known to not conflict 975 * with other forced register assignment (as is common with shader 976 * input data). These nodes do not end up in the stack during 977 * ra_simplify(), and thus at ra_select() time it is as if they were 978 * the first popped off the stack and assigned their fixed locations. 979 * Nodes that use this function do not need to be assigned a register 980 * class. 981 * 982 * Must be called before ra_simplify(). 983 */ 984void 985ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg) 986{ 987 g->nodes[n].forced_reg = reg; 988} 989 990static float 991ra_get_spill_benefit(struct ra_graph *g, unsigned int n) 992{ 993 float benefit = 0; 994 int n_class = g->nodes[n].class; 995 996 /* Define the benefit of eliminating an interference between n, n2 997 * through spilling as q(C, B) / p(C). This is similar to the 998 * "count number of edges" approach of traditional graph coloring, 999 * but takes classes into account. 1000 */ 1001 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) { 1002 unsigned int n2 = *n2p; 1003 unsigned int n2_class = g->nodes[n2].class; 1004 benefit += ((float)g->regs->classes[n_class]->q[n2_class] / 1005 g->regs->classes[n_class]->p); 1006 } 1007 1008 return benefit; 1009} 1010 1011/** 1012 * Returns a node number to be spilled according to the cost/benefit using 1013 * the pq test, or -1 if there are no spillable nodes. 1014 */ 1015int 1016ra_get_best_spill_node(struct ra_graph *g) 1017{ 1018 unsigned int best_node = -1; 1019 float best_benefit = 0.0; 1020 unsigned int n; 1021 1022 /* Consider any nodes that we colored successfully or the node we failed to 1023 * color for spilling. When we failed to color a node in ra_select(), we 1024 * only considered these nodes, so spilling any other ones would not result 1025 * in us making progress. 1026 */ 1027 for (n = 0; n < g->count; n++) { 1028 float cost = g->nodes[n].spill_cost; 1029 float benefit; 1030 1031 if (cost <= 0.0f) 1032 continue; 1033 1034 if (BITSET_TEST(g->tmp.in_stack, n)) 1035 continue; 1036 1037 benefit = ra_get_spill_benefit(g, n); 1038 1039 if (benefit / cost > best_benefit) { 1040 best_benefit = benefit / cost; 1041 best_node = n; 1042 } 1043 } 1044 1045 return best_node; 1046} 1047 1048/** 1049 * Only nodes with a spill cost set (cost != 0.0) will be considered 1050 * for register spilling. 1051 */ 1052void 1053ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost) 1054{ 1055 g->nodes[n].spill_cost = cost; 1056} 1057