intel_bufmgr_gem.c revision 424e9256
1/**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30/*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 *	    Eric Anholt <eric@anholt.net>
34 *	    Dave Airlie <airlied@linux.ie>
35 */
36
37#ifdef HAVE_CONFIG_H
38#include "config.h"
39#endif
40
41#include <xf86drm.h>
42#include <xf86atomic.h>
43#include <fcntl.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48#include <assert.h>
49#include <pthread.h>
50#include <stddef.h>
51#include <sys/ioctl.h>
52#include <sys/stat.h>
53#include <sys/types.h>
54#include <stdbool.h>
55
56#include "errno.h"
57#ifndef ETIME
58#define ETIME ETIMEDOUT
59#endif
60#include "libdrm_macros.h"
61#include "libdrm_lists.h"
62#include "intel_bufmgr.h"
63#include "intel_bufmgr_priv.h"
64#include "intel_chipset.h"
65#include "intel_aub.h"
66#include "string.h"
67
68#include "i915_drm.h"
69
70#ifdef HAVE_VALGRIND
71#include <valgrind.h>
72#include <memcheck.h>
73#define VG(x) x
74#else
75#define VG(x)
76#endif
77
78#define memclear(s) memset(&s, 0, sizeof(s))
79
80#define DBG(...) do {					\
81	if (bufmgr_gem->bufmgr.debug)			\
82		fprintf(stderr, __VA_ARGS__);		\
83} while (0)
84
85#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
86
87typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
88
89struct drm_intel_gem_bo_bucket {
90	drmMMListHead head;
91	unsigned long size;
92};
93
94typedef struct _drm_intel_bufmgr_gem {
95	drm_intel_bufmgr bufmgr;
96
97	atomic_t refcount;
98
99	int fd;
100
101	int max_relocs;
102
103	pthread_mutex_t lock;
104
105	struct drm_i915_gem_exec_object *exec_objects;
106	struct drm_i915_gem_exec_object2 *exec2_objects;
107	drm_intel_bo **exec_bos;
108	int exec_size;
109	int exec_count;
110
111	/** Array of lists of cached gem objects of power-of-two sizes */
112	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
113	int num_buckets;
114	time_t time;
115
116	drmMMListHead managers;
117
118	drmMMListHead named;
119	drmMMListHead vma_cache;
120	int vma_count, vma_open, vma_max;
121
122	uint64_t gtt_size;
123	int available_fences;
124	int pci_device;
125	int gen;
126	unsigned int has_bsd : 1;
127	unsigned int has_blt : 1;
128	unsigned int has_relaxed_fencing : 1;
129	unsigned int has_llc : 1;
130	unsigned int has_wait_timeout : 1;
131	unsigned int bo_reuse : 1;
132	unsigned int no_exec : 1;
133	unsigned int has_vebox : 1;
134	bool fenced_relocs;
135
136	struct {
137		void *ptr;
138		uint32_t handle;
139	} userptr_active;
140
141	char *aub_filename;
142	FILE *aub_file;
143	uint32_t aub_offset;
144} drm_intel_bufmgr_gem;
145
146#define DRM_INTEL_RELOC_FENCE (1<<0)
147
148typedef struct _drm_intel_reloc_target_info {
149	drm_intel_bo *bo;
150	int flags;
151} drm_intel_reloc_target;
152
153struct _drm_intel_bo_gem {
154	drm_intel_bo bo;
155
156	atomic_t refcount;
157	uint32_t gem_handle;
158	const char *name;
159
160	/**
161	 * Kenel-assigned global name for this object
162         *
163         * List contains both flink named and prime fd'd objects
164	 */
165	unsigned int global_name;
166	drmMMListHead name_list;
167
168	/**
169	 * Index of the buffer within the validation list while preparing a
170	 * batchbuffer execution.
171	 */
172	int validate_index;
173
174	/**
175	 * Current tiling mode
176	 */
177	uint32_t tiling_mode;
178	uint32_t swizzle_mode;
179	unsigned long stride;
180
181	time_t free_time;
182
183	/** Array passed to the DRM containing relocation information. */
184	struct drm_i915_gem_relocation_entry *relocs;
185	/**
186	 * Array of info structs corresponding to relocs[i].target_handle etc
187	 */
188	drm_intel_reloc_target *reloc_target_info;
189	/** Number of entries in relocs */
190	int reloc_count;
191	/** Mapped address for the buffer, saved across map/unmap cycles */
192	void *mem_virtual;
193	/** GTT virtual address for the buffer, saved across map/unmap cycles */
194	void *gtt_virtual;
195	/**
196	 * Virtual address of the buffer allocated by user, used for userptr
197	 * objects only.
198	 */
199	void *user_virtual;
200	int map_count;
201	drmMMListHead vma_list;
202
203	/** BO cache list */
204	drmMMListHead head;
205
206	/**
207	 * Boolean of whether this BO and its children have been included in
208	 * the current drm_intel_bufmgr_check_aperture_space() total.
209	 */
210	bool included_in_check_aperture;
211
212	/**
213	 * Boolean of whether this buffer has been used as a relocation
214	 * target and had its size accounted for, and thus can't have any
215	 * further relocations added to it.
216	 */
217	bool used_as_reloc_target;
218
219	/**
220	 * Boolean of whether we have encountered an error whilst building the relocation tree.
221	 */
222	bool has_error;
223
224	/**
225	 * Boolean of whether this buffer can be re-used
226	 */
227	bool reusable;
228
229	/**
230	 * Boolean of whether the GPU is definitely not accessing the buffer.
231	 *
232	 * This is only valid when reusable, since non-reusable
233	 * buffers are those that have been shared wth other
234	 * processes, so we don't know their state.
235	 */
236	bool idle;
237
238	/**
239	 * Boolean of whether this buffer was allocated with userptr
240	 */
241	bool is_userptr;
242
243	/**
244	 * Size in bytes of this buffer and its relocation descendents.
245	 *
246	 * Used to avoid costly tree walking in
247	 * drm_intel_bufmgr_check_aperture in the common case.
248	 */
249	int reloc_tree_size;
250
251	/**
252	 * Number of potential fence registers required by this buffer and its
253	 * relocations.
254	 */
255	int reloc_tree_fences;
256
257	/** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
258	bool mapped_cpu_write;
259
260	uint32_t aub_offset;
261
262	drm_intel_aub_annotation *aub_annotations;
263	unsigned aub_annotation_count;
264};
265
266static unsigned int
267drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
268
269static unsigned int
270drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
271
272static int
273drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
274			    uint32_t * swizzle_mode);
275
276static int
277drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
278				     uint32_t tiling_mode,
279				     uint32_t stride);
280
281static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
282						      time_t time);
283
284static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
285
286static void drm_intel_gem_bo_free(drm_intel_bo *bo);
287
288static unsigned long
289drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
290			   uint32_t *tiling_mode)
291{
292	unsigned long min_size, max_size;
293	unsigned long i;
294
295	if (*tiling_mode == I915_TILING_NONE)
296		return size;
297
298	/* 965+ just need multiples of page size for tiling */
299	if (bufmgr_gem->gen >= 4)
300		return ROUND_UP_TO(size, 4096);
301
302	/* Older chips need powers of two, of at least 512k or 1M */
303	if (bufmgr_gem->gen == 3) {
304		min_size = 1024*1024;
305		max_size = 128*1024*1024;
306	} else {
307		min_size = 512*1024;
308		max_size = 64*1024*1024;
309	}
310
311	if (size > max_size) {
312		*tiling_mode = I915_TILING_NONE;
313		return size;
314	}
315
316	/* Do we need to allocate every page for the fence? */
317	if (bufmgr_gem->has_relaxed_fencing)
318		return ROUND_UP_TO(size, 4096);
319
320	for (i = min_size; i < size; i <<= 1)
321		;
322
323	return i;
324}
325
326/*
327 * Round a given pitch up to the minimum required for X tiling on a
328 * given chip.  We use 512 as the minimum to allow for a later tiling
329 * change.
330 */
331static unsigned long
332drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
333			    unsigned long pitch, uint32_t *tiling_mode)
334{
335	unsigned long tile_width;
336	unsigned long i;
337
338	/* If untiled, then just align it so that we can do rendering
339	 * to it with the 3D engine.
340	 */
341	if (*tiling_mode == I915_TILING_NONE)
342		return ALIGN(pitch, 64);
343
344	if (*tiling_mode == I915_TILING_X
345			|| (IS_915(bufmgr_gem->pci_device)
346			    && *tiling_mode == I915_TILING_Y))
347		tile_width = 512;
348	else
349		tile_width = 128;
350
351	/* 965 is flexible */
352	if (bufmgr_gem->gen >= 4)
353		return ROUND_UP_TO(pitch, tile_width);
354
355	/* The older hardware has a maximum pitch of 8192 with tiled
356	 * surfaces, so fallback to untiled if it's too large.
357	 */
358	if (pitch > 8192) {
359		*tiling_mode = I915_TILING_NONE;
360		return ALIGN(pitch, 64);
361	}
362
363	/* Pre-965 needs power of two tile width */
364	for (i = tile_width; i < pitch; i <<= 1)
365		;
366
367	return i;
368}
369
370static struct drm_intel_gem_bo_bucket *
371drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
372				 unsigned long size)
373{
374	int i;
375
376	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
377		struct drm_intel_gem_bo_bucket *bucket =
378		    &bufmgr_gem->cache_bucket[i];
379		if (bucket->size >= size) {
380			return bucket;
381		}
382	}
383
384	return NULL;
385}
386
387static void
388drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
389{
390	int i, j;
391
392	for (i = 0; i < bufmgr_gem->exec_count; i++) {
393		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
394		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
395
396		if (bo_gem->relocs == NULL) {
397			DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle,
398			    bo_gem->name);
399			continue;
400		}
401
402		for (j = 0; j < bo_gem->reloc_count; j++) {
403			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
404			drm_intel_bo_gem *target_gem =
405			    (drm_intel_bo_gem *) target_bo;
406
407			DBG("%2d: %d (%s)@0x%08llx -> "
408			    "%d (%s)@0x%08llx + 0x%08x\n",
409			    i,
410			    bo_gem->gem_handle, bo_gem->name,
411			    (unsigned long long)bo_gem->relocs[j].offset,
412			    target_gem->gem_handle,
413			    target_gem->name,
414			    (unsigned long long)target_bo->offset64,
415			    bo_gem->relocs[j].delta);
416		}
417	}
418}
419
420static inline void
421drm_intel_gem_bo_reference(drm_intel_bo *bo)
422{
423	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
424
425	atomic_inc(&bo_gem->refcount);
426}
427
428/**
429 * Adds the given buffer to the list of buffers to be validated (moved into the
430 * appropriate memory type) with the next batch submission.
431 *
432 * If a buffer is validated multiple times in a batch submission, it ends up
433 * with the intersection of the memory type flags and the union of the
434 * access flags.
435 */
436static void
437drm_intel_add_validate_buffer(drm_intel_bo *bo)
438{
439	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
440	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
441	int index;
442
443	if (bo_gem->validate_index != -1)
444		return;
445
446	/* Extend the array of validation entries as necessary. */
447	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
448		int new_size = bufmgr_gem->exec_size * 2;
449
450		if (new_size == 0)
451			new_size = 5;
452
453		bufmgr_gem->exec_objects =
454		    realloc(bufmgr_gem->exec_objects,
455			    sizeof(*bufmgr_gem->exec_objects) * new_size);
456		bufmgr_gem->exec_bos =
457		    realloc(bufmgr_gem->exec_bos,
458			    sizeof(*bufmgr_gem->exec_bos) * new_size);
459		bufmgr_gem->exec_size = new_size;
460	}
461
462	index = bufmgr_gem->exec_count;
463	bo_gem->validate_index = index;
464	/* Fill in array entry */
465	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
466	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
467	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
468	bufmgr_gem->exec_objects[index].alignment = 0;
469	bufmgr_gem->exec_objects[index].offset = 0;
470	bufmgr_gem->exec_bos[index] = bo;
471	bufmgr_gem->exec_count++;
472}
473
474static void
475drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
476{
477	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
478	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
479	int index;
480
481	if (bo_gem->validate_index != -1) {
482		if (need_fence)
483			bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |=
484				EXEC_OBJECT_NEEDS_FENCE;
485		return;
486	}
487
488	/* Extend the array of validation entries as necessary. */
489	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
490		int new_size = bufmgr_gem->exec_size * 2;
491
492		if (new_size == 0)
493			new_size = 5;
494
495		bufmgr_gem->exec2_objects =
496			realloc(bufmgr_gem->exec2_objects,
497				sizeof(*bufmgr_gem->exec2_objects) * new_size);
498		bufmgr_gem->exec_bos =
499			realloc(bufmgr_gem->exec_bos,
500				sizeof(*bufmgr_gem->exec_bos) * new_size);
501		bufmgr_gem->exec_size = new_size;
502	}
503
504	index = bufmgr_gem->exec_count;
505	bo_gem->validate_index = index;
506	/* Fill in array entry */
507	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
508	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
509	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
510	bufmgr_gem->exec2_objects[index].alignment = 0;
511	bufmgr_gem->exec2_objects[index].offset = 0;
512	bufmgr_gem->exec_bos[index] = bo;
513	bufmgr_gem->exec2_objects[index].flags = 0;
514	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
515	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
516	if (need_fence) {
517		bufmgr_gem->exec2_objects[index].flags |=
518			EXEC_OBJECT_NEEDS_FENCE;
519	}
520	bufmgr_gem->exec_count++;
521}
522
523#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
524	sizeof(uint32_t))
525
526static void
527drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
528				      drm_intel_bo_gem *bo_gem)
529{
530	int size;
531
532	assert(!bo_gem->used_as_reloc_target);
533
534	/* The older chipsets are far-less flexible in terms of tiling,
535	 * and require tiled buffer to be size aligned in the aperture.
536	 * This means that in the worst possible case we will need a hole
537	 * twice as large as the object in order for it to fit into the
538	 * aperture. Optimal packing is for wimps.
539	 */
540	size = bo_gem->bo.size;
541	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
542		int min_size;
543
544		if (bufmgr_gem->has_relaxed_fencing) {
545			if (bufmgr_gem->gen == 3)
546				min_size = 1024*1024;
547			else
548				min_size = 512*1024;
549
550			while (min_size < size)
551				min_size *= 2;
552		} else
553			min_size = size;
554
555		/* Account for worst-case alignment. */
556		size = 2 * min_size;
557	}
558
559	bo_gem->reloc_tree_size = size;
560}
561
562static int
563drm_intel_setup_reloc_list(drm_intel_bo *bo)
564{
565	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
566	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
567	unsigned int max_relocs = bufmgr_gem->max_relocs;
568
569	if (bo->size / 4 < max_relocs)
570		max_relocs = bo->size / 4;
571
572	bo_gem->relocs = malloc(max_relocs *
573				sizeof(struct drm_i915_gem_relocation_entry));
574	bo_gem->reloc_target_info = malloc(max_relocs *
575					   sizeof(drm_intel_reloc_target));
576	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
577		bo_gem->has_error = true;
578
579		free (bo_gem->relocs);
580		bo_gem->relocs = NULL;
581
582		free (bo_gem->reloc_target_info);
583		bo_gem->reloc_target_info = NULL;
584
585		return 1;
586	}
587
588	return 0;
589}
590
591static int
592drm_intel_gem_bo_busy(drm_intel_bo *bo)
593{
594	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
595	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
596	struct drm_i915_gem_busy busy;
597	int ret;
598
599	if (bo_gem->reusable && bo_gem->idle)
600		return false;
601
602	memclear(busy);
603	busy.handle = bo_gem->gem_handle;
604
605	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
606	if (ret == 0) {
607		bo_gem->idle = !busy.busy;
608		return busy.busy;
609	} else {
610		return false;
611	}
612	return (ret == 0 && busy.busy);
613}
614
615static int
616drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
617				  drm_intel_bo_gem *bo_gem, int state)
618{
619	struct drm_i915_gem_madvise madv;
620
621	memclear(madv);
622	madv.handle = bo_gem->gem_handle;
623	madv.madv = state;
624	madv.retained = 1;
625	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
626
627	return madv.retained;
628}
629
630static int
631drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
632{
633	return drm_intel_gem_bo_madvise_internal
634		((drm_intel_bufmgr_gem *) bo->bufmgr,
635		 (drm_intel_bo_gem *) bo,
636		 madv);
637}
638
639/* drop the oldest entries that have been purged by the kernel */
640static void
641drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
642				    struct drm_intel_gem_bo_bucket *bucket)
643{
644	while (!DRMLISTEMPTY(&bucket->head)) {
645		drm_intel_bo_gem *bo_gem;
646
647		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
648				      bucket->head.next, head);
649		if (drm_intel_gem_bo_madvise_internal
650		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
651			break;
652
653		DRMLISTDEL(&bo_gem->head);
654		drm_intel_gem_bo_free(&bo_gem->bo);
655	}
656}
657
658static drm_intel_bo *
659drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
660				const char *name,
661				unsigned long size,
662				unsigned long flags,
663				uint32_t tiling_mode,
664				unsigned long stride)
665{
666	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
667	drm_intel_bo_gem *bo_gem;
668	unsigned int page_size = getpagesize();
669	int ret;
670	struct drm_intel_gem_bo_bucket *bucket;
671	bool alloc_from_cache;
672	unsigned long bo_size;
673	bool for_render = false;
674
675	if (flags & BO_ALLOC_FOR_RENDER)
676		for_render = true;
677
678	/* Round the allocated size up to a power of two number of pages. */
679	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
680
681	/* If we don't have caching at this size, don't actually round the
682	 * allocation up.
683	 */
684	if (bucket == NULL) {
685		bo_size = size;
686		if (bo_size < page_size)
687			bo_size = page_size;
688	} else {
689		bo_size = bucket->size;
690	}
691
692	pthread_mutex_lock(&bufmgr_gem->lock);
693	/* Get a buffer out of the cache if available */
694retry:
695	alloc_from_cache = false;
696	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
697		if (for_render) {
698			/* Allocate new render-target BOs from the tail (MRU)
699			 * of the list, as it will likely be hot in the GPU
700			 * cache and in the aperture for us.
701			 */
702			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
703					      bucket->head.prev, head);
704			DRMLISTDEL(&bo_gem->head);
705			alloc_from_cache = true;
706		} else {
707			/* For non-render-target BOs (where we're probably
708			 * going to map it first thing in order to fill it
709			 * with data), check if the last BO in the cache is
710			 * unbusy, and only reuse in that case. Otherwise,
711			 * allocating a new buffer is probably faster than
712			 * waiting for the GPU to finish.
713			 */
714			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
715					      bucket->head.next, head);
716			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
717				alloc_from_cache = true;
718				DRMLISTDEL(&bo_gem->head);
719			}
720		}
721
722		if (alloc_from_cache) {
723			if (!drm_intel_gem_bo_madvise_internal
724			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
725				drm_intel_gem_bo_free(&bo_gem->bo);
726				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
727								    bucket);
728				goto retry;
729			}
730
731			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
732								 tiling_mode,
733								 stride)) {
734				drm_intel_gem_bo_free(&bo_gem->bo);
735				goto retry;
736			}
737		}
738	}
739	pthread_mutex_unlock(&bufmgr_gem->lock);
740
741	if (!alloc_from_cache) {
742		struct drm_i915_gem_create create;
743
744		bo_gem = calloc(1, sizeof(*bo_gem));
745		if (!bo_gem)
746			return NULL;
747
748		bo_gem->bo.size = bo_size;
749
750		memclear(create);
751		create.size = bo_size;
752
753		ret = drmIoctl(bufmgr_gem->fd,
754			       DRM_IOCTL_I915_GEM_CREATE,
755			       &create);
756		bo_gem->gem_handle = create.handle;
757		bo_gem->bo.handle = bo_gem->gem_handle;
758		if (ret != 0) {
759			free(bo_gem);
760			return NULL;
761		}
762		bo_gem->bo.bufmgr = bufmgr;
763
764		bo_gem->tiling_mode = I915_TILING_NONE;
765		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
766		bo_gem->stride = 0;
767
768		/* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
769		   list (vma_list), so better set the list head here */
770		DRMINITLISTHEAD(&bo_gem->name_list);
771		DRMINITLISTHEAD(&bo_gem->vma_list);
772		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
773							 tiling_mode,
774							 stride)) {
775		    drm_intel_gem_bo_free(&bo_gem->bo);
776		    return NULL;
777		}
778	}
779
780	bo_gem->name = name;
781	atomic_set(&bo_gem->refcount, 1);
782	bo_gem->validate_index = -1;
783	bo_gem->reloc_tree_fences = 0;
784	bo_gem->used_as_reloc_target = false;
785	bo_gem->has_error = false;
786	bo_gem->reusable = true;
787	bo_gem->aub_annotations = NULL;
788	bo_gem->aub_annotation_count = 0;
789
790	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
791
792	DBG("bo_create: buf %d (%s) %ldb\n",
793	    bo_gem->gem_handle, bo_gem->name, size);
794
795	return &bo_gem->bo;
796}
797
798static drm_intel_bo *
799drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
800				  const char *name,
801				  unsigned long size,
802				  unsigned int alignment)
803{
804	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
805					       BO_ALLOC_FOR_RENDER,
806					       I915_TILING_NONE, 0);
807}
808
809static drm_intel_bo *
810drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
811		       const char *name,
812		       unsigned long size,
813		       unsigned int alignment)
814{
815	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
816					       I915_TILING_NONE, 0);
817}
818
819static drm_intel_bo *
820drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
821			     int x, int y, int cpp, uint32_t *tiling_mode,
822			     unsigned long *pitch, unsigned long flags)
823{
824	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
825	unsigned long size, stride;
826	uint32_t tiling;
827
828	do {
829		unsigned long aligned_y, height_alignment;
830
831		tiling = *tiling_mode;
832
833		/* If we're tiled, our allocations are in 8 or 32-row blocks,
834		 * so failure to align our height means that we won't allocate
835		 * enough pages.
836		 *
837		 * If we're untiled, we still have to align to 2 rows high
838		 * because the data port accesses 2x2 blocks even if the
839		 * bottom row isn't to be rendered, so failure to align means
840		 * we could walk off the end of the GTT and fault.  This is
841		 * documented on 965, and may be the case on older chipsets
842		 * too so we try to be careful.
843		 */
844		aligned_y = y;
845		height_alignment = 2;
846
847		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
848			height_alignment = 16;
849		else if (tiling == I915_TILING_X
850			|| (IS_915(bufmgr_gem->pci_device)
851			    && tiling == I915_TILING_Y))
852			height_alignment = 8;
853		else if (tiling == I915_TILING_Y)
854			height_alignment = 32;
855		aligned_y = ALIGN(y, height_alignment);
856
857		stride = x * cpp;
858		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
859		size = stride * aligned_y;
860		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
861	} while (*tiling_mode != tiling);
862	*pitch = stride;
863
864	if (tiling == I915_TILING_NONE)
865		stride = 0;
866
867	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
868					       tiling, stride);
869}
870
871static drm_intel_bo *
872drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
873				const char *name,
874				void *addr,
875				uint32_t tiling_mode,
876				uint32_t stride,
877				unsigned long size,
878				unsigned long flags)
879{
880	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
881	drm_intel_bo_gem *bo_gem;
882	int ret;
883	struct drm_i915_gem_userptr userptr;
884
885	/* Tiling with userptr surfaces is not supported
886	 * on all hardware so refuse it for time being.
887	 */
888	if (tiling_mode != I915_TILING_NONE)
889		return NULL;
890
891	bo_gem = calloc(1, sizeof(*bo_gem));
892	if (!bo_gem)
893		return NULL;
894
895	bo_gem->bo.size = size;
896
897	memclear(userptr);
898	userptr.user_ptr = (__u64)((unsigned long)addr);
899	userptr.user_size = size;
900	userptr.flags = flags;
901
902	ret = drmIoctl(bufmgr_gem->fd,
903			DRM_IOCTL_I915_GEM_USERPTR,
904			&userptr);
905	if (ret != 0) {
906		DBG("bo_create_userptr: "
907		    "ioctl failed with user ptr %p size 0x%lx, "
908		    "user flags 0x%lx\n", addr, size, flags);
909		free(bo_gem);
910		return NULL;
911	}
912
913	bo_gem->gem_handle = userptr.handle;
914	bo_gem->bo.handle = bo_gem->gem_handle;
915	bo_gem->bo.bufmgr    = bufmgr;
916	bo_gem->is_userptr   = true;
917	bo_gem->bo.virtual   = addr;
918	/* Save the address provided by user */
919	bo_gem->user_virtual = addr;
920	bo_gem->tiling_mode  = I915_TILING_NONE;
921	bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
922	bo_gem->stride       = 0;
923
924	DRMINITLISTHEAD(&bo_gem->name_list);
925	DRMINITLISTHEAD(&bo_gem->vma_list);
926
927	bo_gem->name = name;
928	atomic_set(&bo_gem->refcount, 1);
929	bo_gem->validate_index = -1;
930	bo_gem->reloc_tree_fences = 0;
931	bo_gem->used_as_reloc_target = false;
932	bo_gem->has_error = false;
933	bo_gem->reusable = false;
934
935	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
936
937	DBG("bo_create_userptr: "
938	    "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
939		addr, bo_gem->gem_handle, bo_gem->name,
940		size, stride, tiling_mode);
941
942	return &bo_gem->bo;
943}
944
945static bool
946has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
947{
948	int ret;
949	void *ptr;
950	long pgsz;
951	struct drm_i915_gem_userptr userptr;
952
953	pgsz = sysconf(_SC_PAGESIZE);
954	assert(pgsz > 0);
955
956	ret = posix_memalign(&ptr, pgsz, pgsz);
957	if (ret) {
958		DBG("Failed to get a page (%ld) for userptr detection!\n",
959			pgsz);
960		return false;
961	}
962
963	memclear(userptr);
964	userptr.user_ptr = (__u64)(unsigned long)ptr;
965	userptr.user_size = pgsz;
966
967retry:
968	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
969	if (ret) {
970		if (errno == ENODEV && userptr.flags == 0) {
971			userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
972			goto retry;
973		}
974		free(ptr);
975		return false;
976	}
977
978	/* We don't release the userptr bo here as we want to keep the
979	 * kernel mm tracking alive for our lifetime. The first time we
980	 * create a userptr object the kernel has to install a mmu_notifer
981	 * which is a heavyweight operation (e.g. it requires taking all
982	 * mm_locks and stop_machine()).
983	 */
984
985	bufmgr_gem->userptr_active.ptr = ptr;
986	bufmgr_gem->userptr_active.handle = userptr.handle;
987
988	return true;
989}
990
991static drm_intel_bo *
992check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
993		       const char *name,
994		       void *addr,
995		       uint32_t tiling_mode,
996		       uint32_t stride,
997		       unsigned long size,
998		       unsigned long flags)
999{
1000	if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1001		bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1002	else
1003		bufmgr->bo_alloc_userptr = NULL;
1004
1005	return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1006					  tiling_mode, stride, size, flags);
1007}
1008
1009/**
1010 * Returns a drm_intel_bo wrapping the given buffer object handle.
1011 *
1012 * This can be used when one application needs to pass a buffer object
1013 * to another.
1014 */
1015drm_intel_bo *
1016drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1017				  const char *name,
1018				  unsigned int handle)
1019{
1020	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1021	drm_intel_bo_gem *bo_gem;
1022	int ret;
1023	struct drm_gem_open open_arg;
1024	struct drm_i915_gem_get_tiling get_tiling;
1025	drmMMListHead *list;
1026
1027	/* At the moment most applications only have a few named bo.
1028	 * For instance, in a DRI client only the render buffers passed
1029	 * between X and the client are named. And since X returns the
1030	 * alternating names for the front/back buffer a linear search
1031	 * provides a sufficiently fast match.
1032	 */
1033	pthread_mutex_lock(&bufmgr_gem->lock);
1034	for (list = bufmgr_gem->named.next;
1035	     list != &bufmgr_gem->named;
1036	     list = list->next) {
1037		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
1038		if (bo_gem->global_name == handle) {
1039			drm_intel_gem_bo_reference(&bo_gem->bo);
1040			pthread_mutex_unlock(&bufmgr_gem->lock);
1041			return &bo_gem->bo;
1042		}
1043	}
1044
1045	memclear(open_arg);
1046	open_arg.name = handle;
1047	ret = drmIoctl(bufmgr_gem->fd,
1048		       DRM_IOCTL_GEM_OPEN,
1049		       &open_arg);
1050	if (ret != 0) {
1051		DBG("Couldn't reference %s handle 0x%08x: %s\n",
1052		    name, handle, strerror(errno));
1053		pthread_mutex_unlock(&bufmgr_gem->lock);
1054		return NULL;
1055	}
1056        /* Now see if someone has used a prime handle to get this
1057         * object from the kernel before by looking through the list
1058         * again for a matching gem_handle
1059         */
1060	for (list = bufmgr_gem->named.next;
1061	     list != &bufmgr_gem->named;
1062	     list = list->next) {
1063		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
1064		if (bo_gem->gem_handle == open_arg.handle) {
1065			drm_intel_gem_bo_reference(&bo_gem->bo);
1066			pthread_mutex_unlock(&bufmgr_gem->lock);
1067			return &bo_gem->bo;
1068		}
1069	}
1070
1071	bo_gem = calloc(1, sizeof(*bo_gem));
1072	if (!bo_gem) {
1073		pthread_mutex_unlock(&bufmgr_gem->lock);
1074		return NULL;
1075	}
1076
1077	bo_gem->bo.size = open_arg.size;
1078	bo_gem->bo.offset = 0;
1079	bo_gem->bo.offset64 = 0;
1080	bo_gem->bo.virtual = NULL;
1081	bo_gem->bo.bufmgr = bufmgr;
1082	bo_gem->name = name;
1083	atomic_set(&bo_gem->refcount, 1);
1084	bo_gem->validate_index = -1;
1085	bo_gem->gem_handle = open_arg.handle;
1086	bo_gem->bo.handle = open_arg.handle;
1087	bo_gem->global_name = handle;
1088	bo_gem->reusable = false;
1089
1090	memclear(get_tiling);
1091	get_tiling.handle = bo_gem->gem_handle;
1092	ret = drmIoctl(bufmgr_gem->fd,
1093		       DRM_IOCTL_I915_GEM_GET_TILING,
1094		       &get_tiling);
1095	if (ret != 0) {
1096		drm_intel_gem_bo_unreference(&bo_gem->bo);
1097		pthread_mutex_unlock(&bufmgr_gem->lock);
1098		return NULL;
1099	}
1100	bo_gem->tiling_mode = get_tiling.tiling_mode;
1101	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1102	/* XXX stride is unknown */
1103	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
1104
1105	DRMINITLISTHEAD(&bo_gem->vma_list);
1106	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
1107	pthread_mutex_unlock(&bufmgr_gem->lock);
1108	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1109
1110	return &bo_gem->bo;
1111}
1112
1113static void
1114drm_intel_gem_bo_free(drm_intel_bo *bo)
1115{
1116	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1117	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1118	struct drm_gem_close close;
1119	int ret;
1120
1121	DRMLISTDEL(&bo_gem->vma_list);
1122	if (bo_gem->mem_virtual) {
1123		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1124		drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1125		bufmgr_gem->vma_count--;
1126	}
1127	if (bo_gem->gtt_virtual) {
1128		drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1129		bufmgr_gem->vma_count--;
1130	}
1131
1132	/* Close this object */
1133	memclear(close);
1134	close.handle = bo_gem->gem_handle;
1135	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1136	if (ret != 0) {
1137		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1138		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
1139	}
1140	free(bo_gem->aub_annotations);
1141	free(bo);
1142}
1143
1144static void
1145drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1146{
1147#if HAVE_VALGRIND
1148	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1149
1150	if (bo_gem->mem_virtual)
1151		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1152
1153	if (bo_gem->gtt_virtual)
1154		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1155#endif
1156}
1157
1158/** Frees all cached buffers significantly older than @time. */
1159static void
1160drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1161{
1162	int i;
1163
1164	if (bufmgr_gem->time == time)
1165		return;
1166
1167	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1168		struct drm_intel_gem_bo_bucket *bucket =
1169		    &bufmgr_gem->cache_bucket[i];
1170
1171		while (!DRMLISTEMPTY(&bucket->head)) {
1172			drm_intel_bo_gem *bo_gem;
1173
1174			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1175					      bucket->head.next, head);
1176			if (time - bo_gem->free_time <= 1)
1177				break;
1178
1179			DRMLISTDEL(&bo_gem->head);
1180
1181			drm_intel_gem_bo_free(&bo_gem->bo);
1182		}
1183	}
1184
1185	bufmgr_gem->time = time;
1186}
1187
1188static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1189{
1190	int limit;
1191
1192	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1193	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1194
1195	if (bufmgr_gem->vma_max < 0)
1196		return;
1197
1198	/* We may need to evict a few entries in order to create new mmaps */
1199	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1200	if (limit < 0)
1201		limit = 0;
1202
1203	while (bufmgr_gem->vma_count > limit) {
1204		drm_intel_bo_gem *bo_gem;
1205
1206		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1207				      bufmgr_gem->vma_cache.next,
1208				      vma_list);
1209		assert(bo_gem->map_count == 0);
1210		DRMLISTDELINIT(&bo_gem->vma_list);
1211
1212		if (bo_gem->mem_virtual) {
1213			drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1214			bo_gem->mem_virtual = NULL;
1215			bufmgr_gem->vma_count--;
1216		}
1217		if (bo_gem->gtt_virtual) {
1218			drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1219			bo_gem->gtt_virtual = NULL;
1220			bufmgr_gem->vma_count--;
1221		}
1222	}
1223}
1224
1225static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1226				       drm_intel_bo_gem *bo_gem)
1227{
1228	bufmgr_gem->vma_open--;
1229	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1230	if (bo_gem->mem_virtual)
1231		bufmgr_gem->vma_count++;
1232	if (bo_gem->gtt_virtual)
1233		bufmgr_gem->vma_count++;
1234	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1235}
1236
1237static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1238				      drm_intel_bo_gem *bo_gem)
1239{
1240	bufmgr_gem->vma_open++;
1241	DRMLISTDEL(&bo_gem->vma_list);
1242	if (bo_gem->mem_virtual)
1243		bufmgr_gem->vma_count--;
1244	if (bo_gem->gtt_virtual)
1245		bufmgr_gem->vma_count--;
1246	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1247}
1248
1249static void
1250drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1251{
1252	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1253	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1254	struct drm_intel_gem_bo_bucket *bucket;
1255	int i;
1256
1257	/* Unreference all the target buffers */
1258	for (i = 0; i < bo_gem->reloc_count; i++) {
1259		if (bo_gem->reloc_target_info[i].bo != bo) {
1260			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1261								  reloc_target_info[i].bo,
1262								  time);
1263		}
1264	}
1265	bo_gem->reloc_count = 0;
1266	bo_gem->used_as_reloc_target = false;
1267
1268	DBG("bo_unreference final: %d (%s)\n",
1269	    bo_gem->gem_handle, bo_gem->name);
1270
1271	/* release memory associated with this object */
1272	if (bo_gem->reloc_target_info) {
1273		free(bo_gem->reloc_target_info);
1274		bo_gem->reloc_target_info = NULL;
1275	}
1276	if (bo_gem->relocs) {
1277		free(bo_gem->relocs);
1278		bo_gem->relocs = NULL;
1279	}
1280
1281	/* Clear any left-over mappings */
1282	if (bo_gem->map_count) {
1283		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1284		bo_gem->map_count = 0;
1285		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1286		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1287	}
1288
1289	DRMLISTDEL(&bo_gem->name_list);
1290
1291	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1292	/* Put the buffer into our internal cache for reuse if we can. */
1293	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1294	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1295					      I915_MADV_DONTNEED)) {
1296		bo_gem->free_time = time;
1297
1298		bo_gem->name = NULL;
1299		bo_gem->validate_index = -1;
1300
1301		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1302	} else {
1303		drm_intel_gem_bo_free(bo);
1304	}
1305}
1306
1307static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1308						      time_t time)
1309{
1310	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1311
1312	assert(atomic_read(&bo_gem->refcount) > 0);
1313	if (atomic_dec_and_test(&bo_gem->refcount))
1314		drm_intel_gem_bo_unreference_final(bo, time);
1315}
1316
1317static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1318{
1319	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1320
1321	assert(atomic_read(&bo_gem->refcount) > 0);
1322
1323	if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1324		drm_intel_bufmgr_gem *bufmgr_gem =
1325		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1326		struct timespec time;
1327
1328		clock_gettime(CLOCK_MONOTONIC, &time);
1329
1330		pthread_mutex_lock(&bufmgr_gem->lock);
1331
1332		if (atomic_dec_and_test(&bo_gem->refcount)) {
1333			drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1334			drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1335		}
1336
1337		pthread_mutex_unlock(&bufmgr_gem->lock);
1338	}
1339}
1340
1341static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1342{
1343	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1344	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1345	struct drm_i915_gem_set_domain set_domain;
1346	int ret;
1347
1348	if (bo_gem->is_userptr) {
1349		/* Return the same user ptr */
1350		bo->virtual = bo_gem->user_virtual;
1351		return 0;
1352	}
1353
1354	pthread_mutex_lock(&bufmgr_gem->lock);
1355
1356	if (bo_gem->map_count++ == 0)
1357		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1358
1359	if (!bo_gem->mem_virtual) {
1360		struct drm_i915_gem_mmap mmap_arg;
1361
1362		DBG("bo_map: %d (%s), map_count=%d\n",
1363		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1364
1365		memclear(mmap_arg);
1366		mmap_arg.handle = bo_gem->gem_handle;
1367		mmap_arg.size = bo->size;
1368		ret = drmIoctl(bufmgr_gem->fd,
1369			       DRM_IOCTL_I915_GEM_MMAP,
1370			       &mmap_arg);
1371		if (ret != 0) {
1372			ret = -errno;
1373			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1374			    __FILE__, __LINE__, bo_gem->gem_handle,
1375			    bo_gem->name, strerror(errno));
1376			if (--bo_gem->map_count == 0)
1377				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1378			pthread_mutex_unlock(&bufmgr_gem->lock);
1379			return ret;
1380		}
1381		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1382		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1383	}
1384	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1385	    bo_gem->mem_virtual);
1386	bo->virtual = bo_gem->mem_virtual;
1387
1388	memclear(set_domain);
1389	set_domain.handle = bo_gem->gem_handle;
1390	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1391	if (write_enable)
1392		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1393	else
1394		set_domain.write_domain = 0;
1395	ret = drmIoctl(bufmgr_gem->fd,
1396		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1397		       &set_domain);
1398	if (ret != 0) {
1399		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1400		    __FILE__, __LINE__, bo_gem->gem_handle,
1401		    strerror(errno));
1402	}
1403
1404	if (write_enable)
1405		bo_gem->mapped_cpu_write = true;
1406
1407	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1408	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1409	pthread_mutex_unlock(&bufmgr_gem->lock);
1410
1411	return 0;
1412}
1413
1414static int
1415map_gtt(drm_intel_bo *bo)
1416{
1417	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1418	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1419	int ret;
1420
1421	if (bo_gem->is_userptr)
1422		return -EINVAL;
1423
1424	if (bo_gem->map_count++ == 0)
1425		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1426
1427	/* Get a mapping of the buffer if we haven't before. */
1428	if (bo_gem->gtt_virtual == NULL) {
1429		struct drm_i915_gem_mmap_gtt mmap_arg;
1430
1431		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1432		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1433
1434		memclear(mmap_arg);
1435		mmap_arg.handle = bo_gem->gem_handle;
1436
1437		/* Get the fake offset back... */
1438		ret = drmIoctl(bufmgr_gem->fd,
1439			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1440			       &mmap_arg);
1441		if (ret != 0) {
1442			ret = -errno;
1443			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1444			    __FILE__, __LINE__,
1445			    bo_gem->gem_handle, bo_gem->name,
1446			    strerror(errno));
1447			if (--bo_gem->map_count == 0)
1448				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1449			return ret;
1450		}
1451
1452		/* and mmap it */
1453		ret = drmMap(bufmgr_gem->fd, mmap_arg.offset, bo->size,
1454		    &bo_gem->gtt_virtual);
1455		if (ret) {
1456			bo_gem->gtt_virtual = NULL;
1457			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1458			    __FILE__, __LINE__,
1459			    bo_gem->gem_handle, bo_gem->name,
1460			    strerror(errno));
1461			if (--bo_gem->map_count == 0)
1462				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1463			return ret;
1464		}
1465	}
1466
1467	bo->virtual = bo_gem->gtt_virtual;
1468
1469	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1470	    bo_gem->gtt_virtual);
1471
1472	return 0;
1473}
1474
1475int
1476drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1477{
1478	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1479	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1480	struct drm_i915_gem_set_domain set_domain;
1481	int ret;
1482
1483	pthread_mutex_lock(&bufmgr_gem->lock);
1484
1485	ret = map_gtt(bo);
1486	if (ret) {
1487		pthread_mutex_unlock(&bufmgr_gem->lock);
1488		return ret;
1489	}
1490
1491	/* Now move it to the GTT domain so that the GPU and CPU
1492	 * caches are flushed and the GPU isn't actively using the
1493	 * buffer.
1494	 *
1495	 * The pagefault handler does this domain change for us when
1496	 * it has unbound the BO from the GTT, but it's up to us to
1497	 * tell it when we're about to use things if we had done
1498	 * rendering and it still happens to be bound to the GTT.
1499	 */
1500	memclear(set_domain);
1501	set_domain.handle = bo_gem->gem_handle;
1502	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1503	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1504	ret = drmIoctl(bufmgr_gem->fd,
1505		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1506		       &set_domain);
1507	if (ret != 0) {
1508		DBG("%s:%d: Error setting domain %d: %s\n",
1509		    __FILE__, __LINE__, bo_gem->gem_handle,
1510		    strerror(errno));
1511	}
1512
1513	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1514	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1515	pthread_mutex_unlock(&bufmgr_gem->lock);
1516
1517	return 0;
1518}
1519
1520/**
1521 * Performs a mapping of the buffer object like the normal GTT
1522 * mapping, but avoids waiting for the GPU to be done reading from or
1523 * rendering to the buffer.
1524 *
1525 * This is used in the implementation of GL_ARB_map_buffer_range: The
1526 * user asks to create a buffer, then does a mapping, fills some
1527 * space, runs a drawing command, then asks to map it again without
1528 * synchronizing because it guarantees that it won't write over the
1529 * data that the GPU is busy using (or, more specifically, that if it
1530 * does write over the data, it acknowledges that rendering is
1531 * undefined).
1532 */
1533
1534int
1535drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1536{
1537	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1538#ifdef HAVE_VALGRIND
1539	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1540#endif
1541	int ret;
1542
1543	/* If the CPU cache isn't coherent with the GTT, then use a
1544	 * regular synchronized mapping.  The problem is that we don't
1545	 * track where the buffer was last used on the CPU side in
1546	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1547	 * we would potentially corrupt the buffer even when the user
1548	 * does reasonable things.
1549	 */
1550	if (!bufmgr_gem->has_llc)
1551		return drm_intel_gem_bo_map_gtt(bo);
1552
1553	pthread_mutex_lock(&bufmgr_gem->lock);
1554
1555	ret = map_gtt(bo);
1556	if (ret == 0) {
1557		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1558		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1559	}
1560
1561	pthread_mutex_unlock(&bufmgr_gem->lock);
1562
1563	return ret;
1564}
1565
1566static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1567{
1568	drm_intel_bufmgr_gem *bufmgr_gem;
1569	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1570	int ret = 0;
1571
1572	if (bo == NULL)
1573		return 0;
1574
1575	if (bo_gem->is_userptr)
1576		return 0;
1577
1578	bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1579
1580	pthread_mutex_lock(&bufmgr_gem->lock);
1581
1582	if (bo_gem->map_count <= 0) {
1583		DBG("attempted to unmap an unmapped bo\n");
1584		pthread_mutex_unlock(&bufmgr_gem->lock);
1585		/* Preserve the old behaviour of just treating this as a
1586		 * no-op rather than reporting the error.
1587		 */
1588		return 0;
1589	}
1590
1591	if (bo_gem->mapped_cpu_write) {
1592		struct drm_i915_gem_sw_finish sw_finish;
1593
1594		/* Cause a flush to happen if the buffer's pinned for
1595		 * scanout, so the results show up in a timely manner.
1596		 * Unlike GTT set domains, this only does work if the
1597		 * buffer should be scanout-related.
1598		 */
1599		memclear(sw_finish);
1600		sw_finish.handle = bo_gem->gem_handle;
1601		ret = drmIoctl(bufmgr_gem->fd,
1602			       DRM_IOCTL_I915_GEM_SW_FINISH,
1603			       &sw_finish);
1604		ret = ret == -1 ? -errno : 0;
1605
1606		bo_gem->mapped_cpu_write = false;
1607	}
1608
1609	/* We need to unmap after every innovation as we cannot track
1610	 * an open vma for every bo as that will exhaasut the system
1611	 * limits and cause later failures.
1612	 */
1613	if (--bo_gem->map_count == 0) {
1614		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1615		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1616		bo->virtual = NULL;
1617	}
1618	pthread_mutex_unlock(&bufmgr_gem->lock);
1619
1620	return ret;
1621}
1622
1623int
1624drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1625{
1626	return drm_intel_gem_bo_unmap(bo);
1627}
1628
1629static int
1630drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1631			 unsigned long size, const void *data)
1632{
1633	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1634	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1635	struct drm_i915_gem_pwrite pwrite;
1636	int ret;
1637
1638	if (bo_gem->is_userptr)
1639		return -EINVAL;
1640
1641	memclear(pwrite);
1642	pwrite.handle = bo_gem->gem_handle;
1643	pwrite.offset = offset;
1644	pwrite.size = size;
1645	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1646	ret = drmIoctl(bufmgr_gem->fd,
1647		       DRM_IOCTL_I915_GEM_PWRITE,
1648		       &pwrite);
1649	if (ret != 0) {
1650		ret = -errno;
1651		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1652		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1653		    (int)size, strerror(errno));
1654	}
1655
1656	return ret;
1657}
1658
1659static int
1660drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1661{
1662	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1663	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1664	int ret;
1665
1666	memclear(get_pipe_from_crtc_id);
1667	get_pipe_from_crtc_id.crtc_id = crtc_id;
1668	ret = drmIoctl(bufmgr_gem->fd,
1669		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1670		       &get_pipe_from_crtc_id);
1671	if (ret != 0) {
1672		/* We return -1 here to signal that we don't
1673		 * know which pipe is associated with this crtc.
1674		 * This lets the caller know that this information
1675		 * isn't available; using the wrong pipe for
1676		 * vblank waiting can cause the chipset to lock up
1677		 */
1678		return -1;
1679	}
1680
1681	return get_pipe_from_crtc_id.pipe;
1682}
1683
1684static int
1685drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1686			     unsigned long size, void *data)
1687{
1688	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1689	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1690	struct drm_i915_gem_pread pread;
1691	int ret;
1692
1693	if (bo_gem->is_userptr)
1694		return -EINVAL;
1695
1696	memclear(pread);
1697	pread.handle = bo_gem->gem_handle;
1698	pread.offset = offset;
1699	pread.size = size;
1700	pread.data_ptr = (uint64_t) (uintptr_t) data;
1701	ret = drmIoctl(bufmgr_gem->fd,
1702		       DRM_IOCTL_I915_GEM_PREAD,
1703		       &pread);
1704	if (ret != 0) {
1705		ret = -errno;
1706		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1707		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1708		    (int)size, strerror(errno));
1709	}
1710
1711	return ret;
1712}
1713
1714/** Waits for all GPU rendering with the object to have completed. */
1715static void
1716drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1717{
1718	drm_intel_gem_bo_start_gtt_access(bo, 1);
1719}
1720
1721/**
1722 * Waits on a BO for the given amount of time.
1723 *
1724 * @bo: buffer object to wait for
1725 * @timeout_ns: amount of time to wait in nanoseconds.
1726 *   If value is less than 0, an infinite wait will occur.
1727 *
1728 * Returns 0 if the wait was successful ie. the last batch referencing the
1729 * object has completed within the allotted time. Otherwise some negative return
1730 * value describes the error. Of particular interest is -ETIME when the wait has
1731 * failed to yield the desired result.
1732 *
1733 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1734 * the operation to give up after a certain amount of time. Another subtle
1735 * difference is the internal locking semantics are different (this variant does
1736 * not hold the lock for the duration of the wait). This makes the wait subject
1737 * to a larger userspace race window.
1738 *
1739 * The implementation shall wait until the object is no longer actively
1740 * referenced within a batch buffer at the time of the call. The wait will
1741 * not guarantee that the buffer is re-issued via another thread, or an flinked
1742 * handle. Userspace must make sure this race does not occur if such precision
1743 * is important.
1744 *
1745 * Note that some kernels have broken the inifite wait for negative values
1746 * promise, upgrade to latest stable kernels if this is the case.
1747 */
1748int
1749drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1750{
1751	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1752	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1753	struct drm_i915_gem_wait wait;
1754	int ret;
1755
1756	if (!bufmgr_gem->has_wait_timeout) {
1757		DBG("%s:%d: Timed wait is not supported. Falling back to "
1758		    "infinite wait\n", __FILE__, __LINE__);
1759		if (timeout_ns) {
1760			drm_intel_gem_bo_wait_rendering(bo);
1761			return 0;
1762		} else {
1763			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1764		}
1765	}
1766
1767	memclear(wait);
1768	wait.bo_handle = bo_gem->gem_handle;
1769	wait.timeout_ns = timeout_ns;
1770	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1771	if (ret == -1)
1772		return -errno;
1773
1774	return ret;
1775}
1776
1777/**
1778 * Sets the object to the GTT read and possibly write domain, used by the X
1779 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1780 *
1781 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1782 * can do tiled pixmaps this way.
1783 */
1784void
1785drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1786{
1787	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1788	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1789	struct drm_i915_gem_set_domain set_domain;
1790	int ret;
1791
1792	memclear(set_domain);
1793	set_domain.handle = bo_gem->gem_handle;
1794	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1795	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1796	ret = drmIoctl(bufmgr_gem->fd,
1797		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1798		       &set_domain);
1799	if (ret != 0) {
1800		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1801		    __FILE__, __LINE__, bo_gem->gem_handle,
1802		    set_domain.read_domains, set_domain.write_domain,
1803		    strerror(errno));
1804	}
1805}
1806
1807static void
1808drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1809{
1810	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1811	struct drm_gem_close close_bo;
1812	int i, ret;
1813
1814	free(bufmgr_gem->exec2_objects);
1815	free(bufmgr_gem->exec_objects);
1816	free(bufmgr_gem->exec_bos);
1817	free(bufmgr_gem->aub_filename);
1818
1819	pthread_mutex_destroy(&bufmgr_gem->lock);
1820
1821	/* Free any cached buffer objects we were going to reuse */
1822	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1823		struct drm_intel_gem_bo_bucket *bucket =
1824		    &bufmgr_gem->cache_bucket[i];
1825		drm_intel_bo_gem *bo_gem;
1826
1827		while (!DRMLISTEMPTY(&bucket->head)) {
1828			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1829					      bucket->head.next, head);
1830			DRMLISTDEL(&bo_gem->head);
1831
1832			drm_intel_gem_bo_free(&bo_gem->bo);
1833		}
1834	}
1835
1836	/* Release userptr bo kept hanging around for optimisation. */
1837	if (bufmgr_gem->userptr_active.ptr) {
1838		memclear(close_bo);
1839		close_bo.handle = bufmgr_gem->userptr_active.handle;
1840		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1841		free(bufmgr_gem->userptr_active.ptr);
1842		if (ret)
1843			fprintf(stderr,
1844				"Failed to release test userptr object! (%d) "
1845				"i915 kernel driver may not be sane!\n", errno);
1846	}
1847
1848	free(bufmgr);
1849}
1850
1851/**
1852 * Adds the target buffer to the validation list and adds the relocation
1853 * to the reloc_buffer's relocation list.
1854 *
1855 * The relocation entry at the given offset must already contain the
1856 * precomputed relocation value, because the kernel will optimize out
1857 * the relocation entry write when the buffer hasn't moved from the
1858 * last known offset in target_bo.
1859 */
1860static int
1861do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1862		 drm_intel_bo *target_bo, uint32_t target_offset,
1863		 uint32_t read_domains, uint32_t write_domain,
1864		 bool need_fence)
1865{
1866	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1867	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1868	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1869	bool fenced_command;
1870
1871	if (bo_gem->has_error)
1872		return -ENOMEM;
1873
1874	if (target_bo_gem->has_error) {
1875		bo_gem->has_error = true;
1876		return -ENOMEM;
1877	}
1878
1879	/* We never use HW fences for rendering on 965+ */
1880	if (bufmgr_gem->gen >= 4)
1881		need_fence = false;
1882
1883	fenced_command = need_fence;
1884	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1885		need_fence = false;
1886
1887	/* Create a new relocation list if needed */
1888	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1889		return -ENOMEM;
1890
1891	/* Check overflow */
1892	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1893
1894	/* Check args */
1895	assert(offset <= bo->size - 4);
1896	assert((write_domain & (write_domain - 1)) == 0);
1897
1898	/* An object needing a fence is a tiled buffer, so it won't have
1899	 * relocs to other buffers.
1900	 */
1901	if (need_fence) {
1902		assert(target_bo_gem->reloc_count == 0);
1903		target_bo_gem->reloc_tree_fences = 1;
1904	}
1905
1906	/* Make sure that we're not adding a reloc to something whose size has
1907	 * already been accounted for.
1908	 */
1909	assert(!bo_gem->used_as_reloc_target);
1910	if (target_bo_gem != bo_gem) {
1911		target_bo_gem->used_as_reloc_target = true;
1912		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1913		bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1914	}
1915
1916	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1917	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
1918	bo_gem->relocs[bo_gem->reloc_count].target_handle =
1919	    target_bo_gem->gem_handle;
1920	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
1921	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
1922	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
1923
1924	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1925	if (target_bo != bo)
1926		drm_intel_gem_bo_reference(target_bo);
1927	if (fenced_command)
1928		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1929			DRM_INTEL_RELOC_FENCE;
1930	else
1931		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1932
1933	bo_gem->reloc_count++;
1934
1935	return 0;
1936}
1937
1938static int
1939drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1940			    drm_intel_bo *target_bo, uint32_t target_offset,
1941			    uint32_t read_domains, uint32_t write_domain)
1942{
1943	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
1944
1945	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1946				read_domains, write_domain,
1947				!bufmgr_gem->fenced_relocs);
1948}
1949
1950static int
1951drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
1952				  drm_intel_bo *target_bo,
1953				  uint32_t target_offset,
1954				  uint32_t read_domains, uint32_t write_domain)
1955{
1956	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1957				read_domains, write_domain, true);
1958}
1959
1960int
1961drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
1962{
1963	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1964
1965	return bo_gem->reloc_count;
1966}
1967
1968/**
1969 * Removes existing relocation entries in the BO after "start".
1970 *
1971 * This allows a user to avoid a two-step process for state setup with
1972 * counting up all the buffer objects and doing a
1973 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
1974 * relocations for the state setup.  Instead, save the state of the
1975 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
1976 * state, and then check if it still fits in the aperture.
1977 *
1978 * Any further drm_intel_bufmgr_check_aperture_space() queries
1979 * involving this buffer in the tree are undefined after this call.
1980 */
1981void
1982drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
1983{
1984	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1985	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1986	int i;
1987	struct timespec time;
1988
1989	clock_gettime(CLOCK_MONOTONIC, &time);
1990
1991	assert(bo_gem->reloc_count >= start);
1992
1993	/* Unreference the cleared target buffers */
1994	pthread_mutex_lock(&bufmgr_gem->lock);
1995
1996	for (i = start; i < bo_gem->reloc_count; i++) {
1997		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
1998		if (&target_bo_gem->bo != bo) {
1999			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2000			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2001								  time.tv_sec);
2002		}
2003	}
2004	bo_gem->reloc_count = start;
2005
2006	pthread_mutex_unlock(&bufmgr_gem->lock);
2007
2008}
2009
2010/**
2011 * Walk the tree of relocations rooted at BO and accumulate the list of
2012 * validations to be performed and update the relocation buffers with
2013 * index values into the validation list.
2014 */
2015static void
2016drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2017{
2018	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2019	int i;
2020
2021	if (bo_gem->relocs == NULL)
2022		return;
2023
2024	for (i = 0; i < bo_gem->reloc_count; i++) {
2025		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2026
2027		if (target_bo == bo)
2028			continue;
2029
2030		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2031
2032		/* Continue walking the tree depth-first. */
2033		drm_intel_gem_bo_process_reloc(target_bo);
2034
2035		/* Add the target to the validate list */
2036		drm_intel_add_validate_buffer(target_bo);
2037	}
2038}
2039
2040static void
2041drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2042{
2043	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2044	int i;
2045
2046	if (bo_gem->relocs == NULL)
2047		return;
2048
2049	for (i = 0; i < bo_gem->reloc_count; i++) {
2050		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2051		int need_fence;
2052
2053		if (target_bo == bo)
2054			continue;
2055
2056		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2057
2058		/* Continue walking the tree depth-first. */
2059		drm_intel_gem_bo_process_reloc2(target_bo);
2060
2061		need_fence = (bo_gem->reloc_target_info[i].flags &
2062			      DRM_INTEL_RELOC_FENCE);
2063
2064		/* Add the target to the validate list */
2065		drm_intel_add_validate_buffer2(target_bo, need_fence);
2066	}
2067}
2068
2069
2070static void
2071drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2072{
2073	int i;
2074
2075	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2076		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2077		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2078
2079		/* Update the buffer offset */
2080		if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2081			DBG("BO %d (%s) migrated: 0x%08llx -> 0x%08llx\n",
2082			    bo_gem->gem_handle, bo_gem->name,
2083			    (unsigned long long)bo->offset64,
2084			    (unsigned long long)bufmgr_gem->exec_objects[i].
2085			    offset);
2086			bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2087			bo->offset = bufmgr_gem->exec_objects[i].offset;
2088		}
2089	}
2090}
2091
2092static void
2093drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2094{
2095	int i;
2096
2097	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2098		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2099		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2100
2101		/* Update the buffer offset */
2102		if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2103			DBG("BO %d (%s) migrated: 0x%08llx -> 0x%08llx\n",
2104			    bo_gem->gem_handle, bo_gem->name,
2105			    (unsigned long long)bo->offset64,
2106			    (unsigned long long)bufmgr_gem->exec2_objects[i].offset);
2107			bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2108			bo->offset = bufmgr_gem->exec2_objects[i].offset;
2109		}
2110	}
2111}
2112
2113static void
2114aub_out(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t data)
2115{
2116	fwrite(&data, 1, 4, bufmgr_gem->aub_file);
2117}
2118
2119static void
2120aub_out_data(drm_intel_bufmgr_gem *bufmgr_gem, void *data, size_t size)
2121{
2122	fwrite(data, 1, size, bufmgr_gem->aub_file);
2123}
2124
2125static void
2126aub_write_bo_data(drm_intel_bo *bo, uint32_t offset, uint32_t size)
2127{
2128	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2129	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2130	uint32_t *data;
2131	unsigned int i;
2132
2133	data = malloc(bo->size);
2134	drm_intel_bo_get_subdata(bo, offset, size, data);
2135
2136	/* Easy mode: write out bo with no relocations */
2137	if (!bo_gem->reloc_count) {
2138		aub_out_data(bufmgr_gem, data, size);
2139		free(data);
2140		return;
2141	}
2142
2143	/* Otherwise, handle the relocations while writing. */
2144	for (i = 0; i < size / 4; i++) {
2145		int r;
2146		for (r = 0; r < bo_gem->reloc_count; r++) {
2147			struct drm_i915_gem_relocation_entry *reloc;
2148			drm_intel_reloc_target *info;
2149
2150			reloc = &bo_gem->relocs[r];
2151			info = &bo_gem->reloc_target_info[r];
2152
2153			if (reloc->offset == offset + i * 4) {
2154				drm_intel_bo_gem *target_gem;
2155				uint32_t val;
2156
2157				target_gem = (drm_intel_bo_gem *)info->bo;
2158
2159				val = reloc->delta;
2160				val += target_gem->aub_offset;
2161
2162				aub_out(bufmgr_gem, val);
2163				data[i] = val;
2164				break;
2165			}
2166		}
2167		if (r == bo_gem->reloc_count) {
2168			/* no relocation, just the data */
2169			aub_out(bufmgr_gem, data[i]);
2170		}
2171	}
2172
2173	free(data);
2174}
2175
2176static void
2177aub_bo_get_address(drm_intel_bo *bo)
2178{
2179	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2180	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2181
2182	/* Give the object a graphics address in the AUB file.  We
2183	 * don't just use the GEM object address because we do AUB
2184	 * dumping before execution -- we want to successfully log
2185	 * when the hardware might hang, and we might even want to aub
2186	 * capture for a driver trying to execute on a different
2187	 * generation of hardware by disabling the actual kernel exec
2188	 * call.
2189	 */
2190	bo_gem->aub_offset = bufmgr_gem->aub_offset;
2191	bufmgr_gem->aub_offset += bo->size;
2192	/* XXX: Handle aperture overflow. */
2193	assert(bufmgr_gem->aub_offset < 256 * 1024 * 1024);
2194}
2195
2196static void
2197aub_write_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
2198		      uint32_t offset, uint32_t size)
2199{
2200	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2201	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2202
2203	aub_out(bufmgr_gem,
2204		CMD_AUB_TRACE_HEADER_BLOCK |
2205		((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2206	aub_out(bufmgr_gem,
2207		AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE);
2208	aub_out(bufmgr_gem, subtype);
2209	aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2210	aub_out(bufmgr_gem, size);
2211	if (bufmgr_gem->gen >= 8)
2212		aub_out(bufmgr_gem, 0);
2213	aub_write_bo_data(bo, offset, size);
2214}
2215
2216/**
2217 * Break up large objects into multiple writes.  Otherwise a 128kb VBO
2218 * would overflow the 16 bits of size field in the packet header and
2219 * everything goes badly after that.
2220 */
2221static void
2222aub_write_large_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
2223			    uint32_t offset, uint32_t size)
2224{
2225	uint32_t block_size;
2226	uint32_t sub_offset;
2227
2228	for (sub_offset = 0; sub_offset < size; sub_offset += block_size) {
2229		block_size = size - sub_offset;
2230
2231		if (block_size > 8 * 4096)
2232			block_size = 8 * 4096;
2233
2234		aub_write_trace_block(bo, type, subtype, offset + sub_offset,
2235				      block_size);
2236	}
2237}
2238
2239static void
2240aub_write_bo(drm_intel_bo *bo)
2241{
2242	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2243	uint32_t offset = 0;
2244	unsigned i;
2245
2246	aub_bo_get_address(bo);
2247
2248	/* Write out each annotated section separately. */
2249	for (i = 0; i < bo_gem->aub_annotation_count; ++i) {
2250		drm_intel_aub_annotation *annotation =
2251			&bo_gem->aub_annotations[i];
2252		uint32_t ending_offset = annotation->ending_offset;
2253		if (ending_offset > bo->size)
2254			ending_offset = bo->size;
2255		if (ending_offset > offset) {
2256			aub_write_large_trace_block(bo, annotation->type,
2257						    annotation->subtype,
2258						    offset,
2259						    ending_offset - offset);
2260			offset = ending_offset;
2261		}
2262	}
2263
2264	/* Write out any remaining unannotated data */
2265	if (offset < bo->size) {
2266		aub_write_large_trace_block(bo, AUB_TRACE_TYPE_NOTYPE, 0,
2267					    offset, bo->size - offset);
2268	}
2269}
2270
2271/*
2272 * Make a ringbuffer on fly and dump it
2273 */
2274static void
2275aub_build_dump_ringbuffer(drm_intel_bufmgr_gem *bufmgr_gem,
2276			  uint32_t batch_buffer, int ring_flag)
2277{
2278	uint32_t ringbuffer[4096];
2279	int ring = AUB_TRACE_TYPE_RING_PRB0; /* The default ring */
2280	int ring_count = 0;
2281
2282	if (ring_flag == I915_EXEC_BSD)
2283		ring = AUB_TRACE_TYPE_RING_PRB1;
2284	else if (ring_flag == I915_EXEC_BLT)
2285		ring = AUB_TRACE_TYPE_RING_PRB2;
2286
2287	/* Make a ring buffer to execute our batchbuffer. */
2288	memset(ringbuffer, 0, sizeof(ringbuffer));
2289	if (bufmgr_gem->gen >= 8) {
2290		ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START | (3 - 2);
2291		ringbuffer[ring_count++] = batch_buffer;
2292		ringbuffer[ring_count++] = 0;
2293	} else {
2294		ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START;
2295		ringbuffer[ring_count++] = batch_buffer;
2296	}
2297
2298	/* Write out the ring.  This appears to trigger execution of
2299	 * the ring in the simulator.
2300	 */
2301	aub_out(bufmgr_gem,
2302		CMD_AUB_TRACE_HEADER_BLOCK |
2303		((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2304	aub_out(bufmgr_gem,
2305		AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
2306	aub_out(bufmgr_gem, 0); /* general/surface subtype */
2307	aub_out(bufmgr_gem, bufmgr_gem->aub_offset);
2308	aub_out(bufmgr_gem, ring_count * 4);
2309	if (bufmgr_gem->gen >= 8)
2310		aub_out(bufmgr_gem, 0);
2311
2312	/* FIXME: Need some flush operations here? */
2313	aub_out_data(bufmgr_gem, ringbuffer, ring_count * 4);
2314
2315	/* Update offset pointer */
2316	bufmgr_gem->aub_offset += 4096;
2317}
2318
2319void
2320drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2321			      int x1, int y1, int width, int height,
2322			      enum aub_dump_bmp_format format,
2323			      int pitch, int offset)
2324{
2325	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2326	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2327	uint32_t cpp;
2328
2329	switch (format) {
2330	case AUB_DUMP_BMP_FORMAT_8BIT:
2331		cpp = 1;
2332		break;
2333	case AUB_DUMP_BMP_FORMAT_ARGB_4444:
2334		cpp = 2;
2335		break;
2336	case AUB_DUMP_BMP_FORMAT_ARGB_0888:
2337	case AUB_DUMP_BMP_FORMAT_ARGB_8888:
2338		cpp = 4;
2339		break;
2340	default:
2341		printf("Unknown AUB dump format %d\n", format);
2342		return;
2343	}
2344
2345	if (!bufmgr_gem->aub_file)
2346		return;
2347
2348	aub_out(bufmgr_gem, CMD_AUB_DUMP_BMP | 4);
2349	aub_out(bufmgr_gem, (y1 << 16) | x1);
2350	aub_out(bufmgr_gem,
2351		(format << 24) |
2352		(cpp << 19) |
2353		pitch / 4);
2354	aub_out(bufmgr_gem, (height << 16) | width);
2355	aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2356	aub_out(bufmgr_gem,
2357		((bo_gem->tiling_mode != I915_TILING_NONE) ? (1 << 2) : 0) |
2358		((bo_gem->tiling_mode == I915_TILING_Y) ? (1 << 3) : 0));
2359}
2360
2361static void
2362aub_exec(drm_intel_bo *bo, int ring_flag, int used)
2363{
2364	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2365	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2366	int i;
2367	bool batch_buffer_needs_annotations;
2368
2369	if (!bufmgr_gem->aub_file)
2370		return;
2371
2372	/* If batch buffer is not annotated, annotate it the best we
2373	 * can.
2374	 */
2375	batch_buffer_needs_annotations = bo_gem->aub_annotation_count == 0;
2376	if (batch_buffer_needs_annotations) {
2377		drm_intel_aub_annotation annotations[2] = {
2378			{ AUB_TRACE_TYPE_BATCH, 0, used },
2379			{ AUB_TRACE_TYPE_NOTYPE, 0, bo->size }
2380		};
2381		drm_intel_bufmgr_gem_set_aub_annotations(bo, annotations, 2);
2382	}
2383
2384	/* Write out all buffers to AUB memory */
2385	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2386		aub_write_bo(bufmgr_gem->exec_bos[i]);
2387	}
2388
2389	/* Remove any annotations we added */
2390	if (batch_buffer_needs_annotations)
2391		drm_intel_bufmgr_gem_set_aub_annotations(bo, NULL, 0);
2392
2393	/* Dump ring buffer */
2394	aub_build_dump_ringbuffer(bufmgr_gem, bo_gem->aub_offset, ring_flag);
2395
2396	fflush(bufmgr_gem->aub_file);
2397
2398	/*
2399	 * One frame has been dumped. So reset the aub_offset for the next frame.
2400	 *
2401	 * FIXME: Can we do this?
2402	 */
2403	bufmgr_gem->aub_offset = 0x10000;
2404}
2405
2406static int
2407drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2408		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2409{
2410	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2411	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2412	struct drm_i915_gem_execbuffer execbuf;
2413	int ret, i;
2414
2415	if (bo_gem->has_error)
2416		return -ENOMEM;
2417
2418	pthread_mutex_lock(&bufmgr_gem->lock);
2419	/* Update indices and set up the validate list. */
2420	drm_intel_gem_bo_process_reloc(bo);
2421
2422	/* Add the batch buffer to the validation list.  There are no
2423	 * relocations pointing to it.
2424	 */
2425	drm_intel_add_validate_buffer(bo);
2426
2427	memclear(execbuf);
2428	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2429	execbuf.buffer_count = bufmgr_gem->exec_count;
2430	execbuf.batch_start_offset = 0;
2431	execbuf.batch_len = used;
2432	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2433	execbuf.num_cliprects = num_cliprects;
2434	execbuf.DR1 = 0;
2435	execbuf.DR4 = DR4;
2436
2437	ret = drmIoctl(bufmgr_gem->fd,
2438		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2439		       &execbuf);
2440	if (ret != 0) {
2441		ret = -errno;
2442		if (errno == ENOSPC) {
2443			DBG("Execbuffer fails to pin. "
2444			    "Estimate: %u. Actual: %u. Available: %u\n",
2445			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2446							       bufmgr_gem->
2447							       exec_count),
2448			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2449							      bufmgr_gem->
2450							      exec_count),
2451			    (unsigned int)bufmgr_gem->gtt_size);
2452		}
2453	}
2454	drm_intel_update_buffer_offsets(bufmgr_gem);
2455
2456	if (bufmgr_gem->bufmgr.debug)
2457		drm_intel_gem_dump_validation_list(bufmgr_gem);
2458
2459	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2460		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2461		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2462
2463		bo_gem->idle = false;
2464
2465		/* Disconnect the buffer from the validate list */
2466		bo_gem->validate_index = -1;
2467		bufmgr_gem->exec_bos[i] = NULL;
2468	}
2469	bufmgr_gem->exec_count = 0;
2470	pthread_mutex_unlock(&bufmgr_gem->lock);
2471
2472	return ret;
2473}
2474
2475static int
2476do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2477	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2478	 unsigned int flags)
2479{
2480	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2481	struct drm_i915_gem_execbuffer2 execbuf;
2482	int ret = 0;
2483	int i;
2484
2485	switch (flags & 0x7) {
2486	default:
2487		return -EINVAL;
2488	case I915_EXEC_BLT:
2489		if (!bufmgr_gem->has_blt)
2490			return -EINVAL;
2491		break;
2492	case I915_EXEC_BSD:
2493		if (!bufmgr_gem->has_bsd)
2494			return -EINVAL;
2495		break;
2496	case I915_EXEC_VEBOX:
2497		if (!bufmgr_gem->has_vebox)
2498			return -EINVAL;
2499		break;
2500	case I915_EXEC_RENDER:
2501	case I915_EXEC_DEFAULT:
2502		break;
2503	}
2504
2505	pthread_mutex_lock(&bufmgr_gem->lock);
2506	/* Update indices and set up the validate list. */
2507	drm_intel_gem_bo_process_reloc2(bo);
2508
2509	/* Add the batch buffer to the validation list.  There are no relocations
2510	 * pointing to it.
2511	 */
2512	drm_intel_add_validate_buffer2(bo, 0);
2513
2514	memclear(execbuf);
2515	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2516	execbuf.buffer_count = bufmgr_gem->exec_count;
2517	execbuf.batch_start_offset = 0;
2518	execbuf.batch_len = used;
2519	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2520	execbuf.num_cliprects = num_cliprects;
2521	execbuf.DR1 = 0;
2522	execbuf.DR4 = DR4;
2523	execbuf.flags = flags;
2524	if (ctx == NULL)
2525		i915_execbuffer2_set_context_id(execbuf, 0);
2526	else
2527		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2528	execbuf.rsvd2 = 0;
2529
2530	aub_exec(bo, flags, used);
2531
2532	if (bufmgr_gem->no_exec)
2533		goto skip_execution;
2534
2535	ret = drmIoctl(bufmgr_gem->fd,
2536		       DRM_IOCTL_I915_GEM_EXECBUFFER2,
2537		       &execbuf);
2538	if (ret != 0) {
2539		ret = -errno;
2540		if (ret == -ENOSPC) {
2541			DBG("Execbuffer fails to pin. "
2542			    "Estimate: %u. Actual: %u. Available: %u\n",
2543			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2544							       bufmgr_gem->exec_count),
2545			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2546							      bufmgr_gem->exec_count),
2547			    (unsigned int) bufmgr_gem->gtt_size);
2548		}
2549	}
2550	drm_intel_update_buffer_offsets2(bufmgr_gem);
2551
2552skip_execution:
2553	if (bufmgr_gem->bufmgr.debug)
2554		drm_intel_gem_dump_validation_list(bufmgr_gem);
2555
2556	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2557		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2558		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2559
2560		bo_gem->idle = false;
2561
2562		/* Disconnect the buffer from the validate list */
2563		bo_gem->validate_index = -1;
2564		bufmgr_gem->exec_bos[i] = NULL;
2565	}
2566	bufmgr_gem->exec_count = 0;
2567	pthread_mutex_unlock(&bufmgr_gem->lock);
2568
2569	return ret;
2570}
2571
2572static int
2573drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2574		       drm_clip_rect_t *cliprects, int num_cliprects,
2575		       int DR4)
2576{
2577	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2578			I915_EXEC_RENDER);
2579}
2580
2581static int
2582drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2583			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2584			unsigned int flags)
2585{
2586	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2587			flags);
2588}
2589
2590int
2591drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2592			      int used, unsigned int flags)
2593{
2594	return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2595}
2596
2597static int
2598drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2599{
2600	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2601	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2602	struct drm_i915_gem_pin pin;
2603	int ret;
2604
2605	memclear(pin);
2606	pin.handle = bo_gem->gem_handle;
2607	pin.alignment = alignment;
2608
2609	ret = drmIoctl(bufmgr_gem->fd,
2610		       DRM_IOCTL_I915_GEM_PIN,
2611		       &pin);
2612	if (ret != 0)
2613		return -errno;
2614
2615	bo->offset64 = pin.offset;
2616	bo->offset = pin.offset;
2617	return 0;
2618}
2619
2620static int
2621drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2622{
2623	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2624	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2625	struct drm_i915_gem_unpin unpin;
2626	int ret;
2627
2628	memclear(unpin);
2629	unpin.handle = bo_gem->gem_handle;
2630
2631	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2632	if (ret != 0)
2633		return -errno;
2634
2635	return 0;
2636}
2637
2638static int
2639drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2640				     uint32_t tiling_mode,
2641				     uint32_t stride)
2642{
2643	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2644	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2645	struct drm_i915_gem_set_tiling set_tiling;
2646	int ret;
2647
2648	if (bo_gem->global_name == 0 &&
2649	    tiling_mode == bo_gem->tiling_mode &&
2650	    stride == bo_gem->stride)
2651		return 0;
2652
2653	memset(&set_tiling, 0, sizeof(set_tiling));
2654	do {
2655		/* set_tiling is slightly broken and overwrites the
2656		 * input on the error path, so we have to open code
2657		 * rmIoctl.
2658		 */
2659		set_tiling.handle = bo_gem->gem_handle;
2660		set_tiling.tiling_mode = tiling_mode;
2661		set_tiling.stride = stride;
2662
2663		ret = ioctl(bufmgr_gem->fd,
2664			    DRM_IOCTL_I915_GEM_SET_TILING,
2665			    &set_tiling);
2666	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2667	if (ret == -1)
2668		return -errno;
2669
2670	bo_gem->tiling_mode = set_tiling.tiling_mode;
2671	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2672	bo_gem->stride = set_tiling.stride;
2673	return 0;
2674}
2675
2676static int
2677drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2678			    uint32_t stride)
2679{
2680	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2681	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2682	int ret;
2683
2684	/* Tiling with userptr surfaces is not supported
2685	 * on all hardware so refuse it for time being.
2686	 */
2687	if (bo_gem->is_userptr)
2688		return -EINVAL;
2689
2690	/* Linear buffers have no stride. By ensuring that we only ever use
2691	 * stride 0 with linear buffers, we simplify our code.
2692	 */
2693	if (*tiling_mode == I915_TILING_NONE)
2694		stride = 0;
2695
2696	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2697	if (ret == 0)
2698		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2699
2700	*tiling_mode = bo_gem->tiling_mode;
2701	return ret;
2702}
2703
2704static int
2705drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2706			    uint32_t * swizzle_mode)
2707{
2708	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2709
2710	*tiling_mode = bo_gem->tiling_mode;
2711	*swizzle_mode = bo_gem->swizzle_mode;
2712	return 0;
2713}
2714
2715drm_intel_bo *
2716drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2717{
2718	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2719	int ret;
2720	uint32_t handle;
2721	drm_intel_bo_gem *bo_gem;
2722	struct drm_i915_gem_get_tiling get_tiling;
2723	drmMMListHead *list;
2724
2725	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2726
2727	/*
2728	 * See if the kernel has already returned this buffer to us. Just as
2729	 * for named buffers, we must not create two bo's pointing at the same
2730	 * kernel object
2731	 */
2732	pthread_mutex_lock(&bufmgr_gem->lock);
2733	for (list = bufmgr_gem->named.next;
2734	     list != &bufmgr_gem->named;
2735	     list = list->next) {
2736		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
2737		if (bo_gem->gem_handle == handle) {
2738			drm_intel_gem_bo_reference(&bo_gem->bo);
2739			pthread_mutex_unlock(&bufmgr_gem->lock);
2740			return &bo_gem->bo;
2741		}
2742	}
2743
2744	if (ret) {
2745	  fprintf(stderr,"ret is %d %d\n", ret, errno);
2746	  pthread_mutex_unlock(&bufmgr_gem->lock);
2747		return NULL;
2748	}
2749
2750	bo_gem = calloc(1, sizeof(*bo_gem));
2751	if (!bo_gem) {
2752		pthread_mutex_unlock(&bufmgr_gem->lock);
2753		return NULL;
2754	}
2755	/* Determine size of bo.  The fd-to-handle ioctl really should
2756	 * return the size, but it doesn't.  If we have kernel 3.12 or
2757	 * later, we can lseek on the prime fd to get the size.  Older
2758	 * kernels will just fail, in which case we fall back to the
2759	 * provided (estimated or guess size). */
2760	ret = lseek(prime_fd, 0, SEEK_END);
2761	if (ret != -1)
2762		bo_gem->bo.size = ret;
2763	else
2764		bo_gem->bo.size = size;
2765
2766	bo_gem->bo.handle = handle;
2767	bo_gem->bo.bufmgr = bufmgr;
2768
2769	bo_gem->gem_handle = handle;
2770
2771	atomic_set(&bo_gem->refcount, 1);
2772
2773	bo_gem->name = "prime";
2774	bo_gem->validate_index = -1;
2775	bo_gem->reloc_tree_fences = 0;
2776	bo_gem->used_as_reloc_target = false;
2777	bo_gem->has_error = false;
2778	bo_gem->reusable = false;
2779
2780	DRMINITLISTHEAD(&bo_gem->vma_list);
2781	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2782	pthread_mutex_unlock(&bufmgr_gem->lock);
2783
2784	memclear(get_tiling);
2785	get_tiling.handle = bo_gem->gem_handle;
2786	ret = drmIoctl(bufmgr_gem->fd,
2787		       DRM_IOCTL_I915_GEM_GET_TILING,
2788		       &get_tiling);
2789	if (ret != 0) {
2790		drm_intel_gem_bo_unreference(&bo_gem->bo);
2791		return NULL;
2792	}
2793	bo_gem->tiling_mode = get_tiling.tiling_mode;
2794	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2795	/* XXX stride is unknown */
2796	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2797
2798	return &bo_gem->bo;
2799}
2800
2801int
2802drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2803{
2804	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2805	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2806
2807	pthread_mutex_lock(&bufmgr_gem->lock);
2808        if (DRMLISTEMPTY(&bo_gem->name_list))
2809                DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2810	pthread_mutex_unlock(&bufmgr_gem->lock);
2811
2812	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2813			       DRM_CLOEXEC, prime_fd) != 0)
2814		return -errno;
2815
2816	bo_gem->reusable = false;
2817
2818	return 0;
2819}
2820
2821static int
2822drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2823{
2824	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2825	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2826	int ret;
2827
2828	if (!bo_gem->global_name) {
2829		struct drm_gem_flink flink;
2830
2831		memclear(flink);
2832		flink.handle = bo_gem->gem_handle;
2833
2834		pthread_mutex_lock(&bufmgr_gem->lock);
2835
2836		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2837		if (ret != 0) {
2838			pthread_mutex_unlock(&bufmgr_gem->lock);
2839			return -errno;
2840		}
2841
2842		bo_gem->global_name = flink.name;
2843		bo_gem->reusable = false;
2844
2845                if (DRMLISTEMPTY(&bo_gem->name_list))
2846                        DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2847		pthread_mutex_unlock(&bufmgr_gem->lock);
2848	}
2849
2850	*name = bo_gem->global_name;
2851	return 0;
2852}
2853
2854/**
2855 * Enables unlimited caching of buffer objects for reuse.
2856 *
2857 * This is potentially very memory expensive, as the cache at each bucket
2858 * size is only bounded by how many buffers of that size we've managed to have
2859 * in flight at once.
2860 */
2861void
2862drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2863{
2864	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2865
2866	bufmgr_gem->bo_reuse = true;
2867}
2868
2869/**
2870 * Enable use of fenced reloc type.
2871 *
2872 * New code should enable this to avoid unnecessary fence register
2873 * allocation.  If this option is not enabled, all relocs will have fence
2874 * register allocated.
2875 */
2876void
2877drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2878{
2879	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2880
2881	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2882		bufmgr_gem->fenced_relocs = true;
2883}
2884
2885/**
2886 * Return the additional aperture space required by the tree of buffer objects
2887 * rooted at bo.
2888 */
2889static int
2890drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2891{
2892	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2893	int i;
2894	int total = 0;
2895
2896	if (bo == NULL || bo_gem->included_in_check_aperture)
2897		return 0;
2898
2899	total += bo->size;
2900	bo_gem->included_in_check_aperture = true;
2901
2902	for (i = 0; i < bo_gem->reloc_count; i++)
2903		total +=
2904		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2905							reloc_target_info[i].bo);
2906
2907	return total;
2908}
2909
2910/**
2911 * Count the number of buffers in this list that need a fence reg
2912 *
2913 * If the count is greater than the number of available regs, we'll have
2914 * to ask the caller to resubmit a batch with fewer tiled buffers.
2915 *
2916 * This function over-counts if the same buffer is used multiple times.
2917 */
2918static unsigned int
2919drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2920{
2921	int i;
2922	unsigned int total = 0;
2923
2924	for (i = 0; i < count; i++) {
2925		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2926
2927		if (bo_gem == NULL)
2928			continue;
2929
2930		total += bo_gem->reloc_tree_fences;
2931	}
2932	return total;
2933}
2934
2935/**
2936 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2937 * for the next drm_intel_bufmgr_check_aperture_space() call.
2938 */
2939static void
2940drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2941{
2942	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2943	int i;
2944
2945	if (bo == NULL || !bo_gem->included_in_check_aperture)
2946		return;
2947
2948	bo_gem->included_in_check_aperture = false;
2949
2950	for (i = 0; i < bo_gem->reloc_count; i++)
2951		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2952							   reloc_target_info[i].bo);
2953}
2954
2955/**
2956 * Return a conservative estimate for the amount of aperture required
2957 * for a collection of buffers. This may double-count some buffers.
2958 */
2959static unsigned int
2960drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2961{
2962	int i;
2963	unsigned int total = 0;
2964
2965	for (i = 0; i < count; i++) {
2966		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2967		if (bo_gem != NULL)
2968			total += bo_gem->reloc_tree_size;
2969	}
2970	return total;
2971}
2972
2973/**
2974 * Return the amount of aperture needed for a collection of buffers.
2975 * This avoids double counting any buffers, at the cost of looking
2976 * at every buffer in the set.
2977 */
2978static unsigned int
2979drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2980{
2981	int i;
2982	unsigned int total = 0;
2983
2984	for (i = 0; i < count; i++) {
2985		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2986		/* For the first buffer object in the array, we get an
2987		 * accurate count back for its reloc_tree size (since nothing
2988		 * had been flagged as being counted yet).  We can save that
2989		 * value out as a more conservative reloc_tree_size that
2990		 * avoids double-counting target buffers.  Since the first
2991		 * buffer happens to usually be the batch buffer in our
2992		 * callers, this can pull us back from doing the tree
2993		 * walk on every new batch emit.
2994		 */
2995		if (i == 0) {
2996			drm_intel_bo_gem *bo_gem =
2997			    (drm_intel_bo_gem *) bo_array[i];
2998			bo_gem->reloc_tree_size = total;
2999		}
3000	}
3001
3002	for (i = 0; i < count; i++)
3003		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
3004	return total;
3005}
3006
3007/**
3008 * Return -1 if the batchbuffer should be flushed before attempting to
3009 * emit rendering referencing the buffers pointed to by bo_array.
3010 *
3011 * This is required because if we try to emit a batchbuffer with relocations
3012 * to a tree of buffers that won't simultaneously fit in the aperture,
3013 * the rendering will return an error at a point where the software is not
3014 * prepared to recover from it.
3015 *
3016 * However, we also want to emit the batchbuffer significantly before we reach
3017 * the limit, as a series of batchbuffers each of which references buffers
3018 * covering almost all of the aperture means that at each emit we end up
3019 * waiting to evict a buffer from the last rendering, and we get synchronous
3020 * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
3021 * get better parallelism.
3022 */
3023static int
3024drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
3025{
3026	drm_intel_bufmgr_gem *bufmgr_gem =
3027	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
3028	unsigned int total = 0;
3029	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
3030	int total_fences;
3031
3032	/* Check for fence reg constraints if necessary */
3033	if (bufmgr_gem->available_fences) {
3034		total_fences = drm_intel_gem_total_fences(bo_array, count);
3035		if (total_fences > bufmgr_gem->available_fences)
3036			return -ENOSPC;
3037	}
3038
3039	total = drm_intel_gem_estimate_batch_space(bo_array, count);
3040
3041	if (total > threshold)
3042		total = drm_intel_gem_compute_batch_space(bo_array, count);
3043
3044	if (total > threshold) {
3045		DBG("check_space: overflowed available aperture, "
3046		    "%dkb vs %dkb\n",
3047		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
3048		return -ENOSPC;
3049	} else {
3050		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
3051		    (int)bufmgr_gem->gtt_size / 1024);
3052		return 0;
3053	}
3054}
3055
3056/*
3057 * Disable buffer reuse for objects which are shared with the kernel
3058 * as scanout buffers
3059 */
3060static int
3061drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
3062{
3063	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3064
3065	bo_gem->reusable = false;
3066	return 0;
3067}
3068
3069static int
3070drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
3071{
3072	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3073
3074	return bo_gem->reusable;
3075}
3076
3077static int
3078_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3079{
3080	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3081	int i;
3082
3083	for (i = 0; i < bo_gem->reloc_count; i++) {
3084		if (bo_gem->reloc_target_info[i].bo == target_bo)
3085			return 1;
3086		if (bo == bo_gem->reloc_target_info[i].bo)
3087			continue;
3088		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
3089						target_bo))
3090			return 1;
3091	}
3092
3093	return 0;
3094}
3095
3096/** Return true if target_bo is referenced by bo's relocation tree. */
3097static int
3098drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3099{
3100	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
3101
3102	if (bo == NULL || target_bo == NULL)
3103		return 0;
3104	if (target_bo_gem->used_as_reloc_target)
3105		return _drm_intel_gem_bo_references(bo, target_bo);
3106	return 0;
3107}
3108
3109static void
3110add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
3111{
3112	unsigned int i = bufmgr_gem->num_buckets;
3113
3114	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
3115
3116	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
3117	bufmgr_gem->cache_bucket[i].size = size;
3118	bufmgr_gem->num_buckets++;
3119}
3120
3121static void
3122init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3123{
3124	unsigned long size, cache_max_size = 64 * 1024 * 1024;
3125
3126	/* OK, so power of two buckets was too wasteful of memory.
3127	 * Give 3 other sizes between each power of two, to hopefully
3128	 * cover things accurately enough.  (The alternative is
3129	 * probably to just go for exact matching of sizes, and assume
3130	 * that for things like composited window resize the tiled
3131	 * width/height alignment and rounding of sizes to pages will
3132	 * get us useful cache hit rates anyway)
3133	 */
3134	add_bucket(bufmgr_gem, 4096);
3135	add_bucket(bufmgr_gem, 4096 * 2);
3136	add_bucket(bufmgr_gem, 4096 * 3);
3137
3138	/* Initialize the linked lists for BO reuse cache. */
3139	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3140		add_bucket(bufmgr_gem, size);
3141
3142		add_bucket(bufmgr_gem, size + size * 1 / 4);
3143		add_bucket(bufmgr_gem, size + size * 2 / 4);
3144		add_bucket(bufmgr_gem, size + size * 3 / 4);
3145	}
3146}
3147
3148void
3149drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3150{
3151	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3152
3153	bufmgr_gem->vma_max = limit;
3154
3155	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3156}
3157
3158/**
3159 * Get the PCI ID for the device.  This can be overridden by setting the
3160 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3161 */
3162static int
3163get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3164{
3165	char *devid_override;
3166	int devid = 0;
3167	int ret;
3168	drm_i915_getparam_t gp;
3169
3170	if (geteuid() == getuid()) {
3171		devid_override = getenv("INTEL_DEVID_OVERRIDE");
3172		if (devid_override) {
3173			bufmgr_gem->no_exec = true;
3174			return strtod(devid_override, NULL);
3175		}
3176	}
3177
3178	memclear(gp);
3179	gp.param = I915_PARAM_CHIPSET_ID;
3180	gp.value = &devid;
3181	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3182	if (ret) {
3183		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3184		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3185	}
3186	return devid;
3187}
3188
3189int
3190drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3191{
3192	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3193
3194	return bufmgr_gem->pci_device;
3195}
3196
3197/**
3198 * Sets the AUB filename.
3199 *
3200 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3201 * for it to have any effect.
3202 */
3203void
3204drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3205				      const char *filename)
3206{
3207	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3208
3209	free(bufmgr_gem->aub_filename);
3210	if (filename)
3211		bufmgr_gem->aub_filename = strdup(filename);
3212}
3213
3214/**
3215 * Sets up AUB dumping.
3216 *
3217 * This is a trace file format that can be used with the simulator.
3218 * Packets are emitted in a format somewhat like GPU command packets.
3219 * You can set up a GTT and upload your objects into the referenced
3220 * space, then send off batchbuffers and get BMPs out the other end.
3221 */
3222void
3223drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3224{
3225	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3226	int entry = 0x200003;
3227	int i;
3228	int gtt_size = 0x10000;
3229	const char *filename;
3230
3231	if (!enable) {
3232		if (bufmgr_gem->aub_file) {
3233			fclose(bufmgr_gem->aub_file);
3234			bufmgr_gem->aub_file = NULL;
3235		}
3236		return;
3237	}
3238
3239	if (geteuid() != getuid())
3240		return;
3241
3242	if (bufmgr_gem->aub_filename)
3243		filename = bufmgr_gem->aub_filename;
3244	else
3245		filename = "intel.aub";
3246	bufmgr_gem->aub_file = fopen(filename, "w+");
3247	if (!bufmgr_gem->aub_file)
3248		return;
3249
3250	/* Start allocating objects from just after the GTT. */
3251	bufmgr_gem->aub_offset = gtt_size;
3252
3253	/* Start with a (required) version packet. */
3254	aub_out(bufmgr_gem, CMD_AUB_HEADER | (13 - 2));
3255	aub_out(bufmgr_gem,
3256		(4 << AUB_HEADER_MAJOR_SHIFT) |
3257		(0 << AUB_HEADER_MINOR_SHIFT));
3258	for (i = 0; i < 8; i++) {
3259		aub_out(bufmgr_gem, 0); /* app name */
3260	}
3261	aub_out(bufmgr_gem, 0); /* timestamp */
3262	aub_out(bufmgr_gem, 0); /* timestamp */
3263	aub_out(bufmgr_gem, 0); /* comment len */
3264
3265	/* Set up the GTT. The max we can handle is 256M */
3266	aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | ((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
3267	/* Need to use GTT_ENTRY type for recent emulator */
3268	aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_GTT_ENTRY | 0 | AUB_TRACE_OP_DATA_WRITE);
3269	aub_out(bufmgr_gem, 0); /* subtype */
3270	aub_out(bufmgr_gem, 0); /* offset */
3271	aub_out(bufmgr_gem, gtt_size); /* size */
3272	if (bufmgr_gem->gen >= 8)
3273		aub_out(bufmgr_gem, 0);
3274	for (i = 0x000; i < gtt_size; i += 4, entry += 0x1000) {
3275		aub_out(bufmgr_gem, entry);
3276	}
3277}
3278
3279drm_intel_context *
3280drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3281{
3282	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3283	struct drm_i915_gem_context_create create;
3284	drm_intel_context *context = NULL;
3285	int ret;
3286
3287	context = calloc(1, sizeof(*context));
3288	if (!context)
3289		return NULL;
3290
3291	memclear(create);
3292	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3293	if (ret != 0) {
3294		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3295		    strerror(errno));
3296		free(context);
3297		return NULL;
3298	}
3299
3300	context->ctx_id = create.ctx_id;
3301	context->bufmgr = bufmgr;
3302
3303	return context;
3304}
3305
3306void
3307drm_intel_gem_context_destroy(drm_intel_context *ctx)
3308{
3309	drm_intel_bufmgr_gem *bufmgr_gem;
3310	struct drm_i915_gem_context_destroy destroy;
3311	int ret;
3312
3313	if (ctx == NULL)
3314		return;
3315
3316	memclear(destroy);
3317
3318	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3319	destroy.ctx_id = ctx->ctx_id;
3320	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3321		       &destroy);
3322	if (ret != 0)
3323		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3324			strerror(errno));
3325
3326	free(ctx);
3327}
3328
3329int
3330drm_intel_get_reset_stats(drm_intel_context *ctx,
3331			  uint32_t *reset_count,
3332			  uint32_t *active,
3333			  uint32_t *pending)
3334{
3335	drm_intel_bufmgr_gem *bufmgr_gem;
3336	struct drm_i915_reset_stats stats;
3337	int ret;
3338
3339	if (ctx == NULL)
3340		return -EINVAL;
3341
3342	memclear(stats);
3343
3344	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3345	stats.ctx_id = ctx->ctx_id;
3346	ret = drmIoctl(bufmgr_gem->fd,
3347		       DRM_IOCTL_I915_GET_RESET_STATS,
3348		       &stats);
3349	if (ret == 0) {
3350		if (reset_count != NULL)
3351			*reset_count = stats.reset_count;
3352
3353		if (active != NULL)
3354			*active = stats.batch_active;
3355
3356		if (pending != NULL)
3357			*pending = stats.batch_pending;
3358	}
3359
3360	return ret;
3361}
3362
3363int
3364drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3365		   uint32_t offset,
3366		   uint64_t *result)
3367{
3368	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3369	struct drm_i915_reg_read reg_read;
3370	int ret;
3371
3372	memclear(reg_read);
3373	reg_read.offset = offset;
3374
3375	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3376
3377	*result = reg_read.val;
3378	return ret;
3379}
3380
3381int
3382drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3383{
3384	drm_i915_getparam_t gp;
3385	int ret;
3386
3387	memclear(gp);
3388	gp.value = (int*)subslice_total;
3389	gp.param = I915_PARAM_SUBSLICE_TOTAL;
3390	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3391	if (ret)
3392		return -errno;
3393
3394	return 0;
3395}
3396
3397int
3398drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3399{
3400	drm_i915_getparam_t gp;
3401	int ret;
3402
3403	memclear(gp);
3404	gp.value = (int*)eu_total;
3405	gp.param = I915_PARAM_EU_TOTAL;
3406	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3407	if (ret)
3408		return -errno;
3409
3410	return 0;
3411}
3412
3413/**
3414 * Annotate the given bo for use in aub dumping.
3415 *
3416 * \param annotations is an array of drm_intel_aub_annotation objects
3417 * describing the type of data in various sections of the bo.  Each
3418 * element of the array specifies the type and subtype of a section of
3419 * the bo, and the past-the-end offset of that section.  The elements
3420 * of \c annotations must be sorted so that ending_offset is
3421 * increasing.
3422 *
3423 * \param count is the number of elements in the \c annotations array.
3424 * If \c count is zero, then \c annotations will not be dereferenced.
3425 *
3426 * Annotations are copied into a private data structure, so caller may
3427 * re-use the memory pointed to by \c annotations after the call
3428 * returns.
3429 *
3430 * Annotations are stored for the lifetime of the bo; to reset to the
3431 * default state (no annotations), call this function with a \c count
3432 * of zero.
3433 */
3434void
3435drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3436					 drm_intel_aub_annotation *annotations,
3437					 unsigned count)
3438{
3439	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3440	unsigned size = sizeof(*annotations) * count;
3441	drm_intel_aub_annotation *new_annotations =
3442		count > 0 ? realloc(bo_gem->aub_annotations, size) : NULL;
3443	if (new_annotations == NULL) {
3444		free(bo_gem->aub_annotations);
3445		bo_gem->aub_annotations = NULL;
3446		bo_gem->aub_annotation_count = 0;
3447		return;
3448	}
3449	memcpy(new_annotations, annotations, size);
3450	bo_gem->aub_annotations = new_annotations;
3451	bo_gem->aub_annotation_count = count;
3452}
3453
3454static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3455static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3456
3457static drm_intel_bufmgr_gem *
3458drm_intel_bufmgr_gem_find(int fd)
3459{
3460	drm_intel_bufmgr_gem *bufmgr_gem;
3461
3462	DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3463		if (bufmgr_gem->fd == fd) {
3464			atomic_inc(&bufmgr_gem->refcount);
3465			return bufmgr_gem;
3466		}
3467	}
3468
3469	return NULL;
3470}
3471
3472static void
3473drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3474{
3475	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3476
3477	if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3478		pthread_mutex_lock(&bufmgr_list_mutex);
3479
3480		if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3481			DRMLISTDEL(&bufmgr_gem->managers);
3482			drm_intel_bufmgr_gem_destroy(bufmgr);
3483		}
3484
3485		pthread_mutex_unlock(&bufmgr_list_mutex);
3486	}
3487}
3488
3489/**
3490 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3491 * and manage map buffer objections.
3492 *
3493 * \param fd File descriptor of the opened DRM device.
3494 */
3495drm_intel_bufmgr *
3496drm_intel_bufmgr_gem_init(int fd, int batch_size)
3497{
3498	drm_intel_bufmgr_gem *bufmgr_gem;
3499	struct drm_i915_gem_get_aperture aperture;
3500	drm_i915_getparam_t gp;
3501	int ret, tmp;
3502	bool exec2 = false;
3503
3504	pthread_mutex_lock(&bufmgr_list_mutex);
3505
3506	bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3507	if (bufmgr_gem)
3508		goto exit;
3509
3510	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3511	if (bufmgr_gem == NULL)
3512		goto exit;
3513
3514	bufmgr_gem->fd = fd;
3515	atomic_set(&bufmgr_gem->refcount, 1);
3516
3517	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3518		free(bufmgr_gem);
3519		bufmgr_gem = NULL;
3520		goto exit;
3521	}
3522
3523	memclear(aperture);
3524	ret = drmIoctl(bufmgr_gem->fd,
3525		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3526		       &aperture);
3527
3528	if (ret == 0)
3529		bufmgr_gem->gtt_size = aperture.aper_available_size;
3530	else {
3531		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3532			strerror(errno));
3533		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3534		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3535			"May lead to reduced performance or incorrect "
3536			"rendering.\n",
3537			(int)bufmgr_gem->gtt_size / 1024);
3538	}
3539
3540	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3541
3542	if (IS_GEN2(bufmgr_gem->pci_device))
3543		bufmgr_gem->gen = 2;
3544	else if (IS_GEN3(bufmgr_gem->pci_device))
3545		bufmgr_gem->gen = 3;
3546	else if (IS_GEN4(bufmgr_gem->pci_device))
3547		bufmgr_gem->gen = 4;
3548	else if (IS_GEN5(bufmgr_gem->pci_device))
3549		bufmgr_gem->gen = 5;
3550	else if (IS_GEN6(bufmgr_gem->pci_device))
3551		bufmgr_gem->gen = 6;
3552	else if (IS_GEN7(bufmgr_gem->pci_device))
3553		bufmgr_gem->gen = 7;
3554	else if (IS_GEN8(bufmgr_gem->pci_device))
3555		bufmgr_gem->gen = 8;
3556	else if (IS_GEN9(bufmgr_gem->pci_device))
3557		bufmgr_gem->gen = 9;
3558	else {
3559		free(bufmgr_gem);
3560		bufmgr_gem = NULL;
3561		goto exit;
3562	}
3563
3564	if (IS_GEN3(bufmgr_gem->pci_device) &&
3565	    bufmgr_gem->gtt_size > 256*1024*1024) {
3566		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3567		 * be used for tiled blits. To simplify the accounting, just
3568		 * substract the unmappable part (fixed to 256MB on all known
3569		 * gen3 devices) if the kernel advertises it. */
3570		bufmgr_gem->gtt_size -= 256*1024*1024;
3571	}
3572
3573	memclear(gp);
3574	gp.value = &tmp;
3575
3576	gp.param = I915_PARAM_HAS_EXECBUF2;
3577	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3578	if (!ret)
3579		exec2 = true;
3580
3581	gp.param = I915_PARAM_HAS_BSD;
3582	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3583	bufmgr_gem->has_bsd = ret == 0;
3584
3585	gp.param = I915_PARAM_HAS_BLT;
3586	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3587	bufmgr_gem->has_blt = ret == 0;
3588
3589	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3590	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3591	bufmgr_gem->has_relaxed_fencing = ret == 0;
3592
3593	bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3594
3595	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3596	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3597	bufmgr_gem->has_wait_timeout = ret == 0;
3598
3599	gp.param = I915_PARAM_HAS_LLC;
3600	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3601	if (ret != 0) {
3602		/* Kernel does not supports HAS_LLC query, fallback to GPU
3603		 * generation detection and assume that we have LLC on GEN6/7
3604		 */
3605		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3606				IS_GEN7(bufmgr_gem->pci_device));
3607	} else
3608		bufmgr_gem->has_llc = *gp.value;
3609
3610	gp.param = I915_PARAM_HAS_VEBOX;
3611	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3612	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3613
3614	if (bufmgr_gem->gen < 4) {
3615		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3616		gp.value = &bufmgr_gem->available_fences;
3617		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3618		if (ret) {
3619			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3620				errno);
3621			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3622				*gp.value);
3623			bufmgr_gem->available_fences = 0;
3624		} else {
3625			/* XXX The kernel reports the total number of fences,
3626			 * including any that may be pinned.
3627			 *
3628			 * We presume that there will be at least one pinned
3629			 * fence for the scanout buffer, but there may be more
3630			 * than one scanout and the user may be manually
3631			 * pinning buffers. Let's move to execbuffer2 and
3632			 * thereby forget the insanity of using fences...
3633			 */
3634			bufmgr_gem->available_fences -= 2;
3635			if (bufmgr_gem->available_fences < 0)
3636				bufmgr_gem->available_fences = 0;
3637		}
3638	}
3639
3640	/* Let's go with one relocation per every 2 dwords (but round down a bit
3641	 * since a power of two will mean an extra page allocation for the reloc
3642	 * buffer).
3643	 *
3644	 * Every 4 was too few for the blender benchmark.
3645	 */
3646	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3647
3648	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3649	bufmgr_gem->bufmgr.bo_alloc_for_render =
3650	    drm_intel_gem_bo_alloc_for_render;
3651	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3652	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3653	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3654	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3655	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3656	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3657	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3658	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3659	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3660	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3661	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3662	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3663	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3664	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3665	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3666	/* Use the new one if available */
3667	if (exec2) {
3668		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3669		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3670	} else
3671		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3672	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3673	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3674	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3675	bufmgr_gem->bufmgr.debug = 0;
3676	bufmgr_gem->bufmgr.check_aperture_space =
3677	    drm_intel_gem_check_aperture_space;
3678	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3679	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3680	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3681	    drm_intel_gem_get_pipe_from_crtc_id;
3682	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3683
3684	DRMINITLISTHEAD(&bufmgr_gem->named);
3685	init_cache_buckets(bufmgr_gem);
3686
3687	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3688	bufmgr_gem->vma_max = -1; /* unlimited by default */
3689
3690	DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3691
3692exit:
3693	pthread_mutex_unlock(&bufmgr_list_mutex);
3694
3695	return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3696}
3697