intel_bufmgr_gem.c revision 87bf8e7c
1/**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30/*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 *	    Eric Anholt <eric@anholt.net>
34 *	    Dave Airlie <airlied@linux.ie>
35 */
36
37#include <xf86drm.h>
38#include <xf86atomic.h>
39#include <fcntl.h>
40#include <stdio.h>
41#include <stdlib.h>
42#include <string.h>
43#include <unistd.h>
44#include <assert.h>
45#include <pthread.h>
46#include <sys/ioctl.h>
47#include <sys/stat.h>
48#include <sys/types.h>
49#include <stdbool.h>
50
51#include "errno.h"
52#ifndef ETIME
53#define ETIME ETIMEDOUT
54#endif
55#include "libdrm_macros.h"
56#include "libdrm_lists.h"
57#include "intel_bufmgr.h"
58#include "intel_bufmgr_priv.h"
59#include "intel_chipset.h"
60#include "string.h"
61
62#include "i915_drm.h"
63#include "uthash.h"
64
65#if HAVE_VALGRIND
66#include <valgrind.h>
67#include <memcheck.h>
68#define VG(x) x
69#else
70#define VG(x)
71#endif
72
73#define memclear(s) memset(&s, 0, sizeof(s))
74
75#define DBG(...) do {					\
76	if (bufmgr_gem->bufmgr.debug)			\
77		fprintf(stderr, __VA_ARGS__);		\
78} while (0)
79
80#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
81#define MAX2(A, B) ((A) > (B) ? (A) : (B))
82
83/**
84 * upper_32_bits - return bits 32-63 of a number
85 * @n: the number we're accessing
86 *
87 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
88 * the "right shift count >= width of type" warning when that quantity is
89 * 32-bits.
90 */
91#define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
92
93/**
94 * lower_32_bits - return bits 0-31 of a number
95 * @n: the number we're accessing
96 */
97#define lower_32_bits(n) ((__u32)(n))
98
99typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
100
101struct drm_intel_gem_bo_bucket {
102	drmMMListHead head;
103	unsigned long size;
104};
105
106typedef struct _drm_intel_bufmgr_gem {
107	drm_intel_bufmgr bufmgr;
108
109	atomic_t refcount;
110
111	int fd;
112
113	int max_relocs;
114
115	pthread_mutex_t lock;
116
117	struct drm_i915_gem_exec_object *exec_objects;
118	struct drm_i915_gem_exec_object2 *exec2_objects;
119	drm_intel_bo **exec_bos;
120	int exec_size;
121	int exec_count;
122
123	/** Array of lists of cached gem objects of power-of-two sizes */
124	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
125	int num_buckets;
126	time_t time;
127
128	drmMMListHead managers;
129
130	drm_intel_bo_gem *name_table;
131	drm_intel_bo_gem *handle_table;
132
133	drmMMListHead vma_cache;
134	int vma_count, vma_open, vma_max;
135
136	uint64_t gtt_size;
137	int available_fences;
138	int pci_device;
139	int gen;
140	unsigned int has_bsd : 1;
141	unsigned int has_blt : 1;
142	unsigned int has_relaxed_fencing : 1;
143	unsigned int has_llc : 1;
144	unsigned int has_wait_timeout : 1;
145	unsigned int bo_reuse : 1;
146	unsigned int no_exec : 1;
147	unsigned int has_vebox : 1;
148	unsigned int has_exec_async : 1;
149	bool fenced_relocs;
150
151	struct {
152		void *ptr;
153		uint32_t handle;
154	} userptr_active;
155
156} drm_intel_bufmgr_gem;
157
158#define DRM_INTEL_RELOC_FENCE (1<<0)
159
160typedef struct _drm_intel_reloc_target_info {
161	drm_intel_bo *bo;
162	int flags;
163} drm_intel_reloc_target;
164
165struct _drm_intel_bo_gem {
166	drm_intel_bo bo;
167
168	atomic_t refcount;
169	uint32_t gem_handle;
170	const char *name;
171
172	/**
173	 * Kenel-assigned global name for this object
174         *
175         * List contains both flink named and prime fd'd objects
176	 */
177	unsigned int global_name;
178
179	UT_hash_handle handle_hh;
180	UT_hash_handle name_hh;
181
182	/**
183	 * Index of the buffer within the validation list while preparing a
184	 * batchbuffer execution.
185	 */
186	int validate_index;
187
188	/**
189	 * Current tiling mode
190	 */
191	uint32_t tiling_mode;
192	uint32_t swizzle_mode;
193	unsigned long stride;
194
195	unsigned long kflags;
196
197	time_t free_time;
198
199	/** Array passed to the DRM containing relocation information. */
200	struct drm_i915_gem_relocation_entry *relocs;
201	/**
202	 * Array of info structs corresponding to relocs[i].target_handle etc
203	 */
204	drm_intel_reloc_target *reloc_target_info;
205	/** Number of entries in relocs */
206	int reloc_count;
207	/** Array of BOs that are referenced by this buffer and will be softpinned */
208	drm_intel_bo **softpin_target;
209	/** Number softpinned BOs that are referenced by this buffer */
210	int softpin_target_count;
211	/** Maximum amount of softpinned BOs that are referenced by this buffer */
212	int softpin_target_size;
213
214	/** Mapped address for the buffer, saved across map/unmap cycles */
215	void *mem_virtual;
216	/** GTT virtual address for the buffer, saved across map/unmap cycles */
217	void *gtt_virtual;
218	/** WC CPU address for the buffer, saved across map/unmap cycles */
219	void *wc_virtual;
220	/**
221	 * Virtual address of the buffer allocated by user, used for userptr
222	 * objects only.
223	 */
224	void *user_virtual;
225	int map_count;
226	drmMMListHead vma_list;
227
228	/** BO cache list */
229	drmMMListHead head;
230
231	/**
232	 * Boolean of whether this BO and its children have been included in
233	 * the current drm_intel_bufmgr_check_aperture_space() total.
234	 */
235	bool included_in_check_aperture;
236
237	/**
238	 * Boolean of whether this buffer has been used as a relocation
239	 * target and had its size accounted for, and thus can't have any
240	 * further relocations added to it.
241	 */
242	bool used_as_reloc_target;
243
244	/**
245	 * Boolean of whether we have encountered an error whilst building the relocation tree.
246	 */
247	bool has_error;
248
249	/**
250	 * Boolean of whether this buffer can be re-used
251	 */
252	bool reusable;
253
254	/**
255	 * Boolean of whether the GPU is definitely not accessing the buffer.
256	 *
257	 * This is only valid when reusable, since non-reusable
258	 * buffers are those that have been shared with other
259	 * processes, so we don't know their state.
260	 */
261	bool idle;
262
263	/**
264	 * Boolean of whether this buffer was allocated with userptr
265	 */
266	bool is_userptr;
267
268	/**
269	 * Size in bytes of this buffer and its relocation descendents.
270	 *
271	 * Used to avoid costly tree walking in
272	 * drm_intel_bufmgr_check_aperture in the common case.
273	 */
274	int reloc_tree_size;
275
276	/**
277	 * Number of potential fence registers required by this buffer and its
278	 * relocations.
279	 */
280	int reloc_tree_fences;
281
282	/** Flags that we may need to do the SW_FINISH ioctl on unmap. */
283	bool mapped_cpu_write;
284};
285
286static unsigned int
287drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
288
289static unsigned int
290drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
291
292static int
293drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
294			    uint32_t * swizzle_mode);
295
296static int
297drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
298				     uint32_t tiling_mode,
299				     uint32_t stride);
300
301static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
302						      time_t time);
303
304static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
305
306static void drm_intel_gem_bo_free(drm_intel_bo *bo);
307
308static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo)
309{
310        return (drm_intel_bo_gem *)bo;
311}
312
313static unsigned long
314drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
315			   uint32_t *tiling_mode)
316{
317	unsigned long min_size, max_size;
318	unsigned long i;
319
320	if (*tiling_mode == I915_TILING_NONE)
321		return size;
322
323	/* 965+ just need multiples of page size for tiling */
324	if (bufmgr_gem->gen >= 4)
325		return ROUND_UP_TO(size, 4096);
326
327	/* Older chips need powers of two, of at least 512k or 1M */
328	if (bufmgr_gem->gen == 3) {
329		min_size = 1024*1024;
330		max_size = 128*1024*1024;
331	} else {
332		min_size = 512*1024;
333		max_size = 64*1024*1024;
334	}
335
336	if (size > max_size) {
337		*tiling_mode = I915_TILING_NONE;
338		return size;
339	}
340
341	/* Do we need to allocate every page for the fence? */
342	if (bufmgr_gem->has_relaxed_fencing)
343		return ROUND_UP_TO(size, 4096);
344
345	for (i = min_size; i < size; i <<= 1)
346		;
347
348	return i;
349}
350
351/*
352 * Round a given pitch up to the minimum required for X tiling on a
353 * given chip.  We use 512 as the minimum to allow for a later tiling
354 * change.
355 */
356static unsigned long
357drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
358			    unsigned long pitch, uint32_t *tiling_mode)
359{
360	unsigned long tile_width;
361	unsigned long i;
362
363	/* If untiled, then just align it so that we can do rendering
364	 * to it with the 3D engine.
365	 */
366	if (*tiling_mode == I915_TILING_NONE)
367		return ALIGN(pitch, 64);
368
369	if (*tiling_mode == I915_TILING_X
370			|| (IS_915(bufmgr_gem->pci_device)
371			    && *tiling_mode == I915_TILING_Y))
372		tile_width = 512;
373	else
374		tile_width = 128;
375
376	/* 965 is flexible */
377	if (bufmgr_gem->gen >= 4)
378		return ROUND_UP_TO(pitch, tile_width);
379
380	/* The older hardware has a maximum pitch of 8192 with tiled
381	 * surfaces, so fallback to untiled if it's too large.
382	 */
383	if (pitch > 8192) {
384		*tiling_mode = I915_TILING_NONE;
385		return ALIGN(pitch, 64);
386	}
387
388	/* Pre-965 needs power of two tile width */
389	for (i = tile_width; i < pitch; i <<= 1)
390		;
391
392	return i;
393}
394
395static struct drm_intel_gem_bo_bucket *
396drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
397				 unsigned long size)
398{
399	int i;
400
401	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
402		struct drm_intel_gem_bo_bucket *bucket =
403		    &bufmgr_gem->cache_bucket[i];
404		if (bucket->size >= size) {
405			return bucket;
406		}
407	}
408
409	return NULL;
410}
411
412static void
413drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
414{
415	int i, j;
416
417	for (i = 0; i < bufmgr_gem->exec_count; i++) {
418		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
419		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
420
421		if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) {
422			DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
423			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
424			    bo_gem->name);
425			continue;
426		}
427
428		for (j = 0; j < bo_gem->reloc_count; j++) {
429			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
430			drm_intel_bo_gem *target_gem =
431			    (drm_intel_bo_gem *) target_bo;
432
433			DBG("%2d: %d %s(%s)@0x%08x %08x -> "
434			    "%d (%s)@0x%08x %08x + 0x%08x\n",
435			    i,
436			    bo_gem->gem_handle,
437			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
438			    bo_gem->name,
439			    upper_32_bits(bo_gem->relocs[j].offset),
440			    lower_32_bits(bo_gem->relocs[j].offset),
441			    target_gem->gem_handle,
442			    target_gem->name,
443			    upper_32_bits(target_bo->offset64),
444			    lower_32_bits(target_bo->offset64),
445			    bo_gem->relocs[j].delta);
446		}
447
448		for (j = 0; j < bo_gem->softpin_target_count; j++) {
449			drm_intel_bo *target_bo = bo_gem->softpin_target[j];
450			drm_intel_bo_gem *target_gem =
451			    (drm_intel_bo_gem *) target_bo;
452			DBG("%2d: %d %s(%s) -> "
453			    "%d *(%s)@0x%08x %08x\n",
454			    i,
455			    bo_gem->gem_handle,
456			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
457			    bo_gem->name,
458			    target_gem->gem_handle,
459			    target_gem->name,
460			    upper_32_bits(target_bo->offset64),
461			    lower_32_bits(target_bo->offset64));
462		}
463	}
464}
465
466static inline void
467drm_intel_gem_bo_reference(drm_intel_bo *bo)
468{
469	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
470
471	atomic_inc(&bo_gem->refcount);
472}
473
474/**
475 * Adds the given buffer to the list of buffers to be validated (moved into the
476 * appropriate memory type) with the next batch submission.
477 *
478 * If a buffer is validated multiple times in a batch submission, it ends up
479 * with the intersection of the memory type flags and the union of the
480 * access flags.
481 */
482static void
483drm_intel_add_validate_buffer(drm_intel_bo *bo)
484{
485	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
486	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
487	int index;
488
489	if (bo_gem->validate_index != -1)
490		return;
491
492	/* Extend the array of validation entries as necessary. */
493	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
494		int new_size = bufmgr_gem->exec_size * 2;
495
496		if (new_size == 0)
497			new_size = 5;
498
499		bufmgr_gem->exec_objects =
500		    realloc(bufmgr_gem->exec_objects,
501			    sizeof(*bufmgr_gem->exec_objects) * new_size);
502		bufmgr_gem->exec_bos =
503		    realloc(bufmgr_gem->exec_bos,
504			    sizeof(*bufmgr_gem->exec_bos) * new_size);
505		bufmgr_gem->exec_size = new_size;
506	}
507
508	index = bufmgr_gem->exec_count;
509	bo_gem->validate_index = index;
510	/* Fill in array entry */
511	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
512	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
513	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
514	bufmgr_gem->exec_objects[index].alignment = bo->align;
515	bufmgr_gem->exec_objects[index].offset = 0;
516	bufmgr_gem->exec_bos[index] = bo;
517	bufmgr_gem->exec_count++;
518}
519
520static void
521drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
522{
523	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
524	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
525	int index;
526	unsigned long flags;
527
528	flags = 0;
529	if (need_fence)
530		flags |= EXEC_OBJECT_NEEDS_FENCE;
531
532	if (bo_gem->validate_index != -1) {
533		bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
534		return;
535	}
536
537	/* Extend the array of validation entries as necessary. */
538	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
539		int new_size = bufmgr_gem->exec_size * 2;
540
541		if (new_size == 0)
542			new_size = 5;
543
544		bufmgr_gem->exec2_objects =
545			realloc(bufmgr_gem->exec2_objects,
546				sizeof(*bufmgr_gem->exec2_objects) * new_size);
547		bufmgr_gem->exec_bos =
548			realloc(bufmgr_gem->exec_bos,
549				sizeof(*bufmgr_gem->exec_bos) * new_size);
550		bufmgr_gem->exec_size = new_size;
551	}
552
553	index = bufmgr_gem->exec_count;
554	bo_gem->validate_index = index;
555	/* Fill in array entry */
556	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
557	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
558	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
559	bufmgr_gem->exec2_objects[index].alignment = bo->align;
560	bufmgr_gem->exec2_objects[index].offset = bo->offset64;
561	bufmgr_gem->exec2_objects[index].flags = bo_gem->kflags | flags;
562	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
563	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
564	bufmgr_gem->exec_bos[index] = bo;
565	bufmgr_gem->exec_count++;
566}
567
568#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
569	sizeof(uint32_t))
570
571static void
572drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
573				      drm_intel_bo_gem *bo_gem,
574				      unsigned int alignment)
575{
576	unsigned int size;
577
578	assert(!bo_gem->used_as_reloc_target);
579
580	/* The older chipsets are far-less flexible in terms of tiling,
581	 * and require tiled buffer to be size aligned in the aperture.
582	 * This means that in the worst possible case we will need a hole
583	 * twice as large as the object in order for it to fit into the
584	 * aperture. Optimal packing is for wimps.
585	 */
586	size = bo_gem->bo.size;
587	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
588		unsigned int min_size;
589
590		if (bufmgr_gem->has_relaxed_fencing) {
591			if (bufmgr_gem->gen == 3)
592				min_size = 1024*1024;
593			else
594				min_size = 512*1024;
595
596			while (min_size < size)
597				min_size *= 2;
598		} else
599			min_size = size;
600
601		/* Account for worst-case alignment. */
602		alignment = MAX2(alignment, min_size);
603	}
604
605	bo_gem->reloc_tree_size = size + alignment;
606}
607
608static int
609drm_intel_setup_reloc_list(drm_intel_bo *bo)
610{
611	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
612	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
613	unsigned int max_relocs = bufmgr_gem->max_relocs;
614
615	if (bo->size / 4 < max_relocs)
616		max_relocs = bo->size / 4;
617
618	bo_gem->relocs = malloc(max_relocs *
619				sizeof(struct drm_i915_gem_relocation_entry));
620	bo_gem->reloc_target_info = malloc(max_relocs *
621					   sizeof(drm_intel_reloc_target));
622	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
623		bo_gem->has_error = true;
624
625		free (bo_gem->relocs);
626		bo_gem->relocs = NULL;
627
628		free (bo_gem->reloc_target_info);
629		bo_gem->reloc_target_info = NULL;
630
631		return 1;
632	}
633
634	return 0;
635}
636
637static int
638drm_intel_gem_bo_busy(drm_intel_bo *bo)
639{
640	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
641	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
642	struct drm_i915_gem_busy busy;
643	int ret;
644
645	if (bo_gem->reusable && bo_gem->idle)
646		return false;
647
648	memclear(busy);
649	busy.handle = bo_gem->gem_handle;
650
651	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
652	if (ret == 0) {
653		bo_gem->idle = !busy.busy;
654		return busy.busy;
655	} else {
656		return false;
657	}
658}
659
660static int
661drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
662				  drm_intel_bo_gem *bo_gem, int state)
663{
664	struct drm_i915_gem_madvise madv;
665
666	memclear(madv);
667	madv.handle = bo_gem->gem_handle;
668	madv.madv = state;
669	madv.retained = 1;
670	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
671
672	return madv.retained;
673}
674
675static int
676drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
677{
678	return drm_intel_gem_bo_madvise_internal
679		((drm_intel_bufmgr_gem *) bo->bufmgr,
680		 (drm_intel_bo_gem *) bo,
681		 madv);
682}
683
684/* drop the oldest entries that have been purged by the kernel */
685static void
686drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
687				    struct drm_intel_gem_bo_bucket *bucket)
688{
689	while (!DRMLISTEMPTY(&bucket->head)) {
690		drm_intel_bo_gem *bo_gem;
691
692		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
693				      bucket->head.next, head);
694		if (drm_intel_gem_bo_madvise_internal
695		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
696			break;
697
698		DRMLISTDEL(&bo_gem->head);
699		drm_intel_gem_bo_free(&bo_gem->bo);
700	}
701}
702
703static drm_intel_bo *
704drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
705				const char *name,
706				unsigned long size,
707				unsigned long flags,
708				uint32_t tiling_mode,
709				unsigned long stride,
710				unsigned int alignment)
711{
712	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
713	drm_intel_bo_gem *bo_gem;
714	unsigned int page_size = getpagesize();
715	int ret;
716	struct drm_intel_gem_bo_bucket *bucket;
717	bool alloc_from_cache;
718	unsigned long bo_size;
719	bool for_render = false;
720
721	if (flags & BO_ALLOC_FOR_RENDER)
722		for_render = true;
723
724	/* Round the allocated size up to a power of two number of pages. */
725	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
726
727	/* If we don't have caching at this size, don't actually round the
728	 * allocation up.
729	 */
730	if (bucket == NULL) {
731		bo_size = size;
732		if (bo_size < page_size)
733			bo_size = page_size;
734	} else {
735		bo_size = bucket->size;
736	}
737
738	pthread_mutex_lock(&bufmgr_gem->lock);
739	/* Get a buffer out of the cache if available */
740retry:
741	alloc_from_cache = false;
742	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
743		if (for_render) {
744			/* Allocate new render-target BOs from the tail (MRU)
745			 * of the list, as it will likely be hot in the GPU
746			 * cache and in the aperture for us.
747			 */
748			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
749					      bucket->head.prev, head);
750			DRMLISTDEL(&bo_gem->head);
751			alloc_from_cache = true;
752			bo_gem->bo.align = alignment;
753		} else {
754			assert(alignment == 0);
755			/* For non-render-target BOs (where we're probably
756			 * going to map it first thing in order to fill it
757			 * with data), check if the last BO in the cache is
758			 * unbusy, and only reuse in that case. Otherwise,
759			 * allocating a new buffer is probably faster than
760			 * waiting for the GPU to finish.
761			 */
762			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
763					      bucket->head.next, head);
764			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
765				alloc_from_cache = true;
766				DRMLISTDEL(&bo_gem->head);
767			}
768		}
769
770		if (alloc_from_cache) {
771			if (!drm_intel_gem_bo_madvise_internal
772			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
773				drm_intel_gem_bo_free(&bo_gem->bo);
774				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
775								    bucket);
776				goto retry;
777			}
778
779			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
780								 tiling_mode,
781								 stride)) {
782				drm_intel_gem_bo_free(&bo_gem->bo);
783				goto retry;
784			}
785		}
786	}
787
788	if (!alloc_from_cache) {
789		struct drm_i915_gem_create create;
790
791		bo_gem = calloc(1, sizeof(*bo_gem));
792		if (!bo_gem)
793			goto err;
794
795		/* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
796		   list (vma_list), so better set the list head here */
797		DRMINITLISTHEAD(&bo_gem->vma_list);
798
799		bo_gem->bo.size = bo_size;
800
801		memclear(create);
802		create.size = bo_size;
803
804		ret = drmIoctl(bufmgr_gem->fd,
805			       DRM_IOCTL_I915_GEM_CREATE,
806			       &create);
807		if (ret != 0) {
808			free(bo_gem);
809			goto err;
810		}
811
812		bo_gem->gem_handle = create.handle;
813		HASH_ADD(handle_hh, bufmgr_gem->handle_table,
814			 gem_handle, sizeof(bo_gem->gem_handle),
815			 bo_gem);
816
817		bo_gem->bo.handle = bo_gem->gem_handle;
818		bo_gem->bo.bufmgr = bufmgr;
819		bo_gem->bo.align = alignment;
820
821		bo_gem->tiling_mode = I915_TILING_NONE;
822		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
823		bo_gem->stride = 0;
824
825		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
826							 tiling_mode,
827							 stride))
828			goto err_free;
829	}
830
831	bo_gem->name = name;
832	atomic_set(&bo_gem->refcount, 1);
833	bo_gem->validate_index = -1;
834	bo_gem->reloc_tree_fences = 0;
835	bo_gem->used_as_reloc_target = false;
836	bo_gem->has_error = false;
837	bo_gem->reusable = true;
838
839	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
840	pthread_mutex_unlock(&bufmgr_gem->lock);
841
842	DBG("bo_create: buf %d (%s) %ldb\n",
843	    bo_gem->gem_handle, bo_gem->name, size);
844
845	return &bo_gem->bo;
846
847err_free:
848	drm_intel_gem_bo_free(&bo_gem->bo);
849err:
850	pthread_mutex_unlock(&bufmgr_gem->lock);
851	return NULL;
852}
853
854static drm_intel_bo *
855drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
856				  const char *name,
857				  unsigned long size,
858				  unsigned int alignment)
859{
860	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
861					       BO_ALLOC_FOR_RENDER,
862					       I915_TILING_NONE, 0,
863					       alignment);
864}
865
866static drm_intel_bo *
867drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
868		       const char *name,
869		       unsigned long size,
870		       unsigned int alignment)
871{
872	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
873					       I915_TILING_NONE, 0, 0);
874}
875
876static drm_intel_bo *
877drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
878			     int x, int y, int cpp, uint32_t *tiling_mode,
879			     unsigned long *pitch, unsigned long flags)
880{
881	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
882	unsigned long size, stride;
883	uint32_t tiling;
884
885	do {
886		unsigned long aligned_y, height_alignment;
887
888		tiling = *tiling_mode;
889
890		/* If we're tiled, our allocations are in 8 or 32-row blocks,
891		 * so failure to align our height means that we won't allocate
892		 * enough pages.
893		 *
894		 * If we're untiled, we still have to align to 2 rows high
895		 * because the data port accesses 2x2 blocks even if the
896		 * bottom row isn't to be rendered, so failure to align means
897		 * we could walk off the end of the GTT and fault.  This is
898		 * documented on 965, and may be the case on older chipsets
899		 * too so we try to be careful.
900		 */
901		aligned_y = y;
902		height_alignment = 2;
903
904		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
905			height_alignment = 16;
906		else if (tiling == I915_TILING_X
907			|| (IS_915(bufmgr_gem->pci_device)
908			    && tiling == I915_TILING_Y))
909			height_alignment = 8;
910		else if (tiling == I915_TILING_Y)
911			height_alignment = 32;
912		aligned_y = ALIGN(y, height_alignment);
913
914		stride = x * cpp;
915		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
916		size = stride * aligned_y;
917		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
918	} while (*tiling_mode != tiling);
919	*pitch = stride;
920
921	if (tiling == I915_TILING_NONE)
922		stride = 0;
923
924	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
925					       tiling, stride, 0);
926}
927
928static drm_intel_bo *
929drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
930				const char *name,
931				void *addr,
932				uint32_t tiling_mode,
933				uint32_t stride,
934				unsigned long size,
935				unsigned long flags)
936{
937	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
938	drm_intel_bo_gem *bo_gem;
939	int ret;
940	struct drm_i915_gem_userptr userptr;
941
942	/* Tiling with userptr surfaces is not supported
943	 * on all hardware so refuse it for time being.
944	 */
945	if (tiling_mode != I915_TILING_NONE)
946		return NULL;
947
948	bo_gem = calloc(1, sizeof(*bo_gem));
949	if (!bo_gem)
950		return NULL;
951
952	atomic_set(&bo_gem->refcount, 1);
953	DRMINITLISTHEAD(&bo_gem->vma_list);
954
955	bo_gem->bo.size = size;
956
957	memclear(userptr);
958	userptr.user_ptr = (__u64)((unsigned long)addr);
959	userptr.user_size = size;
960	userptr.flags = flags;
961
962	ret = drmIoctl(bufmgr_gem->fd,
963			DRM_IOCTL_I915_GEM_USERPTR,
964			&userptr);
965	if (ret != 0) {
966		DBG("bo_create_userptr: "
967		    "ioctl failed with user ptr %p size 0x%lx, "
968		    "user flags 0x%lx\n", addr, size, flags);
969		free(bo_gem);
970		return NULL;
971	}
972
973	pthread_mutex_lock(&bufmgr_gem->lock);
974
975	bo_gem->gem_handle = userptr.handle;
976	bo_gem->bo.handle = bo_gem->gem_handle;
977	bo_gem->bo.bufmgr    = bufmgr;
978	bo_gem->is_userptr   = true;
979	bo_gem->bo.virtual   = addr;
980	/* Save the address provided by user */
981	bo_gem->user_virtual = addr;
982	bo_gem->tiling_mode  = I915_TILING_NONE;
983	bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
984	bo_gem->stride       = 0;
985
986	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
987		 gem_handle, sizeof(bo_gem->gem_handle),
988		 bo_gem);
989
990	bo_gem->name = name;
991	bo_gem->validate_index = -1;
992	bo_gem->reloc_tree_fences = 0;
993	bo_gem->used_as_reloc_target = false;
994	bo_gem->has_error = false;
995	bo_gem->reusable = false;
996
997	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
998	pthread_mutex_unlock(&bufmgr_gem->lock);
999
1000	DBG("bo_create_userptr: "
1001	    "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
1002		addr, bo_gem->gem_handle, bo_gem->name,
1003		size, stride, tiling_mode);
1004
1005	return &bo_gem->bo;
1006}
1007
1008static bool
1009has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
1010{
1011	int ret;
1012	void *ptr;
1013	long pgsz;
1014	struct drm_i915_gem_userptr userptr;
1015
1016	pgsz = sysconf(_SC_PAGESIZE);
1017	assert(pgsz > 0);
1018
1019	ret = posix_memalign(&ptr, pgsz, pgsz);
1020	if (ret) {
1021		DBG("Failed to get a page (%ld) for userptr detection!\n",
1022			pgsz);
1023		return false;
1024	}
1025
1026	memclear(userptr);
1027	userptr.user_ptr = (__u64)(unsigned long)ptr;
1028	userptr.user_size = pgsz;
1029
1030retry:
1031	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
1032	if (ret) {
1033		if (errno == ENODEV && userptr.flags == 0) {
1034			userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
1035			goto retry;
1036		}
1037		free(ptr);
1038		return false;
1039	}
1040
1041	/* We don't release the userptr bo here as we want to keep the
1042	 * kernel mm tracking alive for our lifetime. The first time we
1043	 * create a userptr object the kernel has to install a mmu_notifer
1044	 * which is a heavyweight operation (e.g. it requires taking all
1045	 * mm_locks and stop_machine()).
1046	 */
1047
1048	bufmgr_gem->userptr_active.ptr = ptr;
1049	bufmgr_gem->userptr_active.handle = userptr.handle;
1050
1051	return true;
1052}
1053
1054static drm_intel_bo *
1055check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
1056		       const char *name,
1057		       void *addr,
1058		       uint32_t tiling_mode,
1059		       uint32_t stride,
1060		       unsigned long size,
1061		       unsigned long flags)
1062{
1063	if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1064		bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1065	else
1066		bufmgr->bo_alloc_userptr = NULL;
1067
1068	return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1069					  tiling_mode, stride, size, flags);
1070}
1071
1072static int get_tiling_mode(drm_intel_bufmgr_gem *bufmgr_gem,
1073			   uint32_t gem_handle,
1074			   uint32_t *tiling_mode,
1075			   uint32_t *swizzle_mode)
1076{
1077	struct drm_i915_gem_get_tiling get_tiling = {
1078		.handle = gem_handle,
1079	};
1080	int ret;
1081
1082	ret = drmIoctl(bufmgr_gem->fd,
1083		       DRM_IOCTL_I915_GEM_GET_TILING,
1084		       &get_tiling);
1085	if (ret != 0 && errno != EOPNOTSUPP)
1086		return ret;
1087
1088	*tiling_mode = get_tiling.tiling_mode;
1089	*swizzle_mode = get_tiling.swizzle_mode;
1090
1091	return 0;
1092}
1093
1094/**
1095 * Returns a drm_intel_bo wrapping the given buffer object handle.
1096 *
1097 * This can be used when one application needs to pass a buffer object
1098 * to another.
1099 */
1100drm_public drm_intel_bo *
1101drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1102				  const char *name,
1103				  unsigned int handle)
1104{
1105	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1106	drm_intel_bo_gem *bo_gem;
1107	int ret;
1108	struct drm_gem_open open_arg;
1109
1110	/* At the moment most applications only have a few named bo.
1111	 * For instance, in a DRI client only the render buffers passed
1112	 * between X and the client are named. And since X returns the
1113	 * alternating names for the front/back buffer a linear search
1114	 * provides a sufficiently fast match.
1115	 */
1116	pthread_mutex_lock(&bufmgr_gem->lock);
1117	HASH_FIND(name_hh, bufmgr_gem->name_table,
1118		  &handle, sizeof(handle), bo_gem);
1119	if (bo_gem) {
1120		drm_intel_gem_bo_reference(&bo_gem->bo);
1121		goto out;
1122	}
1123
1124	memclear(open_arg);
1125	open_arg.name = handle;
1126	ret = drmIoctl(bufmgr_gem->fd,
1127		       DRM_IOCTL_GEM_OPEN,
1128		       &open_arg);
1129	if (ret != 0) {
1130		DBG("Couldn't reference %s handle 0x%08x: %s\n",
1131		    name, handle, strerror(errno));
1132		bo_gem = NULL;
1133		goto out;
1134	}
1135        /* Now see if someone has used a prime handle to get this
1136         * object from the kernel before by looking through the list
1137         * again for a matching gem_handle
1138         */
1139	HASH_FIND(handle_hh, bufmgr_gem->handle_table,
1140		  &open_arg.handle, sizeof(open_arg.handle), bo_gem);
1141	if (bo_gem) {
1142		drm_intel_gem_bo_reference(&bo_gem->bo);
1143		goto out;
1144	}
1145
1146	bo_gem = calloc(1, sizeof(*bo_gem));
1147	if (!bo_gem)
1148		goto out;
1149
1150	atomic_set(&bo_gem->refcount, 1);
1151	DRMINITLISTHEAD(&bo_gem->vma_list);
1152
1153	bo_gem->bo.size = open_arg.size;
1154	bo_gem->bo.offset = 0;
1155	bo_gem->bo.offset64 = 0;
1156	bo_gem->bo.virtual = NULL;
1157	bo_gem->bo.bufmgr = bufmgr;
1158	bo_gem->name = name;
1159	bo_gem->validate_index = -1;
1160	bo_gem->gem_handle = open_arg.handle;
1161	bo_gem->bo.handle = open_arg.handle;
1162	bo_gem->global_name = handle;
1163	bo_gem->reusable = false;
1164
1165	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
1166		 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
1167	HASH_ADD(name_hh, bufmgr_gem->name_table,
1168		 global_name, sizeof(bo_gem->global_name), bo_gem);
1169
1170	ret = get_tiling_mode(bufmgr_gem, bo_gem->gem_handle,
1171			      &bo_gem->tiling_mode, &bo_gem->swizzle_mode);
1172	if (ret != 0)
1173		goto err_unref;
1174
1175	/* XXX stride is unknown */
1176	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1177	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1178
1179out:
1180	pthread_mutex_unlock(&bufmgr_gem->lock);
1181	return &bo_gem->bo;
1182
1183err_unref:
1184	drm_intel_gem_bo_free(&bo_gem->bo);
1185	pthread_mutex_unlock(&bufmgr_gem->lock);
1186	return NULL;
1187}
1188
1189static void
1190drm_intel_gem_bo_free(drm_intel_bo *bo)
1191{
1192	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1193	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1194	struct drm_gem_close close;
1195	int ret;
1196
1197	DRMLISTDEL(&bo_gem->vma_list);
1198	if (bo_gem->mem_virtual) {
1199		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1200		drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1201		bufmgr_gem->vma_count--;
1202	}
1203	if (bo_gem->wc_virtual) {
1204		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->wc_virtual, 0));
1205		drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1206		bufmgr_gem->vma_count--;
1207	}
1208	if (bo_gem->gtt_virtual) {
1209		drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1210		bufmgr_gem->vma_count--;
1211	}
1212
1213	if (bo_gem->global_name)
1214		HASH_DELETE(name_hh, bufmgr_gem->name_table, bo_gem);
1215	HASH_DELETE(handle_hh, bufmgr_gem->handle_table, bo_gem);
1216
1217	/* Close this object */
1218	memclear(close);
1219	close.handle = bo_gem->gem_handle;
1220	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1221	if (ret != 0) {
1222		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1223		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
1224	}
1225	free(bo);
1226}
1227
1228static void
1229drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1230{
1231#if HAVE_VALGRIND
1232	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1233
1234	if (bo_gem->mem_virtual)
1235		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1236
1237	if (bo_gem->wc_virtual)
1238		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->wc_virtual, bo->size);
1239
1240	if (bo_gem->gtt_virtual)
1241		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1242#endif
1243}
1244
1245/** Frees all cached buffers significantly older than @time. */
1246static void
1247drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1248{
1249	int i;
1250
1251	if (bufmgr_gem->time == time)
1252		return;
1253
1254	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1255		struct drm_intel_gem_bo_bucket *bucket =
1256		    &bufmgr_gem->cache_bucket[i];
1257
1258		while (!DRMLISTEMPTY(&bucket->head)) {
1259			drm_intel_bo_gem *bo_gem;
1260
1261			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1262					      bucket->head.next, head);
1263			if (time - bo_gem->free_time <= 1)
1264				break;
1265
1266			DRMLISTDEL(&bo_gem->head);
1267
1268			drm_intel_gem_bo_free(&bo_gem->bo);
1269		}
1270	}
1271
1272	bufmgr_gem->time = time;
1273}
1274
1275static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1276{
1277	int limit;
1278
1279	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1280	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1281
1282	if (bufmgr_gem->vma_max < 0)
1283		return;
1284
1285	/* We may need to evict a few entries in order to create new mmaps */
1286	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1287	if (limit < 0)
1288		limit = 0;
1289
1290	while (bufmgr_gem->vma_count > limit) {
1291		drm_intel_bo_gem *bo_gem;
1292
1293		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1294				      bufmgr_gem->vma_cache.next,
1295				      vma_list);
1296		assert(bo_gem->map_count == 0);
1297		DRMLISTDELINIT(&bo_gem->vma_list);
1298
1299		if (bo_gem->mem_virtual) {
1300			drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1301			bo_gem->mem_virtual = NULL;
1302			bufmgr_gem->vma_count--;
1303		}
1304		if (bo_gem->wc_virtual) {
1305			drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1306			bo_gem->wc_virtual = NULL;
1307			bufmgr_gem->vma_count--;
1308		}
1309		if (bo_gem->gtt_virtual) {
1310			drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1311			bo_gem->gtt_virtual = NULL;
1312			bufmgr_gem->vma_count--;
1313		}
1314	}
1315}
1316
1317static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1318				       drm_intel_bo_gem *bo_gem)
1319{
1320	bufmgr_gem->vma_open--;
1321	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1322	if (bo_gem->mem_virtual)
1323		bufmgr_gem->vma_count++;
1324	if (bo_gem->wc_virtual)
1325		bufmgr_gem->vma_count++;
1326	if (bo_gem->gtt_virtual)
1327		bufmgr_gem->vma_count++;
1328	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1329}
1330
1331static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1332				      drm_intel_bo_gem *bo_gem)
1333{
1334	bufmgr_gem->vma_open++;
1335	DRMLISTDEL(&bo_gem->vma_list);
1336	if (bo_gem->mem_virtual)
1337		bufmgr_gem->vma_count--;
1338	if (bo_gem->wc_virtual)
1339		bufmgr_gem->vma_count--;
1340	if (bo_gem->gtt_virtual)
1341		bufmgr_gem->vma_count--;
1342	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1343}
1344
1345static void
1346drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1347{
1348	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1349	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1350	struct drm_intel_gem_bo_bucket *bucket;
1351	int i;
1352
1353	/* Unreference all the target buffers */
1354	for (i = 0; i < bo_gem->reloc_count; i++) {
1355		if (bo_gem->reloc_target_info[i].bo != bo) {
1356			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1357								  reloc_target_info[i].bo,
1358								  time);
1359		}
1360	}
1361	for (i = 0; i < bo_gem->softpin_target_count; i++)
1362		drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i],
1363								  time);
1364	bo_gem->kflags = 0;
1365	bo_gem->reloc_count = 0;
1366	bo_gem->used_as_reloc_target = false;
1367	bo_gem->softpin_target_count = 0;
1368
1369	DBG("bo_unreference final: %d (%s)\n",
1370	    bo_gem->gem_handle, bo_gem->name);
1371
1372	/* release memory associated with this object */
1373	if (bo_gem->reloc_target_info) {
1374		free(bo_gem->reloc_target_info);
1375		bo_gem->reloc_target_info = NULL;
1376	}
1377	if (bo_gem->relocs) {
1378		free(bo_gem->relocs);
1379		bo_gem->relocs = NULL;
1380	}
1381	if (bo_gem->softpin_target) {
1382		free(bo_gem->softpin_target);
1383		bo_gem->softpin_target = NULL;
1384		bo_gem->softpin_target_size = 0;
1385	}
1386
1387	/* Clear any left-over mappings */
1388	if (bo_gem->map_count) {
1389		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1390		bo_gem->map_count = 0;
1391		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1392		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1393	}
1394
1395	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1396	/* Put the buffer into our internal cache for reuse if we can. */
1397	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1398	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1399					      I915_MADV_DONTNEED)) {
1400		bo_gem->free_time = time;
1401
1402		bo_gem->name = NULL;
1403		bo_gem->validate_index = -1;
1404
1405		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1406	} else {
1407		drm_intel_gem_bo_free(bo);
1408	}
1409}
1410
1411static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1412						      time_t time)
1413{
1414	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1415
1416	assert(atomic_read(&bo_gem->refcount) > 0);
1417	if (atomic_dec_and_test(&bo_gem->refcount))
1418		drm_intel_gem_bo_unreference_final(bo, time);
1419}
1420
1421static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1422{
1423	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1424
1425	assert(atomic_read(&bo_gem->refcount) > 0);
1426
1427	if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1428		drm_intel_bufmgr_gem *bufmgr_gem =
1429		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1430		struct timespec time;
1431
1432		clock_gettime(CLOCK_MONOTONIC, &time);
1433
1434		pthread_mutex_lock(&bufmgr_gem->lock);
1435
1436		if (atomic_dec_and_test(&bo_gem->refcount)) {
1437			drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1438			drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1439		}
1440
1441		pthread_mutex_unlock(&bufmgr_gem->lock);
1442	}
1443}
1444
1445static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1446{
1447	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1448	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1449	struct drm_i915_gem_set_domain set_domain;
1450	int ret;
1451
1452	if (bo_gem->is_userptr) {
1453		/* Return the same user ptr */
1454		bo->virtual = bo_gem->user_virtual;
1455		return 0;
1456	}
1457
1458	pthread_mutex_lock(&bufmgr_gem->lock);
1459
1460	if (bo_gem->map_count++ == 0)
1461		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1462
1463	if (!bo_gem->mem_virtual) {
1464		struct drm_i915_gem_mmap mmap_arg;
1465
1466		DBG("bo_map: %d (%s), map_count=%d\n",
1467		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1468
1469		memclear(mmap_arg);
1470		mmap_arg.handle = bo_gem->gem_handle;
1471		mmap_arg.size = bo->size;
1472		ret = drmIoctl(bufmgr_gem->fd,
1473			       DRM_IOCTL_I915_GEM_MMAP,
1474			       &mmap_arg);
1475		if (ret != 0) {
1476			ret = -errno;
1477			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1478			    __FILE__, __LINE__, bo_gem->gem_handle,
1479			    bo_gem->name, strerror(errno));
1480			if (--bo_gem->map_count == 0)
1481				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1482			pthread_mutex_unlock(&bufmgr_gem->lock);
1483			return ret;
1484		}
1485		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1486		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1487	}
1488	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1489	    bo_gem->mem_virtual);
1490	bo->virtual = bo_gem->mem_virtual;
1491
1492	memclear(set_domain);
1493	set_domain.handle = bo_gem->gem_handle;
1494	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1495	if (write_enable)
1496		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1497	else
1498		set_domain.write_domain = 0;
1499	ret = drmIoctl(bufmgr_gem->fd,
1500		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1501		       &set_domain);
1502	if (ret != 0) {
1503		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1504		    __FILE__, __LINE__, bo_gem->gem_handle,
1505		    strerror(errno));
1506	}
1507
1508	if (write_enable)
1509		bo_gem->mapped_cpu_write = true;
1510
1511	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1512	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1513	pthread_mutex_unlock(&bufmgr_gem->lock);
1514
1515	return 0;
1516}
1517
1518static int
1519map_gtt(drm_intel_bo *bo)
1520{
1521	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1522	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1523	int ret;
1524
1525	if (bo_gem->is_userptr)
1526		return -EINVAL;
1527
1528	if (bo_gem->map_count++ == 0)
1529		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1530
1531	/* Get a mapping of the buffer if we haven't before. */
1532	if (bo_gem->gtt_virtual == NULL) {
1533		struct drm_i915_gem_mmap_gtt mmap_arg;
1534
1535		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1536		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1537
1538		memclear(mmap_arg);
1539		mmap_arg.handle = bo_gem->gem_handle;
1540
1541		/* Get the fake offset back... */
1542		ret = drmIoctl(bufmgr_gem->fd,
1543			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1544			       &mmap_arg);
1545		if (ret != 0) {
1546			ret = -errno;
1547			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1548			    __FILE__, __LINE__,
1549			    bo_gem->gem_handle, bo_gem->name,
1550			    strerror(errno));
1551			if (--bo_gem->map_count == 0)
1552				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1553			return ret;
1554		}
1555
1556		/* and mmap it */
1557		bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1558					       MAP_SHARED, bufmgr_gem->fd,
1559					       mmap_arg.offset);
1560		if (bo_gem->gtt_virtual == MAP_FAILED) {
1561			bo_gem->gtt_virtual = NULL;
1562			ret = -errno;
1563			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1564			    __FILE__, __LINE__,
1565			    bo_gem->gem_handle, bo_gem->name,
1566			    strerror(errno));
1567			if (--bo_gem->map_count == 0)
1568				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1569			return ret;
1570		}
1571	}
1572
1573	bo->virtual = bo_gem->gtt_virtual;
1574
1575	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1576	    bo_gem->gtt_virtual);
1577
1578	return 0;
1579}
1580
1581drm_public int
1582drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1583{
1584	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1585	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1586	struct drm_i915_gem_set_domain set_domain;
1587	int ret;
1588
1589	pthread_mutex_lock(&bufmgr_gem->lock);
1590
1591	ret = map_gtt(bo);
1592	if (ret) {
1593		pthread_mutex_unlock(&bufmgr_gem->lock);
1594		return ret;
1595	}
1596
1597	/* Now move it to the GTT domain so that the GPU and CPU
1598	 * caches are flushed and the GPU isn't actively using the
1599	 * buffer.
1600	 *
1601	 * The pagefault handler does this domain change for us when
1602	 * it has unbound the BO from the GTT, but it's up to us to
1603	 * tell it when we're about to use things if we had done
1604	 * rendering and it still happens to be bound to the GTT.
1605	 */
1606	memclear(set_domain);
1607	set_domain.handle = bo_gem->gem_handle;
1608	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1609	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1610	ret = drmIoctl(bufmgr_gem->fd,
1611		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1612		       &set_domain);
1613	if (ret != 0) {
1614		DBG("%s:%d: Error setting domain %d: %s\n",
1615		    __FILE__, __LINE__, bo_gem->gem_handle,
1616		    strerror(errno));
1617	}
1618
1619	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1620	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1621	pthread_mutex_unlock(&bufmgr_gem->lock);
1622
1623	return 0;
1624}
1625
1626/**
1627 * Performs a mapping of the buffer object like the normal GTT
1628 * mapping, but avoids waiting for the GPU to be done reading from or
1629 * rendering to the buffer.
1630 *
1631 * This is used in the implementation of GL_ARB_map_buffer_range: The
1632 * user asks to create a buffer, then does a mapping, fills some
1633 * space, runs a drawing command, then asks to map it again without
1634 * synchronizing because it guarantees that it won't write over the
1635 * data that the GPU is busy using (or, more specifically, that if it
1636 * does write over the data, it acknowledges that rendering is
1637 * undefined).
1638 */
1639
1640drm_public int
1641drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1642{
1643	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1644#if HAVE_VALGRIND
1645	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1646#endif
1647	int ret;
1648
1649	/* If the CPU cache isn't coherent with the GTT, then use a
1650	 * regular synchronized mapping.  The problem is that we don't
1651	 * track where the buffer was last used on the CPU side in
1652	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1653	 * we would potentially corrupt the buffer even when the user
1654	 * does reasonable things.
1655	 */
1656	if (!bufmgr_gem->has_llc)
1657		return drm_intel_gem_bo_map_gtt(bo);
1658
1659	pthread_mutex_lock(&bufmgr_gem->lock);
1660
1661	ret = map_gtt(bo);
1662	if (ret == 0) {
1663		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1664		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1665	}
1666
1667	pthread_mutex_unlock(&bufmgr_gem->lock);
1668
1669	return ret;
1670}
1671
1672static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1673{
1674	drm_intel_bufmgr_gem *bufmgr_gem;
1675	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1676	int ret = 0;
1677
1678	if (bo == NULL)
1679		return 0;
1680
1681	if (bo_gem->is_userptr)
1682		return 0;
1683
1684	bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1685
1686	pthread_mutex_lock(&bufmgr_gem->lock);
1687
1688	if (bo_gem->map_count <= 0) {
1689		DBG("attempted to unmap an unmapped bo\n");
1690		pthread_mutex_unlock(&bufmgr_gem->lock);
1691		/* Preserve the old behaviour of just treating this as a
1692		 * no-op rather than reporting the error.
1693		 */
1694		return 0;
1695	}
1696
1697	if (bo_gem->mapped_cpu_write) {
1698		struct drm_i915_gem_sw_finish sw_finish;
1699
1700		/* Cause a flush to happen if the buffer's pinned for
1701		 * scanout, so the results show up in a timely manner.
1702		 * Unlike GTT set domains, this only does work if the
1703		 * buffer should be scanout-related.
1704		 */
1705		memclear(sw_finish);
1706		sw_finish.handle = bo_gem->gem_handle;
1707		ret = drmIoctl(bufmgr_gem->fd,
1708			       DRM_IOCTL_I915_GEM_SW_FINISH,
1709			       &sw_finish);
1710		ret = ret == -1 ? -errno : 0;
1711
1712		bo_gem->mapped_cpu_write = false;
1713	}
1714
1715	/* We need to unmap after every innovation as we cannot track
1716	 * an open vma for every bo as that will exhaust the system
1717	 * limits and cause later failures.
1718	 */
1719	if (--bo_gem->map_count == 0) {
1720		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1721		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1722		bo->virtual = NULL;
1723	}
1724	pthread_mutex_unlock(&bufmgr_gem->lock);
1725
1726	return ret;
1727}
1728
1729drm_public int
1730drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1731{
1732	return drm_intel_gem_bo_unmap(bo);
1733}
1734
1735static int
1736drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1737			 unsigned long size, const void *data)
1738{
1739	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1740	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1741	struct drm_i915_gem_pwrite pwrite;
1742	int ret;
1743
1744	if (bo_gem->is_userptr)
1745		return -EINVAL;
1746
1747	memclear(pwrite);
1748	pwrite.handle = bo_gem->gem_handle;
1749	pwrite.offset = offset;
1750	pwrite.size = size;
1751	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1752	ret = drmIoctl(bufmgr_gem->fd,
1753		       DRM_IOCTL_I915_GEM_PWRITE,
1754		       &pwrite);
1755	if (ret != 0) {
1756		ret = -errno;
1757		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1758		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1759		    (int)size, strerror(errno));
1760	}
1761
1762	return ret;
1763}
1764
1765static int
1766drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1767{
1768	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1769	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1770	int ret;
1771
1772	memclear(get_pipe_from_crtc_id);
1773	get_pipe_from_crtc_id.crtc_id = crtc_id;
1774	ret = drmIoctl(bufmgr_gem->fd,
1775		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1776		       &get_pipe_from_crtc_id);
1777	if (ret != 0) {
1778		/* We return -1 here to signal that we don't
1779		 * know which pipe is associated with this crtc.
1780		 * This lets the caller know that this information
1781		 * isn't available; using the wrong pipe for
1782		 * vblank waiting can cause the chipset to lock up
1783		 */
1784		return -1;
1785	}
1786
1787	return get_pipe_from_crtc_id.pipe;
1788}
1789
1790static int
1791drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1792			     unsigned long size, void *data)
1793{
1794	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1795	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1796	struct drm_i915_gem_pread pread;
1797	int ret;
1798
1799	if (bo_gem->is_userptr)
1800		return -EINVAL;
1801
1802	memclear(pread);
1803	pread.handle = bo_gem->gem_handle;
1804	pread.offset = offset;
1805	pread.size = size;
1806	pread.data_ptr = (uint64_t) (uintptr_t) data;
1807	ret = drmIoctl(bufmgr_gem->fd,
1808		       DRM_IOCTL_I915_GEM_PREAD,
1809		       &pread);
1810	if (ret != 0) {
1811		ret = -errno;
1812		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1813		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1814		    (int)size, strerror(errno));
1815	}
1816
1817	return ret;
1818}
1819
1820/** Waits for all GPU rendering with the object to have completed. */
1821static void
1822drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1823{
1824	drm_intel_gem_bo_start_gtt_access(bo, 1);
1825}
1826
1827/**
1828 * Waits on a BO for the given amount of time.
1829 *
1830 * @bo: buffer object to wait for
1831 * @timeout_ns: amount of time to wait in nanoseconds.
1832 *   If value is less than 0, an infinite wait will occur.
1833 *
1834 * Returns 0 if the wait was successful ie. the last batch referencing the
1835 * object has completed within the allotted time. Otherwise some negative return
1836 * value describes the error. Of particular interest is -ETIME when the wait has
1837 * failed to yield the desired result.
1838 *
1839 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1840 * the operation to give up after a certain amount of time. Another subtle
1841 * difference is the internal locking semantics are different (this variant does
1842 * not hold the lock for the duration of the wait). This makes the wait subject
1843 * to a larger userspace race window.
1844 *
1845 * The implementation shall wait until the object is no longer actively
1846 * referenced within a batch buffer at the time of the call. The wait will
1847 * not guarantee that the buffer is re-issued via another thread, or an flinked
1848 * handle. Userspace must make sure this race does not occur if such precision
1849 * is important.
1850 *
1851 * Note that some kernels have broken the inifite wait for negative values
1852 * promise, upgrade to latest stable kernels if this is the case.
1853 */
1854drm_public int
1855drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1856{
1857	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1858	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1859	struct drm_i915_gem_wait wait;
1860	int ret;
1861
1862	if (!bufmgr_gem->has_wait_timeout) {
1863		DBG("%s:%d: Timed wait is not supported. Falling back to "
1864		    "infinite wait\n", __FILE__, __LINE__);
1865		if (timeout_ns) {
1866			drm_intel_gem_bo_wait_rendering(bo);
1867			return 0;
1868		} else {
1869			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1870		}
1871	}
1872
1873	memclear(wait);
1874	wait.bo_handle = bo_gem->gem_handle;
1875	wait.timeout_ns = timeout_ns;
1876	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1877	if (ret == -1)
1878		return -errno;
1879
1880	return ret;
1881}
1882
1883/**
1884 * Sets the object to the GTT read and possibly write domain, used by the X
1885 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1886 *
1887 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1888 * can do tiled pixmaps this way.
1889 */
1890drm_public void
1891drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1892{
1893	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1894	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1895	struct drm_i915_gem_set_domain set_domain;
1896	int ret;
1897
1898	memclear(set_domain);
1899	set_domain.handle = bo_gem->gem_handle;
1900	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1901	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1902	ret = drmIoctl(bufmgr_gem->fd,
1903		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1904		       &set_domain);
1905	if (ret != 0) {
1906		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1907		    __FILE__, __LINE__, bo_gem->gem_handle,
1908		    set_domain.read_domains, set_domain.write_domain,
1909		    strerror(errno));
1910	}
1911}
1912
1913static void
1914drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1915{
1916	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1917	struct drm_gem_close close_bo;
1918	int i, ret;
1919
1920	free(bufmgr_gem->exec2_objects);
1921	free(bufmgr_gem->exec_objects);
1922	free(bufmgr_gem->exec_bos);
1923
1924	pthread_mutex_destroy(&bufmgr_gem->lock);
1925
1926	/* Free any cached buffer objects we were going to reuse */
1927	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1928		struct drm_intel_gem_bo_bucket *bucket =
1929		    &bufmgr_gem->cache_bucket[i];
1930		drm_intel_bo_gem *bo_gem;
1931
1932		while (!DRMLISTEMPTY(&bucket->head)) {
1933			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1934					      bucket->head.next, head);
1935			DRMLISTDEL(&bo_gem->head);
1936
1937			drm_intel_gem_bo_free(&bo_gem->bo);
1938		}
1939	}
1940
1941	/* Release userptr bo kept hanging around for optimisation. */
1942	if (bufmgr_gem->userptr_active.ptr) {
1943		memclear(close_bo);
1944		close_bo.handle = bufmgr_gem->userptr_active.handle;
1945		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1946		free(bufmgr_gem->userptr_active.ptr);
1947		if (ret)
1948			fprintf(stderr,
1949				"Failed to release test userptr object! (%d) "
1950				"i915 kernel driver may not be sane!\n", errno);
1951	}
1952
1953	free(bufmgr);
1954}
1955
1956/**
1957 * Adds the target buffer to the validation list and adds the relocation
1958 * to the reloc_buffer's relocation list.
1959 *
1960 * The relocation entry at the given offset must already contain the
1961 * precomputed relocation value, because the kernel will optimize out
1962 * the relocation entry write when the buffer hasn't moved from the
1963 * last known offset in target_bo.
1964 */
1965static int
1966do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1967		 drm_intel_bo *target_bo, uint32_t target_offset,
1968		 uint32_t read_domains, uint32_t write_domain,
1969		 bool need_fence)
1970{
1971	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1972	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1973	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1974	bool fenced_command;
1975
1976	if (bo_gem->has_error)
1977		return -ENOMEM;
1978
1979	if (target_bo_gem->has_error) {
1980		bo_gem->has_error = true;
1981		return -ENOMEM;
1982	}
1983
1984	/* We never use HW fences for rendering on 965+ */
1985	if (bufmgr_gem->gen >= 4)
1986		need_fence = false;
1987
1988	fenced_command = need_fence;
1989	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1990		need_fence = false;
1991
1992	/* Create a new relocation list if needed */
1993	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1994		return -ENOMEM;
1995
1996	/* Check overflow */
1997	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1998
1999	/* Check args */
2000	assert(offset <= bo->size - 4);
2001	assert((write_domain & (write_domain - 1)) == 0);
2002
2003	/* An object needing a fence is a tiled buffer, so it won't have
2004	 * relocs to other buffers.
2005	 */
2006	if (need_fence) {
2007		assert(target_bo_gem->reloc_count == 0);
2008		target_bo_gem->reloc_tree_fences = 1;
2009	}
2010
2011	/* Make sure that we're not adding a reloc to something whose size has
2012	 * already been accounted for.
2013	 */
2014	assert(!bo_gem->used_as_reloc_target);
2015	if (target_bo_gem != bo_gem) {
2016		target_bo_gem->used_as_reloc_target = true;
2017		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
2018		bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
2019	}
2020
2021	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
2022	if (target_bo != bo)
2023		drm_intel_gem_bo_reference(target_bo);
2024	if (fenced_command)
2025		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
2026			DRM_INTEL_RELOC_FENCE;
2027	else
2028		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
2029
2030	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
2031	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
2032	bo_gem->relocs[bo_gem->reloc_count].target_handle =
2033	    target_bo_gem->gem_handle;
2034	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
2035	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
2036	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
2037	bo_gem->reloc_count++;
2038
2039	return 0;
2040}
2041
2042static void
2043drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable)
2044{
2045	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2046
2047	if (enable)
2048		bo_gem->kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2049	else
2050		bo_gem->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2051}
2052
2053static int
2054drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo)
2055{
2056	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2057	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2058	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2059	if (bo_gem->has_error)
2060		return -ENOMEM;
2061
2062	if (target_bo_gem->has_error) {
2063		bo_gem->has_error = true;
2064		return -ENOMEM;
2065	}
2066
2067	if (!(target_bo_gem->kflags & EXEC_OBJECT_PINNED))
2068		return -EINVAL;
2069	if (target_bo_gem == bo_gem)
2070		return -EINVAL;
2071
2072	if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
2073		int new_size = bo_gem->softpin_target_size * 2;
2074		if (new_size == 0)
2075			new_size = bufmgr_gem->max_relocs;
2076
2077		bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size *
2078				sizeof(drm_intel_bo *));
2079		if (!bo_gem->softpin_target)
2080			return -ENOMEM;
2081
2082		bo_gem->softpin_target_size = new_size;
2083	}
2084	bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo;
2085	drm_intel_gem_bo_reference(target_bo);
2086	bo_gem->softpin_target_count++;
2087
2088	return 0;
2089}
2090
2091static int
2092drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
2093			    drm_intel_bo *target_bo, uint32_t target_offset,
2094			    uint32_t read_domains, uint32_t write_domain)
2095{
2096	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2097	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo;
2098
2099	if (target_bo_gem->kflags & EXEC_OBJECT_PINNED)
2100		return drm_intel_gem_bo_add_softpin_target(bo, target_bo);
2101	else
2102		return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2103					read_domains, write_domain,
2104					!bufmgr_gem->fenced_relocs);
2105}
2106
2107static int
2108drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
2109				  drm_intel_bo *target_bo,
2110				  uint32_t target_offset,
2111				  uint32_t read_domains, uint32_t write_domain)
2112{
2113	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2114				read_domains, write_domain, true);
2115}
2116
2117drm_public int
2118drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
2119{
2120	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2121
2122	return bo_gem->reloc_count;
2123}
2124
2125/**
2126 * Removes existing relocation entries in the BO after "start".
2127 *
2128 * This allows a user to avoid a two-step process for state setup with
2129 * counting up all the buffer objects and doing a
2130 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
2131 * relocations for the state setup.  Instead, save the state of the
2132 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
2133 * state, and then check if it still fits in the aperture.
2134 *
2135 * Any further drm_intel_bufmgr_check_aperture_space() queries
2136 * involving this buffer in the tree are undefined after this call.
2137 *
2138 * This also removes all softpinned targets being referenced by the BO.
2139 */
2140drm_public void
2141drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
2142{
2143	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2144	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2145	int i;
2146	struct timespec time;
2147
2148	clock_gettime(CLOCK_MONOTONIC, &time);
2149
2150	assert(bo_gem->reloc_count >= start);
2151
2152	/* Unreference the cleared target buffers */
2153	pthread_mutex_lock(&bufmgr_gem->lock);
2154
2155	for (i = start; i < bo_gem->reloc_count; i++) {
2156		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
2157		if (&target_bo_gem->bo != bo) {
2158			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2159			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2160								  time.tv_sec);
2161		}
2162	}
2163	bo_gem->reloc_count = start;
2164
2165	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2166		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i];
2167		drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
2168	}
2169	bo_gem->softpin_target_count = 0;
2170
2171	pthread_mutex_unlock(&bufmgr_gem->lock);
2172
2173}
2174
2175/**
2176 * Walk the tree of relocations rooted at BO and accumulate the list of
2177 * validations to be performed and update the relocation buffers with
2178 * index values into the validation list.
2179 */
2180static void
2181drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2182{
2183	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2184	int i;
2185
2186	if (bo_gem->relocs == NULL)
2187		return;
2188
2189	for (i = 0; i < bo_gem->reloc_count; i++) {
2190		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2191
2192		if (target_bo == bo)
2193			continue;
2194
2195		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2196
2197		/* Continue walking the tree depth-first. */
2198		drm_intel_gem_bo_process_reloc(target_bo);
2199
2200		/* Add the target to the validate list */
2201		drm_intel_add_validate_buffer(target_bo);
2202	}
2203}
2204
2205static void
2206drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2207{
2208	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2209	int i;
2210
2211	if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL)
2212		return;
2213
2214	for (i = 0; i < bo_gem->reloc_count; i++) {
2215		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2216		int need_fence;
2217
2218		if (target_bo == bo)
2219			continue;
2220
2221		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2222
2223		/* Continue walking the tree depth-first. */
2224		drm_intel_gem_bo_process_reloc2(target_bo);
2225
2226		need_fence = (bo_gem->reloc_target_info[i].flags &
2227			      DRM_INTEL_RELOC_FENCE);
2228
2229		/* Add the target to the validate list */
2230		drm_intel_add_validate_buffer2(target_bo, need_fence);
2231	}
2232
2233	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2234		drm_intel_bo *target_bo = bo_gem->softpin_target[i];
2235
2236		if (target_bo == bo)
2237			continue;
2238
2239		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2240		drm_intel_gem_bo_process_reloc2(target_bo);
2241		drm_intel_add_validate_buffer2(target_bo, false);
2242	}
2243}
2244
2245
2246static void
2247drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2248{
2249	int i;
2250
2251	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2252		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2253		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2254
2255		/* Update the buffer offset */
2256		if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2257			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2258			    bo_gem->gem_handle, bo_gem->name,
2259			    upper_32_bits(bo->offset64),
2260			    lower_32_bits(bo->offset64),
2261			    upper_32_bits(bufmgr_gem->exec_objects[i].offset),
2262			    lower_32_bits(bufmgr_gem->exec_objects[i].offset));
2263			bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2264			bo->offset = bufmgr_gem->exec_objects[i].offset;
2265		}
2266	}
2267}
2268
2269static void
2270drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2271{
2272	int i;
2273
2274	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2275		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2276		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2277
2278		/* Update the buffer offset */
2279		if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2280			/* If we're seeing softpinned object here it means that the kernel
2281			 * has relocated our object... Indicating a programming error
2282			 */
2283			assert(!(bo_gem->kflags & EXEC_OBJECT_PINNED));
2284			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2285			    bo_gem->gem_handle, bo_gem->name,
2286			    upper_32_bits(bo->offset64),
2287			    lower_32_bits(bo->offset64),
2288			    upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
2289			    lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
2290			bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2291			bo->offset = bufmgr_gem->exec2_objects[i].offset;
2292		}
2293	}
2294}
2295
2296drm_public void
2297drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2298			      int x1, int y1, int width, int height,
2299			      enum aub_dump_bmp_format format,
2300			      int pitch, int offset)
2301{
2302}
2303
2304static int
2305drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2306		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2307{
2308	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2309	struct drm_i915_gem_execbuffer execbuf;
2310	int ret, i;
2311
2312	if (to_bo_gem(bo)->has_error)
2313		return -ENOMEM;
2314
2315	pthread_mutex_lock(&bufmgr_gem->lock);
2316	/* Update indices and set up the validate list. */
2317	drm_intel_gem_bo_process_reloc(bo);
2318
2319	/* Add the batch buffer to the validation list.  There are no
2320	 * relocations pointing to it.
2321	 */
2322	drm_intel_add_validate_buffer(bo);
2323
2324	memclear(execbuf);
2325	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2326	execbuf.buffer_count = bufmgr_gem->exec_count;
2327	execbuf.batch_start_offset = 0;
2328	execbuf.batch_len = used;
2329	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2330	execbuf.num_cliprects = num_cliprects;
2331	execbuf.DR1 = 0;
2332	execbuf.DR4 = DR4;
2333
2334	ret = drmIoctl(bufmgr_gem->fd,
2335		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2336		       &execbuf);
2337	if (ret != 0) {
2338		ret = -errno;
2339		if (errno == ENOSPC) {
2340			DBG("Execbuffer fails to pin. "
2341			    "Estimate: %u. Actual: %u. Available: %u\n",
2342			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2343							       bufmgr_gem->
2344							       exec_count),
2345			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2346							      bufmgr_gem->
2347							      exec_count),
2348			    (unsigned int)bufmgr_gem->gtt_size);
2349		}
2350	}
2351	drm_intel_update_buffer_offsets(bufmgr_gem);
2352
2353	if (bufmgr_gem->bufmgr.debug)
2354		drm_intel_gem_dump_validation_list(bufmgr_gem);
2355
2356	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2357		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2358
2359		bo_gem->idle = false;
2360
2361		/* Disconnect the buffer from the validate list */
2362		bo_gem->validate_index = -1;
2363		bufmgr_gem->exec_bos[i] = NULL;
2364	}
2365	bufmgr_gem->exec_count = 0;
2366	pthread_mutex_unlock(&bufmgr_gem->lock);
2367
2368	return ret;
2369}
2370
2371static int
2372do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2373	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2374	 int in_fence, int *out_fence,
2375	 unsigned int flags)
2376{
2377	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2378	struct drm_i915_gem_execbuffer2 execbuf;
2379	int ret = 0;
2380	int i;
2381
2382	if (to_bo_gem(bo)->has_error)
2383		return -ENOMEM;
2384
2385	switch (flags & 0x7) {
2386	default:
2387		return -EINVAL;
2388	case I915_EXEC_BLT:
2389		if (!bufmgr_gem->has_blt)
2390			return -EINVAL;
2391		break;
2392	case I915_EXEC_BSD:
2393		if (!bufmgr_gem->has_bsd)
2394			return -EINVAL;
2395		break;
2396	case I915_EXEC_VEBOX:
2397		if (!bufmgr_gem->has_vebox)
2398			return -EINVAL;
2399		break;
2400	case I915_EXEC_RENDER:
2401	case I915_EXEC_DEFAULT:
2402		break;
2403	}
2404
2405	pthread_mutex_lock(&bufmgr_gem->lock);
2406	/* Update indices and set up the validate list. */
2407	drm_intel_gem_bo_process_reloc2(bo);
2408
2409	/* Add the batch buffer to the validation list.  There are no relocations
2410	 * pointing to it.
2411	 */
2412	drm_intel_add_validate_buffer2(bo, 0);
2413
2414	memclear(execbuf);
2415	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2416	execbuf.buffer_count = bufmgr_gem->exec_count;
2417	execbuf.batch_start_offset = 0;
2418	execbuf.batch_len = used;
2419	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2420	execbuf.num_cliprects = num_cliprects;
2421	execbuf.DR1 = 0;
2422	execbuf.DR4 = DR4;
2423	execbuf.flags = flags;
2424	if (ctx == NULL)
2425		i915_execbuffer2_set_context_id(execbuf, 0);
2426	else
2427		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2428	execbuf.rsvd2 = 0;
2429	if (in_fence != -1) {
2430		execbuf.rsvd2 = in_fence;
2431		execbuf.flags |= I915_EXEC_FENCE_IN;
2432	}
2433	if (out_fence != NULL) {
2434		*out_fence = -1;
2435		execbuf.flags |= I915_EXEC_FENCE_OUT;
2436	}
2437
2438	if (bufmgr_gem->no_exec)
2439		goto skip_execution;
2440
2441	ret = drmIoctl(bufmgr_gem->fd,
2442		       DRM_IOCTL_I915_GEM_EXECBUFFER2_WR,
2443		       &execbuf);
2444	if (ret != 0) {
2445		ret = -errno;
2446		if (ret == -ENOSPC) {
2447			DBG("Execbuffer fails to pin. "
2448			    "Estimate: %u. Actual: %u. Available: %u\n",
2449			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2450							       bufmgr_gem->exec_count),
2451			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2452							      bufmgr_gem->exec_count),
2453			    (unsigned int) bufmgr_gem->gtt_size);
2454		}
2455	}
2456	drm_intel_update_buffer_offsets2(bufmgr_gem);
2457
2458	if (ret == 0 && out_fence != NULL)
2459		*out_fence = execbuf.rsvd2 >> 32;
2460
2461skip_execution:
2462	if (bufmgr_gem->bufmgr.debug)
2463		drm_intel_gem_dump_validation_list(bufmgr_gem);
2464
2465	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2466		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2467
2468		bo_gem->idle = false;
2469
2470		/* Disconnect the buffer from the validate list */
2471		bo_gem->validate_index = -1;
2472		bufmgr_gem->exec_bos[i] = NULL;
2473	}
2474	bufmgr_gem->exec_count = 0;
2475	pthread_mutex_unlock(&bufmgr_gem->lock);
2476
2477	return ret;
2478}
2479
2480static int
2481drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2482		       drm_clip_rect_t *cliprects, int num_cliprects,
2483		       int DR4)
2484{
2485	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2486			-1, NULL, I915_EXEC_RENDER);
2487}
2488
2489static int
2490drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2491			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2492			unsigned int flags)
2493{
2494	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2495			-1, NULL, flags);
2496}
2497
2498drm_public int
2499drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2500			      int used, unsigned int flags)
2501{
2502	return do_exec2(bo, used, ctx, NULL, 0, 0, -1, NULL, flags);
2503}
2504
2505drm_public int
2506drm_intel_gem_bo_fence_exec(drm_intel_bo *bo,
2507			    drm_intel_context *ctx,
2508			    int used,
2509			    int in_fence,
2510			    int *out_fence,
2511			    unsigned int flags)
2512{
2513	return do_exec2(bo, used, ctx, NULL, 0, 0, in_fence, out_fence, flags);
2514}
2515
2516static int
2517drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2518{
2519	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2520	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2521	struct drm_i915_gem_pin pin;
2522	int ret;
2523
2524	memclear(pin);
2525	pin.handle = bo_gem->gem_handle;
2526	pin.alignment = alignment;
2527
2528	ret = drmIoctl(bufmgr_gem->fd,
2529		       DRM_IOCTL_I915_GEM_PIN,
2530		       &pin);
2531	if (ret != 0)
2532		return -errno;
2533
2534	bo->offset64 = pin.offset;
2535	bo->offset = pin.offset;
2536	return 0;
2537}
2538
2539static int
2540drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2541{
2542	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2543	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2544	struct drm_i915_gem_unpin unpin;
2545	int ret;
2546
2547	memclear(unpin);
2548	unpin.handle = bo_gem->gem_handle;
2549
2550	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2551	if (ret != 0)
2552		return -errno;
2553
2554	return 0;
2555}
2556
2557static int
2558drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2559				     uint32_t tiling_mode,
2560				     uint32_t stride)
2561{
2562	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2563	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2564	struct drm_i915_gem_set_tiling set_tiling;
2565	int ret;
2566
2567	if (bo_gem->global_name == 0 &&
2568	    tiling_mode == bo_gem->tiling_mode &&
2569	    stride == bo_gem->stride)
2570		return 0;
2571
2572	memset(&set_tiling, 0, sizeof(set_tiling));
2573	do {
2574		/* set_tiling is slightly broken and overwrites the
2575		 * input on the error path, so we have to open code
2576		 * rmIoctl.
2577		 */
2578		set_tiling.handle = bo_gem->gem_handle;
2579		set_tiling.tiling_mode = tiling_mode;
2580		set_tiling.stride = stride;
2581
2582		ret = ioctl(bufmgr_gem->fd,
2583			    DRM_IOCTL_I915_GEM_SET_TILING,
2584			    &set_tiling);
2585	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2586	if (ret == -1)
2587		return -errno;
2588
2589	bo_gem->tiling_mode = set_tiling.tiling_mode;
2590	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2591	bo_gem->stride = set_tiling.stride;
2592	return 0;
2593}
2594
2595static int
2596drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2597			    uint32_t stride)
2598{
2599	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2600	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2601	int ret;
2602
2603	/* Tiling with userptr surfaces is not supported
2604	 * on all hardware so refuse it for time being.
2605	 */
2606	if (bo_gem->is_userptr)
2607		return -EINVAL;
2608
2609	/* Linear buffers have no stride. By ensuring that we only ever use
2610	 * stride 0 with linear buffers, we simplify our code.
2611	 */
2612	if (*tiling_mode == I915_TILING_NONE)
2613		stride = 0;
2614
2615	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2616	if (ret == 0)
2617		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2618
2619	*tiling_mode = bo_gem->tiling_mode;
2620	return ret;
2621}
2622
2623static int
2624drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2625			    uint32_t * swizzle_mode)
2626{
2627	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2628
2629	*tiling_mode = bo_gem->tiling_mode;
2630	*swizzle_mode = bo_gem->swizzle_mode;
2631	return 0;
2632}
2633
2634static int
2635drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset)
2636{
2637	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2638
2639	bo->offset64 = offset;
2640	bo->offset = offset;
2641	bo_gem->kflags |= EXEC_OBJECT_PINNED;
2642
2643	return 0;
2644}
2645
2646drm_public drm_intel_bo *
2647drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2648{
2649	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2650	int ret;
2651	uint32_t handle;
2652	drm_intel_bo_gem *bo_gem;
2653
2654	pthread_mutex_lock(&bufmgr_gem->lock);
2655	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2656	if (ret) {
2657		DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
2658		pthread_mutex_unlock(&bufmgr_gem->lock);
2659		return NULL;
2660	}
2661
2662	/*
2663	 * See if the kernel has already returned this buffer to us. Just as
2664	 * for named buffers, we must not create two bo's pointing at the same
2665	 * kernel object
2666	 */
2667	HASH_FIND(handle_hh, bufmgr_gem->handle_table,
2668		  &handle, sizeof(handle), bo_gem);
2669	if (bo_gem) {
2670		drm_intel_gem_bo_reference(&bo_gem->bo);
2671		goto out;
2672	}
2673
2674	bo_gem = calloc(1, sizeof(*bo_gem));
2675	if (!bo_gem)
2676		goto out;
2677
2678	atomic_set(&bo_gem->refcount, 1);
2679	DRMINITLISTHEAD(&bo_gem->vma_list);
2680
2681	/* Determine size of bo.  The fd-to-handle ioctl really should
2682	 * return the size, but it doesn't.  If we have kernel 3.12 or
2683	 * later, we can lseek on the prime fd to get the size.  Older
2684	 * kernels will just fail, in which case we fall back to the
2685	 * provided (estimated or guess size). */
2686	ret = lseek(prime_fd, 0, SEEK_END);
2687	if (ret != -1)
2688		bo_gem->bo.size = ret;
2689	else
2690		bo_gem->bo.size = size;
2691
2692	bo_gem->bo.handle = handle;
2693	bo_gem->bo.bufmgr = bufmgr;
2694
2695	bo_gem->gem_handle = handle;
2696	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
2697		 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
2698
2699	bo_gem->name = "prime";
2700	bo_gem->validate_index = -1;
2701	bo_gem->reloc_tree_fences = 0;
2702	bo_gem->used_as_reloc_target = false;
2703	bo_gem->has_error = false;
2704	bo_gem->reusable = false;
2705
2706	ret = get_tiling_mode(bufmgr_gem, handle,
2707			      &bo_gem->tiling_mode, &bo_gem->swizzle_mode);
2708	if (ret)
2709		goto err;
2710
2711	/* XXX stride is unknown */
2712	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2713
2714out:
2715	pthread_mutex_unlock(&bufmgr_gem->lock);
2716	return &bo_gem->bo;
2717
2718err:
2719	drm_intel_gem_bo_free(&bo_gem->bo);
2720	pthread_mutex_unlock(&bufmgr_gem->lock);
2721	return NULL;
2722}
2723
2724drm_public int
2725drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2726{
2727	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2728	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2729
2730	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2731			       DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0)
2732		return -errno;
2733
2734	bo_gem->reusable = false;
2735
2736	return 0;
2737}
2738
2739static int
2740drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2741{
2742	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2743	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2744
2745	if (!bo_gem->global_name) {
2746		struct drm_gem_flink flink;
2747
2748		memclear(flink);
2749		flink.handle = bo_gem->gem_handle;
2750		if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink))
2751			return -errno;
2752
2753		pthread_mutex_lock(&bufmgr_gem->lock);
2754		if (!bo_gem->global_name) {
2755			bo_gem->global_name = flink.name;
2756			bo_gem->reusable = false;
2757
2758			HASH_ADD(name_hh, bufmgr_gem->name_table,
2759				 global_name, sizeof(bo_gem->global_name),
2760				 bo_gem);
2761		}
2762		pthread_mutex_unlock(&bufmgr_gem->lock);
2763	}
2764
2765	*name = bo_gem->global_name;
2766	return 0;
2767}
2768
2769/**
2770 * Enables unlimited caching of buffer objects for reuse.
2771 *
2772 * This is potentially very memory expensive, as the cache at each bucket
2773 * size is only bounded by how many buffers of that size we've managed to have
2774 * in flight at once.
2775 */
2776drm_public void
2777drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2778{
2779	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2780
2781	bufmgr_gem->bo_reuse = true;
2782}
2783
2784/**
2785 * Disables implicit synchronisation before executing the bo
2786 *
2787 * This will cause rendering corruption unless you correctly manage explicit
2788 * fences for all rendering involving this buffer - including use by others.
2789 * Disabling the implicit serialisation is only required if that serialisation
2790 * is too coarse (for example, you have split the buffer into many
2791 * non-overlapping regions and are sharing the whole buffer between concurrent
2792 * independent command streams).
2793 *
2794 * Note the kernel must advertise support via I915_PARAM_HAS_EXEC_ASYNC,
2795 * which can be checked using drm_intel_bufmgr_can_disable_implicit_sync,
2796 * or subsequent execbufs involving the bo will generate EINVAL.
2797 */
2798drm_public void
2799drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo *bo)
2800{
2801	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2802
2803	bo_gem->kflags |= EXEC_OBJECT_ASYNC;
2804}
2805
2806/**
2807 * Enables implicit synchronisation before executing the bo
2808 *
2809 * This is the default behaviour of the kernel, to wait upon prior writes
2810 * completing on the object before rendering with it, or to wait for prior
2811 * reads to complete before writing into the object.
2812 * drm_intel_gem_bo_disable_implicit_sync() can stop this behaviour, telling
2813 * the kernel never to insert a stall before using the object. Then this
2814 * function can be used to restore the implicit sync before subsequent
2815 * rendering.
2816 */
2817drm_public void
2818drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo *bo)
2819{
2820	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2821
2822	bo_gem->kflags &= ~EXEC_OBJECT_ASYNC;
2823}
2824
2825/**
2826 * Query whether the kernel supports disabling of its implicit synchronisation
2827 * before execbuf. See drm_intel_gem_bo_disable_implicit_sync()
2828 */
2829drm_public int
2830drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr *bufmgr)
2831{
2832	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2833
2834	return bufmgr_gem->has_exec_async;
2835}
2836
2837/**
2838 * Enable use of fenced reloc type.
2839 *
2840 * New code should enable this to avoid unnecessary fence register
2841 * allocation.  If this option is not enabled, all relocs will have fence
2842 * register allocated.
2843 */
2844drm_public void
2845drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2846{
2847	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2848
2849	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2850		bufmgr_gem->fenced_relocs = true;
2851}
2852
2853/**
2854 * Return the additional aperture space required by the tree of buffer objects
2855 * rooted at bo.
2856 */
2857static int
2858drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2859{
2860	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2861	int i;
2862	int total = 0;
2863
2864	if (bo == NULL || bo_gem->included_in_check_aperture)
2865		return 0;
2866
2867	total += bo->size;
2868	bo_gem->included_in_check_aperture = true;
2869
2870	for (i = 0; i < bo_gem->reloc_count; i++)
2871		total +=
2872		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2873							reloc_target_info[i].bo);
2874
2875	return total;
2876}
2877
2878/**
2879 * Count the number of buffers in this list that need a fence reg
2880 *
2881 * If the count is greater than the number of available regs, we'll have
2882 * to ask the caller to resubmit a batch with fewer tiled buffers.
2883 *
2884 * This function over-counts if the same buffer is used multiple times.
2885 */
2886static unsigned int
2887drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2888{
2889	int i;
2890	unsigned int total = 0;
2891
2892	for (i = 0; i < count; i++) {
2893		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2894
2895		if (bo_gem == NULL)
2896			continue;
2897
2898		total += bo_gem->reloc_tree_fences;
2899	}
2900	return total;
2901}
2902
2903/**
2904 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2905 * for the next drm_intel_bufmgr_check_aperture_space() call.
2906 */
2907static void
2908drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2909{
2910	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2911	int i;
2912
2913	if (bo == NULL || !bo_gem->included_in_check_aperture)
2914		return;
2915
2916	bo_gem->included_in_check_aperture = false;
2917
2918	for (i = 0; i < bo_gem->reloc_count; i++)
2919		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2920							   reloc_target_info[i].bo);
2921}
2922
2923/**
2924 * Return a conservative estimate for the amount of aperture required
2925 * for a collection of buffers. This may double-count some buffers.
2926 */
2927static unsigned int
2928drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2929{
2930	int i;
2931	unsigned int total = 0;
2932
2933	for (i = 0; i < count; i++) {
2934		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2935		if (bo_gem != NULL)
2936			total += bo_gem->reloc_tree_size;
2937	}
2938	return total;
2939}
2940
2941/**
2942 * Return the amount of aperture needed for a collection of buffers.
2943 * This avoids double counting any buffers, at the cost of looking
2944 * at every buffer in the set.
2945 */
2946static unsigned int
2947drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2948{
2949	int i;
2950	unsigned int total = 0;
2951
2952	for (i = 0; i < count; i++) {
2953		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2954		/* For the first buffer object in the array, we get an
2955		 * accurate count back for its reloc_tree size (since nothing
2956		 * had been flagged as being counted yet).  We can save that
2957		 * value out as a more conservative reloc_tree_size that
2958		 * avoids double-counting target buffers.  Since the first
2959		 * buffer happens to usually be the batch buffer in our
2960		 * callers, this can pull us back from doing the tree
2961		 * walk on every new batch emit.
2962		 */
2963		if (i == 0) {
2964			drm_intel_bo_gem *bo_gem =
2965			    (drm_intel_bo_gem *) bo_array[i];
2966			bo_gem->reloc_tree_size = total;
2967		}
2968	}
2969
2970	for (i = 0; i < count; i++)
2971		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2972	return total;
2973}
2974
2975/**
2976 * Return -1 if the batchbuffer should be flushed before attempting to
2977 * emit rendering referencing the buffers pointed to by bo_array.
2978 *
2979 * This is required because if we try to emit a batchbuffer with relocations
2980 * to a tree of buffers that won't simultaneously fit in the aperture,
2981 * the rendering will return an error at a point where the software is not
2982 * prepared to recover from it.
2983 *
2984 * However, we also want to emit the batchbuffer significantly before we reach
2985 * the limit, as a series of batchbuffers each of which references buffers
2986 * covering almost all of the aperture means that at each emit we end up
2987 * waiting to evict a buffer from the last rendering, and we get synchronous
2988 * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
2989 * get better parallelism.
2990 */
2991static int
2992drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2993{
2994	drm_intel_bufmgr_gem *bufmgr_gem =
2995	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2996	unsigned int total = 0;
2997	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2998	int total_fences;
2999
3000	/* Check for fence reg constraints if necessary */
3001	if (bufmgr_gem->available_fences) {
3002		total_fences = drm_intel_gem_total_fences(bo_array, count);
3003		if (total_fences > bufmgr_gem->available_fences)
3004			return -ENOSPC;
3005	}
3006
3007	total = drm_intel_gem_estimate_batch_space(bo_array, count);
3008
3009	if (total > threshold)
3010		total = drm_intel_gem_compute_batch_space(bo_array, count);
3011
3012	if (total > threshold) {
3013		DBG("check_space: overflowed available aperture, "
3014		    "%dkb vs %dkb\n",
3015		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
3016		return -ENOSPC;
3017	} else {
3018		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
3019		    (int)bufmgr_gem->gtt_size / 1024);
3020		return 0;
3021	}
3022}
3023
3024/*
3025 * Disable buffer reuse for objects which are shared with the kernel
3026 * as scanout buffers
3027 */
3028static int
3029drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
3030{
3031	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3032
3033	bo_gem->reusable = false;
3034	return 0;
3035}
3036
3037static int
3038drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
3039{
3040	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3041
3042	return bo_gem->reusable;
3043}
3044
3045static int
3046_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3047{
3048	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3049	int i;
3050
3051	for (i = 0; i < bo_gem->reloc_count; i++) {
3052		if (bo_gem->reloc_target_info[i].bo == target_bo)
3053			return 1;
3054		if (bo == bo_gem->reloc_target_info[i].bo)
3055			continue;
3056		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
3057						target_bo))
3058			return 1;
3059	}
3060
3061	for (i = 0; i< bo_gem->softpin_target_count; i++) {
3062		if (bo_gem->softpin_target[i] == target_bo)
3063			return 1;
3064		if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo))
3065			return 1;
3066	}
3067
3068	return 0;
3069}
3070
3071/** Return true if target_bo is referenced by bo's relocation tree. */
3072static int
3073drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3074{
3075	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
3076
3077	if (bo == NULL || target_bo == NULL)
3078		return 0;
3079	if (target_bo_gem->used_as_reloc_target)
3080		return _drm_intel_gem_bo_references(bo, target_bo);
3081	return 0;
3082}
3083
3084static void
3085add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
3086{
3087	unsigned int i = bufmgr_gem->num_buckets;
3088
3089	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
3090
3091	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
3092	bufmgr_gem->cache_bucket[i].size = size;
3093	bufmgr_gem->num_buckets++;
3094}
3095
3096static void
3097init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3098{
3099	unsigned long size, cache_max_size = 64 * 1024 * 1024;
3100
3101	/* OK, so power of two buckets was too wasteful of memory.
3102	 * Give 3 other sizes between each power of two, to hopefully
3103	 * cover things accurately enough.  (The alternative is
3104	 * probably to just go for exact matching of sizes, and assume
3105	 * that for things like composited window resize the tiled
3106	 * width/height alignment and rounding of sizes to pages will
3107	 * get us useful cache hit rates anyway)
3108	 */
3109	add_bucket(bufmgr_gem, 4096);
3110	add_bucket(bufmgr_gem, 4096 * 2);
3111	add_bucket(bufmgr_gem, 4096 * 3);
3112
3113	/* Initialize the linked lists for BO reuse cache. */
3114	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3115		add_bucket(bufmgr_gem, size);
3116
3117		add_bucket(bufmgr_gem, size + size * 1 / 4);
3118		add_bucket(bufmgr_gem, size + size * 2 / 4);
3119		add_bucket(bufmgr_gem, size + size * 3 / 4);
3120	}
3121}
3122
3123drm_public void
3124drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3125{
3126	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3127
3128	bufmgr_gem->vma_max = limit;
3129
3130	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3131}
3132
3133static int
3134parse_devid_override(const char *devid_override)
3135{
3136	static const struct {
3137		const char *name;
3138		int pci_id;
3139	} name_map[] = {
3140		{ "brw", PCI_CHIP_I965_GM },
3141		{ "g4x", PCI_CHIP_GM45_GM },
3142		{ "ilk", PCI_CHIP_ILD_G },
3143		{ "snb", PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS },
3144		{ "ivb", PCI_CHIP_IVYBRIDGE_S_GT2 },
3145		{ "hsw", PCI_CHIP_HASWELL_CRW_E_GT3 },
3146		{ "byt", PCI_CHIP_VALLEYVIEW_3 },
3147		{ "bdw", 0x1620 | BDW_ULX },
3148		{ "skl", PCI_CHIP_SKYLAKE_DT_GT2 },
3149		{ "kbl", PCI_CHIP_KABYLAKE_DT_GT2 },
3150	};
3151	unsigned int i;
3152
3153	for (i = 0; i < ARRAY_SIZE(name_map); i++) {
3154		if (!strcmp(name_map[i].name, devid_override))
3155			return name_map[i].pci_id;
3156	}
3157
3158	return strtod(devid_override, NULL);
3159}
3160
3161/**
3162 * Get the PCI ID for the device.  This can be overridden by setting the
3163 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3164 */
3165static int
3166get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3167{
3168	char *devid_override;
3169	int devid = 0;
3170	int ret;
3171	drm_i915_getparam_t gp;
3172
3173	if (geteuid() == getuid()) {
3174		devid_override = getenv("INTEL_DEVID_OVERRIDE");
3175		if (devid_override) {
3176			bufmgr_gem->no_exec = true;
3177			return parse_devid_override(devid_override);
3178		}
3179	}
3180
3181	memclear(gp);
3182	gp.param = I915_PARAM_CHIPSET_ID;
3183	gp.value = &devid;
3184	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3185	if (ret) {
3186		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3187		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3188	}
3189	return devid;
3190}
3191
3192drm_public int
3193drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3194{
3195	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3196
3197	return bufmgr_gem->pci_device;
3198}
3199
3200/**
3201 * Sets the AUB filename.
3202 *
3203 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3204 * for it to have any effect.
3205 */
3206drm_public void
3207drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3208				      const char *filename)
3209{
3210}
3211
3212/**
3213 * Sets up AUB dumping.
3214 *
3215 * This is a trace file format that can be used with the simulator.
3216 * Packets are emitted in a format somewhat like GPU command packets.
3217 * You can set up a GTT and upload your objects into the referenced
3218 * space, then send off batchbuffers and get BMPs out the other end.
3219 */
3220drm_public void
3221drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3222{
3223	fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
3224		"Use intel_aubdump from intel-gpu-tools instead.  Install intel-gpu-tools,\n"
3225		"then run (for example)\n\n"
3226		"\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
3227		"See the intel_aubdump man page for more details.\n");
3228}
3229
3230drm_public drm_intel_context *
3231drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3232{
3233	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3234	struct drm_i915_gem_context_create create;
3235	drm_intel_context *context = NULL;
3236	int ret;
3237
3238	context = calloc(1, sizeof(*context));
3239	if (!context)
3240		return NULL;
3241
3242	memclear(create);
3243	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3244	if (ret != 0) {
3245		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3246		    strerror(errno));
3247		free(context);
3248		return NULL;
3249	}
3250
3251	context->ctx_id = create.ctx_id;
3252	context->bufmgr = bufmgr;
3253
3254	return context;
3255}
3256
3257drm_public int
3258drm_intel_gem_context_get_id(drm_intel_context *ctx, uint32_t *ctx_id)
3259{
3260	if (ctx == NULL)
3261		return -EINVAL;
3262
3263	*ctx_id = ctx->ctx_id;
3264
3265	return 0;
3266}
3267
3268drm_public void
3269drm_intel_gem_context_destroy(drm_intel_context *ctx)
3270{
3271	drm_intel_bufmgr_gem *bufmgr_gem;
3272	struct drm_i915_gem_context_destroy destroy;
3273	int ret;
3274
3275	if (ctx == NULL)
3276		return;
3277
3278	memclear(destroy);
3279
3280	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3281	destroy.ctx_id = ctx->ctx_id;
3282	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3283		       &destroy);
3284	if (ret != 0)
3285		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3286			strerror(errno));
3287
3288	free(ctx);
3289}
3290
3291drm_public int
3292drm_intel_get_reset_stats(drm_intel_context *ctx,
3293			  uint32_t *reset_count,
3294			  uint32_t *active,
3295			  uint32_t *pending)
3296{
3297	drm_intel_bufmgr_gem *bufmgr_gem;
3298	struct drm_i915_reset_stats stats;
3299	int ret;
3300
3301	if (ctx == NULL)
3302		return -EINVAL;
3303
3304	memclear(stats);
3305
3306	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3307	stats.ctx_id = ctx->ctx_id;
3308	ret = drmIoctl(bufmgr_gem->fd,
3309		       DRM_IOCTL_I915_GET_RESET_STATS,
3310		       &stats);
3311	if (ret == 0) {
3312		if (reset_count != NULL)
3313			*reset_count = stats.reset_count;
3314
3315		if (active != NULL)
3316			*active = stats.batch_active;
3317
3318		if (pending != NULL)
3319			*pending = stats.batch_pending;
3320	}
3321
3322	return ret;
3323}
3324
3325drm_public int
3326drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3327		   uint32_t offset,
3328		   uint64_t *result)
3329{
3330	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3331	struct drm_i915_reg_read reg_read;
3332	int ret;
3333
3334	memclear(reg_read);
3335	reg_read.offset = offset;
3336
3337	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3338
3339	*result = reg_read.val;
3340	return ret;
3341}
3342
3343drm_public int
3344drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3345{
3346	drm_i915_getparam_t gp;
3347	int ret;
3348
3349	memclear(gp);
3350	gp.value = (int*)subslice_total;
3351	gp.param = I915_PARAM_SUBSLICE_TOTAL;
3352	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3353	if (ret)
3354		return -errno;
3355
3356	return 0;
3357}
3358
3359drm_public int
3360drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3361{
3362	drm_i915_getparam_t gp;
3363	int ret;
3364
3365	memclear(gp);
3366	gp.value = (int*)eu_total;
3367	gp.param = I915_PARAM_EU_TOTAL;
3368	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3369	if (ret)
3370		return -errno;
3371
3372	return 0;
3373}
3374
3375drm_public int
3376drm_intel_get_pooled_eu(int fd)
3377{
3378	drm_i915_getparam_t gp;
3379	int ret = -1;
3380
3381	memclear(gp);
3382	gp.param = I915_PARAM_HAS_POOLED_EU;
3383	gp.value = &ret;
3384	if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3385		return -errno;
3386
3387	return ret;
3388}
3389
3390drm_public int
3391drm_intel_get_min_eu_in_pool(int fd)
3392{
3393	drm_i915_getparam_t gp;
3394	int ret = -1;
3395
3396	memclear(gp);
3397	gp.param = I915_PARAM_MIN_EU_IN_POOL;
3398	gp.value = &ret;
3399	if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3400		return -errno;
3401
3402	return ret;
3403}
3404
3405/**
3406 * Annotate the given bo for use in aub dumping.
3407 *
3408 * \param annotations is an array of drm_intel_aub_annotation objects
3409 * describing the type of data in various sections of the bo.  Each
3410 * element of the array specifies the type and subtype of a section of
3411 * the bo, and the past-the-end offset of that section.  The elements
3412 * of \c annotations must be sorted so that ending_offset is
3413 * increasing.
3414 *
3415 * \param count is the number of elements in the \c annotations array.
3416 * If \c count is zero, then \c annotations will not be dereferenced.
3417 *
3418 * Annotations are copied into a private data structure, so caller may
3419 * re-use the memory pointed to by \c annotations after the call
3420 * returns.
3421 *
3422 * Annotations are stored for the lifetime of the bo; to reset to the
3423 * default state (no annotations), call this function with a \c count
3424 * of zero.
3425 */
3426drm_public void drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3427					 drm_intel_aub_annotation *annotations,
3428					 unsigned count)
3429{
3430}
3431
3432static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3433static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3434
3435static drm_intel_bufmgr_gem *
3436drm_intel_bufmgr_gem_find(int fd)
3437{
3438	drm_intel_bufmgr_gem *bufmgr_gem;
3439
3440	DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3441		if (bufmgr_gem->fd == fd) {
3442			atomic_inc(&bufmgr_gem->refcount);
3443			return bufmgr_gem;
3444		}
3445	}
3446
3447	return NULL;
3448}
3449
3450static void
3451drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3452{
3453	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3454
3455	if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3456		pthread_mutex_lock(&bufmgr_list_mutex);
3457
3458		if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3459			DRMLISTDEL(&bufmgr_gem->managers);
3460			drm_intel_bufmgr_gem_destroy(bufmgr);
3461		}
3462
3463		pthread_mutex_unlock(&bufmgr_list_mutex);
3464	}
3465}
3466
3467drm_public void *drm_intel_gem_bo_map__gtt(drm_intel_bo *bo)
3468{
3469	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3470	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3471
3472	if (bo_gem->gtt_virtual)
3473		return bo_gem->gtt_virtual;
3474
3475	if (bo_gem->is_userptr)
3476		return NULL;
3477
3478	pthread_mutex_lock(&bufmgr_gem->lock);
3479	if (bo_gem->gtt_virtual == NULL) {
3480		struct drm_i915_gem_mmap_gtt mmap_arg;
3481		void *ptr;
3482
3483		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
3484		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3485
3486		if (bo_gem->map_count++ == 0)
3487			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3488
3489		memclear(mmap_arg);
3490		mmap_arg.handle = bo_gem->gem_handle;
3491
3492		/* Get the fake offset back... */
3493		ptr = MAP_FAILED;
3494		if (drmIoctl(bufmgr_gem->fd,
3495			     DRM_IOCTL_I915_GEM_MMAP_GTT,
3496			     &mmap_arg) == 0) {
3497			/* and mmap it */
3498			ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
3499				       MAP_SHARED, bufmgr_gem->fd,
3500				       mmap_arg.offset);
3501		}
3502		if (ptr == MAP_FAILED) {
3503			if (--bo_gem->map_count == 0)
3504				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3505			ptr = NULL;
3506		}
3507
3508		bo_gem->gtt_virtual = ptr;
3509	}
3510	pthread_mutex_unlock(&bufmgr_gem->lock);
3511
3512	return bo_gem->gtt_virtual;
3513}
3514
3515drm_public void *drm_intel_gem_bo_map__cpu(drm_intel_bo *bo)
3516{
3517	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3518	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3519
3520	if (bo_gem->mem_virtual)
3521		return bo_gem->mem_virtual;
3522
3523	if (bo_gem->is_userptr) {
3524		/* Return the same user ptr */
3525		return bo_gem->user_virtual;
3526	}
3527
3528	pthread_mutex_lock(&bufmgr_gem->lock);
3529	if (!bo_gem->mem_virtual) {
3530		struct drm_i915_gem_mmap mmap_arg;
3531
3532		if (bo_gem->map_count++ == 0)
3533			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3534
3535		DBG("bo_map: %d (%s), map_count=%d\n",
3536		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3537
3538		memclear(mmap_arg);
3539		mmap_arg.handle = bo_gem->gem_handle;
3540		mmap_arg.size = bo->size;
3541		if (drmIoctl(bufmgr_gem->fd,
3542			     DRM_IOCTL_I915_GEM_MMAP,
3543			     &mmap_arg)) {
3544			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3545			    __FILE__, __LINE__, bo_gem->gem_handle,
3546			    bo_gem->name, strerror(errno));
3547			if (--bo_gem->map_count == 0)
3548				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3549		} else {
3550			VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3551			bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3552		}
3553	}
3554	pthread_mutex_unlock(&bufmgr_gem->lock);
3555
3556	return bo_gem->mem_virtual;
3557}
3558
3559drm_public void *drm_intel_gem_bo_map__wc(drm_intel_bo *bo)
3560{
3561	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3562	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3563
3564	if (bo_gem->wc_virtual)
3565		return bo_gem->wc_virtual;
3566
3567	if (bo_gem->is_userptr)
3568		return NULL;
3569
3570	pthread_mutex_lock(&bufmgr_gem->lock);
3571	if (!bo_gem->wc_virtual) {
3572		struct drm_i915_gem_mmap mmap_arg;
3573
3574		if (bo_gem->map_count++ == 0)
3575			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3576
3577		DBG("bo_map: %d (%s), map_count=%d\n",
3578		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3579
3580		memclear(mmap_arg);
3581		mmap_arg.handle = bo_gem->gem_handle;
3582		mmap_arg.size = bo->size;
3583		mmap_arg.flags = I915_MMAP_WC;
3584		if (drmIoctl(bufmgr_gem->fd,
3585			     DRM_IOCTL_I915_GEM_MMAP,
3586			     &mmap_arg)) {
3587			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3588			    __FILE__, __LINE__, bo_gem->gem_handle,
3589			    bo_gem->name, strerror(errno));
3590			if (--bo_gem->map_count == 0)
3591				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3592		} else {
3593			VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3594			bo_gem->wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3595		}
3596	}
3597	pthread_mutex_unlock(&bufmgr_gem->lock);
3598
3599	return bo_gem->wc_virtual;
3600}
3601
3602/**
3603 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3604 * and manage map buffer objections.
3605 *
3606 * \param fd File descriptor of the opened DRM device.
3607 */
3608drm_public drm_intel_bufmgr *
3609drm_intel_bufmgr_gem_init(int fd, int batch_size)
3610{
3611	drm_intel_bufmgr_gem *bufmgr_gem;
3612	struct drm_i915_gem_get_aperture aperture;
3613	drm_i915_getparam_t gp;
3614	int ret, tmp;
3615	bool exec2 = false;
3616
3617	pthread_mutex_lock(&bufmgr_list_mutex);
3618
3619	bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3620	if (bufmgr_gem)
3621		goto exit;
3622
3623	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3624	if (bufmgr_gem == NULL)
3625		goto exit;
3626
3627	bufmgr_gem->fd = fd;
3628	atomic_set(&bufmgr_gem->refcount, 1);
3629
3630	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3631		free(bufmgr_gem);
3632		bufmgr_gem = NULL;
3633		goto exit;
3634	}
3635
3636	memclear(aperture);
3637	ret = drmIoctl(bufmgr_gem->fd,
3638		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3639		       &aperture);
3640
3641	if (ret == 0)
3642		bufmgr_gem->gtt_size = aperture.aper_available_size;
3643	else {
3644		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3645			strerror(errno));
3646		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3647		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3648			"May lead to reduced performance or incorrect "
3649			"rendering.\n",
3650			(int)bufmgr_gem->gtt_size / 1024);
3651	}
3652
3653	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3654
3655	if (IS_GEN2(bufmgr_gem->pci_device))
3656		bufmgr_gem->gen = 2;
3657	else if (IS_GEN3(bufmgr_gem->pci_device))
3658		bufmgr_gem->gen = 3;
3659	else if (IS_GEN4(bufmgr_gem->pci_device))
3660		bufmgr_gem->gen = 4;
3661	else if (IS_GEN5(bufmgr_gem->pci_device))
3662		bufmgr_gem->gen = 5;
3663	else if (IS_GEN6(bufmgr_gem->pci_device))
3664		bufmgr_gem->gen = 6;
3665	else if (IS_GEN7(bufmgr_gem->pci_device))
3666		bufmgr_gem->gen = 7;
3667	else if (IS_GEN8(bufmgr_gem->pci_device))
3668		bufmgr_gem->gen = 8;
3669	else if (!intel_get_genx(bufmgr_gem->pci_device, &bufmgr_gem->gen)) {
3670		free(bufmgr_gem);
3671		bufmgr_gem = NULL;
3672		goto exit;
3673	}
3674
3675	if (IS_GEN3(bufmgr_gem->pci_device) &&
3676	    bufmgr_gem->gtt_size > 256*1024*1024) {
3677		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3678		 * be used for tiled blits. To simplify the accounting, just
3679		 * subtract the unmappable part (fixed to 256MB on all known
3680		 * gen3 devices) if the kernel advertises it. */
3681		bufmgr_gem->gtt_size -= 256*1024*1024;
3682	}
3683
3684	memclear(gp);
3685	gp.value = &tmp;
3686
3687	gp.param = I915_PARAM_HAS_EXECBUF2;
3688	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3689	if (!ret)
3690		exec2 = true;
3691
3692	gp.param = I915_PARAM_HAS_BSD;
3693	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3694	bufmgr_gem->has_bsd = ret == 0;
3695
3696	gp.param = I915_PARAM_HAS_BLT;
3697	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3698	bufmgr_gem->has_blt = ret == 0;
3699
3700	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3701	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3702	bufmgr_gem->has_relaxed_fencing = ret == 0;
3703
3704	gp.param = I915_PARAM_HAS_EXEC_ASYNC;
3705	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3706	bufmgr_gem->has_exec_async = ret == 0;
3707
3708	bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3709
3710	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3711	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3712	bufmgr_gem->has_wait_timeout = ret == 0;
3713
3714	gp.param = I915_PARAM_HAS_LLC;
3715	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3716	if (ret != 0) {
3717		/* Kernel does not supports HAS_LLC query, fallback to GPU
3718		 * generation detection and assume that we have LLC on GEN6/7
3719		 */
3720		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3721				IS_GEN7(bufmgr_gem->pci_device));
3722	} else
3723		bufmgr_gem->has_llc = *gp.value;
3724
3725	gp.param = I915_PARAM_HAS_VEBOX;
3726	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3727	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3728
3729	gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
3730	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3731	if (ret == 0 && *gp.value > 0)
3732		bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset;
3733
3734	if (bufmgr_gem->gen < 4) {
3735		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3736		gp.value = &bufmgr_gem->available_fences;
3737		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3738		if (ret) {
3739			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3740				errno);
3741			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3742				*gp.value);
3743			bufmgr_gem->available_fences = 0;
3744		} else {
3745			/* XXX The kernel reports the total number of fences,
3746			 * including any that may be pinned.
3747			 *
3748			 * We presume that there will be at least one pinned
3749			 * fence for the scanout buffer, but there may be more
3750			 * than one scanout and the user may be manually
3751			 * pinning buffers. Let's move to execbuffer2 and
3752			 * thereby forget the insanity of using fences...
3753			 */
3754			bufmgr_gem->available_fences -= 2;
3755			if (bufmgr_gem->available_fences < 0)
3756				bufmgr_gem->available_fences = 0;
3757		}
3758	}
3759
3760	if (bufmgr_gem->gen >= 8) {
3761		gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
3762		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3763		if (ret == 0 && *gp.value == 3)
3764			bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range;
3765	}
3766
3767	/* Let's go with one relocation per every 2 dwords (but round down a bit
3768	 * since a power of two will mean an extra page allocation for the reloc
3769	 * buffer).
3770	 *
3771	 * Every 4 was too few for the blender benchmark.
3772	 */
3773	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3774
3775	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3776	bufmgr_gem->bufmgr.bo_alloc_for_render =
3777	    drm_intel_gem_bo_alloc_for_render;
3778	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3779	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3780	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3781	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3782	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3783	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3784	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3785	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3786	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3787	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3788	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3789	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3790	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3791	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3792	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3793	/* Use the new one if available */
3794	if (exec2) {
3795		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3796		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3797	} else
3798		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3799	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3800	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3801	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3802	bufmgr_gem->bufmgr.debug = 0;
3803	bufmgr_gem->bufmgr.check_aperture_space =
3804	    drm_intel_gem_check_aperture_space;
3805	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3806	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3807	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3808	    drm_intel_gem_get_pipe_from_crtc_id;
3809	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3810
3811	init_cache_buckets(bufmgr_gem);
3812
3813	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3814	bufmgr_gem->vma_max = -1; /* unlimited by default */
3815
3816	DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3817
3818exit:
3819	pthread_mutex_unlock(&bufmgr_list_mutex);
3820
3821	return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3822}
3823