intel_bufmgr_gem.c revision aec75c42
1/**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30/*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 *	    Eric Anholt <eric@anholt.net>
34 *	    Dave Airlie <airlied@linux.ie>
35 */
36
37#ifdef HAVE_CONFIG_H
38#include "config.h"
39#endif
40
41#include <xf86drm.h>
42#include <xf86atomic.h>
43#include <fcntl.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48#include <assert.h>
49#include <pthread.h>
50#include <stddef.h>
51#include <sys/ioctl.h>
52#include <sys/mman.h>
53#include <sys/stat.h>
54#include <sys/types.h>
55#include <stdbool.h>
56
57#include "errno.h"
58#ifndef ETIME
59#define ETIME ETIMEDOUT
60#endif
61#include "libdrm_lists.h"
62#include "intel_bufmgr.h"
63#include "intel_bufmgr_priv.h"
64#include "intel_chipset.h"
65#include "intel_aub.h"
66#include "string.h"
67
68#include "i915_drm.h"
69
70#ifdef HAVE_VALGRIND
71#include <valgrind.h>
72#include <memcheck.h>
73#define VG(x) x
74#else
75#define VG(x)
76#endif
77
78#define VG_CLEAR(s) VG(memset(&s, 0, sizeof(s)))
79
80#define DBG(...) do {					\
81	if (bufmgr_gem->bufmgr.debug)			\
82		fprintf(stderr, __VA_ARGS__);		\
83} while (0)
84
85#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
86
87typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
88
89struct drm_intel_gem_bo_bucket {
90	drmMMListHead head;
91	unsigned long size;
92};
93
94typedef struct _drm_intel_bufmgr_gem {
95	drm_intel_bufmgr bufmgr;
96
97	int fd;
98
99	int max_relocs;
100
101	pthread_mutex_t lock;
102
103	struct drm_i915_gem_exec_object *exec_objects;
104	struct drm_i915_gem_exec_object2 *exec2_objects;
105	drm_intel_bo **exec_bos;
106	int exec_size;
107	int exec_count;
108
109	/** Array of lists of cached gem objects of power-of-two sizes */
110	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
111	int num_buckets;
112	time_t time;
113
114	drmMMListHead named;
115	drmMMListHead vma_cache;
116	int vma_count, vma_open, vma_max;
117
118	uint64_t gtt_size;
119	int available_fences;
120	int pci_device;
121	int gen;
122	unsigned int has_bsd : 1;
123	unsigned int has_blt : 1;
124	unsigned int has_relaxed_fencing : 1;
125	unsigned int has_llc : 1;
126	unsigned int has_wait_timeout : 1;
127	unsigned int bo_reuse : 1;
128	unsigned int no_exec : 1;
129	unsigned int has_vebox : 1;
130	bool fenced_relocs;
131
132	char *aub_filename;
133	FILE *aub_file;
134	uint32_t aub_offset;
135} drm_intel_bufmgr_gem;
136
137#define DRM_INTEL_RELOC_FENCE (1<<0)
138
139typedef struct _drm_intel_reloc_target_info {
140	drm_intel_bo *bo;
141	int flags;
142} drm_intel_reloc_target;
143
144struct _drm_intel_bo_gem {
145	drm_intel_bo bo;
146
147	atomic_t refcount;
148	uint32_t gem_handle;
149	const char *name;
150
151	/**
152	 * Kenel-assigned global name for this object
153         *
154         * List contains both flink named and prime fd'd objects
155	 */
156	unsigned int global_name;
157	drmMMListHead name_list;
158
159	/**
160	 * Index of the buffer within the validation list while preparing a
161	 * batchbuffer execution.
162	 */
163	int validate_index;
164
165	/**
166	 * Current tiling mode
167	 */
168	uint32_t tiling_mode;
169	uint32_t swizzle_mode;
170	unsigned long stride;
171
172	time_t free_time;
173
174	/** Array passed to the DRM containing relocation information. */
175	struct drm_i915_gem_relocation_entry *relocs;
176	/**
177	 * Array of info structs corresponding to relocs[i].target_handle etc
178	 */
179	drm_intel_reloc_target *reloc_target_info;
180	/** Number of entries in relocs */
181	int reloc_count;
182	/** Mapped address for the buffer, saved across map/unmap cycles */
183	void *mem_virtual;
184	/** GTT virtual address for the buffer, saved across map/unmap cycles */
185	void *gtt_virtual;
186	int map_count;
187	drmMMListHead vma_list;
188
189	/** BO cache list */
190	drmMMListHead head;
191
192	/**
193	 * Boolean of whether this BO and its children have been included in
194	 * the current drm_intel_bufmgr_check_aperture_space() total.
195	 */
196	bool included_in_check_aperture;
197
198	/**
199	 * Boolean of whether this buffer has been used as a relocation
200	 * target and had its size accounted for, and thus can't have any
201	 * further relocations added to it.
202	 */
203	bool used_as_reloc_target;
204
205	/**
206	 * Boolean of whether we have encountered an error whilst building the relocation tree.
207	 */
208	bool has_error;
209
210	/**
211	 * Boolean of whether this buffer can be re-used
212	 */
213	bool reusable;
214
215	/**
216	 * Boolean of whether the GPU is definitely not accessing the buffer.
217	 *
218	 * This is only valid when reusable, since non-reusable
219	 * buffers are those that have been shared wth other
220	 * processes, so we don't know their state.
221	 */
222	bool idle;
223
224	/**
225	 * Size in bytes of this buffer and its relocation descendents.
226	 *
227	 * Used to avoid costly tree walking in
228	 * drm_intel_bufmgr_check_aperture in the common case.
229	 */
230	int reloc_tree_size;
231
232	/**
233	 * Number of potential fence registers required by this buffer and its
234	 * relocations.
235	 */
236	int reloc_tree_fences;
237
238	/** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
239	bool mapped_cpu_write;
240
241	uint32_t aub_offset;
242
243	drm_intel_aub_annotation *aub_annotations;
244	unsigned aub_annotation_count;
245};
246
247static unsigned int
248drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
249
250static unsigned int
251drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
252
253static int
254drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
255			    uint32_t * swizzle_mode);
256
257static int
258drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
259				     uint32_t tiling_mode,
260				     uint32_t stride);
261
262static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
263						      time_t time);
264
265static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
266
267static void drm_intel_gem_bo_free(drm_intel_bo *bo);
268
269static unsigned long
270drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
271			   uint32_t *tiling_mode)
272{
273	unsigned long min_size, max_size;
274	unsigned long i;
275
276	if (*tiling_mode == I915_TILING_NONE)
277		return size;
278
279	/* 965+ just need multiples of page size for tiling */
280	if (bufmgr_gem->gen >= 4)
281		return ROUND_UP_TO(size, 4096);
282
283	/* Older chips need powers of two, of at least 512k or 1M */
284	if (bufmgr_gem->gen == 3) {
285		min_size = 1024*1024;
286		max_size = 128*1024*1024;
287	} else {
288		min_size = 512*1024;
289		max_size = 64*1024*1024;
290	}
291
292	if (size > max_size) {
293		*tiling_mode = I915_TILING_NONE;
294		return size;
295	}
296
297	/* Do we need to allocate every page for the fence? */
298	if (bufmgr_gem->has_relaxed_fencing)
299		return ROUND_UP_TO(size, 4096);
300
301	for (i = min_size; i < size; i <<= 1)
302		;
303
304	return i;
305}
306
307/*
308 * Round a given pitch up to the minimum required for X tiling on a
309 * given chip.  We use 512 as the minimum to allow for a later tiling
310 * change.
311 */
312static unsigned long
313drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
314			    unsigned long pitch, uint32_t *tiling_mode)
315{
316	unsigned long tile_width;
317	unsigned long i;
318
319	/* If untiled, then just align it so that we can do rendering
320	 * to it with the 3D engine.
321	 */
322	if (*tiling_mode == I915_TILING_NONE)
323		return ALIGN(pitch, 64);
324
325	if (*tiling_mode == I915_TILING_X
326			|| (IS_915(bufmgr_gem->pci_device)
327			    && *tiling_mode == I915_TILING_Y))
328		tile_width = 512;
329	else
330		tile_width = 128;
331
332	/* 965 is flexible */
333	if (bufmgr_gem->gen >= 4)
334		return ROUND_UP_TO(pitch, tile_width);
335
336	/* The older hardware has a maximum pitch of 8192 with tiled
337	 * surfaces, so fallback to untiled if it's too large.
338	 */
339	if (pitch > 8192) {
340		*tiling_mode = I915_TILING_NONE;
341		return ALIGN(pitch, 64);
342	}
343
344	/* Pre-965 needs power of two tile width */
345	for (i = tile_width; i < pitch; i <<= 1)
346		;
347
348	return i;
349}
350
351static struct drm_intel_gem_bo_bucket *
352drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
353				 unsigned long size)
354{
355	int i;
356
357	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
358		struct drm_intel_gem_bo_bucket *bucket =
359		    &bufmgr_gem->cache_bucket[i];
360		if (bucket->size >= size) {
361			return bucket;
362		}
363	}
364
365	return NULL;
366}
367
368static void
369drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
370{
371	int i, j;
372
373	for (i = 0; i < bufmgr_gem->exec_count; i++) {
374		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
375		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
376
377		if (bo_gem->relocs == NULL) {
378			DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle,
379			    bo_gem->name);
380			continue;
381		}
382
383		for (j = 0; j < bo_gem->reloc_count; j++) {
384			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
385			drm_intel_bo_gem *target_gem =
386			    (drm_intel_bo_gem *) target_bo;
387
388			DBG("%2d: %d (%s)@0x%08llx -> "
389			    "%d (%s)@0x%08lx + 0x%08x\n",
390			    i,
391			    bo_gem->gem_handle, bo_gem->name,
392			    (unsigned long long)bo_gem->relocs[j].offset,
393			    target_gem->gem_handle,
394			    target_gem->name,
395			    target_bo->offset64,
396			    bo_gem->relocs[j].delta);
397		}
398	}
399}
400
401static inline void
402drm_intel_gem_bo_reference(drm_intel_bo *bo)
403{
404	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
405
406	atomic_inc(&bo_gem->refcount);
407}
408
409/**
410 * Adds the given buffer to the list of buffers to be validated (moved into the
411 * appropriate memory type) with the next batch submission.
412 *
413 * If a buffer is validated multiple times in a batch submission, it ends up
414 * with the intersection of the memory type flags and the union of the
415 * access flags.
416 */
417static void
418drm_intel_add_validate_buffer(drm_intel_bo *bo)
419{
420	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
421	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
422	int index;
423
424	if (bo_gem->validate_index != -1)
425		return;
426
427	/* Extend the array of validation entries as necessary. */
428	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
429		int new_size = bufmgr_gem->exec_size * 2;
430
431		if (new_size == 0)
432			new_size = 5;
433
434		bufmgr_gem->exec_objects =
435		    realloc(bufmgr_gem->exec_objects,
436			    sizeof(*bufmgr_gem->exec_objects) * new_size);
437		bufmgr_gem->exec_bos =
438		    realloc(bufmgr_gem->exec_bos,
439			    sizeof(*bufmgr_gem->exec_bos) * new_size);
440		bufmgr_gem->exec_size = new_size;
441	}
442
443	index = bufmgr_gem->exec_count;
444	bo_gem->validate_index = index;
445	/* Fill in array entry */
446	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
447	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
448	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
449	bufmgr_gem->exec_objects[index].alignment = 0;
450	bufmgr_gem->exec_objects[index].offset = 0;
451	bufmgr_gem->exec_bos[index] = bo;
452	bufmgr_gem->exec_count++;
453}
454
455static void
456drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
457{
458	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
459	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
460	int index;
461
462	if (bo_gem->validate_index != -1) {
463		if (need_fence)
464			bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |=
465				EXEC_OBJECT_NEEDS_FENCE;
466		return;
467	}
468
469	/* Extend the array of validation entries as necessary. */
470	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
471		int new_size = bufmgr_gem->exec_size * 2;
472
473		if (new_size == 0)
474			new_size = 5;
475
476		bufmgr_gem->exec2_objects =
477			realloc(bufmgr_gem->exec2_objects,
478				sizeof(*bufmgr_gem->exec2_objects) * new_size);
479		bufmgr_gem->exec_bos =
480			realloc(bufmgr_gem->exec_bos,
481				sizeof(*bufmgr_gem->exec_bos) * new_size);
482		bufmgr_gem->exec_size = new_size;
483	}
484
485	index = bufmgr_gem->exec_count;
486	bo_gem->validate_index = index;
487	/* Fill in array entry */
488	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
489	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
490	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
491	bufmgr_gem->exec2_objects[index].alignment = 0;
492	bufmgr_gem->exec2_objects[index].offset = 0;
493	bufmgr_gem->exec_bos[index] = bo;
494	bufmgr_gem->exec2_objects[index].flags = 0;
495	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
496	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
497	if (need_fence) {
498		bufmgr_gem->exec2_objects[index].flags |=
499			EXEC_OBJECT_NEEDS_FENCE;
500	}
501	bufmgr_gem->exec_count++;
502}
503
504#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
505	sizeof(uint32_t))
506
507static void
508drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
509				      drm_intel_bo_gem *bo_gem)
510{
511	int size;
512
513	assert(!bo_gem->used_as_reloc_target);
514
515	/* The older chipsets are far-less flexible in terms of tiling,
516	 * and require tiled buffer to be size aligned in the aperture.
517	 * This means that in the worst possible case we will need a hole
518	 * twice as large as the object in order for it to fit into the
519	 * aperture. Optimal packing is for wimps.
520	 */
521	size = bo_gem->bo.size;
522	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
523		int min_size;
524
525		if (bufmgr_gem->has_relaxed_fencing) {
526			if (bufmgr_gem->gen == 3)
527				min_size = 1024*1024;
528			else
529				min_size = 512*1024;
530
531			while (min_size < size)
532				min_size *= 2;
533		} else
534			min_size = size;
535
536		/* Account for worst-case alignment. */
537		size = 2 * min_size;
538	}
539
540	bo_gem->reloc_tree_size = size;
541}
542
543static int
544drm_intel_setup_reloc_list(drm_intel_bo *bo)
545{
546	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
547	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
548	unsigned int max_relocs = bufmgr_gem->max_relocs;
549
550	if (bo->size / 4 < max_relocs)
551		max_relocs = bo->size / 4;
552
553	bo_gem->relocs = malloc(max_relocs *
554				sizeof(struct drm_i915_gem_relocation_entry));
555	bo_gem->reloc_target_info = malloc(max_relocs *
556					   sizeof(drm_intel_reloc_target));
557	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
558		bo_gem->has_error = true;
559
560		free (bo_gem->relocs);
561		bo_gem->relocs = NULL;
562
563		free (bo_gem->reloc_target_info);
564		bo_gem->reloc_target_info = NULL;
565
566		return 1;
567	}
568
569	return 0;
570}
571
572static int
573drm_intel_gem_bo_busy(drm_intel_bo *bo)
574{
575	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
576	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
577	struct drm_i915_gem_busy busy;
578	int ret;
579
580	if (bo_gem->reusable && bo_gem->idle)
581		return false;
582
583	VG_CLEAR(busy);
584	busy.handle = bo_gem->gem_handle;
585
586	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
587	if (ret == 0) {
588		bo_gem->idle = !busy.busy;
589		return busy.busy;
590	} else {
591		return false;
592	}
593	return (ret == 0 && busy.busy);
594}
595
596static int
597drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
598				  drm_intel_bo_gem *bo_gem, int state)
599{
600	struct drm_i915_gem_madvise madv;
601
602	VG_CLEAR(madv);
603	madv.handle = bo_gem->gem_handle;
604	madv.madv = state;
605	madv.retained = 1;
606	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
607
608	return madv.retained;
609}
610
611static int
612drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
613{
614	return drm_intel_gem_bo_madvise_internal
615		((drm_intel_bufmgr_gem *) bo->bufmgr,
616		 (drm_intel_bo_gem *) bo,
617		 madv);
618}
619
620/* drop the oldest entries that have been purged by the kernel */
621static void
622drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
623				    struct drm_intel_gem_bo_bucket *bucket)
624{
625	while (!DRMLISTEMPTY(&bucket->head)) {
626		drm_intel_bo_gem *bo_gem;
627
628		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
629				      bucket->head.next, head);
630		if (drm_intel_gem_bo_madvise_internal
631		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
632			break;
633
634		DRMLISTDEL(&bo_gem->head);
635		drm_intel_gem_bo_free(&bo_gem->bo);
636	}
637}
638
639static drm_intel_bo *
640drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
641				const char *name,
642				unsigned long size,
643				unsigned long flags,
644				uint32_t tiling_mode,
645				unsigned long stride)
646{
647	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
648	drm_intel_bo_gem *bo_gem;
649	unsigned int page_size = getpagesize();
650	int ret;
651	struct drm_intel_gem_bo_bucket *bucket;
652	bool alloc_from_cache;
653	unsigned long bo_size;
654	bool for_render = false;
655
656	if (flags & BO_ALLOC_FOR_RENDER)
657		for_render = true;
658
659	/* Round the allocated size up to a power of two number of pages. */
660	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
661
662	/* If we don't have caching at this size, don't actually round the
663	 * allocation up.
664	 */
665	if (bucket == NULL) {
666		bo_size = size;
667		if (bo_size < page_size)
668			bo_size = page_size;
669	} else {
670		bo_size = bucket->size;
671	}
672
673	pthread_mutex_lock(&bufmgr_gem->lock);
674	/* Get a buffer out of the cache if available */
675retry:
676	alloc_from_cache = false;
677	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
678		if (for_render) {
679			/* Allocate new render-target BOs from the tail (MRU)
680			 * of the list, as it will likely be hot in the GPU
681			 * cache and in the aperture for us.
682			 */
683			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
684					      bucket->head.prev, head);
685			DRMLISTDEL(&bo_gem->head);
686			alloc_from_cache = true;
687		} else {
688			/* For non-render-target BOs (where we're probably
689			 * going to map it first thing in order to fill it
690			 * with data), check if the last BO in the cache is
691			 * unbusy, and only reuse in that case. Otherwise,
692			 * allocating a new buffer is probably faster than
693			 * waiting for the GPU to finish.
694			 */
695			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
696					      bucket->head.next, head);
697			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
698				alloc_from_cache = true;
699				DRMLISTDEL(&bo_gem->head);
700			}
701		}
702
703		if (alloc_from_cache) {
704			if (!drm_intel_gem_bo_madvise_internal
705			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
706				drm_intel_gem_bo_free(&bo_gem->bo);
707				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
708								    bucket);
709				goto retry;
710			}
711
712			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
713								 tiling_mode,
714								 stride)) {
715				drm_intel_gem_bo_free(&bo_gem->bo);
716				goto retry;
717			}
718		}
719	}
720	pthread_mutex_unlock(&bufmgr_gem->lock);
721
722	if (!alloc_from_cache) {
723		struct drm_i915_gem_create create;
724
725		bo_gem = calloc(1, sizeof(*bo_gem));
726		if (!bo_gem)
727			return NULL;
728
729		bo_gem->bo.size = bo_size;
730
731		VG_CLEAR(create);
732		create.size = bo_size;
733
734		ret = drmIoctl(bufmgr_gem->fd,
735			       DRM_IOCTL_I915_GEM_CREATE,
736			       &create);
737		bo_gem->gem_handle = create.handle;
738		bo_gem->bo.handle = bo_gem->gem_handle;
739		if (ret != 0) {
740			free(bo_gem);
741			return NULL;
742		}
743		bo_gem->bo.bufmgr = bufmgr;
744
745		bo_gem->tiling_mode = I915_TILING_NONE;
746		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
747		bo_gem->stride = 0;
748
749		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
750							 tiling_mode,
751							 stride)) {
752		    drm_intel_gem_bo_free(&bo_gem->bo);
753		    return NULL;
754		}
755
756		DRMINITLISTHEAD(&bo_gem->name_list);
757		DRMINITLISTHEAD(&bo_gem->vma_list);
758	}
759
760	bo_gem->name = name;
761	atomic_set(&bo_gem->refcount, 1);
762	bo_gem->validate_index = -1;
763	bo_gem->reloc_tree_fences = 0;
764	bo_gem->used_as_reloc_target = false;
765	bo_gem->has_error = false;
766	bo_gem->reusable = true;
767	bo_gem->aub_annotations = NULL;
768	bo_gem->aub_annotation_count = 0;
769
770	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
771
772	DBG("bo_create: buf %d (%s) %ldb\n",
773	    bo_gem->gem_handle, bo_gem->name, size);
774
775	return &bo_gem->bo;
776}
777
778static drm_intel_bo *
779drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
780				  const char *name,
781				  unsigned long size,
782				  unsigned int alignment)
783{
784	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
785					       BO_ALLOC_FOR_RENDER,
786					       I915_TILING_NONE, 0);
787}
788
789static drm_intel_bo *
790drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
791		       const char *name,
792		       unsigned long size,
793		       unsigned int alignment)
794{
795	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
796					       I915_TILING_NONE, 0);
797}
798
799static drm_intel_bo *
800drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
801			     int x, int y, int cpp, uint32_t *tiling_mode,
802			     unsigned long *pitch, unsigned long flags)
803{
804	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
805	unsigned long size, stride;
806	uint32_t tiling;
807
808	do {
809		unsigned long aligned_y, height_alignment;
810
811		tiling = *tiling_mode;
812
813		/* If we're tiled, our allocations are in 8 or 32-row blocks,
814		 * so failure to align our height means that we won't allocate
815		 * enough pages.
816		 *
817		 * If we're untiled, we still have to align to 2 rows high
818		 * because the data port accesses 2x2 blocks even if the
819		 * bottom row isn't to be rendered, so failure to align means
820		 * we could walk off the end of the GTT and fault.  This is
821		 * documented on 965, and may be the case on older chipsets
822		 * too so we try to be careful.
823		 */
824		aligned_y = y;
825		height_alignment = 2;
826
827		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
828			height_alignment = 16;
829		else if (tiling == I915_TILING_X
830			|| (IS_915(bufmgr_gem->pci_device)
831			    && tiling == I915_TILING_Y))
832			height_alignment = 8;
833		else if (tiling == I915_TILING_Y)
834			height_alignment = 32;
835		aligned_y = ALIGN(y, height_alignment);
836
837		stride = x * cpp;
838		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
839		size = stride * aligned_y;
840		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
841	} while (*tiling_mode != tiling);
842	*pitch = stride;
843
844	if (tiling == I915_TILING_NONE)
845		stride = 0;
846
847	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
848					       tiling, stride);
849}
850
851/**
852 * Returns a drm_intel_bo wrapping the given buffer object handle.
853 *
854 * This can be used when one application needs to pass a buffer object
855 * to another.
856 */
857drm_intel_bo *
858drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
859				  const char *name,
860				  unsigned int handle)
861{
862	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
863	drm_intel_bo_gem *bo_gem;
864	int ret;
865	struct drm_gem_open open_arg;
866	struct drm_i915_gem_get_tiling get_tiling;
867	drmMMListHead *list;
868
869	/* At the moment most applications only have a few named bo.
870	 * For instance, in a DRI client only the render buffers passed
871	 * between X and the client are named. And since X returns the
872	 * alternating names for the front/back buffer a linear search
873	 * provides a sufficiently fast match.
874	 */
875	for (list = bufmgr_gem->named.next;
876	     list != &bufmgr_gem->named;
877	     list = list->next) {
878		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
879		if (bo_gem->global_name == handle) {
880			drm_intel_gem_bo_reference(&bo_gem->bo);
881			return &bo_gem->bo;
882		}
883	}
884
885	VG_CLEAR(open_arg);
886	open_arg.name = handle;
887	ret = drmIoctl(bufmgr_gem->fd,
888		       DRM_IOCTL_GEM_OPEN,
889		       &open_arg);
890	if (ret != 0) {
891		DBG("Couldn't reference %s handle 0x%08x: %s\n",
892		    name, handle, strerror(errno));
893		return NULL;
894	}
895        /* Now see if someone has used a prime handle to get this
896         * object from the kernel before by looking through the list
897         * again for a matching gem_handle
898         */
899	for (list = bufmgr_gem->named.next;
900	     list != &bufmgr_gem->named;
901	     list = list->next) {
902		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
903		if (bo_gem->gem_handle == open_arg.handle) {
904			drm_intel_gem_bo_reference(&bo_gem->bo);
905			return &bo_gem->bo;
906		}
907	}
908
909	bo_gem = calloc(1, sizeof(*bo_gem));
910	if (!bo_gem)
911		return NULL;
912
913	bo_gem->bo.size = open_arg.size;
914	bo_gem->bo.offset = 0;
915	bo_gem->bo.offset64 = 0;
916	bo_gem->bo.virtual = NULL;
917	bo_gem->bo.bufmgr = bufmgr;
918	bo_gem->name = name;
919	atomic_set(&bo_gem->refcount, 1);
920	bo_gem->validate_index = -1;
921	bo_gem->gem_handle = open_arg.handle;
922	bo_gem->bo.handle = open_arg.handle;
923	bo_gem->global_name = handle;
924	bo_gem->reusable = false;
925
926	VG_CLEAR(get_tiling);
927	get_tiling.handle = bo_gem->gem_handle;
928	ret = drmIoctl(bufmgr_gem->fd,
929		       DRM_IOCTL_I915_GEM_GET_TILING,
930		       &get_tiling);
931	if (ret != 0) {
932		drm_intel_gem_bo_unreference(&bo_gem->bo);
933		return NULL;
934	}
935	bo_gem->tiling_mode = get_tiling.tiling_mode;
936	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
937	/* XXX stride is unknown */
938	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
939
940	DRMINITLISTHEAD(&bo_gem->vma_list);
941	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
942	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
943
944	return &bo_gem->bo;
945}
946
947static void
948drm_intel_gem_bo_free(drm_intel_bo *bo)
949{
950	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
951	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
952	struct drm_gem_close close;
953	int ret;
954
955	DRMLISTDEL(&bo_gem->vma_list);
956	if (bo_gem->mem_virtual) {
957		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
958		munmap(bo_gem->mem_virtual, bo_gem->bo.size);
959		bufmgr_gem->vma_count--;
960	}
961	if (bo_gem->gtt_virtual) {
962		munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
963		bufmgr_gem->vma_count--;
964	}
965
966	/* Close this object */
967	VG_CLEAR(close);
968	close.handle = bo_gem->gem_handle;
969	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
970	if (ret != 0) {
971		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
972		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
973	}
974	free(bo_gem->aub_annotations);
975	free(bo);
976}
977
978static void
979drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
980{
981#if HAVE_VALGRIND
982	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
983
984	if (bo_gem->mem_virtual)
985		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
986
987	if (bo_gem->gtt_virtual)
988		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
989#endif
990}
991
992/** Frees all cached buffers significantly older than @time. */
993static void
994drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
995{
996	int i;
997
998	if (bufmgr_gem->time == time)
999		return;
1000
1001	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1002		struct drm_intel_gem_bo_bucket *bucket =
1003		    &bufmgr_gem->cache_bucket[i];
1004
1005		while (!DRMLISTEMPTY(&bucket->head)) {
1006			drm_intel_bo_gem *bo_gem;
1007
1008			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1009					      bucket->head.next, head);
1010			if (time - bo_gem->free_time <= 1)
1011				break;
1012
1013			DRMLISTDEL(&bo_gem->head);
1014
1015			drm_intel_gem_bo_free(&bo_gem->bo);
1016		}
1017	}
1018
1019	bufmgr_gem->time = time;
1020}
1021
1022static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1023{
1024	int limit;
1025
1026	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1027	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1028
1029	if (bufmgr_gem->vma_max < 0)
1030		return;
1031
1032	/* We may need to evict a few entries in order to create new mmaps */
1033	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1034	if (limit < 0)
1035		limit = 0;
1036
1037	while (bufmgr_gem->vma_count > limit) {
1038		drm_intel_bo_gem *bo_gem;
1039
1040		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1041				      bufmgr_gem->vma_cache.next,
1042				      vma_list);
1043		assert(bo_gem->map_count == 0);
1044		DRMLISTDELINIT(&bo_gem->vma_list);
1045
1046		if (bo_gem->mem_virtual) {
1047			munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1048			bo_gem->mem_virtual = NULL;
1049			bufmgr_gem->vma_count--;
1050		}
1051		if (bo_gem->gtt_virtual) {
1052			munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1053			bo_gem->gtt_virtual = NULL;
1054			bufmgr_gem->vma_count--;
1055		}
1056	}
1057}
1058
1059static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1060				       drm_intel_bo_gem *bo_gem)
1061{
1062	bufmgr_gem->vma_open--;
1063	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1064	if (bo_gem->mem_virtual)
1065		bufmgr_gem->vma_count++;
1066	if (bo_gem->gtt_virtual)
1067		bufmgr_gem->vma_count++;
1068	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1069}
1070
1071static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1072				      drm_intel_bo_gem *bo_gem)
1073{
1074	bufmgr_gem->vma_open++;
1075	DRMLISTDEL(&bo_gem->vma_list);
1076	if (bo_gem->mem_virtual)
1077		bufmgr_gem->vma_count--;
1078	if (bo_gem->gtt_virtual)
1079		bufmgr_gem->vma_count--;
1080	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1081}
1082
1083static void
1084drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1085{
1086	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1087	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1088	struct drm_intel_gem_bo_bucket *bucket;
1089	int i;
1090
1091	/* Unreference all the target buffers */
1092	for (i = 0; i < bo_gem->reloc_count; i++) {
1093		if (bo_gem->reloc_target_info[i].bo != bo) {
1094			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1095								  reloc_target_info[i].bo,
1096								  time);
1097		}
1098	}
1099	bo_gem->reloc_count = 0;
1100	bo_gem->used_as_reloc_target = false;
1101
1102	DBG("bo_unreference final: %d (%s)\n",
1103	    bo_gem->gem_handle, bo_gem->name);
1104
1105	/* release memory associated with this object */
1106	if (bo_gem->reloc_target_info) {
1107		free(bo_gem->reloc_target_info);
1108		bo_gem->reloc_target_info = NULL;
1109	}
1110	if (bo_gem->relocs) {
1111		free(bo_gem->relocs);
1112		bo_gem->relocs = NULL;
1113	}
1114
1115	/* Clear any left-over mappings */
1116	if (bo_gem->map_count) {
1117		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1118		bo_gem->map_count = 0;
1119		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1120		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1121	}
1122
1123	DRMLISTDEL(&bo_gem->name_list);
1124
1125	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1126	/* Put the buffer into our internal cache for reuse if we can. */
1127	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1128	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1129					      I915_MADV_DONTNEED)) {
1130		bo_gem->free_time = time;
1131
1132		bo_gem->name = NULL;
1133		bo_gem->validate_index = -1;
1134
1135		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1136	} else {
1137		drm_intel_gem_bo_free(bo);
1138	}
1139}
1140
1141static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1142						      time_t time)
1143{
1144	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1145
1146	assert(atomic_read(&bo_gem->refcount) > 0);
1147	if (atomic_dec_and_test(&bo_gem->refcount))
1148		drm_intel_gem_bo_unreference_final(bo, time);
1149}
1150
1151static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1152{
1153	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1154
1155	assert(atomic_read(&bo_gem->refcount) > 0);
1156	if (atomic_dec_and_test(&bo_gem->refcount)) {
1157		drm_intel_bufmgr_gem *bufmgr_gem =
1158		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1159		struct timespec time;
1160
1161		clock_gettime(CLOCK_MONOTONIC, &time);
1162
1163		pthread_mutex_lock(&bufmgr_gem->lock);
1164		drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1165		drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1166		pthread_mutex_unlock(&bufmgr_gem->lock);
1167	}
1168}
1169
1170static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1171{
1172	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1173	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1174	struct drm_i915_gem_set_domain set_domain;
1175	int ret;
1176
1177	pthread_mutex_lock(&bufmgr_gem->lock);
1178
1179	if (bo_gem->map_count++ == 0)
1180		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1181
1182	if (!bo_gem->mem_virtual) {
1183		struct drm_i915_gem_mmap mmap_arg;
1184
1185		DBG("bo_map: %d (%s), map_count=%d\n",
1186		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1187
1188		VG_CLEAR(mmap_arg);
1189		mmap_arg.handle = bo_gem->gem_handle;
1190		mmap_arg.offset = 0;
1191		mmap_arg.size = bo->size;
1192		ret = drmIoctl(bufmgr_gem->fd,
1193			       DRM_IOCTL_I915_GEM_MMAP,
1194			       &mmap_arg);
1195		if (ret != 0) {
1196			ret = -errno;
1197			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1198			    __FILE__, __LINE__, bo_gem->gem_handle,
1199			    bo_gem->name, strerror(errno));
1200			if (--bo_gem->map_count == 0)
1201				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1202			pthread_mutex_unlock(&bufmgr_gem->lock);
1203			return ret;
1204		}
1205		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1206		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1207	}
1208	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1209	    bo_gem->mem_virtual);
1210	bo->virtual = bo_gem->mem_virtual;
1211
1212	VG_CLEAR(set_domain);
1213	set_domain.handle = bo_gem->gem_handle;
1214	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1215	if (write_enable)
1216		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1217	else
1218		set_domain.write_domain = 0;
1219	ret = drmIoctl(bufmgr_gem->fd,
1220		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1221		       &set_domain);
1222	if (ret != 0) {
1223		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1224		    __FILE__, __LINE__, bo_gem->gem_handle,
1225		    strerror(errno));
1226	}
1227
1228	if (write_enable)
1229		bo_gem->mapped_cpu_write = true;
1230
1231	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1232	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1233	pthread_mutex_unlock(&bufmgr_gem->lock);
1234
1235	return 0;
1236}
1237
1238static int
1239map_gtt(drm_intel_bo *bo)
1240{
1241	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1242	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1243	int ret;
1244
1245	if (bo_gem->map_count++ == 0)
1246		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1247
1248	/* Get a mapping of the buffer if we haven't before. */
1249	if (bo_gem->gtt_virtual == NULL) {
1250		struct drm_i915_gem_mmap_gtt mmap_arg;
1251
1252		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1253		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1254
1255		VG_CLEAR(mmap_arg);
1256		mmap_arg.handle = bo_gem->gem_handle;
1257
1258		/* Get the fake offset back... */
1259		ret = drmIoctl(bufmgr_gem->fd,
1260			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1261			       &mmap_arg);
1262		if (ret != 0) {
1263			ret = -errno;
1264			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1265			    __FILE__, __LINE__,
1266			    bo_gem->gem_handle, bo_gem->name,
1267			    strerror(errno));
1268			if (--bo_gem->map_count == 0)
1269				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1270			return ret;
1271		}
1272
1273		/* and mmap it */
1274		ret = drmMap(bufmgr_gem->fd, mmap_arg.offset, bo->size,
1275		    &bo_gem->gtt_virtual);
1276		if (ret) {
1277			bo_gem->gtt_virtual = NULL;
1278			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1279			    __FILE__, __LINE__,
1280			    bo_gem->gem_handle, bo_gem->name,
1281			    strerror(errno));
1282			if (--bo_gem->map_count == 0)
1283				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1284			return ret;
1285		}
1286	}
1287
1288	bo->virtual = bo_gem->gtt_virtual;
1289
1290	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1291	    bo_gem->gtt_virtual);
1292
1293	return 0;
1294}
1295
1296int drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1297{
1298	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1299	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1300	struct drm_i915_gem_set_domain set_domain;
1301	int ret;
1302
1303	pthread_mutex_lock(&bufmgr_gem->lock);
1304
1305	ret = map_gtt(bo);
1306	if (ret) {
1307		pthread_mutex_unlock(&bufmgr_gem->lock);
1308		return ret;
1309	}
1310
1311	/* Now move it to the GTT domain so that the GPU and CPU
1312	 * caches are flushed and the GPU isn't actively using the
1313	 * buffer.
1314	 *
1315	 * The pagefault handler does this domain change for us when
1316	 * it has unbound the BO from the GTT, but it's up to us to
1317	 * tell it when we're about to use things if we had done
1318	 * rendering and it still happens to be bound to the GTT.
1319	 */
1320	VG_CLEAR(set_domain);
1321	set_domain.handle = bo_gem->gem_handle;
1322	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1323	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1324	ret = drmIoctl(bufmgr_gem->fd,
1325		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1326		       &set_domain);
1327	if (ret != 0) {
1328		DBG("%s:%d: Error setting domain %d: %s\n",
1329		    __FILE__, __LINE__, bo_gem->gem_handle,
1330		    strerror(errno));
1331	}
1332
1333	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1334	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1335	pthread_mutex_unlock(&bufmgr_gem->lock);
1336
1337	return 0;
1338}
1339
1340/**
1341 * Performs a mapping of the buffer object like the normal GTT
1342 * mapping, but avoids waiting for the GPU to be done reading from or
1343 * rendering to the buffer.
1344 *
1345 * This is used in the implementation of GL_ARB_map_buffer_range: The
1346 * user asks to create a buffer, then does a mapping, fills some
1347 * space, runs a drawing command, then asks to map it again without
1348 * synchronizing because it guarantees that it won't write over the
1349 * data that the GPU is busy using (or, more specifically, that if it
1350 * does write over the data, it acknowledges that rendering is
1351 * undefined).
1352 */
1353
1354int drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1355{
1356	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1357#ifdef HAVE_VALGRIND
1358	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1359#endif
1360	int ret;
1361
1362	/* If the CPU cache isn't coherent with the GTT, then use a
1363	 * regular synchronized mapping.  The problem is that we don't
1364	 * track where the buffer was last used on the CPU side in
1365	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1366	 * we would potentially corrupt the buffer even when the user
1367	 * does reasonable things.
1368	 */
1369	if (!bufmgr_gem->has_llc)
1370		return drm_intel_gem_bo_map_gtt(bo);
1371
1372	pthread_mutex_lock(&bufmgr_gem->lock);
1373
1374	ret = map_gtt(bo);
1375	if (ret == 0) {
1376		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1377		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1378	}
1379
1380	pthread_mutex_unlock(&bufmgr_gem->lock);
1381
1382	return ret;
1383}
1384
1385static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1386{
1387	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1388	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1389	int ret = 0;
1390
1391	if (bo == NULL)
1392		return 0;
1393
1394	pthread_mutex_lock(&bufmgr_gem->lock);
1395
1396	if (bo_gem->map_count <= 0) {
1397		DBG("attempted to unmap an unmapped bo\n");
1398		pthread_mutex_unlock(&bufmgr_gem->lock);
1399		/* Preserve the old behaviour of just treating this as a
1400		 * no-op rather than reporting the error.
1401		 */
1402		return 0;
1403	}
1404
1405	if (bo_gem->mapped_cpu_write) {
1406		struct drm_i915_gem_sw_finish sw_finish;
1407
1408		/* Cause a flush to happen if the buffer's pinned for
1409		 * scanout, so the results show up in a timely manner.
1410		 * Unlike GTT set domains, this only does work if the
1411		 * buffer should be scanout-related.
1412		 */
1413		VG_CLEAR(sw_finish);
1414		sw_finish.handle = bo_gem->gem_handle;
1415		ret = drmIoctl(bufmgr_gem->fd,
1416			       DRM_IOCTL_I915_GEM_SW_FINISH,
1417			       &sw_finish);
1418		ret = ret == -1 ? -errno : 0;
1419
1420		bo_gem->mapped_cpu_write = false;
1421	}
1422
1423	/* We need to unmap after every innovation as we cannot track
1424	 * an open vma for every bo as that will exhaasut the system
1425	 * limits and cause later failures.
1426	 */
1427	if (--bo_gem->map_count == 0) {
1428		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1429		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1430		bo->virtual = NULL;
1431	}
1432	pthread_mutex_unlock(&bufmgr_gem->lock);
1433
1434	return ret;
1435}
1436
1437int drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1438{
1439	return drm_intel_gem_bo_unmap(bo);
1440}
1441
1442static int
1443drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1444			 unsigned long size, const void *data)
1445{
1446	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1447	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1448	struct drm_i915_gem_pwrite pwrite;
1449	int ret;
1450
1451	VG_CLEAR(pwrite);
1452	pwrite.handle = bo_gem->gem_handle;
1453	pwrite.offset = offset;
1454	pwrite.size = size;
1455	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1456	ret = drmIoctl(bufmgr_gem->fd,
1457		       DRM_IOCTL_I915_GEM_PWRITE,
1458		       &pwrite);
1459	if (ret != 0) {
1460		ret = -errno;
1461		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1462		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1463		    (int)size, strerror(errno));
1464	}
1465
1466	return ret;
1467}
1468
1469static int
1470drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1471{
1472	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1473	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1474	int ret;
1475
1476	VG_CLEAR(get_pipe_from_crtc_id);
1477	get_pipe_from_crtc_id.crtc_id = crtc_id;
1478	ret = drmIoctl(bufmgr_gem->fd,
1479		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1480		       &get_pipe_from_crtc_id);
1481	if (ret != 0) {
1482		/* We return -1 here to signal that we don't
1483		 * know which pipe is associated with this crtc.
1484		 * This lets the caller know that this information
1485		 * isn't available; using the wrong pipe for
1486		 * vblank waiting can cause the chipset to lock up
1487		 */
1488		return -1;
1489	}
1490
1491	return get_pipe_from_crtc_id.pipe;
1492}
1493
1494static int
1495drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1496			     unsigned long size, void *data)
1497{
1498	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1499	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1500	struct drm_i915_gem_pread pread;
1501	int ret;
1502
1503	VG_CLEAR(pread);
1504	pread.handle = bo_gem->gem_handle;
1505	pread.offset = offset;
1506	pread.size = size;
1507	pread.data_ptr = (uint64_t) (uintptr_t) data;
1508	ret = drmIoctl(bufmgr_gem->fd,
1509		       DRM_IOCTL_I915_GEM_PREAD,
1510		       &pread);
1511	if (ret != 0) {
1512		ret = -errno;
1513		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1514		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1515		    (int)size, strerror(errno));
1516	}
1517
1518	return ret;
1519}
1520
1521/** Waits for all GPU rendering with the object to have completed. */
1522static void
1523drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1524{
1525	drm_intel_gem_bo_start_gtt_access(bo, 1);
1526}
1527
1528/**
1529 * Waits on a BO for the given amount of time.
1530 *
1531 * @bo: buffer object to wait for
1532 * @timeout_ns: amount of time to wait in nanoseconds.
1533 *   If value is less than 0, an infinite wait will occur.
1534 *
1535 * Returns 0 if the wait was successful ie. the last batch referencing the
1536 * object has completed within the allotted time. Otherwise some negative return
1537 * value describes the error. Of particular interest is -ETIME when the wait has
1538 * failed to yield the desired result.
1539 *
1540 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1541 * the operation to give up after a certain amount of time. Another subtle
1542 * difference is the internal locking semantics are different (this variant does
1543 * not hold the lock for the duration of the wait). This makes the wait subject
1544 * to a larger userspace race window.
1545 *
1546 * The implementation shall wait until the object is no longer actively
1547 * referenced within a batch buffer at the time of the call. The wait will
1548 * not guarantee that the buffer is re-issued via another thread, or an flinked
1549 * handle. Userspace must make sure this race does not occur if such precision
1550 * is important.
1551 */
1552int drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1553{
1554	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1555	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1556	struct drm_i915_gem_wait wait;
1557	int ret;
1558
1559	if (!bufmgr_gem->has_wait_timeout) {
1560		DBG("%s:%d: Timed wait is not supported. Falling back to "
1561		    "infinite wait\n", __FILE__, __LINE__);
1562		if (timeout_ns) {
1563			drm_intel_gem_bo_wait_rendering(bo);
1564			return 0;
1565		} else {
1566			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1567		}
1568	}
1569
1570	wait.bo_handle = bo_gem->gem_handle;
1571	wait.timeout_ns = timeout_ns;
1572	wait.flags = 0;
1573	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1574	if (ret == -1)
1575		return -errno;
1576
1577	return ret;
1578}
1579
1580/**
1581 * Sets the object to the GTT read and possibly write domain, used by the X
1582 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1583 *
1584 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1585 * can do tiled pixmaps this way.
1586 */
1587void
1588drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1589{
1590	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1591	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1592	struct drm_i915_gem_set_domain set_domain;
1593	int ret;
1594
1595	VG_CLEAR(set_domain);
1596	set_domain.handle = bo_gem->gem_handle;
1597	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1598	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1599	ret = drmIoctl(bufmgr_gem->fd,
1600		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1601		       &set_domain);
1602	if (ret != 0) {
1603		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1604		    __FILE__, __LINE__, bo_gem->gem_handle,
1605		    set_domain.read_domains, set_domain.write_domain,
1606		    strerror(errno));
1607	}
1608}
1609
1610static void
1611drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1612{
1613	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1614	int i;
1615
1616	free(bufmgr_gem->exec2_objects);
1617	free(bufmgr_gem->exec_objects);
1618	free(bufmgr_gem->exec_bos);
1619	free(bufmgr_gem->aub_filename);
1620
1621	pthread_mutex_destroy(&bufmgr_gem->lock);
1622
1623	/* Free any cached buffer objects we were going to reuse */
1624	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1625		struct drm_intel_gem_bo_bucket *bucket =
1626		    &bufmgr_gem->cache_bucket[i];
1627		drm_intel_bo_gem *bo_gem;
1628
1629		while (!DRMLISTEMPTY(&bucket->head)) {
1630			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1631					      bucket->head.next, head);
1632			DRMLISTDEL(&bo_gem->head);
1633
1634			drm_intel_gem_bo_free(&bo_gem->bo);
1635		}
1636	}
1637
1638	free(bufmgr);
1639}
1640
1641/**
1642 * Adds the target buffer to the validation list and adds the relocation
1643 * to the reloc_buffer's relocation list.
1644 *
1645 * The relocation entry at the given offset must already contain the
1646 * precomputed relocation value, because the kernel will optimize out
1647 * the relocation entry write when the buffer hasn't moved from the
1648 * last known offset in target_bo.
1649 */
1650static int
1651do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1652		 drm_intel_bo *target_bo, uint32_t target_offset,
1653		 uint32_t read_domains, uint32_t write_domain,
1654		 bool need_fence)
1655{
1656	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1657	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1658	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1659	bool fenced_command;
1660
1661	if (bo_gem->has_error)
1662		return -ENOMEM;
1663
1664	if (target_bo_gem->has_error) {
1665		bo_gem->has_error = true;
1666		return -ENOMEM;
1667	}
1668
1669	/* We never use HW fences for rendering on 965+ */
1670	if (bufmgr_gem->gen >= 4)
1671		need_fence = false;
1672
1673	fenced_command = need_fence;
1674	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1675		need_fence = false;
1676
1677	/* Create a new relocation list if needed */
1678	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1679		return -ENOMEM;
1680
1681	/* Check overflow */
1682	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1683
1684	/* Check args */
1685	assert(offset <= bo->size - 4);
1686	assert((write_domain & (write_domain - 1)) == 0);
1687
1688	/* Make sure that we're not adding a reloc to something whose size has
1689	 * already been accounted for.
1690	 */
1691	assert(!bo_gem->used_as_reloc_target);
1692	if (target_bo_gem != bo_gem) {
1693		target_bo_gem->used_as_reloc_target = true;
1694		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1695	}
1696	/* An object needing a fence is a tiled buffer, so it won't have
1697	 * relocs to other buffers.
1698	 */
1699	if (need_fence)
1700		target_bo_gem->reloc_tree_fences = 1;
1701	bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1702
1703	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1704	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
1705	bo_gem->relocs[bo_gem->reloc_count].target_handle =
1706	    target_bo_gem->gem_handle;
1707	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
1708	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
1709	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
1710
1711	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1712	if (target_bo != bo)
1713		drm_intel_gem_bo_reference(target_bo);
1714	if (fenced_command)
1715		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1716			DRM_INTEL_RELOC_FENCE;
1717	else
1718		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1719
1720	bo_gem->reloc_count++;
1721
1722	return 0;
1723}
1724
1725static int
1726drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1727			    drm_intel_bo *target_bo, uint32_t target_offset,
1728			    uint32_t read_domains, uint32_t write_domain)
1729{
1730	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
1731
1732	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1733				read_domains, write_domain,
1734				!bufmgr_gem->fenced_relocs);
1735}
1736
1737static int
1738drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
1739				  drm_intel_bo *target_bo,
1740				  uint32_t target_offset,
1741				  uint32_t read_domains, uint32_t write_domain)
1742{
1743	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1744				read_domains, write_domain, true);
1745}
1746
1747int
1748drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
1749{
1750	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1751
1752	return bo_gem->reloc_count;
1753}
1754
1755/**
1756 * Removes existing relocation entries in the BO after "start".
1757 *
1758 * This allows a user to avoid a two-step process for state setup with
1759 * counting up all the buffer objects and doing a
1760 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
1761 * relocations for the state setup.  Instead, save the state of the
1762 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
1763 * state, and then check if it still fits in the aperture.
1764 *
1765 * Any further drm_intel_bufmgr_check_aperture_space() queries
1766 * involving this buffer in the tree are undefined after this call.
1767 */
1768void
1769drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
1770{
1771	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1772	int i;
1773	struct timespec time;
1774
1775	clock_gettime(CLOCK_MONOTONIC, &time);
1776
1777	assert(bo_gem->reloc_count >= start);
1778	/* Unreference the cleared target buffers */
1779	for (i = start; i < bo_gem->reloc_count; i++) {
1780		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
1781		if (&target_bo_gem->bo != bo) {
1782			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
1783			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
1784								  time.tv_sec);
1785		}
1786	}
1787	bo_gem->reloc_count = start;
1788}
1789
1790/**
1791 * Walk the tree of relocations rooted at BO and accumulate the list of
1792 * validations to be performed and update the relocation buffers with
1793 * index values into the validation list.
1794 */
1795static void
1796drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
1797{
1798	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1799	int i;
1800
1801	if (bo_gem->relocs == NULL)
1802		return;
1803
1804	for (i = 0; i < bo_gem->reloc_count; i++) {
1805		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1806
1807		if (target_bo == bo)
1808			continue;
1809
1810		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1811
1812		/* Continue walking the tree depth-first. */
1813		drm_intel_gem_bo_process_reloc(target_bo);
1814
1815		/* Add the target to the validate list */
1816		drm_intel_add_validate_buffer(target_bo);
1817	}
1818}
1819
1820static void
1821drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
1822{
1823	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
1824	int i;
1825
1826	if (bo_gem->relocs == NULL)
1827		return;
1828
1829	for (i = 0; i < bo_gem->reloc_count; i++) {
1830		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1831		int need_fence;
1832
1833		if (target_bo == bo)
1834			continue;
1835
1836		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1837
1838		/* Continue walking the tree depth-first. */
1839		drm_intel_gem_bo_process_reloc2(target_bo);
1840
1841		need_fence = (bo_gem->reloc_target_info[i].flags &
1842			      DRM_INTEL_RELOC_FENCE);
1843
1844		/* Add the target to the validate list */
1845		drm_intel_add_validate_buffer2(target_bo, need_fence);
1846	}
1847}
1848
1849
1850static void
1851drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
1852{
1853	int i;
1854
1855	for (i = 0; i < bufmgr_gem->exec_count; i++) {
1856		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
1857		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1858
1859		/* Update the buffer offset */
1860		if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
1861			DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
1862			    bo_gem->gem_handle, bo_gem->name, bo->offset64,
1863			    (unsigned long long)bufmgr_gem->exec_objects[i].
1864			    offset);
1865			bo->offset64 = bufmgr_gem->exec_objects[i].offset;
1866			bo->offset = bufmgr_gem->exec_objects[i].offset;
1867		}
1868	}
1869}
1870
1871static void
1872drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
1873{
1874	int i;
1875
1876	for (i = 0; i < bufmgr_gem->exec_count; i++) {
1877		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
1878		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
1879
1880		/* Update the buffer offset */
1881		if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
1882			DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
1883			    bo_gem->gem_handle, bo_gem->name, bo->offset64,
1884			    (unsigned long long)bufmgr_gem->exec2_objects[i].offset);
1885			bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
1886			bo->offset = bufmgr_gem->exec2_objects[i].offset;
1887		}
1888	}
1889}
1890
1891static void
1892aub_out(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t data)
1893{
1894	fwrite(&data, 1, 4, bufmgr_gem->aub_file);
1895}
1896
1897static void
1898aub_out_data(drm_intel_bufmgr_gem *bufmgr_gem, void *data, size_t size)
1899{
1900	fwrite(data, 1, size, bufmgr_gem->aub_file);
1901}
1902
1903static void
1904aub_write_bo_data(drm_intel_bo *bo, uint32_t offset, uint32_t size)
1905{
1906	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1907	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1908	uint32_t *data;
1909	unsigned int i;
1910
1911	data = malloc(bo->size);
1912	drm_intel_bo_get_subdata(bo, offset, size, data);
1913
1914	/* Easy mode: write out bo with no relocations */
1915	if (!bo_gem->reloc_count) {
1916		aub_out_data(bufmgr_gem, data, size);
1917		free(data);
1918		return;
1919	}
1920
1921	/* Otherwise, handle the relocations while writing. */
1922	for (i = 0; i < size / 4; i++) {
1923		int r;
1924		for (r = 0; r < bo_gem->reloc_count; r++) {
1925			struct drm_i915_gem_relocation_entry *reloc;
1926			drm_intel_reloc_target *info;
1927
1928			reloc = &bo_gem->relocs[r];
1929			info = &bo_gem->reloc_target_info[r];
1930
1931			if (reloc->offset == offset + i * 4) {
1932				drm_intel_bo_gem *target_gem;
1933				uint32_t val;
1934
1935				target_gem = (drm_intel_bo_gem *)info->bo;
1936
1937				val = reloc->delta;
1938				val += target_gem->aub_offset;
1939
1940				aub_out(bufmgr_gem, val);
1941				data[i] = val;
1942				break;
1943			}
1944		}
1945		if (r == bo_gem->reloc_count) {
1946			/* no relocation, just the data */
1947			aub_out(bufmgr_gem, data[i]);
1948		}
1949	}
1950
1951	free(data);
1952}
1953
1954static void
1955aub_bo_get_address(drm_intel_bo *bo)
1956{
1957	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1958	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1959
1960	/* Give the object a graphics address in the AUB file.  We
1961	 * don't just use the GEM object address because we do AUB
1962	 * dumping before execution -- we want to successfully log
1963	 * when the hardware might hang, and we might even want to aub
1964	 * capture for a driver trying to execute on a different
1965	 * generation of hardware by disabling the actual kernel exec
1966	 * call.
1967	 */
1968	bo_gem->aub_offset = bufmgr_gem->aub_offset;
1969	bufmgr_gem->aub_offset += bo->size;
1970	/* XXX: Handle aperture overflow. */
1971	assert(bufmgr_gem->aub_offset < 256 * 1024 * 1024);
1972}
1973
1974static void
1975aub_write_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
1976		      uint32_t offset, uint32_t size)
1977{
1978	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1979	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1980
1981	aub_out(bufmgr_gem,
1982		CMD_AUB_TRACE_HEADER_BLOCK |
1983		((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
1984	aub_out(bufmgr_gem,
1985		AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE);
1986	aub_out(bufmgr_gem, subtype);
1987	aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
1988	aub_out(bufmgr_gem, size);
1989	if (bufmgr_gem->gen >= 8)
1990		aub_out(bufmgr_gem, 0);
1991	aub_write_bo_data(bo, offset, size);
1992}
1993
1994/**
1995 * Break up large objects into multiple writes.  Otherwise a 128kb VBO
1996 * would overflow the 16 bits of size field in the packet header and
1997 * everything goes badly after that.
1998 */
1999static void
2000aub_write_large_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
2001			    uint32_t offset, uint32_t size)
2002{
2003	uint32_t block_size;
2004	uint32_t sub_offset;
2005
2006	for (sub_offset = 0; sub_offset < size; sub_offset += block_size) {
2007		block_size = size - sub_offset;
2008
2009		if (block_size > 8 * 4096)
2010			block_size = 8 * 4096;
2011
2012		aub_write_trace_block(bo, type, subtype, offset + sub_offset,
2013				      block_size);
2014	}
2015}
2016
2017static void
2018aub_write_bo(drm_intel_bo *bo)
2019{
2020	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2021	uint32_t offset = 0;
2022	unsigned i;
2023
2024	aub_bo_get_address(bo);
2025
2026	/* Write out each annotated section separately. */
2027	for (i = 0; i < bo_gem->aub_annotation_count; ++i) {
2028		drm_intel_aub_annotation *annotation =
2029			&bo_gem->aub_annotations[i];
2030		uint32_t ending_offset = annotation->ending_offset;
2031		if (ending_offset > bo->size)
2032			ending_offset = bo->size;
2033		if (ending_offset > offset) {
2034			aub_write_large_trace_block(bo, annotation->type,
2035						    annotation->subtype,
2036						    offset,
2037						    ending_offset - offset);
2038			offset = ending_offset;
2039		}
2040	}
2041
2042	/* Write out any remaining unannotated data */
2043	if (offset < bo->size) {
2044		aub_write_large_trace_block(bo, AUB_TRACE_TYPE_NOTYPE, 0,
2045					    offset, bo->size - offset);
2046	}
2047}
2048
2049/*
2050 * Make a ringbuffer on fly and dump it
2051 */
2052static void
2053aub_build_dump_ringbuffer(drm_intel_bufmgr_gem *bufmgr_gem,
2054			  uint32_t batch_buffer, int ring_flag)
2055{
2056	uint32_t ringbuffer[4096];
2057	int ring = AUB_TRACE_TYPE_RING_PRB0; /* The default ring */
2058	int ring_count = 0;
2059
2060	if (ring_flag == I915_EXEC_BSD)
2061		ring = AUB_TRACE_TYPE_RING_PRB1;
2062	else if (ring_flag == I915_EXEC_BLT)
2063		ring = AUB_TRACE_TYPE_RING_PRB2;
2064
2065	/* Make a ring buffer to execute our batchbuffer. */
2066	memset(ringbuffer, 0, sizeof(ringbuffer));
2067	if (bufmgr_gem->gen >= 8) {
2068		ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START | (3 - 2);
2069		ringbuffer[ring_count++] = batch_buffer;
2070		ringbuffer[ring_count++] = 0;
2071	} else {
2072		ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START;
2073		ringbuffer[ring_count++] = batch_buffer;
2074	}
2075
2076	/* Write out the ring.  This appears to trigger execution of
2077	 * the ring in the simulator.
2078	 */
2079	aub_out(bufmgr_gem,
2080		CMD_AUB_TRACE_HEADER_BLOCK |
2081		((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2082	aub_out(bufmgr_gem,
2083		AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
2084	aub_out(bufmgr_gem, 0); /* general/surface subtype */
2085	aub_out(bufmgr_gem, bufmgr_gem->aub_offset);
2086	aub_out(bufmgr_gem, ring_count * 4);
2087	if (bufmgr_gem->gen >= 8)
2088		aub_out(bufmgr_gem, 0);
2089
2090	/* FIXME: Need some flush operations here? */
2091	aub_out_data(bufmgr_gem, ringbuffer, ring_count * 4);
2092
2093	/* Update offset pointer */
2094	bufmgr_gem->aub_offset += 4096;
2095}
2096
2097void
2098drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2099			      int x1, int y1, int width, int height,
2100			      enum aub_dump_bmp_format format,
2101			      int pitch, int offset)
2102{
2103	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2104	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2105	uint32_t cpp;
2106
2107	switch (format) {
2108	case AUB_DUMP_BMP_FORMAT_8BIT:
2109		cpp = 1;
2110		break;
2111	case AUB_DUMP_BMP_FORMAT_ARGB_4444:
2112		cpp = 2;
2113		break;
2114	case AUB_DUMP_BMP_FORMAT_ARGB_0888:
2115	case AUB_DUMP_BMP_FORMAT_ARGB_8888:
2116		cpp = 4;
2117		break;
2118	default:
2119		printf("Unknown AUB dump format %d\n", format);
2120		return;
2121	}
2122
2123	if (!bufmgr_gem->aub_file)
2124		return;
2125
2126	aub_out(bufmgr_gem, CMD_AUB_DUMP_BMP | 4);
2127	aub_out(bufmgr_gem, (y1 << 16) | x1);
2128	aub_out(bufmgr_gem,
2129		(format << 24) |
2130		(cpp << 19) |
2131		pitch / 4);
2132	aub_out(bufmgr_gem, (height << 16) | width);
2133	aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2134	aub_out(bufmgr_gem,
2135		((bo_gem->tiling_mode != I915_TILING_NONE) ? (1 << 2) : 0) |
2136		((bo_gem->tiling_mode == I915_TILING_Y) ? (1 << 3) : 0));
2137}
2138
2139static void
2140aub_exec(drm_intel_bo *bo, int ring_flag, int used)
2141{
2142	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2143	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2144	int i;
2145	bool batch_buffer_needs_annotations;
2146
2147	if (!bufmgr_gem->aub_file)
2148		return;
2149
2150	/* If batch buffer is not annotated, annotate it the best we
2151	 * can.
2152	 */
2153	batch_buffer_needs_annotations = bo_gem->aub_annotation_count == 0;
2154	if (batch_buffer_needs_annotations) {
2155		drm_intel_aub_annotation annotations[2] = {
2156			{ AUB_TRACE_TYPE_BATCH, 0, used },
2157			{ AUB_TRACE_TYPE_NOTYPE, 0, bo->size }
2158		};
2159		drm_intel_bufmgr_gem_set_aub_annotations(bo, annotations, 2);
2160	}
2161
2162	/* Write out all buffers to AUB memory */
2163	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2164		aub_write_bo(bufmgr_gem->exec_bos[i]);
2165	}
2166
2167	/* Remove any annotations we added */
2168	if (batch_buffer_needs_annotations)
2169		drm_intel_bufmgr_gem_set_aub_annotations(bo, NULL, 0);
2170
2171	/* Dump ring buffer */
2172	aub_build_dump_ringbuffer(bufmgr_gem, bo_gem->aub_offset, ring_flag);
2173
2174	fflush(bufmgr_gem->aub_file);
2175
2176	/*
2177	 * One frame has been dumped. So reset the aub_offset for the next frame.
2178	 *
2179	 * FIXME: Can we do this?
2180	 */
2181	bufmgr_gem->aub_offset = 0x10000;
2182}
2183
2184static int
2185drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2186		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2187{
2188	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2189	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2190	struct drm_i915_gem_execbuffer execbuf;
2191	int ret, i;
2192
2193	if (bo_gem->has_error)
2194		return -ENOMEM;
2195
2196	pthread_mutex_lock(&bufmgr_gem->lock);
2197	/* Update indices and set up the validate list. */
2198	drm_intel_gem_bo_process_reloc(bo);
2199
2200	/* Add the batch buffer to the validation list.  There are no
2201	 * relocations pointing to it.
2202	 */
2203	drm_intel_add_validate_buffer(bo);
2204
2205	VG_CLEAR(execbuf);
2206	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2207	execbuf.buffer_count = bufmgr_gem->exec_count;
2208	execbuf.batch_start_offset = 0;
2209	execbuf.batch_len = used;
2210	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2211	execbuf.num_cliprects = num_cliprects;
2212	execbuf.DR1 = 0;
2213	execbuf.DR4 = DR4;
2214
2215	ret = drmIoctl(bufmgr_gem->fd,
2216		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2217		       &execbuf);
2218	if (ret != 0) {
2219		ret = -errno;
2220		if (errno == ENOSPC) {
2221			DBG("Execbuffer fails to pin. "
2222			    "Estimate: %u. Actual: %u. Available: %u\n",
2223			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2224							       bufmgr_gem->
2225							       exec_count),
2226			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2227							      bufmgr_gem->
2228							      exec_count),
2229			    (unsigned int)bufmgr_gem->gtt_size);
2230		}
2231	}
2232	drm_intel_update_buffer_offsets(bufmgr_gem);
2233
2234	if (bufmgr_gem->bufmgr.debug)
2235		drm_intel_gem_dump_validation_list(bufmgr_gem);
2236
2237	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2238		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2239		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2240
2241		bo_gem->idle = false;
2242
2243		/* Disconnect the buffer from the validate list */
2244		bo_gem->validate_index = -1;
2245		bufmgr_gem->exec_bos[i] = NULL;
2246	}
2247	bufmgr_gem->exec_count = 0;
2248	pthread_mutex_unlock(&bufmgr_gem->lock);
2249
2250	return ret;
2251}
2252
2253static int
2254do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2255	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2256	 unsigned int flags)
2257{
2258	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2259	struct drm_i915_gem_execbuffer2 execbuf;
2260	int ret = 0;
2261	int i;
2262
2263	switch (flags & 0x7) {
2264	default:
2265		return -EINVAL;
2266	case I915_EXEC_BLT:
2267		if (!bufmgr_gem->has_blt)
2268			return -EINVAL;
2269		break;
2270	case I915_EXEC_BSD:
2271		if (!bufmgr_gem->has_bsd)
2272			return -EINVAL;
2273		break;
2274	case I915_EXEC_VEBOX:
2275		if (!bufmgr_gem->has_vebox)
2276			return -EINVAL;
2277		break;
2278	case I915_EXEC_RENDER:
2279	case I915_EXEC_DEFAULT:
2280		break;
2281	}
2282
2283	pthread_mutex_lock(&bufmgr_gem->lock);
2284	/* Update indices and set up the validate list. */
2285	drm_intel_gem_bo_process_reloc2(bo);
2286
2287	/* Add the batch buffer to the validation list.  There are no relocations
2288	 * pointing to it.
2289	 */
2290	drm_intel_add_validate_buffer2(bo, 0);
2291
2292	VG_CLEAR(execbuf);
2293	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2294	execbuf.buffer_count = bufmgr_gem->exec_count;
2295	execbuf.batch_start_offset = 0;
2296	execbuf.batch_len = used;
2297	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2298	execbuf.num_cliprects = num_cliprects;
2299	execbuf.DR1 = 0;
2300	execbuf.DR4 = DR4;
2301	execbuf.flags = flags;
2302	if (ctx == NULL)
2303		i915_execbuffer2_set_context_id(execbuf, 0);
2304	else
2305		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2306	execbuf.rsvd2 = 0;
2307
2308	aub_exec(bo, flags, used);
2309
2310	if (bufmgr_gem->no_exec)
2311		goto skip_execution;
2312
2313	ret = drmIoctl(bufmgr_gem->fd,
2314		       DRM_IOCTL_I915_GEM_EXECBUFFER2,
2315		       &execbuf);
2316	if (ret != 0) {
2317		ret = -errno;
2318		if (ret == -ENOSPC) {
2319			DBG("Execbuffer fails to pin. "
2320			    "Estimate: %u. Actual: %u. Available: %u\n",
2321			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2322							       bufmgr_gem->exec_count),
2323			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2324							      bufmgr_gem->exec_count),
2325			    (unsigned int) bufmgr_gem->gtt_size);
2326		}
2327	}
2328	drm_intel_update_buffer_offsets2(bufmgr_gem);
2329
2330skip_execution:
2331	if (bufmgr_gem->bufmgr.debug)
2332		drm_intel_gem_dump_validation_list(bufmgr_gem);
2333
2334	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2335		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2336		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2337
2338		bo_gem->idle = false;
2339
2340		/* Disconnect the buffer from the validate list */
2341		bo_gem->validate_index = -1;
2342		bufmgr_gem->exec_bos[i] = NULL;
2343	}
2344	bufmgr_gem->exec_count = 0;
2345	pthread_mutex_unlock(&bufmgr_gem->lock);
2346
2347	return ret;
2348}
2349
2350static int
2351drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2352		       drm_clip_rect_t *cliprects, int num_cliprects,
2353		       int DR4)
2354{
2355	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2356			I915_EXEC_RENDER);
2357}
2358
2359static int
2360drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2361			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2362			unsigned int flags)
2363{
2364	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2365			flags);
2366}
2367
2368int
2369drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2370			      int used, unsigned int flags)
2371{
2372	return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2373}
2374
2375static int
2376drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2377{
2378	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2379	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2380	struct drm_i915_gem_pin pin;
2381	int ret;
2382
2383	VG_CLEAR(pin);
2384	pin.handle = bo_gem->gem_handle;
2385	pin.alignment = alignment;
2386
2387	ret = drmIoctl(bufmgr_gem->fd,
2388		       DRM_IOCTL_I915_GEM_PIN,
2389		       &pin);
2390	if (ret != 0)
2391		return -errno;
2392
2393	bo->offset64 = pin.offset;
2394	bo->offset = pin.offset;
2395	return 0;
2396}
2397
2398static int
2399drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2400{
2401	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2402	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2403	struct drm_i915_gem_unpin unpin;
2404	int ret;
2405
2406	VG_CLEAR(unpin);
2407	unpin.handle = bo_gem->gem_handle;
2408
2409	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2410	if (ret != 0)
2411		return -errno;
2412
2413	return 0;
2414}
2415
2416static int
2417drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2418				     uint32_t tiling_mode,
2419				     uint32_t stride)
2420{
2421	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2422	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2423	struct drm_i915_gem_set_tiling set_tiling;
2424	int ret;
2425
2426	if (bo_gem->global_name == 0 &&
2427	    tiling_mode == bo_gem->tiling_mode &&
2428	    stride == bo_gem->stride)
2429		return 0;
2430
2431	memset(&set_tiling, 0, sizeof(set_tiling));
2432	do {
2433		/* set_tiling is slightly broken and overwrites the
2434		 * input on the error path, so we have to open code
2435		 * rmIoctl.
2436		 */
2437		set_tiling.handle = bo_gem->gem_handle;
2438		set_tiling.tiling_mode = tiling_mode;
2439		set_tiling.stride = stride;
2440
2441		ret = ioctl(bufmgr_gem->fd,
2442			    DRM_IOCTL_I915_GEM_SET_TILING,
2443			    &set_tiling);
2444	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2445	if (ret == -1)
2446		return -errno;
2447
2448	bo_gem->tiling_mode = set_tiling.tiling_mode;
2449	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2450	bo_gem->stride = set_tiling.stride;
2451	return 0;
2452}
2453
2454static int
2455drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2456			    uint32_t stride)
2457{
2458	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2459	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2460	int ret;
2461
2462	/* Linear buffers have no stride. By ensuring that we only ever use
2463	 * stride 0 with linear buffers, we simplify our code.
2464	 */
2465	if (*tiling_mode == I915_TILING_NONE)
2466		stride = 0;
2467
2468	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2469	if (ret == 0)
2470		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2471
2472	*tiling_mode = bo_gem->tiling_mode;
2473	return ret;
2474}
2475
2476static int
2477drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2478			    uint32_t * swizzle_mode)
2479{
2480	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2481
2482	*tiling_mode = bo_gem->tiling_mode;
2483	*swizzle_mode = bo_gem->swizzle_mode;
2484	return 0;
2485}
2486
2487drm_intel_bo *
2488drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2489{
2490	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2491	int ret;
2492	uint32_t handle;
2493	drm_intel_bo_gem *bo_gem;
2494	struct drm_i915_gem_get_tiling get_tiling;
2495	drmMMListHead *list;
2496
2497	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2498
2499	/*
2500	 * See if the kernel has already returned this buffer to us. Just as
2501	 * for named buffers, we must not create two bo's pointing at the same
2502	 * kernel object
2503	 */
2504	for (list = bufmgr_gem->named.next;
2505	     list != &bufmgr_gem->named;
2506	     list = list->next) {
2507		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
2508		if (bo_gem->gem_handle == handle) {
2509			drm_intel_gem_bo_reference(&bo_gem->bo);
2510			return &bo_gem->bo;
2511		}
2512	}
2513
2514	if (ret) {
2515	  fprintf(stderr,"ret is %d %d\n", ret, errno);
2516		return NULL;
2517	}
2518
2519	bo_gem = calloc(1, sizeof(*bo_gem));
2520	if (!bo_gem)
2521		return NULL;
2522
2523	/* Determine size of bo.  The fd-to-handle ioctl really should
2524	 * return the size, but it doesn't.  If we have kernel 3.12 or
2525	 * later, we can lseek on the prime fd to get the size.  Older
2526	 * kernels will just fail, in which case we fall back to the
2527	 * provided (estimated or guess size). */
2528	ret = lseek(prime_fd, 0, SEEK_END);
2529	if (ret != -1)
2530		bo_gem->bo.size = ret;
2531	else
2532		bo_gem->bo.size = size;
2533
2534	bo_gem->bo.handle = handle;
2535	bo_gem->bo.bufmgr = bufmgr;
2536
2537	bo_gem->gem_handle = handle;
2538
2539	atomic_set(&bo_gem->refcount, 1);
2540
2541	bo_gem->name = "prime";
2542	bo_gem->validate_index = -1;
2543	bo_gem->reloc_tree_fences = 0;
2544	bo_gem->used_as_reloc_target = false;
2545	bo_gem->has_error = false;
2546	bo_gem->reusable = false;
2547
2548	DRMINITLISTHEAD(&bo_gem->vma_list);
2549	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2550
2551	VG_CLEAR(get_tiling);
2552	get_tiling.handle = bo_gem->gem_handle;
2553	ret = drmIoctl(bufmgr_gem->fd,
2554		       DRM_IOCTL_I915_GEM_GET_TILING,
2555		       &get_tiling);
2556	if (ret != 0) {
2557		drm_intel_gem_bo_unreference(&bo_gem->bo);
2558		return NULL;
2559	}
2560	bo_gem->tiling_mode = get_tiling.tiling_mode;
2561	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2562	/* XXX stride is unknown */
2563	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2564
2565	return &bo_gem->bo;
2566}
2567
2568int
2569drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2570{
2571	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2572	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2573
2574        if (DRMLISTEMPTY(&bo_gem->name_list))
2575                DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2576
2577	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2578			       DRM_CLOEXEC, prime_fd) != 0)
2579		return -errno;
2580
2581	bo_gem->reusable = false;
2582
2583	return 0;
2584}
2585
2586static int
2587drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2588{
2589	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2590	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2591	int ret;
2592
2593	if (!bo_gem->global_name) {
2594		struct drm_gem_flink flink;
2595
2596		VG_CLEAR(flink);
2597		flink.handle = bo_gem->gem_handle;
2598
2599		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2600		if (ret != 0)
2601			return -errno;
2602
2603		bo_gem->global_name = flink.name;
2604		bo_gem->reusable = false;
2605
2606                if (DRMLISTEMPTY(&bo_gem->name_list))
2607                        DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2608	}
2609
2610	*name = bo_gem->global_name;
2611	return 0;
2612}
2613
2614/**
2615 * Enables unlimited caching of buffer objects for reuse.
2616 *
2617 * This is potentially very memory expensive, as the cache at each bucket
2618 * size is only bounded by how many buffers of that size we've managed to have
2619 * in flight at once.
2620 */
2621void
2622drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2623{
2624	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2625
2626	bufmgr_gem->bo_reuse = true;
2627}
2628
2629/**
2630 * Enable use of fenced reloc type.
2631 *
2632 * New code should enable this to avoid unnecessary fence register
2633 * allocation.  If this option is not enabled, all relocs will have fence
2634 * register allocated.
2635 */
2636void
2637drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2638{
2639	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2640
2641	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2642		bufmgr_gem->fenced_relocs = true;
2643}
2644
2645/**
2646 * Return the additional aperture space required by the tree of buffer objects
2647 * rooted at bo.
2648 */
2649static int
2650drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2651{
2652	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2653	int i;
2654	int total = 0;
2655
2656	if (bo == NULL || bo_gem->included_in_check_aperture)
2657		return 0;
2658
2659	total += bo->size;
2660	bo_gem->included_in_check_aperture = true;
2661
2662	for (i = 0; i < bo_gem->reloc_count; i++)
2663		total +=
2664		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2665							reloc_target_info[i].bo);
2666
2667	return total;
2668}
2669
2670/**
2671 * Count the number of buffers in this list that need a fence reg
2672 *
2673 * If the count is greater than the number of available regs, we'll have
2674 * to ask the caller to resubmit a batch with fewer tiled buffers.
2675 *
2676 * This function over-counts if the same buffer is used multiple times.
2677 */
2678static unsigned int
2679drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2680{
2681	int i;
2682	unsigned int total = 0;
2683
2684	for (i = 0; i < count; i++) {
2685		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2686
2687		if (bo_gem == NULL)
2688			continue;
2689
2690		total += bo_gem->reloc_tree_fences;
2691	}
2692	return total;
2693}
2694
2695/**
2696 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2697 * for the next drm_intel_bufmgr_check_aperture_space() call.
2698 */
2699static void
2700drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2701{
2702	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2703	int i;
2704
2705	if (bo == NULL || !bo_gem->included_in_check_aperture)
2706		return;
2707
2708	bo_gem->included_in_check_aperture = false;
2709
2710	for (i = 0; i < bo_gem->reloc_count; i++)
2711		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2712							   reloc_target_info[i].bo);
2713}
2714
2715/**
2716 * Return a conservative estimate for the amount of aperture required
2717 * for a collection of buffers. This may double-count some buffers.
2718 */
2719static unsigned int
2720drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2721{
2722	int i;
2723	unsigned int total = 0;
2724
2725	for (i = 0; i < count; i++) {
2726		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2727		if (bo_gem != NULL)
2728			total += bo_gem->reloc_tree_size;
2729	}
2730	return total;
2731}
2732
2733/**
2734 * Return the amount of aperture needed for a collection of buffers.
2735 * This avoids double counting any buffers, at the cost of looking
2736 * at every buffer in the set.
2737 */
2738static unsigned int
2739drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2740{
2741	int i;
2742	unsigned int total = 0;
2743
2744	for (i = 0; i < count; i++) {
2745		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2746		/* For the first buffer object in the array, we get an
2747		 * accurate count back for its reloc_tree size (since nothing
2748		 * had been flagged as being counted yet).  We can save that
2749		 * value out as a more conservative reloc_tree_size that
2750		 * avoids double-counting target buffers.  Since the first
2751		 * buffer happens to usually be the batch buffer in our
2752		 * callers, this can pull us back from doing the tree
2753		 * walk on every new batch emit.
2754		 */
2755		if (i == 0) {
2756			drm_intel_bo_gem *bo_gem =
2757			    (drm_intel_bo_gem *) bo_array[i];
2758			bo_gem->reloc_tree_size = total;
2759		}
2760	}
2761
2762	for (i = 0; i < count; i++)
2763		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2764	return total;
2765}
2766
2767/**
2768 * Return -1 if the batchbuffer should be flushed before attempting to
2769 * emit rendering referencing the buffers pointed to by bo_array.
2770 *
2771 * This is required because if we try to emit a batchbuffer with relocations
2772 * to a tree of buffers that won't simultaneously fit in the aperture,
2773 * the rendering will return an error at a point where the software is not
2774 * prepared to recover from it.
2775 *
2776 * However, we also want to emit the batchbuffer significantly before we reach
2777 * the limit, as a series of batchbuffers each of which references buffers
2778 * covering almost all of the aperture means that at each emit we end up
2779 * waiting to evict a buffer from the last rendering, and we get synchronous
2780 * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
2781 * get better parallelism.
2782 */
2783static int
2784drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2785{
2786	drm_intel_bufmgr_gem *bufmgr_gem =
2787	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2788	unsigned int total = 0;
2789	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2790	int total_fences;
2791
2792	/* Check for fence reg constraints if necessary */
2793	if (bufmgr_gem->available_fences) {
2794		total_fences = drm_intel_gem_total_fences(bo_array, count);
2795		if (total_fences > bufmgr_gem->available_fences)
2796			return -ENOSPC;
2797	}
2798
2799	total = drm_intel_gem_estimate_batch_space(bo_array, count);
2800
2801	if (total > threshold)
2802		total = drm_intel_gem_compute_batch_space(bo_array, count);
2803
2804	if (total > threshold) {
2805		DBG("check_space: overflowed available aperture, "
2806		    "%dkb vs %dkb\n",
2807		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
2808		return -ENOSPC;
2809	} else {
2810		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
2811		    (int)bufmgr_gem->gtt_size / 1024);
2812		return 0;
2813	}
2814}
2815
2816/*
2817 * Disable buffer reuse for objects which are shared with the kernel
2818 * as scanout buffers
2819 */
2820static int
2821drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
2822{
2823	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2824
2825	bo_gem->reusable = false;
2826	return 0;
2827}
2828
2829static int
2830drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
2831{
2832	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2833
2834	return bo_gem->reusable;
2835}
2836
2837static int
2838_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2839{
2840	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2841	int i;
2842
2843	for (i = 0; i < bo_gem->reloc_count; i++) {
2844		if (bo_gem->reloc_target_info[i].bo == target_bo)
2845			return 1;
2846		if (bo == bo_gem->reloc_target_info[i].bo)
2847			continue;
2848		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
2849						target_bo))
2850			return 1;
2851	}
2852
2853	return 0;
2854}
2855
2856/** Return true if target_bo is referenced by bo's relocation tree. */
2857static int
2858drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2859{
2860	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2861
2862	if (bo == NULL || target_bo == NULL)
2863		return 0;
2864	if (target_bo_gem->used_as_reloc_target)
2865		return _drm_intel_gem_bo_references(bo, target_bo);
2866	return 0;
2867}
2868
2869static void
2870add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
2871{
2872	unsigned int i = bufmgr_gem->num_buckets;
2873
2874	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
2875
2876	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
2877	bufmgr_gem->cache_bucket[i].size = size;
2878	bufmgr_gem->num_buckets++;
2879}
2880
2881static void
2882init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
2883{
2884	unsigned long size, cache_max_size = 64 * 1024 * 1024;
2885
2886	/* OK, so power of two buckets was too wasteful of memory.
2887	 * Give 3 other sizes between each power of two, to hopefully
2888	 * cover things accurately enough.  (The alternative is
2889	 * probably to just go for exact matching of sizes, and assume
2890	 * that for things like composited window resize the tiled
2891	 * width/height alignment and rounding of sizes to pages will
2892	 * get us useful cache hit rates anyway)
2893	 */
2894	add_bucket(bufmgr_gem, 4096);
2895	add_bucket(bufmgr_gem, 4096 * 2);
2896	add_bucket(bufmgr_gem, 4096 * 3);
2897
2898	/* Initialize the linked lists for BO reuse cache. */
2899	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
2900		add_bucket(bufmgr_gem, size);
2901
2902		add_bucket(bufmgr_gem, size + size * 1 / 4);
2903		add_bucket(bufmgr_gem, size + size * 2 / 4);
2904		add_bucket(bufmgr_gem, size + size * 3 / 4);
2905	}
2906}
2907
2908void
2909drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
2910{
2911	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2912
2913	bufmgr_gem->vma_max = limit;
2914
2915	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
2916}
2917
2918/**
2919 * Get the PCI ID for the device.  This can be overridden by setting the
2920 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2921 */
2922static int
2923get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
2924{
2925	char *devid_override;
2926	int devid;
2927	int ret;
2928	drm_i915_getparam_t gp;
2929
2930	if (geteuid() == getuid()) {
2931		devid_override = getenv("INTEL_DEVID_OVERRIDE");
2932		if (devid_override) {
2933			bufmgr_gem->no_exec = true;
2934			return strtod(devid_override, NULL);
2935		}
2936	}
2937
2938	VG_CLEAR(devid);
2939	VG_CLEAR(gp);
2940	gp.param = I915_PARAM_CHIPSET_ID;
2941	gp.value = &devid;
2942	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
2943	if (ret) {
2944		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
2945		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
2946	}
2947	return devid;
2948}
2949
2950int
2951drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
2952{
2953	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2954
2955	return bufmgr_gem->pci_device;
2956}
2957
2958/**
2959 * Sets the AUB filename.
2960 *
2961 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
2962 * for it to have any effect.
2963 */
2964void
2965drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
2966				      const char *filename)
2967{
2968	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2969
2970	free(bufmgr_gem->aub_filename);
2971	if (filename)
2972		bufmgr_gem->aub_filename = strdup(filename);
2973}
2974
2975/**
2976 * Sets up AUB dumping.
2977 *
2978 * This is a trace file format that can be used with the simulator.
2979 * Packets are emitted in a format somewhat like GPU command packets.
2980 * You can set up a GTT and upload your objects into the referenced
2981 * space, then send off batchbuffers and get BMPs out the other end.
2982 */
2983void
2984drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
2985{
2986	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2987	int entry = 0x200003;
2988	int i;
2989	int gtt_size = 0x10000;
2990	const char *filename;
2991
2992	if (!enable) {
2993		if (bufmgr_gem->aub_file) {
2994			fclose(bufmgr_gem->aub_file);
2995			bufmgr_gem->aub_file = NULL;
2996		}
2997		return;
2998	}
2999
3000	if (geteuid() != getuid())
3001		return;
3002
3003	if (bufmgr_gem->aub_filename)
3004		filename = bufmgr_gem->aub_filename;
3005	else
3006		filename = "intel.aub";
3007	bufmgr_gem->aub_file = fopen(filename, "w+");
3008	if (!bufmgr_gem->aub_file)
3009		return;
3010
3011	/* Start allocating objects from just after the GTT. */
3012	bufmgr_gem->aub_offset = gtt_size;
3013
3014	/* Start with a (required) version packet. */
3015	aub_out(bufmgr_gem, CMD_AUB_HEADER | (13 - 2));
3016	aub_out(bufmgr_gem,
3017		(4 << AUB_HEADER_MAJOR_SHIFT) |
3018		(0 << AUB_HEADER_MINOR_SHIFT));
3019	for (i = 0; i < 8; i++) {
3020		aub_out(bufmgr_gem, 0); /* app name */
3021	}
3022	aub_out(bufmgr_gem, 0); /* timestamp */
3023	aub_out(bufmgr_gem, 0); /* timestamp */
3024	aub_out(bufmgr_gem, 0); /* comment len */
3025
3026	/* Set up the GTT. The max we can handle is 256M */
3027	aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | ((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
3028	aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_NONLOCAL | 0 | AUB_TRACE_OP_DATA_WRITE);
3029	aub_out(bufmgr_gem, 0); /* subtype */
3030	aub_out(bufmgr_gem, 0); /* offset */
3031	aub_out(bufmgr_gem, gtt_size); /* size */
3032	if (bufmgr_gem->gen >= 8)
3033		aub_out(bufmgr_gem, 0);
3034	for (i = 0x000; i < gtt_size; i += 4, entry += 0x1000) {
3035		aub_out(bufmgr_gem, entry);
3036	}
3037}
3038
3039drm_intel_context *
3040drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3041{
3042	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3043	struct drm_i915_gem_context_create create;
3044	drm_intel_context *context = NULL;
3045	int ret;
3046
3047	context = calloc(1, sizeof(*context));
3048	if (!context)
3049		return NULL;
3050
3051	VG_CLEAR(create);
3052	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3053	if (ret != 0) {
3054		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3055		    strerror(errno));
3056		free(context);
3057		return NULL;
3058	}
3059
3060	context->ctx_id = create.ctx_id;
3061	context->bufmgr = bufmgr;
3062
3063	return context;
3064}
3065
3066void
3067drm_intel_gem_context_destroy(drm_intel_context *ctx)
3068{
3069	drm_intel_bufmgr_gem *bufmgr_gem;
3070	struct drm_i915_gem_context_destroy destroy;
3071	int ret;
3072
3073	if (ctx == NULL)
3074		return;
3075
3076	VG_CLEAR(destroy);
3077
3078	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3079	destroy.ctx_id = ctx->ctx_id;
3080	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3081		       &destroy);
3082	if (ret != 0)
3083		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3084			strerror(errno));
3085
3086	free(ctx);
3087}
3088
3089int
3090drm_intel_get_reset_stats(drm_intel_context *ctx,
3091			  uint32_t *reset_count,
3092			  uint32_t *active,
3093			  uint32_t *pending)
3094{
3095	drm_intel_bufmgr_gem *bufmgr_gem;
3096	struct drm_i915_reset_stats stats;
3097	int ret;
3098
3099	if (ctx == NULL)
3100		return -EINVAL;
3101
3102	memset(&stats, 0, sizeof(stats));
3103
3104	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3105	stats.ctx_id = ctx->ctx_id;
3106	ret = drmIoctl(bufmgr_gem->fd,
3107		       DRM_IOCTL_I915_GET_RESET_STATS,
3108		       &stats);
3109	if (ret == 0) {
3110		if (reset_count != NULL)
3111			*reset_count = stats.reset_count;
3112
3113		if (active != NULL)
3114			*active = stats.batch_active;
3115
3116		if (pending != NULL)
3117			*pending = stats.batch_pending;
3118	}
3119
3120	return ret;
3121}
3122
3123int
3124drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3125		   uint32_t offset,
3126		   uint64_t *result)
3127{
3128	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3129	struct drm_i915_reg_read reg_read;
3130	int ret;
3131
3132	VG_CLEAR(reg_read);
3133	reg_read.offset = offset;
3134
3135	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3136
3137	*result = reg_read.val;
3138	return ret;
3139}
3140
3141
3142/**
3143 * Annotate the given bo for use in aub dumping.
3144 *
3145 * \param annotations is an array of drm_intel_aub_annotation objects
3146 * describing the type of data in various sections of the bo.  Each
3147 * element of the array specifies the type and subtype of a section of
3148 * the bo, and the past-the-end offset of that section.  The elements
3149 * of \c annotations must be sorted so that ending_offset is
3150 * increasing.
3151 *
3152 * \param count is the number of elements in the \c annotations array.
3153 * If \c count is zero, then \c annotations will not be dereferenced.
3154 *
3155 * Annotations are copied into a private data structure, so caller may
3156 * re-use the memory pointed to by \c annotations after the call
3157 * returns.
3158 *
3159 * Annotations are stored for the lifetime of the bo; to reset to the
3160 * default state (no annotations), call this function with a \c count
3161 * of zero.
3162 */
3163void
3164drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3165					 drm_intel_aub_annotation *annotations,
3166					 unsigned count)
3167{
3168	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3169	unsigned size = sizeof(*annotations) * count;
3170	drm_intel_aub_annotation *new_annotations =
3171		count > 0 ? realloc(bo_gem->aub_annotations, size) : NULL;
3172	if (new_annotations == NULL) {
3173		free(bo_gem->aub_annotations);
3174		bo_gem->aub_annotations = NULL;
3175		bo_gem->aub_annotation_count = 0;
3176		return;
3177	}
3178	memcpy(new_annotations, annotations, size);
3179	bo_gem->aub_annotations = new_annotations;
3180	bo_gem->aub_annotation_count = count;
3181}
3182
3183/**
3184 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3185 * and manage map buffer objections.
3186 *
3187 * \param fd File descriptor of the opened DRM device.
3188 */
3189drm_intel_bufmgr *
3190drm_intel_bufmgr_gem_init(int fd, int batch_size)
3191{
3192	drm_intel_bufmgr_gem *bufmgr_gem;
3193	struct drm_i915_gem_get_aperture aperture;
3194	drm_i915_getparam_t gp;
3195	int ret, tmp;
3196	bool exec2 = false;
3197
3198	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3199	if (bufmgr_gem == NULL)
3200		return NULL;
3201
3202	bufmgr_gem->fd = fd;
3203
3204	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3205		free(bufmgr_gem);
3206		return NULL;
3207	}
3208
3209	ret = drmIoctl(bufmgr_gem->fd,
3210		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3211		       &aperture);
3212
3213	if (ret == 0)
3214		bufmgr_gem->gtt_size = aperture.aper_available_size;
3215	else {
3216		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3217			strerror(errno));
3218		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3219		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3220			"May lead to reduced performance or incorrect "
3221			"rendering.\n",
3222			(int)bufmgr_gem->gtt_size / 1024);
3223	}
3224
3225	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3226
3227	if (IS_GEN2(bufmgr_gem->pci_device))
3228		bufmgr_gem->gen = 2;
3229	else if (IS_GEN3(bufmgr_gem->pci_device))
3230		bufmgr_gem->gen = 3;
3231	else if (IS_GEN4(bufmgr_gem->pci_device))
3232		bufmgr_gem->gen = 4;
3233	else if (IS_GEN5(bufmgr_gem->pci_device))
3234		bufmgr_gem->gen = 5;
3235	else if (IS_GEN6(bufmgr_gem->pci_device))
3236		bufmgr_gem->gen = 6;
3237	else if (IS_GEN7(bufmgr_gem->pci_device))
3238		bufmgr_gem->gen = 7;
3239	else if (IS_GEN8(bufmgr_gem->pci_device))
3240		bufmgr_gem->gen = 8;
3241	else {
3242		free(bufmgr_gem);
3243		return NULL;
3244	}
3245
3246	if (IS_GEN3(bufmgr_gem->pci_device) &&
3247	    bufmgr_gem->gtt_size > 256*1024*1024) {
3248		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3249		 * be used for tiled blits. To simplify the accounting, just
3250		 * substract the unmappable part (fixed to 256MB on all known
3251		 * gen3 devices) if the kernel advertises it. */
3252		bufmgr_gem->gtt_size -= 256*1024*1024;
3253	}
3254
3255	VG_CLEAR(gp);
3256	gp.value = &tmp;
3257
3258	gp.param = I915_PARAM_HAS_EXECBUF2;
3259	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3260	if (!ret)
3261		exec2 = true;
3262
3263	gp.param = I915_PARAM_HAS_BSD;
3264	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3265	bufmgr_gem->has_bsd = ret == 0;
3266
3267	gp.param = I915_PARAM_HAS_BLT;
3268	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3269	bufmgr_gem->has_blt = ret == 0;
3270
3271	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3272	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3273	bufmgr_gem->has_relaxed_fencing = ret == 0;
3274
3275	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3276	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3277	bufmgr_gem->has_wait_timeout = ret == 0;
3278
3279	gp.param = I915_PARAM_HAS_LLC;
3280	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3281	if (ret != 0) {
3282		/* Kernel does not supports HAS_LLC query, fallback to GPU
3283		 * generation detection and assume that we have LLC on GEN6/7
3284		 */
3285		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3286				IS_GEN7(bufmgr_gem->pci_device));
3287	} else
3288		bufmgr_gem->has_llc = *gp.value;
3289
3290	gp.param = I915_PARAM_HAS_VEBOX;
3291	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3292	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3293
3294	if (bufmgr_gem->gen < 4) {
3295		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3296		gp.value = &bufmgr_gem->available_fences;
3297		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3298		if (ret) {
3299			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3300				errno);
3301			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3302				*gp.value);
3303			bufmgr_gem->available_fences = 0;
3304		} else {
3305			/* XXX The kernel reports the total number of fences,
3306			 * including any that may be pinned.
3307			 *
3308			 * We presume that there will be at least one pinned
3309			 * fence for the scanout buffer, but there may be more
3310			 * than one scanout and the user may be manually
3311			 * pinning buffers. Let's move to execbuffer2 and
3312			 * thereby forget the insanity of using fences...
3313			 */
3314			bufmgr_gem->available_fences -= 2;
3315			if (bufmgr_gem->available_fences < 0)
3316				bufmgr_gem->available_fences = 0;
3317		}
3318	}
3319
3320	/* Let's go with one relocation per every 2 dwords (but round down a bit
3321	 * since a power of two will mean an extra page allocation for the reloc
3322	 * buffer).
3323	 *
3324	 * Every 4 was too few for the blender benchmark.
3325	 */
3326	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3327
3328	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3329	bufmgr_gem->bufmgr.bo_alloc_for_render =
3330	    drm_intel_gem_bo_alloc_for_render;
3331	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3332	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3333	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3334	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3335	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3336	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3337	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3338	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3339	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3340	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3341	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3342	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3343	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3344	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3345	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3346	/* Use the new one if available */
3347	if (exec2) {
3348		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3349		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3350	} else
3351		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3352	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3353	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3354	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_destroy;
3355	bufmgr_gem->bufmgr.debug = 0;
3356	bufmgr_gem->bufmgr.check_aperture_space =
3357	    drm_intel_gem_check_aperture_space;
3358	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3359	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3360	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3361	    drm_intel_gem_get_pipe_from_crtc_id;
3362	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3363
3364	DRMINITLISTHEAD(&bufmgr_gem->named);
3365	init_cache_buckets(bufmgr_gem);
3366
3367	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3368	bufmgr_gem->vma_max = -1; /* unlimited by default */
3369
3370	return &bufmgr_gem->bufmgr;
3371}
3372