intel_bufmgr_gem.c revision d6e8b34d
1/************************************************************************** 2 * 3 * Copyright � 2007 Red Hat Inc. 4 * Copyright � 2007-2012 Intel Corporation 5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 22 * USE OR OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * The above copyright notice and this permission notice (including the 25 * next paragraph) shall be included in all copies or substantial portions 26 * of the Software. 27 * 28 * 29 **************************************************************************/ 30/* 31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com> 32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com> 33 * Eric Anholt <eric@anholt.net> 34 * Dave Airlie <airlied@linux.ie> 35 */ 36 37#include <xf86drm.h> 38#include <xf86atomic.h> 39#include <fcntl.h> 40#include <stdio.h> 41#include <stdlib.h> 42#include <string.h> 43#include <unistd.h> 44#include <assert.h> 45#include <pthread.h> 46#include <stddef.h> 47#include <sys/ioctl.h> 48#include <sys/stat.h> 49#include <sys/types.h> 50#include <stdbool.h> 51 52#include "errno.h" 53#ifndef ETIME 54#define ETIME ETIMEDOUT 55#endif 56#include "libdrm_macros.h" 57#include "libdrm_lists.h" 58#include "intel_bufmgr.h" 59#include "intel_bufmgr_priv.h" 60#include "intel_chipset.h" 61#include "string.h" 62 63#include "i915_drm.h" 64#include "uthash.h" 65 66#if HAVE_VALGRIND 67#include <valgrind.h> 68#include <memcheck.h> 69#define VG(x) x 70#else 71#define VG(x) 72#endif 73 74#define memclear(s) memset(&s, 0, sizeof(s)) 75 76#define DBG(...) do { \ 77 if (bufmgr_gem->bufmgr.debug) \ 78 fprintf(stderr, __VA_ARGS__); \ 79} while (0) 80 81#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 82#define MAX2(A, B) ((A) > (B) ? (A) : (B)) 83 84/** 85 * upper_32_bits - return bits 32-63 of a number 86 * @n: the number we're accessing 87 * 88 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 89 * the "right shift count >= width of type" warning when that quantity is 90 * 32-bits. 91 */ 92#define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16)) 93 94/** 95 * lower_32_bits - return bits 0-31 of a number 96 * @n: the number we're accessing 97 */ 98#define lower_32_bits(n) ((__u32)(n)) 99 100typedef struct _drm_intel_bo_gem drm_intel_bo_gem; 101 102struct drm_intel_gem_bo_bucket { 103 drmMMListHead head; 104 unsigned long size; 105}; 106 107typedef struct _drm_intel_bufmgr_gem { 108 drm_intel_bufmgr bufmgr; 109 110 atomic_t refcount; 111 112 int fd; 113 114 int max_relocs; 115 116 pthread_mutex_t lock; 117 118 struct drm_i915_gem_exec_object *exec_objects; 119 struct drm_i915_gem_exec_object2 *exec2_objects; 120 drm_intel_bo **exec_bos; 121 int exec_size; 122 int exec_count; 123 124 /** Array of lists of cached gem objects of power-of-two sizes */ 125 struct drm_intel_gem_bo_bucket cache_bucket[14 * 4]; 126 int num_buckets; 127 time_t time; 128 129 drmMMListHead managers; 130 131 drm_intel_bo_gem *name_table; 132 drm_intel_bo_gem *handle_table; 133 134 drmMMListHead vma_cache; 135 int vma_count, vma_open, vma_max; 136 137 uint64_t gtt_size; 138 int available_fences; 139 int pci_device; 140 int gen; 141 unsigned int has_bsd : 1; 142 unsigned int has_blt : 1; 143 unsigned int has_relaxed_fencing : 1; 144 unsigned int has_llc : 1; 145 unsigned int has_wait_timeout : 1; 146 unsigned int bo_reuse : 1; 147 unsigned int no_exec : 1; 148 unsigned int has_vebox : 1; 149 unsigned int has_exec_async : 1; 150 bool fenced_relocs; 151 152 struct { 153 void *ptr; 154 uint32_t handle; 155 } userptr_active; 156 157} drm_intel_bufmgr_gem; 158 159#define DRM_INTEL_RELOC_FENCE (1<<0) 160 161typedef struct _drm_intel_reloc_target_info { 162 drm_intel_bo *bo; 163 int flags; 164} drm_intel_reloc_target; 165 166struct _drm_intel_bo_gem { 167 drm_intel_bo bo; 168 169 atomic_t refcount; 170 uint32_t gem_handle; 171 const char *name; 172 173 /** 174 * Kenel-assigned global name for this object 175 * 176 * List contains both flink named and prime fd'd objects 177 */ 178 unsigned int global_name; 179 180 UT_hash_handle handle_hh; 181 UT_hash_handle name_hh; 182 183 /** 184 * Index of the buffer within the validation list while preparing a 185 * batchbuffer execution. 186 */ 187 int validate_index; 188 189 /** 190 * Current tiling mode 191 */ 192 uint32_t tiling_mode; 193 uint32_t swizzle_mode; 194 unsigned long stride; 195 196 unsigned long kflags; 197 198 time_t free_time; 199 200 /** Array passed to the DRM containing relocation information. */ 201 struct drm_i915_gem_relocation_entry *relocs; 202 /** 203 * Array of info structs corresponding to relocs[i].target_handle etc 204 */ 205 drm_intel_reloc_target *reloc_target_info; 206 /** Number of entries in relocs */ 207 int reloc_count; 208 /** Array of BOs that are referenced by this buffer and will be softpinned */ 209 drm_intel_bo **softpin_target; 210 /** Number softpinned BOs that are referenced by this buffer */ 211 int softpin_target_count; 212 /** Maximum amount of softpinned BOs that are referenced by this buffer */ 213 int softpin_target_size; 214 215 /** Mapped address for the buffer, saved across map/unmap cycles */ 216 void *mem_virtual; 217 /** GTT virtual address for the buffer, saved across map/unmap cycles */ 218 void *gtt_virtual; 219 /** WC CPU address for the buffer, saved across map/unmap cycles */ 220 void *wc_virtual; 221 /** 222 * Virtual address of the buffer allocated by user, used for userptr 223 * objects only. 224 */ 225 void *user_virtual; 226 int map_count; 227 drmMMListHead vma_list; 228 229 /** BO cache list */ 230 drmMMListHead head; 231 232 /** 233 * Boolean of whether this BO and its children have been included in 234 * the current drm_intel_bufmgr_check_aperture_space() total. 235 */ 236 bool included_in_check_aperture; 237 238 /** 239 * Boolean of whether this buffer has been used as a relocation 240 * target and had its size accounted for, and thus can't have any 241 * further relocations added to it. 242 */ 243 bool used_as_reloc_target; 244 245 /** 246 * Boolean of whether we have encountered an error whilst building the relocation tree. 247 */ 248 bool has_error; 249 250 /** 251 * Boolean of whether this buffer can be re-used 252 */ 253 bool reusable; 254 255 /** 256 * Boolean of whether the GPU is definitely not accessing the buffer. 257 * 258 * This is only valid when reusable, since non-reusable 259 * buffers are those that have been shared with other 260 * processes, so we don't know their state. 261 */ 262 bool idle; 263 264 /** 265 * Boolean of whether this buffer was allocated with userptr 266 */ 267 bool is_userptr; 268 269 /** 270 * Size in bytes of this buffer and its relocation descendents. 271 * 272 * Used to avoid costly tree walking in 273 * drm_intel_bufmgr_check_aperture in the common case. 274 */ 275 int reloc_tree_size; 276 277 /** 278 * Number of potential fence registers required by this buffer and its 279 * relocations. 280 */ 281 int reloc_tree_fences; 282 283 /** Flags that we may need to do the SW_FINISH ioctl on unmap. */ 284 bool mapped_cpu_write; 285}; 286 287static unsigned int 288drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count); 289 290static unsigned int 291drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count); 292 293static int 294drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 295 uint32_t * swizzle_mode); 296 297static int 298drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo, 299 uint32_t tiling_mode, 300 uint32_t stride); 301 302static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, 303 time_t time); 304 305static void drm_intel_gem_bo_unreference(drm_intel_bo *bo); 306 307static void drm_intel_gem_bo_free(drm_intel_bo *bo); 308 309static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo) 310{ 311 return (drm_intel_bo_gem *)bo; 312} 313 314static unsigned long 315drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size, 316 uint32_t *tiling_mode) 317{ 318 unsigned long min_size, max_size; 319 unsigned long i; 320 321 if (*tiling_mode == I915_TILING_NONE) 322 return size; 323 324 /* 965+ just need multiples of page size for tiling */ 325 if (bufmgr_gem->gen >= 4) 326 return ROUND_UP_TO(size, 4096); 327 328 /* Older chips need powers of two, of at least 512k or 1M */ 329 if (bufmgr_gem->gen == 3) { 330 min_size = 1024*1024; 331 max_size = 128*1024*1024; 332 } else { 333 min_size = 512*1024; 334 max_size = 64*1024*1024; 335 } 336 337 if (size > max_size) { 338 *tiling_mode = I915_TILING_NONE; 339 return size; 340 } 341 342 /* Do we need to allocate every page for the fence? */ 343 if (bufmgr_gem->has_relaxed_fencing) 344 return ROUND_UP_TO(size, 4096); 345 346 for (i = min_size; i < size; i <<= 1) 347 ; 348 349 return i; 350} 351 352/* 353 * Round a given pitch up to the minimum required for X tiling on a 354 * given chip. We use 512 as the minimum to allow for a later tiling 355 * change. 356 */ 357static unsigned long 358drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem, 359 unsigned long pitch, uint32_t *tiling_mode) 360{ 361 unsigned long tile_width; 362 unsigned long i; 363 364 /* If untiled, then just align it so that we can do rendering 365 * to it with the 3D engine. 366 */ 367 if (*tiling_mode == I915_TILING_NONE) 368 return ALIGN(pitch, 64); 369 370 if (*tiling_mode == I915_TILING_X 371 || (IS_915(bufmgr_gem->pci_device) 372 && *tiling_mode == I915_TILING_Y)) 373 tile_width = 512; 374 else 375 tile_width = 128; 376 377 /* 965 is flexible */ 378 if (bufmgr_gem->gen >= 4) 379 return ROUND_UP_TO(pitch, tile_width); 380 381 /* The older hardware has a maximum pitch of 8192 with tiled 382 * surfaces, so fallback to untiled if it's too large. 383 */ 384 if (pitch > 8192) { 385 *tiling_mode = I915_TILING_NONE; 386 return ALIGN(pitch, 64); 387 } 388 389 /* Pre-965 needs power of two tile width */ 390 for (i = tile_width; i < pitch; i <<= 1) 391 ; 392 393 return i; 394} 395 396static struct drm_intel_gem_bo_bucket * 397drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem, 398 unsigned long size) 399{ 400 int i; 401 402 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 403 struct drm_intel_gem_bo_bucket *bucket = 404 &bufmgr_gem->cache_bucket[i]; 405 if (bucket->size >= size) { 406 return bucket; 407 } 408 } 409 410 return NULL; 411} 412 413static void 414drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem) 415{ 416 int i, j; 417 418 for (i = 0; i < bufmgr_gem->exec_count; i++) { 419 drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; 420 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 421 422 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) { 423 DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle, 424 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 425 bo_gem->name); 426 continue; 427 } 428 429 for (j = 0; j < bo_gem->reloc_count; j++) { 430 drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo; 431 drm_intel_bo_gem *target_gem = 432 (drm_intel_bo_gem *) target_bo; 433 434 DBG("%2d: %d %s(%s)@0x%08x %08x -> " 435 "%d (%s)@0x%08x %08x + 0x%08x\n", 436 i, 437 bo_gem->gem_handle, 438 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 439 bo_gem->name, 440 upper_32_bits(bo_gem->relocs[j].offset), 441 lower_32_bits(bo_gem->relocs[j].offset), 442 target_gem->gem_handle, 443 target_gem->name, 444 upper_32_bits(target_bo->offset64), 445 lower_32_bits(target_bo->offset64), 446 bo_gem->relocs[j].delta); 447 } 448 449 for (j = 0; j < bo_gem->softpin_target_count; j++) { 450 drm_intel_bo *target_bo = bo_gem->softpin_target[j]; 451 drm_intel_bo_gem *target_gem = 452 (drm_intel_bo_gem *) target_bo; 453 DBG("%2d: %d %s(%s) -> " 454 "%d *(%s)@0x%08x %08x\n", 455 i, 456 bo_gem->gem_handle, 457 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 458 bo_gem->name, 459 target_gem->gem_handle, 460 target_gem->name, 461 upper_32_bits(target_bo->offset64), 462 lower_32_bits(target_bo->offset64)); 463 } 464 } 465} 466 467static inline void 468drm_intel_gem_bo_reference(drm_intel_bo *bo) 469{ 470 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 471 472 atomic_inc(&bo_gem->refcount); 473} 474 475/** 476 * Adds the given buffer to the list of buffers to be validated (moved into the 477 * appropriate memory type) with the next batch submission. 478 * 479 * If a buffer is validated multiple times in a batch submission, it ends up 480 * with the intersection of the memory type flags and the union of the 481 * access flags. 482 */ 483static void 484drm_intel_add_validate_buffer(drm_intel_bo *bo) 485{ 486 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 487 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 488 int index; 489 490 if (bo_gem->validate_index != -1) 491 return; 492 493 /* Extend the array of validation entries as necessary. */ 494 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) { 495 int new_size = bufmgr_gem->exec_size * 2; 496 497 if (new_size == 0) 498 new_size = 5; 499 500 bufmgr_gem->exec_objects = 501 realloc(bufmgr_gem->exec_objects, 502 sizeof(*bufmgr_gem->exec_objects) * new_size); 503 bufmgr_gem->exec_bos = 504 realloc(bufmgr_gem->exec_bos, 505 sizeof(*bufmgr_gem->exec_bos) * new_size); 506 bufmgr_gem->exec_size = new_size; 507 } 508 509 index = bufmgr_gem->exec_count; 510 bo_gem->validate_index = index; 511 /* Fill in array entry */ 512 bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle; 513 bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count; 514 bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs; 515 bufmgr_gem->exec_objects[index].alignment = bo->align; 516 bufmgr_gem->exec_objects[index].offset = 0; 517 bufmgr_gem->exec_bos[index] = bo; 518 bufmgr_gem->exec_count++; 519} 520 521static void 522drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence) 523{ 524 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 525 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 526 int index; 527 unsigned long flags; 528 529 flags = 0; 530 if (need_fence) 531 flags |= EXEC_OBJECT_NEEDS_FENCE; 532 533 if (bo_gem->validate_index != -1) { 534 bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags; 535 return; 536 } 537 538 /* Extend the array of validation entries as necessary. */ 539 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) { 540 int new_size = bufmgr_gem->exec_size * 2; 541 542 if (new_size == 0) 543 new_size = 5; 544 545 bufmgr_gem->exec2_objects = 546 realloc(bufmgr_gem->exec2_objects, 547 sizeof(*bufmgr_gem->exec2_objects) * new_size); 548 bufmgr_gem->exec_bos = 549 realloc(bufmgr_gem->exec_bos, 550 sizeof(*bufmgr_gem->exec_bos) * new_size); 551 bufmgr_gem->exec_size = new_size; 552 } 553 554 index = bufmgr_gem->exec_count; 555 bo_gem->validate_index = index; 556 /* Fill in array entry */ 557 bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle; 558 bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count; 559 bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs; 560 bufmgr_gem->exec2_objects[index].alignment = bo->align; 561 bufmgr_gem->exec2_objects[index].offset = bo->offset64; 562 bufmgr_gem->exec2_objects[index].flags = bo_gem->kflags | flags; 563 bufmgr_gem->exec2_objects[index].rsvd1 = 0; 564 bufmgr_gem->exec2_objects[index].rsvd2 = 0; 565 bufmgr_gem->exec_bos[index] = bo; 566 bufmgr_gem->exec_count++; 567} 568 569#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \ 570 sizeof(uint32_t)) 571 572static void 573drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem, 574 drm_intel_bo_gem *bo_gem, 575 unsigned int alignment) 576{ 577 unsigned int size; 578 579 assert(!bo_gem->used_as_reloc_target); 580 581 /* The older chipsets are far-less flexible in terms of tiling, 582 * and require tiled buffer to be size aligned in the aperture. 583 * This means that in the worst possible case we will need a hole 584 * twice as large as the object in order for it to fit into the 585 * aperture. Optimal packing is for wimps. 586 */ 587 size = bo_gem->bo.size; 588 if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) { 589 unsigned int min_size; 590 591 if (bufmgr_gem->has_relaxed_fencing) { 592 if (bufmgr_gem->gen == 3) 593 min_size = 1024*1024; 594 else 595 min_size = 512*1024; 596 597 while (min_size < size) 598 min_size *= 2; 599 } else 600 min_size = size; 601 602 /* Account for worst-case alignment. */ 603 alignment = MAX2(alignment, min_size); 604 } 605 606 bo_gem->reloc_tree_size = size + alignment; 607} 608 609static int 610drm_intel_setup_reloc_list(drm_intel_bo *bo) 611{ 612 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 613 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 614 unsigned int max_relocs = bufmgr_gem->max_relocs; 615 616 if (bo->size / 4 < max_relocs) 617 max_relocs = bo->size / 4; 618 619 bo_gem->relocs = malloc(max_relocs * 620 sizeof(struct drm_i915_gem_relocation_entry)); 621 bo_gem->reloc_target_info = malloc(max_relocs * 622 sizeof(drm_intel_reloc_target)); 623 if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) { 624 bo_gem->has_error = true; 625 626 free (bo_gem->relocs); 627 bo_gem->relocs = NULL; 628 629 free (bo_gem->reloc_target_info); 630 bo_gem->reloc_target_info = NULL; 631 632 return 1; 633 } 634 635 return 0; 636} 637 638static int 639drm_intel_gem_bo_busy(drm_intel_bo *bo) 640{ 641 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 642 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 643 struct drm_i915_gem_busy busy; 644 int ret; 645 646 if (bo_gem->reusable && bo_gem->idle) 647 return false; 648 649 memclear(busy); 650 busy.handle = bo_gem->gem_handle; 651 652 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); 653 if (ret == 0) { 654 bo_gem->idle = !busy.busy; 655 return busy.busy; 656 } else { 657 return false; 658 } 659} 660 661static int 662drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem, 663 drm_intel_bo_gem *bo_gem, int state) 664{ 665 struct drm_i915_gem_madvise madv; 666 667 memclear(madv); 668 madv.handle = bo_gem->gem_handle; 669 madv.madv = state; 670 madv.retained = 1; 671 drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); 672 673 return madv.retained; 674} 675 676static int 677drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv) 678{ 679 return drm_intel_gem_bo_madvise_internal 680 ((drm_intel_bufmgr_gem *) bo->bufmgr, 681 (drm_intel_bo_gem *) bo, 682 madv); 683} 684 685/* drop the oldest entries that have been purged by the kernel */ 686static void 687drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem, 688 struct drm_intel_gem_bo_bucket *bucket) 689{ 690 while (!DRMLISTEMPTY(&bucket->head)) { 691 drm_intel_bo_gem *bo_gem; 692 693 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 694 bucket->head.next, head); 695 if (drm_intel_gem_bo_madvise_internal 696 (bufmgr_gem, bo_gem, I915_MADV_DONTNEED)) 697 break; 698 699 DRMLISTDEL(&bo_gem->head); 700 drm_intel_gem_bo_free(&bo_gem->bo); 701 } 702} 703 704static drm_intel_bo * 705drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr, 706 const char *name, 707 unsigned long size, 708 unsigned long flags, 709 uint32_t tiling_mode, 710 unsigned long stride, 711 unsigned int alignment) 712{ 713 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 714 drm_intel_bo_gem *bo_gem; 715 unsigned int page_size = getpagesize(); 716 int ret; 717 struct drm_intel_gem_bo_bucket *bucket; 718 bool alloc_from_cache; 719 unsigned long bo_size; 720 bool for_render = false; 721 722 if (flags & BO_ALLOC_FOR_RENDER) 723 for_render = true; 724 725 /* Round the allocated size up to a power of two number of pages. */ 726 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size); 727 728 /* If we don't have caching at this size, don't actually round the 729 * allocation up. 730 */ 731 if (bucket == NULL) { 732 bo_size = size; 733 if (bo_size < page_size) 734 bo_size = page_size; 735 } else { 736 bo_size = bucket->size; 737 } 738 739 pthread_mutex_lock(&bufmgr_gem->lock); 740 /* Get a buffer out of the cache if available */ 741retry: 742 alloc_from_cache = false; 743 if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) { 744 if (for_render) { 745 /* Allocate new render-target BOs from the tail (MRU) 746 * of the list, as it will likely be hot in the GPU 747 * cache and in the aperture for us. 748 */ 749 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 750 bucket->head.prev, head); 751 DRMLISTDEL(&bo_gem->head); 752 alloc_from_cache = true; 753 bo_gem->bo.align = alignment; 754 } else { 755 assert(alignment == 0); 756 /* For non-render-target BOs (where we're probably 757 * going to map it first thing in order to fill it 758 * with data), check if the last BO in the cache is 759 * unbusy, and only reuse in that case. Otherwise, 760 * allocating a new buffer is probably faster than 761 * waiting for the GPU to finish. 762 */ 763 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 764 bucket->head.next, head); 765 if (!drm_intel_gem_bo_busy(&bo_gem->bo)) { 766 alloc_from_cache = true; 767 DRMLISTDEL(&bo_gem->head); 768 } 769 } 770 771 if (alloc_from_cache) { 772 if (!drm_intel_gem_bo_madvise_internal 773 (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) { 774 drm_intel_gem_bo_free(&bo_gem->bo); 775 drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem, 776 bucket); 777 goto retry; 778 } 779 780 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo, 781 tiling_mode, 782 stride)) { 783 drm_intel_gem_bo_free(&bo_gem->bo); 784 goto retry; 785 } 786 } 787 } 788 789 if (!alloc_from_cache) { 790 struct drm_i915_gem_create create; 791 792 bo_gem = calloc(1, sizeof(*bo_gem)); 793 if (!bo_gem) 794 goto err; 795 796 /* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized 797 list (vma_list), so better set the list head here */ 798 DRMINITLISTHEAD(&bo_gem->vma_list); 799 800 bo_gem->bo.size = bo_size; 801 802 memclear(create); 803 create.size = bo_size; 804 805 ret = drmIoctl(bufmgr_gem->fd, 806 DRM_IOCTL_I915_GEM_CREATE, 807 &create); 808 if (ret != 0) { 809 free(bo_gem); 810 goto err; 811 } 812 813 bo_gem->gem_handle = create.handle; 814 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 815 gem_handle, sizeof(bo_gem->gem_handle), 816 bo_gem); 817 818 bo_gem->bo.handle = bo_gem->gem_handle; 819 bo_gem->bo.bufmgr = bufmgr; 820 bo_gem->bo.align = alignment; 821 822 bo_gem->tiling_mode = I915_TILING_NONE; 823 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; 824 bo_gem->stride = 0; 825 826 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo, 827 tiling_mode, 828 stride)) 829 goto err_free; 830 } 831 832 bo_gem->name = name; 833 atomic_set(&bo_gem->refcount, 1); 834 bo_gem->validate_index = -1; 835 bo_gem->reloc_tree_fences = 0; 836 bo_gem->used_as_reloc_target = false; 837 bo_gem->has_error = false; 838 bo_gem->reusable = true; 839 840 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment); 841 pthread_mutex_unlock(&bufmgr_gem->lock); 842 843 DBG("bo_create: buf %d (%s) %ldb\n", 844 bo_gem->gem_handle, bo_gem->name, size); 845 846 return &bo_gem->bo; 847 848err_free: 849 drm_intel_gem_bo_free(&bo_gem->bo); 850err: 851 pthread_mutex_unlock(&bufmgr_gem->lock); 852 return NULL; 853} 854 855static drm_intel_bo * 856drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr, 857 const char *name, 858 unsigned long size, 859 unsigned int alignment) 860{ 861 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 862 BO_ALLOC_FOR_RENDER, 863 I915_TILING_NONE, 0, 864 alignment); 865} 866 867static drm_intel_bo * 868drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr, 869 const char *name, 870 unsigned long size, 871 unsigned int alignment) 872{ 873 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0, 874 I915_TILING_NONE, 0, 0); 875} 876 877static drm_intel_bo * 878drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name, 879 int x, int y, int cpp, uint32_t *tiling_mode, 880 unsigned long *pitch, unsigned long flags) 881{ 882 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 883 unsigned long size, stride; 884 uint32_t tiling; 885 886 do { 887 unsigned long aligned_y, height_alignment; 888 889 tiling = *tiling_mode; 890 891 /* If we're tiled, our allocations are in 8 or 32-row blocks, 892 * so failure to align our height means that we won't allocate 893 * enough pages. 894 * 895 * If we're untiled, we still have to align to 2 rows high 896 * because the data port accesses 2x2 blocks even if the 897 * bottom row isn't to be rendered, so failure to align means 898 * we could walk off the end of the GTT and fault. This is 899 * documented on 965, and may be the case on older chipsets 900 * too so we try to be careful. 901 */ 902 aligned_y = y; 903 height_alignment = 2; 904 905 if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE) 906 height_alignment = 16; 907 else if (tiling == I915_TILING_X 908 || (IS_915(bufmgr_gem->pci_device) 909 && tiling == I915_TILING_Y)) 910 height_alignment = 8; 911 else if (tiling == I915_TILING_Y) 912 height_alignment = 32; 913 aligned_y = ALIGN(y, height_alignment); 914 915 stride = x * cpp; 916 stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode); 917 size = stride * aligned_y; 918 size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode); 919 } while (*tiling_mode != tiling); 920 *pitch = stride; 921 922 if (tiling == I915_TILING_NONE) 923 stride = 0; 924 925 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags, 926 tiling, stride, 0); 927} 928 929static drm_intel_bo * 930drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr, 931 const char *name, 932 void *addr, 933 uint32_t tiling_mode, 934 uint32_t stride, 935 unsigned long size, 936 unsigned long flags) 937{ 938 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 939 drm_intel_bo_gem *bo_gem; 940 int ret; 941 struct drm_i915_gem_userptr userptr; 942 943 /* Tiling with userptr surfaces is not supported 944 * on all hardware so refuse it for time being. 945 */ 946 if (tiling_mode != I915_TILING_NONE) 947 return NULL; 948 949 bo_gem = calloc(1, sizeof(*bo_gem)); 950 if (!bo_gem) 951 return NULL; 952 953 atomic_set(&bo_gem->refcount, 1); 954 DRMINITLISTHEAD(&bo_gem->vma_list); 955 956 bo_gem->bo.size = size; 957 958 memclear(userptr); 959 userptr.user_ptr = (__u64)((unsigned long)addr); 960 userptr.user_size = size; 961 userptr.flags = flags; 962 963 ret = drmIoctl(bufmgr_gem->fd, 964 DRM_IOCTL_I915_GEM_USERPTR, 965 &userptr); 966 if (ret != 0) { 967 DBG("bo_create_userptr: " 968 "ioctl failed with user ptr %p size 0x%lx, " 969 "user flags 0x%lx\n", addr, size, flags); 970 free(bo_gem); 971 return NULL; 972 } 973 974 pthread_mutex_lock(&bufmgr_gem->lock); 975 976 bo_gem->gem_handle = userptr.handle; 977 bo_gem->bo.handle = bo_gem->gem_handle; 978 bo_gem->bo.bufmgr = bufmgr; 979 bo_gem->is_userptr = true; 980 bo_gem->bo.virtual = addr; 981 /* Save the address provided by user */ 982 bo_gem->user_virtual = addr; 983 bo_gem->tiling_mode = I915_TILING_NONE; 984 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; 985 bo_gem->stride = 0; 986 987 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 988 gem_handle, sizeof(bo_gem->gem_handle), 989 bo_gem); 990 991 bo_gem->name = name; 992 bo_gem->validate_index = -1; 993 bo_gem->reloc_tree_fences = 0; 994 bo_gem->used_as_reloc_target = false; 995 bo_gem->has_error = false; 996 bo_gem->reusable = false; 997 998 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 999 pthread_mutex_unlock(&bufmgr_gem->lock); 1000 1001 DBG("bo_create_userptr: " 1002 "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n", 1003 addr, bo_gem->gem_handle, bo_gem->name, 1004 size, stride, tiling_mode); 1005 1006 return &bo_gem->bo; 1007} 1008 1009static bool 1010has_userptr(drm_intel_bufmgr_gem *bufmgr_gem) 1011{ 1012 int ret; 1013 void *ptr; 1014 long pgsz; 1015 struct drm_i915_gem_userptr userptr; 1016 1017 pgsz = sysconf(_SC_PAGESIZE); 1018 assert(pgsz > 0); 1019 1020 ret = posix_memalign(&ptr, pgsz, pgsz); 1021 if (ret) { 1022 DBG("Failed to get a page (%ld) for userptr detection!\n", 1023 pgsz); 1024 return false; 1025 } 1026 1027 memclear(userptr); 1028 userptr.user_ptr = (__u64)(unsigned long)ptr; 1029 userptr.user_size = pgsz; 1030 1031retry: 1032 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr); 1033 if (ret) { 1034 if (errno == ENODEV && userptr.flags == 0) { 1035 userptr.flags = I915_USERPTR_UNSYNCHRONIZED; 1036 goto retry; 1037 } 1038 free(ptr); 1039 return false; 1040 } 1041 1042 /* We don't release the userptr bo here as we want to keep the 1043 * kernel mm tracking alive for our lifetime. The first time we 1044 * create a userptr object the kernel has to install a mmu_notifer 1045 * which is a heavyweight operation (e.g. it requires taking all 1046 * mm_locks and stop_machine()). 1047 */ 1048 1049 bufmgr_gem->userptr_active.ptr = ptr; 1050 bufmgr_gem->userptr_active.handle = userptr.handle; 1051 1052 return true; 1053} 1054 1055static drm_intel_bo * 1056check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr, 1057 const char *name, 1058 void *addr, 1059 uint32_t tiling_mode, 1060 uint32_t stride, 1061 unsigned long size, 1062 unsigned long flags) 1063{ 1064 if (has_userptr((drm_intel_bufmgr_gem *)bufmgr)) 1065 bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr; 1066 else 1067 bufmgr->bo_alloc_userptr = NULL; 1068 1069 return drm_intel_bo_alloc_userptr(bufmgr, name, addr, 1070 tiling_mode, stride, size, flags); 1071} 1072 1073/** 1074 * Returns a drm_intel_bo wrapping the given buffer object handle. 1075 * 1076 * This can be used when one application needs to pass a buffer object 1077 * to another. 1078 */ 1079drm_public drm_intel_bo * 1080drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr, 1081 const char *name, 1082 unsigned int handle) 1083{ 1084 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1085 drm_intel_bo_gem *bo_gem; 1086 int ret; 1087 struct drm_gem_open open_arg; 1088 struct drm_i915_gem_get_tiling get_tiling; 1089 1090 /* At the moment most applications only have a few named bo. 1091 * For instance, in a DRI client only the render buffers passed 1092 * between X and the client are named. And since X returns the 1093 * alternating names for the front/back buffer a linear search 1094 * provides a sufficiently fast match. 1095 */ 1096 pthread_mutex_lock(&bufmgr_gem->lock); 1097 HASH_FIND(name_hh, bufmgr_gem->name_table, 1098 &handle, sizeof(handle), bo_gem); 1099 if (bo_gem) { 1100 drm_intel_gem_bo_reference(&bo_gem->bo); 1101 goto out; 1102 } 1103 1104 memclear(open_arg); 1105 open_arg.name = handle; 1106 ret = drmIoctl(bufmgr_gem->fd, 1107 DRM_IOCTL_GEM_OPEN, 1108 &open_arg); 1109 if (ret != 0) { 1110 DBG("Couldn't reference %s handle 0x%08x: %s\n", 1111 name, handle, strerror(errno)); 1112 bo_gem = NULL; 1113 goto out; 1114 } 1115 /* Now see if someone has used a prime handle to get this 1116 * object from the kernel before by looking through the list 1117 * again for a matching gem_handle 1118 */ 1119 HASH_FIND(handle_hh, bufmgr_gem->handle_table, 1120 &open_arg.handle, sizeof(open_arg.handle), bo_gem); 1121 if (bo_gem) { 1122 drm_intel_gem_bo_reference(&bo_gem->bo); 1123 goto out; 1124 } 1125 1126 bo_gem = calloc(1, sizeof(*bo_gem)); 1127 if (!bo_gem) 1128 goto out; 1129 1130 atomic_set(&bo_gem->refcount, 1); 1131 DRMINITLISTHEAD(&bo_gem->vma_list); 1132 1133 bo_gem->bo.size = open_arg.size; 1134 bo_gem->bo.offset = 0; 1135 bo_gem->bo.offset64 = 0; 1136 bo_gem->bo.virtual = NULL; 1137 bo_gem->bo.bufmgr = bufmgr; 1138 bo_gem->name = name; 1139 bo_gem->validate_index = -1; 1140 bo_gem->gem_handle = open_arg.handle; 1141 bo_gem->bo.handle = open_arg.handle; 1142 bo_gem->global_name = handle; 1143 bo_gem->reusable = false; 1144 1145 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 1146 gem_handle, sizeof(bo_gem->gem_handle), bo_gem); 1147 HASH_ADD(name_hh, bufmgr_gem->name_table, 1148 global_name, sizeof(bo_gem->global_name), bo_gem); 1149 1150 memclear(get_tiling); 1151 get_tiling.handle = bo_gem->gem_handle; 1152 ret = drmIoctl(bufmgr_gem->fd, 1153 DRM_IOCTL_I915_GEM_GET_TILING, 1154 &get_tiling); 1155 if (ret != 0) 1156 goto err_unref; 1157 1158 bo_gem->tiling_mode = get_tiling.tiling_mode; 1159 bo_gem->swizzle_mode = get_tiling.swizzle_mode; 1160 /* XXX stride is unknown */ 1161 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 1162 DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name); 1163 1164out: 1165 pthread_mutex_unlock(&bufmgr_gem->lock); 1166 return &bo_gem->bo; 1167 1168err_unref: 1169 drm_intel_gem_bo_free(&bo_gem->bo); 1170 pthread_mutex_unlock(&bufmgr_gem->lock); 1171 return NULL; 1172} 1173 1174static void 1175drm_intel_gem_bo_free(drm_intel_bo *bo) 1176{ 1177 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1178 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1179 struct drm_gem_close close; 1180 int ret; 1181 1182 DRMLISTDEL(&bo_gem->vma_list); 1183 if (bo_gem->mem_virtual) { 1184 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0)); 1185 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size); 1186 bufmgr_gem->vma_count--; 1187 } 1188 if (bo_gem->wc_virtual) { 1189 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->wc_virtual, 0)); 1190 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size); 1191 bufmgr_gem->vma_count--; 1192 } 1193 if (bo_gem->gtt_virtual) { 1194 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size); 1195 bufmgr_gem->vma_count--; 1196 } 1197 1198 if (bo_gem->global_name) 1199 HASH_DELETE(name_hh, bufmgr_gem->name_table, bo_gem); 1200 HASH_DELETE(handle_hh, bufmgr_gem->handle_table, bo_gem); 1201 1202 /* Close this object */ 1203 memclear(close); 1204 close.handle = bo_gem->gem_handle; 1205 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close); 1206 if (ret != 0) { 1207 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n", 1208 bo_gem->gem_handle, bo_gem->name, strerror(errno)); 1209 } 1210 free(bo); 1211} 1212 1213static void 1214drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo) 1215{ 1216#if HAVE_VALGRIND 1217 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1218 1219 if (bo_gem->mem_virtual) 1220 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size); 1221 1222 if (bo_gem->wc_virtual) 1223 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->wc_virtual, bo->size); 1224 1225 if (bo_gem->gtt_virtual) 1226 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size); 1227#endif 1228} 1229 1230/** Frees all cached buffers significantly older than @time. */ 1231static void 1232drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time) 1233{ 1234 int i; 1235 1236 if (bufmgr_gem->time == time) 1237 return; 1238 1239 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 1240 struct drm_intel_gem_bo_bucket *bucket = 1241 &bufmgr_gem->cache_bucket[i]; 1242 1243 while (!DRMLISTEMPTY(&bucket->head)) { 1244 drm_intel_bo_gem *bo_gem; 1245 1246 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1247 bucket->head.next, head); 1248 if (time - bo_gem->free_time <= 1) 1249 break; 1250 1251 DRMLISTDEL(&bo_gem->head); 1252 1253 drm_intel_gem_bo_free(&bo_gem->bo); 1254 } 1255 } 1256 1257 bufmgr_gem->time = time; 1258} 1259 1260static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem) 1261{ 1262 int limit; 1263 1264 DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__, 1265 bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max); 1266 1267 if (bufmgr_gem->vma_max < 0) 1268 return; 1269 1270 /* We may need to evict a few entries in order to create new mmaps */ 1271 limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open; 1272 if (limit < 0) 1273 limit = 0; 1274 1275 while (bufmgr_gem->vma_count > limit) { 1276 drm_intel_bo_gem *bo_gem; 1277 1278 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1279 bufmgr_gem->vma_cache.next, 1280 vma_list); 1281 assert(bo_gem->map_count == 0); 1282 DRMLISTDELINIT(&bo_gem->vma_list); 1283 1284 if (bo_gem->mem_virtual) { 1285 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size); 1286 bo_gem->mem_virtual = NULL; 1287 bufmgr_gem->vma_count--; 1288 } 1289 if (bo_gem->wc_virtual) { 1290 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size); 1291 bo_gem->wc_virtual = NULL; 1292 bufmgr_gem->vma_count--; 1293 } 1294 if (bo_gem->gtt_virtual) { 1295 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size); 1296 bo_gem->gtt_virtual = NULL; 1297 bufmgr_gem->vma_count--; 1298 } 1299 } 1300} 1301 1302static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem, 1303 drm_intel_bo_gem *bo_gem) 1304{ 1305 bufmgr_gem->vma_open--; 1306 DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache); 1307 if (bo_gem->mem_virtual) 1308 bufmgr_gem->vma_count++; 1309 if (bo_gem->wc_virtual) 1310 bufmgr_gem->vma_count++; 1311 if (bo_gem->gtt_virtual) 1312 bufmgr_gem->vma_count++; 1313 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 1314} 1315 1316static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem, 1317 drm_intel_bo_gem *bo_gem) 1318{ 1319 bufmgr_gem->vma_open++; 1320 DRMLISTDEL(&bo_gem->vma_list); 1321 if (bo_gem->mem_virtual) 1322 bufmgr_gem->vma_count--; 1323 if (bo_gem->wc_virtual) 1324 bufmgr_gem->vma_count--; 1325 if (bo_gem->gtt_virtual) 1326 bufmgr_gem->vma_count--; 1327 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 1328} 1329 1330static void 1331drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time) 1332{ 1333 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1334 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1335 struct drm_intel_gem_bo_bucket *bucket; 1336 int i; 1337 1338 /* Unreference all the target buffers */ 1339 for (i = 0; i < bo_gem->reloc_count; i++) { 1340 if (bo_gem->reloc_target_info[i].bo != bo) { 1341 drm_intel_gem_bo_unreference_locked_timed(bo_gem-> 1342 reloc_target_info[i].bo, 1343 time); 1344 } 1345 } 1346 for (i = 0; i < bo_gem->softpin_target_count; i++) 1347 drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i], 1348 time); 1349 bo_gem->kflags = 0; 1350 bo_gem->reloc_count = 0; 1351 bo_gem->used_as_reloc_target = false; 1352 bo_gem->softpin_target_count = 0; 1353 1354 DBG("bo_unreference final: %d (%s)\n", 1355 bo_gem->gem_handle, bo_gem->name); 1356 1357 /* release memory associated with this object */ 1358 if (bo_gem->reloc_target_info) { 1359 free(bo_gem->reloc_target_info); 1360 bo_gem->reloc_target_info = NULL; 1361 } 1362 if (bo_gem->relocs) { 1363 free(bo_gem->relocs); 1364 bo_gem->relocs = NULL; 1365 } 1366 if (bo_gem->softpin_target) { 1367 free(bo_gem->softpin_target); 1368 bo_gem->softpin_target = NULL; 1369 bo_gem->softpin_target_size = 0; 1370 } 1371 1372 /* Clear any left-over mappings */ 1373 if (bo_gem->map_count) { 1374 DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count); 1375 bo_gem->map_count = 0; 1376 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1377 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1378 } 1379 1380 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size); 1381 /* Put the buffer into our internal cache for reuse if we can. */ 1382 if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL && 1383 drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem, 1384 I915_MADV_DONTNEED)) { 1385 bo_gem->free_time = time; 1386 1387 bo_gem->name = NULL; 1388 bo_gem->validate_index = -1; 1389 1390 DRMLISTADDTAIL(&bo_gem->head, &bucket->head); 1391 } else { 1392 drm_intel_gem_bo_free(bo); 1393 } 1394} 1395 1396static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, 1397 time_t time) 1398{ 1399 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1400 1401 assert(atomic_read(&bo_gem->refcount) > 0); 1402 if (atomic_dec_and_test(&bo_gem->refcount)) 1403 drm_intel_gem_bo_unreference_final(bo, time); 1404} 1405 1406static void drm_intel_gem_bo_unreference(drm_intel_bo *bo) 1407{ 1408 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1409 1410 assert(atomic_read(&bo_gem->refcount) > 0); 1411 1412 if (atomic_add_unless(&bo_gem->refcount, -1, 1)) { 1413 drm_intel_bufmgr_gem *bufmgr_gem = 1414 (drm_intel_bufmgr_gem *) bo->bufmgr; 1415 struct timespec time; 1416 1417 clock_gettime(CLOCK_MONOTONIC, &time); 1418 1419 pthread_mutex_lock(&bufmgr_gem->lock); 1420 1421 if (atomic_dec_and_test(&bo_gem->refcount)) { 1422 drm_intel_gem_bo_unreference_final(bo, time.tv_sec); 1423 drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec); 1424 } 1425 1426 pthread_mutex_unlock(&bufmgr_gem->lock); 1427 } 1428} 1429 1430static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable) 1431{ 1432 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1433 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1434 struct drm_i915_gem_set_domain set_domain; 1435 int ret; 1436 1437 if (bo_gem->is_userptr) { 1438 /* Return the same user ptr */ 1439 bo->virtual = bo_gem->user_virtual; 1440 return 0; 1441 } 1442 1443 pthread_mutex_lock(&bufmgr_gem->lock); 1444 1445 if (bo_gem->map_count++ == 0) 1446 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 1447 1448 if (!bo_gem->mem_virtual) { 1449 struct drm_i915_gem_mmap mmap_arg; 1450 1451 DBG("bo_map: %d (%s), map_count=%d\n", 1452 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 1453 1454 memclear(mmap_arg); 1455 mmap_arg.handle = bo_gem->gem_handle; 1456 mmap_arg.size = bo->size; 1457 ret = drmIoctl(bufmgr_gem->fd, 1458 DRM_IOCTL_I915_GEM_MMAP, 1459 &mmap_arg); 1460 if (ret != 0) { 1461 ret = -errno; 1462 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 1463 __FILE__, __LINE__, bo_gem->gem_handle, 1464 bo_gem->name, strerror(errno)); 1465 if (--bo_gem->map_count == 0) 1466 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1467 pthread_mutex_unlock(&bufmgr_gem->lock); 1468 return ret; 1469 } 1470 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 1471 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 1472 } 1473 DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, 1474 bo_gem->mem_virtual); 1475 bo->virtual = bo_gem->mem_virtual; 1476 1477 memclear(set_domain); 1478 set_domain.handle = bo_gem->gem_handle; 1479 set_domain.read_domains = I915_GEM_DOMAIN_CPU; 1480 if (write_enable) 1481 set_domain.write_domain = I915_GEM_DOMAIN_CPU; 1482 else 1483 set_domain.write_domain = 0; 1484 ret = drmIoctl(bufmgr_gem->fd, 1485 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1486 &set_domain); 1487 if (ret != 0) { 1488 DBG("%s:%d: Error setting to CPU domain %d: %s\n", 1489 __FILE__, __LINE__, bo_gem->gem_handle, 1490 strerror(errno)); 1491 } 1492 1493 if (write_enable) 1494 bo_gem->mapped_cpu_write = true; 1495 1496 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1497 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size)); 1498 pthread_mutex_unlock(&bufmgr_gem->lock); 1499 1500 return 0; 1501} 1502 1503static int 1504map_gtt(drm_intel_bo *bo) 1505{ 1506 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1507 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1508 int ret; 1509 1510 if (bo_gem->is_userptr) 1511 return -EINVAL; 1512 1513 if (bo_gem->map_count++ == 0) 1514 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 1515 1516 /* Get a mapping of the buffer if we haven't before. */ 1517 if (bo_gem->gtt_virtual == NULL) { 1518 struct drm_i915_gem_mmap_gtt mmap_arg; 1519 1520 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n", 1521 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 1522 1523 memclear(mmap_arg); 1524 mmap_arg.handle = bo_gem->gem_handle; 1525 1526 /* Get the fake offset back... */ 1527 ret = drmIoctl(bufmgr_gem->fd, 1528 DRM_IOCTL_I915_GEM_MMAP_GTT, 1529 &mmap_arg); 1530 if (ret != 0) { 1531 ret = -errno; 1532 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n", 1533 __FILE__, __LINE__, 1534 bo_gem->gem_handle, bo_gem->name, 1535 strerror(errno)); 1536 if (--bo_gem->map_count == 0) 1537 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1538 return ret; 1539 } 1540 1541 /* and mmap it */ 1542 bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, 1543 MAP_SHARED, bufmgr_gem->fd, 1544 mmap_arg.offset); 1545 if (bo_gem->gtt_virtual == MAP_FAILED) { 1546 bo_gem->gtt_virtual = NULL; 1547 ret = -errno; 1548 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 1549 __FILE__, __LINE__, 1550 bo_gem->gem_handle, bo_gem->name, 1551 strerror(errno)); 1552 if (--bo_gem->map_count == 0) 1553 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1554 return ret; 1555 } 1556 } 1557 1558 bo->virtual = bo_gem->gtt_virtual; 1559 1560 DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, 1561 bo_gem->gtt_virtual); 1562 1563 return 0; 1564} 1565 1566drm_public int 1567drm_intel_gem_bo_map_gtt(drm_intel_bo *bo) 1568{ 1569 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1570 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1571 struct drm_i915_gem_set_domain set_domain; 1572 int ret; 1573 1574 pthread_mutex_lock(&bufmgr_gem->lock); 1575 1576 ret = map_gtt(bo); 1577 if (ret) { 1578 pthread_mutex_unlock(&bufmgr_gem->lock); 1579 return ret; 1580 } 1581 1582 /* Now move it to the GTT domain so that the GPU and CPU 1583 * caches are flushed and the GPU isn't actively using the 1584 * buffer. 1585 * 1586 * The pagefault handler does this domain change for us when 1587 * it has unbound the BO from the GTT, but it's up to us to 1588 * tell it when we're about to use things if we had done 1589 * rendering and it still happens to be bound to the GTT. 1590 */ 1591 memclear(set_domain); 1592 set_domain.handle = bo_gem->gem_handle; 1593 set_domain.read_domains = I915_GEM_DOMAIN_GTT; 1594 set_domain.write_domain = I915_GEM_DOMAIN_GTT; 1595 ret = drmIoctl(bufmgr_gem->fd, 1596 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1597 &set_domain); 1598 if (ret != 0) { 1599 DBG("%s:%d: Error setting domain %d: %s\n", 1600 __FILE__, __LINE__, bo_gem->gem_handle, 1601 strerror(errno)); 1602 } 1603 1604 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1605 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size)); 1606 pthread_mutex_unlock(&bufmgr_gem->lock); 1607 1608 return 0; 1609} 1610 1611/** 1612 * Performs a mapping of the buffer object like the normal GTT 1613 * mapping, but avoids waiting for the GPU to be done reading from or 1614 * rendering to the buffer. 1615 * 1616 * This is used in the implementation of GL_ARB_map_buffer_range: The 1617 * user asks to create a buffer, then does a mapping, fills some 1618 * space, runs a drawing command, then asks to map it again without 1619 * synchronizing because it guarantees that it won't write over the 1620 * data that the GPU is busy using (or, more specifically, that if it 1621 * does write over the data, it acknowledges that rendering is 1622 * undefined). 1623 */ 1624 1625drm_public int 1626drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo) 1627{ 1628 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1629#if HAVE_VALGRIND 1630 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1631#endif 1632 int ret; 1633 1634 /* If the CPU cache isn't coherent with the GTT, then use a 1635 * regular synchronized mapping. The problem is that we don't 1636 * track where the buffer was last used on the CPU side in 1637 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so 1638 * we would potentially corrupt the buffer even when the user 1639 * does reasonable things. 1640 */ 1641 if (!bufmgr_gem->has_llc) 1642 return drm_intel_gem_bo_map_gtt(bo); 1643 1644 pthread_mutex_lock(&bufmgr_gem->lock); 1645 1646 ret = map_gtt(bo); 1647 if (ret == 0) { 1648 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1649 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size)); 1650 } 1651 1652 pthread_mutex_unlock(&bufmgr_gem->lock); 1653 1654 return ret; 1655} 1656 1657static int drm_intel_gem_bo_unmap(drm_intel_bo *bo) 1658{ 1659 drm_intel_bufmgr_gem *bufmgr_gem; 1660 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1661 int ret = 0; 1662 1663 if (bo == NULL) 1664 return 0; 1665 1666 if (bo_gem->is_userptr) 1667 return 0; 1668 1669 bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1670 1671 pthread_mutex_lock(&bufmgr_gem->lock); 1672 1673 if (bo_gem->map_count <= 0) { 1674 DBG("attempted to unmap an unmapped bo\n"); 1675 pthread_mutex_unlock(&bufmgr_gem->lock); 1676 /* Preserve the old behaviour of just treating this as a 1677 * no-op rather than reporting the error. 1678 */ 1679 return 0; 1680 } 1681 1682 if (bo_gem->mapped_cpu_write) { 1683 struct drm_i915_gem_sw_finish sw_finish; 1684 1685 /* Cause a flush to happen if the buffer's pinned for 1686 * scanout, so the results show up in a timely manner. 1687 * Unlike GTT set domains, this only does work if the 1688 * buffer should be scanout-related. 1689 */ 1690 memclear(sw_finish); 1691 sw_finish.handle = bo_gem->gem_handle; 1692 ret = drmIoctl(bufmgr_gem->fd, 1693 DRM_IOCTL_I915_GEM_SW_FINISH, 1694 &sw_finish); 1695 ret = ret == -1 ? -errno : 0; 1696 1697 bo_gem->mapped_cpu_write = false; 1698 } 1699 1700 /* We need to unmap after every innovation as we cannot track 1701 * an open vma for every bo as that will exhaust the system 1702 * limits and cause later failures. 1703 */ 1704 if (--bo_gem->map_count == 0) { 1705 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1706 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1707 bo->virtual = NULL; 1708 } 1709 pthread_mutex_unlock(&bufmgr_gem->lock); 1710 1711 return ret; 1712} 1713 1714drm_public int 1715drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo) 1716{ 1717 return drm_intel_gem_bo_unmap(bo); 1718} 1719 1720static int 1721drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset, 1722 unsigned long size, const void *data) 1723{ 1724 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1725 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1726 struct drm_i915_gem_pwrite pwrite; 1727 int ret; 1728 1729 if (bo_gem->is_userptr) 1730 return -EINVAL; 1731 1732 memclear(pwrite); 1733 pwrite.handle = bo_gem->gem_handle; 1734 pwrite.offset = offset; 1735 pwrite.size = size; 1736 pwrite.data_ptr = (uint64_t) (uintptr_t) data; 1737 ret = drmIoctl(bufmgr_gem->fd, 1738 DRM_IOCTL_I915_GEM_PWRITE, 1739 &pwrite); 1740 if (ret != 0) { 1741 ret = -errno; 1742 DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n", 1743 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, 1744 (int)size, strerror(errno)); 1745 } 1746 1747 return ret; 1748} 1749 1750static int 1751drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id) 1752{ 1753 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1754 struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id; 1755 int ret; 1756 1757 memclear(get_pipe_from_crtc_id); 1758 get_pipe_from_crtc_id.crtc_id = crtc_id; 1759 ret = drmIoctl(bufmgr_gem->fd, 1760 DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, 1761 &get_pipe_from_crtc_id); 1762 if (ret != 0) { 1763 /* We return -1 here to signal that we don't 1764 * know which pipe is associated with this crtc. 1765 * This lets the caller know that this information 1766 * isn't available; using the wrong pipe for 1767 * vblank waiting can cause the chipset to lock up 1768 */ 1769 return -1; 1770 } 1771 1772 return get_pipe_from_crtc_id.pipe; 1773} 1774 1775static int 1776drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset, 1777 unsigned long size, void *data) 1778{ 1779 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1780 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1781 struct drm_i915_gem_pread pread; 1782 int ret; 1783 1784 if (bo_gem->is_userptr) 1785 return -EINVAL; 1786 1787 memclear(pread); 1788 pread.handle = bo_gem->gem_handle; 1789 pread.offset = offset; 1790 pread.size = size; 1791 pread.data_ptr = (uint64_t) (uintptr_t) data; 1792 ret = drmIoctl(bufmgr_gem->fd, 1793 DRM_IOCTL_I915_GEM_PREAD, 1794 &pread); 1795 if (ret != 0) { 1796 ret = -errno; 1797 DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n", 1798 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, 1799 (int)size, strerror(errno)); 1800 } 1801 1802 return ret; 1803} 1804 1805/** Waits for all GPU rendering with the object to have completed. */ 1806static void 1807drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo) 1808{ 1809 drm_intel_gem_bo_start_gtt_access(bo, 1); 1810} 1811 1812/** 1813 * Waits on a BO for the given amount of time. 1814 * 1815 * @bo: buffer object to wait for 1816 * @timeout_ns: amount of time to wait in nanoseconds. 1817 * If value is less than 0, an infinite wait will occur. 1818 * 1819 * Returns 0 if the wait was successful ie. the last batch referencing the 1820 * object has completed within the allotted time. Otherwise some negative return 1821 * value describes the error. Of particular interest is -ETIME when the wait has 1822 * failed to yield the desired result. 1823 * 1824 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows 1825 * the operation to give up after a certain amount of time. Another subtle 1826 * difference is the internal locking semantics are different (this variant does 1827 * not hold the lock for the duration of the wait). This makes the wait subject 1828 * to a larger userspace race window. 1829 * 1830 * The implementation shall wait until the object is no longer actively 1831 * referenced within a batch buffer at the time of the call. The wait will 1832 * not guarantee that the buffer is re-issued via another thread, or an flinked 1833 * handle. Userspace must make sure this race does not occur if such precision 1834 * is important. 1835 * 1836 * Note that some kernels have broken the inifite wait for negative values 1837 * promise, upgrade to latest stable kernels if this is the case. 1838 */ 1839drm_public int 1840drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns) 1841{ 1842 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1843 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1844 struct drm_i915_gem_wait wait; 1845 int ret; 1846 1847 if (!bufmgr_gem->has_wait_timeout) { 1848 DBG("%s:%d: Timed wait is not supported. Falling back to " 1849 "infinite wait\n", __FILE__, __LINE__); 1850 if (timeout_ns) { 1851 drm_intel_gem_bo_wait_rendering(bo); 1852 return 0; 1853 } else { 1854 return drm_intel_gem_bo_busy(bo) ? -ETIME : 0; 1855 } 1856 } 1857 1858 memclear(wait); 1859 wait.bo_handle = bo_gem->gem_handle; 1860 wait.timeout_ns = timeout_ns; 1861 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); 1862 if (ret == -1) 1863 return -errno; 1864 1865 return ret; 1866} 1867 1868/** 1869 * Sets the object to the GTT read and possibly write domain, used by the X 1870 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt(). 1871 * 1872 * In combination with drm_intel_gem_bo_pin() and manual fence management, we 1873 * can do tiled pixmaps this way. 1874 */ 1875drm_public void 1876drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable) 1877{ 1878 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1879 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1880 struct drm_i915_gem_set_domain set_domain; 1881 int ret; 1882 1883 memclear(set_domain); 1884 set_domain.handle = bo_gem->gem_handle; 1885 set_domain.read_domains = I915_GEM_DOMAIN_GTT; 1886 set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0; 1887 ret = drmIoctl(bufmgr_gem->fd, 1888 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1889 &set_domain); 1890 if (ret != 0) { 1891 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n", 1892 __FILE__, __LINE__, bo_gem->gem_handle, 1893 set_domain.read_domains, set_domain.write_domain, 1894 strerror(errno)); 1895 } 1896} 1897 1898static void 1899drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr) 1900{ 1901 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1902 struct drm_gem_close close_bo; 1903 int i, ret; 1904 1905 free(bufmgr_gem->exec2_objects); 1906 free(bufmgr_gem->exec_objects); 1907 free(bufmgr_gem->exec_bos); 1908 1909 pthread_mutex_destroy(&bufmgr_gem->lock); 1910 1911 /* Free any cached buffer objects we were going to reuse */ 1912 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 1913 struct drm_intel_gem_bo_bucket *bucket = 1914 &bufmgr_gem->cache_bucket[i]; 1915 drm_intel_bo_gem *bo_gem; 1916 1917 while (!DRMLISTEMPTY(&bucket->head)) { 1918 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1919 bucket->head.next, head); 1920 DRMLISTDEL(&bo_gem->head); 1921 1922 drm_intel_gem_bo_free(&bo_gem->bo); 1923 } 1924 } 1925 1926 /* Release userptr bo kept hanging around for optimisation. */ 1927 if (bufmgr_gem->userptr_active.ptr) { 1928 memclear(close_bo); 1929 close_bo.handle = bufmgr_gem->userptr_active.handle; 1930 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo); 1931 free(bufmgr_gem->userptr_active.ptr); 1932 if (ret) 1933 fprintf(stderr, 1934 "Failed to release test userptr object! (%d) " 1935 "i915 kernel driver may not be sane!\n", errno); 1936 } 1937 1938 free(bufmgr); 1939} 1940 1941/** 1942 * Adds the target buffer to the validation list and adds the relocation 1943 * to the reloc_buffer's relocation list. 1944 * 1945 * The relocation entry at the given offset must already contain the 1946 * precomputed relocation value, because the kernel will optimize out 1947 * the relocation entry write when the buffer hasn't moved from the 1948 * last known offset in target_bo. 1949 */ 1950static int 1951do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, 1952 drm_intel_bo *target_bo, uint32_t target_offset, 1953 uint32_t read_domains, uint32_t write_domain, 1954 bool need_fence) 1955{ 1956 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1957 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1958 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 1959 bool fenced_command; 1960 1961 if (bo_gem->has_error) 1962 return -ENOMEM; 1963 1964 if (target_bo_gem->has_error) { 1965 bo_gem->has_error = true; 1966 return -ENOMEM; 1967 } 1968 1969 /* We never use HW fences for rendering on 965+ */ 1970 if (bufmgr_gem->gen >= 4) 1971 need_fence = false; 1972 1973 fenced_command = need_fence; 1974 if (target_bo_gem->tiling_mode == I915_TILING_NONE) 1975 need_fence = false; 1976 1977 /* Create a new relocation list if needed */ 1978 if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo)) 1979 return -ENOMEM; 1980 1981 /* Check overflow */ 1982 assert(bo_gem->reloc_count < bufmgr_gem->max_relocs); 1983 1984 /* Check args */ 1985 assert(offset <= bo->size - 4); 1986 assert((write_domain & (write_domain - 1)) == 0); 1987 1988 /* An object needing a fence is a tiled buffer, so it won't have 1989 * relocs to other buffers. 1990 */ 1991 if (need_fence) { 1992 assert(target_bo_gem->reloc_count == 0); 1993 target_bo_gem->reloc_tree_fences = 1; 1994 } 1995 1996 /* Make sure that we're not adding a reloc to something whose size has 1997 * already been accounted for. 1998 */ 1999 assert(!bo_gem->used_as_reloc_target); 2000 if (target_bo_gem != bo_gem) { 2001 target_bo_gem->used_as_reloc_target = true; 2002 bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size; 2003 bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences; 2004 } 2005 2006 bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo; 2007 if (target_bo != bo) 2008 drm_intel_gem_bo_reference(target_bo); 2009 if (fenced_command) 2010 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 2011 DRM_INTEL_RELOC_FENCE; 2012 else 2013 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0; 2014 2015 bo_gem->relocs[bo_gem->reloc_count].offset = offset; 2016 bo_gem->relocs[bo_gem->reloc_count].delta = target_offset; 2017 bo_gem->relocs[bo_gem->reloc_count].target_handle = 2018 target_bo_gem->gem_handle; 2019 bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains; 2020 bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain; 2021 bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64; 2022 bo_gem->reloc_count++; 2023 2024 return 0; 2025} 2026 2027static void 2028drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable) 2029{ 2030 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2031 2032 if (enable) 2033 bo_gem->kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 2034 else 2035 bo_gem->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 2036} 2037 2038static int 2039drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo) 2040{ 2041 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2042 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2043 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 2044 if (bo_gem->has_error) 2045 return -ENOMEM; 2046 2047 if (target_bo_gem->has_error) { 2048 bo_gem->has_error = true; 2049 return -ENOMEM; 2050 } 2051 2052 if (!(target_bo_gem->kflags & EXEC_OBJECT_PINNED)) 2053 return -EINVAL; 2054 if (target_bo_gem == bo_gem) 2055 return -EINVAL; 2056 2057 if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) { 2058 int new_size = bo_gem->softpin_target_size * 2; 2059 if (new_size == 0) 2060 new_size = bufmgr_gem->max_relocs; 2061 2062 bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size * 2063 sizeof(drm_intel_bo *)); 2064 if (!bo_gem->softpin_target) 2065 return -ENOMEM; 2066 2067 bo_gem->softpin_target_size = new_size; 2068 } 2069 bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo; 2070 drm_intel_gem_bo_reference(target_bo); 2071 bo_gem->softpin_target_count++; 2072 2073 return 0; 2074} 2075 2076static int 2077drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, 2078 drm_intel_bo *target_bo, uint32_t target_offset, 2079 uint32_t read_domains, uint32_t write_domain) 2080{ 2081 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 2082 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo; 2083 2084 if (target_bo_gem->kflags & EXEC_OBJECT_PINNED) 2085 return drm_intel_gem_bo_add_softpin_target(bo, target_bo); 2086 else 2087 return do_bo_emit_reloc(bo, offset, target_bo, target_offset, 2088 read_domains, write_domain, 2089 !bufmgr_gem->fenced_relocs); 2090} 2091 2092static int 2093drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset, 2094 drm_intel_bo *target_bo, 2095 uint32_t target_offset, 2096 uint32_t read_domains, uint32_t write_domain) 2097{ 2098 return do_bo_emit_reloc(bo, offset, target_bo, target_offset, 2099 read_domains, write_domain, true); 2100} 2101 2102drm_public int 2103drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo) 2104{ 2105 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2106 2107 return bo_gem->reloc_count; 2108} 2109 2110/** 2111 * Removes existing relocation entries in the BO after "start". 2112 * 2113 * This allows a user to avoid a two-step process for state setup with 2114 * counting up all the buffer objects and doing a 2115 * drm_intel_bufmgr_check_aperture_space() before emitting any of the 2116 * relocations for the state setup. Instead, save the state of the 2117 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the 2118 * state, and then check if it still fits in the aperture. 2119 * 2120 * Any further drm_intel_bufmgr_check_aperture_space() queries 2121 * involving this buffer in the tree are undefined after this call. 2122 * 2123 * This also removes all softpinned targets being referenced by the BO. 2124 */ 2125drm_public void 2126drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start) 2127{ 2128 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2129 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2130 int i; 2131 struct timespec time; 2132 2133 clock_gettime(CLOCK_MONOTONIC, &time); 2134 2135 assert(bo_gem->reloc_count >= start); 2136 2137 /* Unreference the cleared target buffers */ 2138 pthread_mutex_lock(&bufmgr_gem->lock); 2139 2140 for (i = start; i < bo_gem->reloc_count; i++) { 2141 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo; 2142 if (&target_bo_gem->bo != bo) { 2143 bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences; 2144 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, 2145 time.tv_sec); 2146 } 2147 } 2148 bo_gem->reloc_count = start; 2149 2150 for (i = 0; i < bo_gem->softpin_target_count; i++) { 2151 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i]; 2152 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec); 2153 } 2154 bo_gem->softpin_target_count = 0; 2155 2156 pthread_mutex_unlock(&bufmgr_gem->lock); 2157 2158} 2159 2160/** 2161 * Walk the tree of relocations rooted at BO and accumulate the list of 2162 * validations to be performed and update the relocation buffers with 2163 * index values into the validation list. 2164 */ 2165static void 2166drm_intel_gem_bo_process_reloc(drm_intel_bo *bo) 2167{ 2168 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2169 int i; 2170 2171 if (bo_gem->relocs == NULL) 2172 return; 2173 2174 for (i = 0; i < bo_gem->reloc_count; i++) { 2175 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo; 2176 2177 if (target_bo == bo) 2178 continue; 2179 2180 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 2181 2182 /* Continue walking the tree depth-first. */ 2183 drm_intel_gem_bo_process_reloc(target_bo); 2184 2185 /* Add the target to the validate list */ 2186 drm_intel_add_validate_buffer(target_bo); 2187 } 2188} 2189 2190static void 2191drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo) 2192{ 2193 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 2194 int i; 2195 2196 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) 2197 return; 2198 2199 for (i = 0; i < bo_gem->reloc_count; i++) { 2200 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo; 2201 int need_fence; 2202 2203 if (target_bo == bo) 2204 continue; 2205 2206 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 2207 2208 /* Continue walking the tree depth-first. */ 2209 drm_intel_gem_bo_process_reloc2(target_bo); 2210 2211 need_fence = (bo_gem->reloc_target_info[i].flags & 2212 DRM_INTEL_RELOC_FENCE); 2213 2214 /* Add the target to the validate list */ 2215 drm_intel_add_validate_buffer2(target_bo, need_fence); 2216 } 2217 2218 for (i = 0; i < bo_gem->softpin_target_count; i++) { 2219 drm_intel_bo *target_bo = bo_gem->softpin_target[i]; 2220 2221 if (target_bo == bo) 2222 continue; 2223 2224 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 2225 drm_intel_gem_bo_process_reloc2(target_bo); 2226 drm_intel_add_validate_buffer2(target_bo, false); 2227 } 2228} 2229 2230 2231static void 2232drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem) 2233{ 2234 int i; 2235 2236 for (i = 0; i < bufmgr_gem->exec_count; i++) { 2237 drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; 2238 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2239 2240 /* Update the buffer offset */ 2241 if (bufmgr_gem->exec_objects[i].offset != bo->offset64) { 2242 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n", 2243 bo_gem->gem_handle, bo_gem->name, 2244 upper_32_bits(bo->offset64), 2245 lower_32_bits(bo->offset64), 2246 upper_32_bits(bufmgr_gem->exec_objects[i].offset), 2247 lower_32_bits(bufmgr_gem->exec_objects[i].offset)); 2248 bo->offset64 = bufmgr_gem->exec_objects[i].offset; 2249 bo->offset = bufmgr_gem->exec_objects[i].offset; 2250 } 2251 } 2252} 2253 2254static void 2255drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem) 2256{ 2257 int i; 2258 2259 for (i = 0; i < bufmgr_gem->exec_count; i++) { 2260 drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; 2261 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 2262 2263 /* Update the buffer offset */ 2264 if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) { 2265 /* If we're seeing softpinned object here it means that the kernel 2266 * has relocated our object... Indicating a programming error 2267 */ 2268 assert(!(bo_gem->kflags & EXEC_OBJECT_PINNED)); 2269 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n", 2270 bo_gem->gem_handle, bo_gem->name, 2271 upper_32_bits(bo->offset64), 2272 lower_32_bits(bo->offset64), 2273 upper_32_bits(bufmgr_gem->exec2_objects[i].offset), 2274 lower_32_bits(bufmgr_gem->exec2_objects[i].offset)); 2275 bo->offset64 = bufmgr_gem->exec2_objects[i].offset; 2276 bo->offset = bufmgr_gem->exec2_objects[i].offset; 2277 } 2278 } 2279} 2280 2281drm_public void 2282drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo, 2283 int x1, int y1, int width, int height, 2284 enum aub_dump_bmp_format format, 2285 int pitch, int offset) 2286{ 2287} 2288 2289static int 2290drm_intel_gem_bo_exec(drm_intel_bo *bo, int used, 2291 drm_clip_rect_t * cliprects, int num_cliprects, int DR4) 2292{ 2293 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2294 struct drm_i915_gem_execbuffer execbuf; 2295 int ret, i; 2296 2297 if (to_bo_gem(bo)->has_error) 2298 return -ENOMEM; 2299 2300 pthread_mutex_lock(&bufmgr_gem->lock); 2301 /* Update indices and set up the validate list. */ 2302 drm_intel_gem_bo_process_reloc(bo); 2303 2304 /* Add the batch buffer to the validation list. There are no 2305 * relocations pointing to it. 2306 */ 2307 drm_intel_add_validate_buffer(bo); 2308 2309 memclear(execbuf); 2310 execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects; 2311 execbuf.buffer_count = bufmgr_gem->exec_count; 2312 execbuf.batch_start_offset = 0; 2313 execbuf.batch_len = used; 2314 execbuf.cliprects_ptr = (uintptr_t) cliprects; 2315 execbuf.num_cliprects = num_cliprects; 2316 execbuf.DR1 = 0; 2317 execbuf.DR4 = DR4; 2318 2319 ret = drmIoctl(bufmgr_gem->fd, 2320 DRM_IOCTL_I915_GEM_EXECBUFFER, 2321 &execbuf); 2322 if (ret != 0) { 2323 ret = -errno; 2324 if (errno == ENOSPC) { 2325 DBG("Execbuffer fails to pin. " 2326 "Estimate: %u. Actual: %u. Available: %u\n", 2327 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos, 2328 bufmgr_gem-> 2329 exec_count), 2330 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos, 2331 bufmgr_gem-> 2332 exec_count), 2333 (unsigned int)bufmgr_gem->gtt_size); 2334 } 2335 } 2336 drm_intel_update_buffer_offsets(bufmgr_gem); 2337 2338 if (bufmgr_gem->bufmgr.debug) 2339 drm_intel_gem_dump_validation_list(bufmgr_gem); 2340 2341 for (i = 0; i < bufmgr_gem->exec_count; i++) { 2342 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]); 2343 2344 bo_gem->idle = false; 2345 2346 /* Disconnect the buffer from the validate list */ 2347 bo_gem->validate_index = -1; 2348 bufmgr_gem->exec_bos[i] = NULL; 2349 } 2350 bufmgr_gem->exec_count = 0; 2351 pthread_mutex_unlock(&bufmgr_gem->lock); 2352 2353 return ret; 2354} 2355 2356static int 2357do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx, 2358 drm_clip_rect_t *cliprects, int num_cliprects, int DR4, 2359 int in_fence, int *out_fence, 2360 unsigned int flags) 2361{ 2362 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 2363 struct drm_i915_gem_execbuffer2 execbuf; 2364 int ret = 0; 2365 int i; 2366 2367 if (to_bo_gem(bo)->has_error) 2368 return -ENOMEM; 2369 2370 switch (flags & 0x7) { 2371 default: 2372 return -EINVAL; 2373 case I915_EXEC_BLT: 2374 if (!bufmgr_gem->has_blt) 2375 return -EINVAL; 2376 break; 2377 case I915_EXEC_BSD: 2378 if (!bufmgr_gem->has_bsd) 2379 return -EINVAL; 2380 break; 2381 case I915_EXEC_VEBOX: 2382 if (!bufmgr_gem->has_vebox) 2383 return -EINVAL; 2384 break; 2385 case I915_EXEC_RENDER: 2386 case I915_EXEC_DEFAULT: 2387 break; 2388 } 2389 2390 pthread_mutex_lock(&bufmgr_gem->lock); 2391 /* Update indices and set up the validate list. */ 2392 drm_intel_gem_bo_process_reloc2(bo); 2393 2394 /* Add the batch buffer to the validation list. There are no relocations 2395 * pointing to it. 2396 */ 2397 drm_intel_add_validate_buffer2(bo, 0); 2398 2399 memclear(execbuf); 2400 execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects; 2401 execbuf.buffer_count = bufmgr_gem->exec_count; 2402 execbuf.batch_start_offset = 0; 2403 execbuf.batch_len = used; 2404 execbuf.cliprects_ptr = (uintptr_t)cliprects; 2405 execbuf.num_cliprects = num_cliprects; 2406 execbuf.DR1 = 0; 2407 execbuf.DR4 = DR4; 2408 execbuf.flags = flags; 2409 if (ctx == NULL) 2410 i915_execbuffer2_set_context_id(execbuf, 0); 2411 else 2412 i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id); 2413 execbuf.rsvd2 = 0; 2414 if (in_fence != -1) { 2415 execbuf.rsvd2 = in_fence; 2416 execbuf.flags |= I915_EXEC_FENCE_IN; 2417 } 2418 if (out_fence != NULL) { 2419 *out_fence = -1; 2420 execbuf.flags |= I915_EXEC_FENCE_OUT; 2421 } 2422 2423 if (bufmgr_gem->no_exec) 2424 goto skip_execution; 2425 2426 ret = drmIoctl(bufmgr_gem->fd, 2427 DRM_IOCTL_I915_GEM_EXECBUFFER2_WR, 2428 &execbuf); 2429 if (ret != 0) { 2430 ret = -errno; 2431 if (ret == -ENOSPC) { 2432 DBG("Execbuffer fails to pin. " 2433 "Estimate: %u. Actual: %u. Available: %u\n", 2434 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos, 2435 bufmgr_gem->exec_count), 2436 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos, 2437 bufmgr_gem->exec_count), 2438 (unsigned int) bufmgr_gem->gtt_size); 2439 } 2440 } 2441 drm_intel_update_buffer_offsets2(bufmgr_gem); 2442 2443 if (ret == 0 && out_fence != NULL) 2444 *out_fence = execbuf.rsvd2 >> 32; 2445 2446skip_execution: 2447 if (bufmgr_gem->bufmgr.debug) 2448 drm_intel_gem_dump_validation_list(bufmgr_gem); 2449 2450 for (i = 0; i < bufmgr_gem->exec_count; i++) { 2451 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]); 2452 2453 bo_gem->idle = false; 2454 2455 /* Disconnect the buffer from the validate list */ 2456 bo_gem->validate_index = -1; 2457 bufmgr_gem->exec_bos[i] = NULL; 2458 } 2459 bufmgr_gem->exec_count = 0; 2460 pthread_mutex_unlock(&bufmgr_gem->lock); 2461 2462 return ret; 2463} 2464 2465static int 2466drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used, 2467 drm_clip_rect_t *cliprects, int num_cliprects, 2468 int DR4) 2469{ 2470 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4, 2471 -1, NULL, I915_EXEC_RENDER); 2472} 2473 2474static int 2475drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used, 2476 drm_clip_rect_t *cliprects, int num_cliprects, int DR4, 2477 unsigned int flags) 2478{ 2479 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4, 2480 -1, NULL, flags); 2481} 2482 2483drm_public int 2484drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx, 2485 int used, unsigned int flags) 2486{ 2487 return do_exec2(bo, used, ctx, NULL, 0, 0, -1, NULL, flags); 2488} 2489 2490drm_public int 2491drm_intel_gem_bo_fence_exec(drm_intel_bo *bo, 2492 drm_intel_context *ctx, 2493 int used, 2494 int in_fence, 2495 int *out_fence, 2496 unsigned int flags) 2497{ 2498 return do_exec2(bo, used, ctx, NULL, 0, 0, in_fence, out_fence, flags); 2499} 2500 2501static int 2502drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment) 2503{ 2504 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2505 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2506 struct drm_i915_gem_pin pin; 2507 int ret; 2508 2509 memclear(pin); 2510 pin.handle = bo_gem->gem_handle; 2511 pin.alignment = alignment; 2512 2513 ret = drmIoctl(bufmgr_gem->fd, 2514 DRM_IOCTL_I915_GEM_PIN, 2515 &pin); 2516 if (ret != 0) 2517 return -errno; 2518 2519 bo->offset64 = pin.offset; 2520 bo->offset = pin.offset; 2521 return 0; 2522} 2523 2524static int 2525drm_intel_gem_bo_unpin(drm_intel_bo *bo) 2526{ 2527 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2528 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2529 struct drm_i915_gem_unpin unpin; 2530 int ret; 2531 2532 memclear(unpin); 2533 unpin.handle = bo_gem->gem_handle; 2534 2535 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin); 2536 if (ret != 0) 2537 return -errno; 2538 2539 return 0; 2540} 2541 2542static int 2543drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo, 2544 uint32_t tiling_mode, 2545 uint32_t stride) 2546{ 2547 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2548 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2549 struct drm_i915_gem_set_tiling set_tiling; 2550 int ret; 2551 2552 if (bo_gem->global_name == 0 && 2553 tiling_mode == bo_gem->tiling_mode && 2554 stride == bo_gem->stride) 2555 return 0; 2556 2557 memset(&set_tiling, 0, sizeof(set_tiling)); 2558 do { 2559 /* set_tiling is slightly broken and overwrites the 2560 * input on the error path, so we have to open code 2561 * rmIoctl. 2562 */ 2563 set_tiling.handle = bo_gem->gem_handle; 2564 set_tiling.tiling_mode = tiling_mode; 2565 set_tiling.stride = stride; 2566 2567 ret = ioctl(bufmgr_gem->fd, 2568 DRM_IOCTL_I915_GEM_SET_TILING, 2569 &set_tiling); 2570 } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); 2571 if (ret == -1) 2572 return -errno; 2573 2574 bo_gem->tiling_mode = set_tiling.tiling_mode; 2575 bo_gem->swizzle_mode = set_tiling.swizzle_mode; 2576 bo_gem->stride = set_tiling.stride; 2577 return 0; 2578} 2579 2580static int 2581drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 2582 uint32_t stride) 2583{ 2584 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2585 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2586 int ret; 2587 2588 /* Tiling with userptr surfaces is not supported 2589 * on all hardware so refuse it for time being. 2590 */ 2591 if (bo_gem->is_userptr) 2592 return -EINVAL; 2593 2594 /* Linear buffers have no stride. By ensuring that we only ever use 2595 * stride 0 with linear buffers, we simplify our code. 2596 */ 2597 if (*tiling_mode == I915_TILING_NONE) 2598 stride = 0; 2599 2600 ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride); 2601 if (ret == 0) 2602 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 2603 2604 *tiling_mode = bo_gem->tiling_mode; 2605 return ret; 2606} 2607 2608static int 2609drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 2610 uint32_t * swizzle_mode) 2611{ 2612 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2613 2614 *tiling_mode = bo_gem->tiling_mode; 2615 *swizzle_mode = bo_gem->swizzle_mode; 2616 return 0; 2617} 2618 2619static int 2620drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset) 2621{ 2622 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2623 2624 bo->offset64 = offset; 2625 bo->offset = offset; 2626 bo_gem->kflags |= EXEC_OBJECT_PINNED; 2627 2628 return 0; 2629} 2630 2631drm_public drm_intel_bo * 2632drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size) 2633{ 2634 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2635 int ret; 2636 uint32_t handle; 2637 drm_intel_bo_gem *bo_gem; 2638 struct drm_i915_gem_get_tiling get_tiling; 2639 2640 pthread_mutex_lock(&bufmgr_gem->lock); 2641 ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle); 2642 if (ret) { 2643 DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno)); 2644 pthread_mutex_unlock(&bufmgr_gem->lock); 2645 return NULL; 2646 } 2647 2648 /* 2649 * See if the kernel has already returned this buffer to us. Just as 2650 * for named buffers, we must not create two bo's pointing at the same 2651 * kernel object 2652 */ 2653 HASH_FIND(handle_hh, bufmgr_gem->handle_table, 2654 &handle, sizeof(handle), bo_gem); 2655 if (bo_gem) { 2656 drm_intel_gem_bo_reference(&bo_gem->bo); 2657 goto out; 2658 } 2659 2660 bo_gem = calloc(1, sizeof(*bo_gem)); 2661 if (!bo_gem) 2662 goto out; 2663 2664 atomic_set(&bo_gem->refcount, 1); 2665 DRMINITLISTHEAD(&bo_gem->vma_list); 2666 2667 /* Determine size of bo. The fd-to-handle ioctl really should 2668 * return the size, but it doesn't. If we have kernel 3.12 or 2669 * later, we can lseek on the prime fd to get the size. Older 2670 * kernels will just fail, in which case we fall back to the 2671 * provided (estimated or guess size). */ 2672 ret = lseek(prime_fd, 0, SEEK_END); 2673 if (ret != -1) 2674 bo_gem->bo.size = ret; 2675 else 2676 bo_gem->bo.size = size; 2677 2678 bo_gem->bo.handle = handle; 2679 bo_gem->bo.bufmgr = bufmgr; 2680 2681 bo_gem->gem_handle = handle; 2682 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 2683 gem_handle, sizeof(bo_gem->gem_handle), bo_gem); 2684 2685 bo_gem->name = "prime"; 2686 bo_gem->validate_index = -1; 2687 bo_gem->reloc_tree_fences = 0; 2688 bo_gem->used_as_reloc_target = false; 2689 bo_gem->has_error = false; 2690 bo_gem->reusable = false; 2691 2692 memclear(get_tiling); 2693 get_tiling.handle = bo_gem->gem_handle; 2694 if (drmIoctl(bufmgr_gem->fd, 2695 DRM_IOCTL_I915_GEM_GET_TILING, 2696 &get_tiling)) 2697 goto err; 2698 2699 bo_gem->tiling_mode = get_tiling.tiling_mode; 2700 bo_gem->swizzle_mode = get_tiling.swizzle_mode; 2701 /* XXX stride is unknown */ 2702 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 2703 2704out: 2705 pthread_mutex_unlock(&bufmgr_gem->lock); 2706 return &bo_gem->bo; 2707 2708err: 2709 drm_intel_gem_bo_free(&bo_gem->bo); 2710 pthread_mutex_unlock(&bufmgr_gem->lock); 2711 return NULL; 2712} 2713 2714drm_public int 2715drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd) 2716{ 2717 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2718 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2719 2720 if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle, 2721 DRM_CLOEXEC, prime_fd) != 0) 2722 return -errno; 2723 2724 bo_gem->reusable = false; 2725 2726 return 0; 2727} 2728 2729static int 2730drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name) 2731{ 2732 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2733 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2734 2735 if (!bo_gem->global_name) { 2736 struct drm_gem_flink flink; 2737 2738 memclear(flink); 2739 flink.handle = bo_gem->gem_handle; 2740 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink)) 2741 return -errno; 2742 2743 pthread_mutex_lock(&bufmgr_gem->lock); 2744 if (!bo_gem->global_name) { 2745 bo_gem->global_name = flink.name; 2746 bo_gem->reusable = false; 2747 2748 HASH_ADD(name_hh, bufmgr_gem->name_table, 2749 global_name, sizeof(bo_gem->global_name), 2750 bo_gem); 2751 } 2752 pthread_mutex_unlock(&bufmgr_gem->lock); 2753 } 2754 2755 *name = bo_gem->global_name; 2756 return 0; 2757} 2758 2759/** 2760 * Enables unlimited caching of buffer objects for reuse. 2761 * 2762 * This is potentially very memory expensive, as the cache at each bucket 2763 * size is only bounded by how many buffers of that size we've managed to have 2764 * in flight at once. 2765 */ 2766drm_public void 2767drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr) 2768{ 2769 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2770 2771 bufmgr_gem->bo_reuse = true; 2772} 2773 2774/** 2775 * Disables implicit synchronisation before executing the bo 2776 * 2777 * This will cause rendering corruption unless you correctly manage explicit 2778 * fences for all rendering involving this buffer - including use by others. 2779 * Disabling the implicit serialisation is only required if that serialisation 2780 * is too coarse (for example, you have split the buffer into many 2781 * non-overlapping regions and are sharing the whole buffer between concurrent 2782 * independent command streams). 2783 * 2784 * Note the kernel must advertise support via I915_PARAM_HAS_EXEC_ASYNC, 2785 * which can be checked using drm_intel_bufmgr_can_disable_implicit_sync, 2786 * or subsequent execbufs involving the bo will generate EINVAL. 2787 */ 2788drm_public void 2789drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo *bo) 2790{ 2791 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2792 2793 bo_gem->kflags |= EXEC_OBJECT_ASYNC; 2794} 2795 2796/** 2797 * Enables implicit synchronisation before executing the bo 2798 * 2799 * This is the default behaviour of the kernel, to wait upon prior writes 2800 * completing on the object before rendering with it, or to wait for prior 2801 * reads to complete before writing into the object. 2802 * drm_intel_gem_bo_disable_implicit_sync() can stop this behaviour, telling 2803 * the kernel never to insert a stall before using the object. Then this 2804 * function can be used to restore the implicit sync before subsequent 2805 * rendering. 2806 */ 2807drm_public void 2808drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo *bo) 2809{ 2810 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2811 2812 bo_gem->kflags &= ~EXEC_OBJECT_ASYNC; 2813} 2814 2815/** 2816 * Query whether the kernel supports disabling of its implicit synchronisation 2817 * before execbuf. See drm_intel_gem_bo_disable_implicit_sync() 2818 */ 2819drm_public int 2820drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr *bufmgr) 2821{ 2822 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2823 2824 return bufmgr_gem->has_exec_async; 2825} 2826 2827/** 2828 * Enable use of fenced reloc type. 2829 * 2830 * New code should enable this to avoid unnecessary fence register 2831 * allocation. If this option is not enabled, all relocs will have fence 2832 * register allocated. 2833 */ 2834drm_public void 2835drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr) 2836{ 2837 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 2838 2839 if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2) 2840 bufmgr_gem->fenced_relocs = true; 2841} 2842 2843/** 2844 * Return the additional aperture space required by the tree of buffer objects 2845 * rooted at bo. 2846 */ 2847static int 2848drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo) 2849{ 2850 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2851 int i; 2852 int total = 0; 2853 2854 if (bo == NULL || bo_gem->included_in_check_aperture) 2855 return 0; 2856 2857 total += bo->size; 2858 bo_gem->included_in_check_aperture = true; 2859 2860 for (i = 0; i < bo_gem->reloc_count; i++) 2861 total += 2862 drm_intel_gem_bo_get_aperture_space(bo_gem-> 2863 reloc_target_info[i].bo); 2864 2865 return total; 2866} 2867 2868/** 2869 * Count the number of buffers in this list that need a fence reg 2870 * 2871 * If the count is greater than the number of available regs, we'll have 2872 * to ask the caller to resubmit a batch with fewer tiled buffers. 2873 * 2874 * This function over-counts if the same buffer is used multiple times. 2875 */ 2876static unsigned int 2877drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count) 2878{ 2879 int i; 2880 unsigned int total = 0; 2881 2882 for (i = 0; i < count; i++) { 2883 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; 2884 2885 if (bo_gem == NULL) 2886 continue; 2887 2888 total += bo_gem->reloc_tree_fences; 2889 } 2890 return total; 2891} 2892 2893/** 2894 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready 2895 * for the next drm_intel_bufmgr_check_aperture_space() call. 2896 */ 2897static void 2898drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo) 2899{ 2900 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2901 int i; 2902 2903 if (bo == NULL || !bo_gem->included_in_check_aperture) 2904 return; 2905 2906 bo_gem->included_in_check_aperture = false; 2907 2908 for (i = 0; i < bo_gem->reloc_count; i++) 2909 drm_intel_gem_bo_clear_aperture_space_flag(bo_gem-> 2910 reloc_target_info[i].bo); 2911} 2912 2913/** 2914 * Return a conservative estimate for the amount of aperture required 2915 * for a collection of buffers. This may double-count some buffers. 2916 */ 2917static unsigned int 2918drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count) 2919{ 2920 int i; 2921 unsigned int total = 0; 2922 2923 for (i = 0; i < count; i++) { 2924 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; 2925 if (bo_gem != NULL) 2926 total += bo_gem->reloc_tree_size; 2927 } 2928 return total; 2929} 2930 2931/** 2932 * Return the amount of aperture needed for a collection of buffers. 2933 * This avoids double counting any buffers, at the cost of looking 2934 * at every buffer in the set. 2935 */ 2936static unsigned int 2937drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count) 2938{ 2939 int i; 2940 unsigned int total = 0; 2941 2942 for (i = 0; i < count; i++) { 2943 total += drm_intel_gem_bo_get_aperture_space(bo_array[i]); 2944 /* For the first buffer object in the array, we get an 2945 * accurate count back for its reloc_tree size (since nothing 2946 * had been flagged as being counted yet). We can save that 2947 * value out as a more conservative reloc_tree_size that 2948 * avoids double-counting target buffers. Since the first 2949 * buffer happens to usually be the batch buffer in our 2950 * callers, this can pull us back from doing the tree 2951 * walk on every new batch emit. 2952 */ 2953 if (i == 0) { 2954 drm_intel_bo_gem *bo_gem = 2955 (drm_intel_bo_gem *) bo_array[i]; 2956 bo_gem->reloc_tree_size = total; 2957 } 2958 } 2959 2960 for (i = 0; i < count; i++) 2961 drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]); 2962 return total; 2963} 2964 2965/** 2966 * Return -1 if the batchbuffer should be flushed before attempting to 2967 * emit rendering referencing the buffers pointed to by bo_array. 2968 * 2969 * This is required because if we try to emit a batchbuffer with relocations 2970 * to a tree of buffers that won't simultaneously fit in the aperture, 2971 * the rendering will return an error at a point where the software is not 2972 * prepared to recover from it. 2973 * 2974 * However, we also want to emit the batchbuffer significantly before we reach 2975 * the limit, as a series of batchbuffers each of which references buffers 2976 * covering almost all of the aperture means that at each emit we end up 2977 * waiting to evict a buffer from the last rendering, and we get synchronous 2978 * performance. By emitting smaller batchbuffers, we eat some CPU overhead to 2979 * get better parallelism. 2980 */ 2981static int 2982drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count) 2983{ 2984 drm_intel_bufmgr_gem *bufmgr_gem = 2985 (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr; 2986 unsigned int total = 0; 2987 unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4; 2988 int total_fences; 2989 2990 /* Check for fence reg constraints if necessary */ 2991 if (bufmgr_gem->available_fences) { 2992 total_fences = drm_intel_gem_total_fences(bo_array, count); 2993 if (total_fences > bufmgr_gem->available_fences) 2994 return -ENOSPC; 2995 } 2996 2997 total = drm_intel_gem_estimate_batch_space(bo_array, count); 2998 2999 if (total > threshold) 3000 total = drm_intel_gem_compute_batch_space(bo_array, count); 3001 3002 if (total > threshold) { 3003 DBG("check_space: overflowed available aperture, " 3004 "%dkb vs %dkb\n", 3005 total / 1024, (int)bufmgr_gem->gtt_size / 1024); 3006 return -ENOSPC; 3007 } else { 3008 DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024, 3009 (int)bufmgr_gem->gtt_size / 1024); 3010 return 0; 3011 } 3012} 3013 3014/* 3015 * Disable buffer reuse for objects which are shared with the kernel 3016 * as scanout buffers 3017 */ 3018static int 3019drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo) 3020{ 3021 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3022 3023 bo_gem->reusable = false; 3024 return 0; 3025} 3026 3027static int 3028drm_intel_gem_bo_is_reusable(drm_intel_bo *bo) 3029{ 3030 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3031 3032 return bo_gem->reusable; 3033} 3034 3035static int 3036_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) 3037{ 3038 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3039 int i; 3040 3041 for (i = 0; i < bo_gem->reloc_count; i++) { 3042 if (bo_gem->reloc_target_info[i].bo == target_bo) 3043 return 1; 3044 if (bo == bo_gem->reloc_target_info[i].bo) 3045 continue; 3046 if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo, 3047 target_bo)) 3048 return 1; 3049 } 3050 3051 for (i = 0; i< bo_gem->softpin_target_count; i++) { 3052 if (bo_gem->softpin_target[i] == target_bo) 3053 return 1; 3054 if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo)) 3055 return 1; 3056 } 3057 3058 return 0; 3059} 3060 3061/** Return true if target_bo is referenced by bo's relocation tree. */ 3062static int 3063drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) 3064{ 3065 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 3066 3067 if (bo == NULL || target_bo == NULL) 3068 return 0; 3069 if (target_bo_gem->used_as_reloc_target) 3070 return _drm_intel_gem_bo_references(bo, target_bo); 3071 return 0; 3072} 3073 3074static void 3075add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size) 3076{ 3077 unsigned int i = bufmgr_gem->num_buckets; 3078 3079 assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket)); 3080 3081 DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head); 3082 bufmgr_gem->cache_bucket[i].size = size; 3083 bufmgr_gem->num_buckets++; 3084} 3085 3086static void 3087init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem) 3088{ 3089 unsigned long size, cache_max_size = 64 * 1024 * 1024; 3090 3091 /* OK, so power of two buckets was too wasteful of memory. 3092 * Give 3 other sizes between each power of two, to hopefully 3093 * cover things accurately enough. (The alternative is 3094 * probably to just go for exact matching of sizes, and assume 3095 * that for things like composited window resize the tiled 3096 * width/height alignment and rounding of sizes to pages will 3097 * get us useful cache hit rates anyway) 3098 */ 3099 add_bucket(bufmgr_gem, 4096); 3100 add_bucket(bufmgr_gem, 4096 * 2); 3101 add_bucket(bufmgr_gem, 4096 * 3); 3102 3103 /* Initialize the linked lists for BO reuse cache. */ 3104 for (size = 4 * 4096; size <= cache_max_size; size *= 2) { 3105 add_bucket(bufmgr_gem, size); 3106 3107 add_bucket(bufmgr_gem, size + size * 1 / 4); 3108 add_bucket(bufmgr_gem, size + size * 2 / 4); 3109 add_bucket(bufmgr_gem, size + size * 3 / 4); 3110 } 3111} 3112 3113drm_public void 3114drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit) 3115{ 3116 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3117 3118 bufmgr_gem->vma_max = limit; 3119 3120 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 3121} 3122 3123static int 3124parse_devid_override(const char *devid_override) 3125{ 3126 static const struct { 3127 const char *name; 3128 int pci_id; 3129 } name_map[] = { 3130 { "brw", PCI_CHIP_I965_GM }, 3131 { "g4x", PCI_CHIP_GM45_GM }, 3132 { "ilk", PCI_CHIP_ILD_G }, 3133 { "snb", PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS }, 3134 { "ivb", PCI_CHIP_IVYBRIDGE_S_GT2 }, 3135 { "hsw", PCI_CHIP_HASWELL_CRW_E_GT3 }, 3136 { "byt", PCI_CHIP_VALLEYVIEW_3 }, 3137 { "bdw", 0x1620 | BDW_ULX }, 3138 { "skl", PCI_CHIP_SKYLAKE_DT_GT2 }, 3139 { "kbl", PCI_CHIP_KABYLAKE_DT_GT2 }, 3140 }; 3141 unsigned int i; 3142 3143 for (i = 0; i < ARRAY_SIZE(name_map); i++) { 3144 if (!strcmp(name_map[i].name, devid_override)) 3145 return name_map[i].pci_id; 3146 } 3147 3148 return strtod(devid_override, NULL); 3149} 3150 3151/** 3152 * Get the PCI ID for the device. This can be overridden by setting the 3153 * INTEL_DEVID_OVERRIDE environment variable to the desired ID. 3154 */ 3155static int 3156get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem) 3157{ 3158 char *devid_override; 3159 int devid = 0; 3160 int ret; 3161 drm_i915_getparam_t gp; 3162 3163 if (geteuid() == getuid()) { 3164 devid_override = getenv("INTEL_DEVID_OVERRIDE"); 3165 if (devid_override) { 3166 bufmgr_gem->no_exec = true; 3167 return parse_devid_override(devid_override); 3168 } 3169 } 3170 3171 memclear(gp); 3172 gp.param = I915_PARAM_CHIPSET_ID; 3173 gp.value = &devid; 3174 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3175 if (ret) { 3176 fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno); 3177 fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value); 3178 } 3179 return devid; 3180} 3181 3182drm_public int 3183drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr) 3184{ 3185 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3186 3187 return bufmgr_gem->pci_device; 3188} 3189 3190/** 3191 * Sets the AUB filename. 3192 * 3193 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump() 3194 * for it to have any effect. 3195 */ 3196drm_public void 3197drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr, 3198 const char *filename) 3199{ 3200} 3201 3202/** 3203 * Sets up AUB dumping. 3204 * 3205 * This is a trace file format that can be used with the simulator. 3206 * Packets are emitted in a format somewhat like GPU command packets. 3207 * You can set up a GTT and upload your objects into the referenced 3208 * space, then send off batchbuffers and get BMPs out the other end. 3209 */ 3210drm_public void 3211drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable) 3212{ 3213 fprintf(stderr, "libdrm aub dumping is deprecated.\n\n" 3214 "Use intel_aubdump from intel-gpu-tools instead. Install intel-gpu-tools,\n" 3215 "then run (for example)\n\n" 3216 "\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n" 3217 "See the intel_aubdump man page for more details.\n"); 3218} 3219 3220drm_public drm_intel_context * 3221drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr) 3222{ 3223 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3224 struct drm_i915_gem_context_create create; 3225 drm_intel_context *context = NULL; 3226 int ret; 3227 3228 context = calloc(1, sizeof(*context)); 3229 if (!context) 3230 return NULL; 3231 3232 memclear(create); 3233 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create); 3234 if (ret != 0) { 3235 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", 3236 strerror(errno)); 3237 free(context); 3238 return NULL; 3239 } 3240 3241 context->ctx_id = create.ctx_id; 3242 context->bufmgr = bufmgr; 3243 3244 return context; 3245} 3246 3247drm_public int 3248drm_intel_gem_context_get_id(drm_intel_context *ctx, uint32_t *ctx_id) 3249{ 3250 if (ctx == NULL) 3251 return -EINVAL; 3252 3253 *ctx_id = ctx->ctx_id; 3254 3255 return 0; 3256} 3257 3258drm_public void 3259drm_intel_gem_context_destroy(drm_intel_context *ctx) 3260{ 3261 drm_intel_bufmgr_gem *bufmgr_gem; 3262 struct drm_i915_gem_context_destroy destroy; 3263 int ret; 3264 3265 if (ctx == NULL) 3266 return; 3267 3268 memclear(destroy); 3269 3270 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr; 3271 destroy.ctx_id = ctx->ctx_id; 3272 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, 3273 &destroy); 3274 if (ret != 0) 3275 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n", 3276 strerror(errno)); 3277 3278 free(ctx); 3279} 3280 3281drm_public int 3282drm_intel_get_reset_stats(drm_intel_context *ctx, 3283 uint32_t *reset_count, 3284 uint32_t *active, 3285 uint32_t *pending) 3286{ 3287 drm_intel_bufmgr_gem *bufmgr_gem; 3288 struct drm_i915_reset_stats stats; 3289 int ret; 3290 3291 if (ctx == NULL) 3292 return -EINVAL; 3293 3294 memclear(stats); 3295 3296 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr; 3297 stats.ctx_id = ctx->ctx_id; 3298 ret = drmIoctl(bufmgr_gem->fd, 3299 DRM_IOCTL_I915_GET_RESET_STATS, 3300 &stats); 3301 if (ret == 0) { 3302 if (reset_count != NULL) 3303 *reset_count = stats.reset_count; 3304 3305 if (active != NULL) 3306 *active = stats.batch_active; 3307 3308 if (pending != NULL) 3309 *pending = stats.batch_pending; 3310 } 3311 3312 return ret; 3313} 3314 3315drm_public int 3316drm_intel_reg_read(drm_intel_bufmgr *bufmgr, 3317 uint32_t offset, 3318 uint64_t *result) 3319{ 3320 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3321 struct drm_i915_reg_read reg_read; 3322 int ret; 3323 3324 memclear(reg_read); 3325 reg_read.offset = offset; 3326 3327 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, ®_read); 3328 3329 *result = reg_read.val; 3330 return ret; 3331} 3332 3333drm_public int 3334drm_intel_get_subslice_total(int fd, unsigned int *subslice_total) 3335{ 3336 drm_i915_getparam_t gp; 3337 int ret; 3338 3339 memclear(gp); 3340 gp.value = (int*)subslice_total; 3341 gp.param = I915_PARAM_SUBSLICE_TOTAL; 3342 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); 3343 if (ret) 3344 return -errno; 3345 3346 return 0; 3347} 3348 3349drm_public int 3350drm_intel_get_eu_total(int fd, unsigned int *eu_total) 3351{ 3352 drm_i915_getparam_t gp; 3353 int ret; 3354 3355 memclear(gp); 3356 gp.value = (int*)eu_total; 3357 gp.param = I915_PARAM_EU_TOTAL; 3358 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); 3359 if (ret) 3360 return -errno; 3361 3362 return 0; 3363} 3364 3365drm_public int 3366drm_intel_get_pooled_eu(int fd) 3367{ 3368 drm_i915_getparam_t gp; 3369 int ret = -1; 3370 3371 memclear(gp); 3372 gp.param = I915_PARAM_HAS_POOLED_EU; 3373 gp.value = &ret; 3374 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) 3375 return -errno; 3376 3377 return ret; 3378} 3379 3380drm_public int 3381drm_intel_get_min_eu_in_pool(int fd) 3382{ 3383 drm_i915_getparam_t gp; 3384 int ret = -1; 3385 3386 memclear(gp); 3387 gp.param = I915_PARAM_MIN_EU_IN_POOL; 3388 gp.value = &ret; 3389 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) 3390 return -errno; 3391 3392 return ret; 3393} 3394 3395/** 3396 * Annotate the given bo for use in aub dumping. 3397 * 3398 * \param annotations is an array of drm_intel_aub_annotation objects 3399 * describing the type of data in various sections of the bo. Each 3400 * element of the array specifies the type and subtype of a section of 3401 * the bo, and the past-the-end offset of that section. The elements 3402 * of \c annotations must be sorted so that ending_offset is 3403 * increasing. 3404 * 3405 * \param count is the number of elements in the \c annotations array. 3406 * If \c count is zero, then \c annotations will not be dereferenced. 3407 * 3408 * Annotations are copied into a private data structure, so caller may 3409 * re-use the memory pointed to by \c annotations after the call 3410 * returns. 3411 * 3412 * Annotations are stored for the lifetime of the bo; to reset to the 3413 * default state (no annotations), call this function with a \c count 3414 * of zero. 3415 */ 3416drm_public void drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo, 3417 drm_intel_aub_annotation *annotations, 3418 unsigned count) 3419{ 3420} 3421 3422static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER; 3423static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list }; 3424 3425static drm_intel_bufmgr_gem * 3426drm_intel_bufmgr_gem_find(int fd) 3427{ 3428 drm_intel_bufmgr_gem *bufmgr_gem; 3429 3430 DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) { 3431 if (bufmgr_gem->fd == fd) { 3432 atomic_inc(&bufmgr_gem->refcount); 3433 return bufmgr_gem; 3434 } 3435 } 3436 3437 return NULL; 3438} 3439 3440static void 3441drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr) 3442{ 3443 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3444 3445 if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) { 3446 pthread_mutex_lock(&bufmgr_list_mutex); 3447 3448 if (atomic_dec_and_test(&bufmgr_gem->refcount)) { 3449 DRMLISTDEL(&bufmgr_gem->managers); 3450 drm_intel_bufmgr_gem_destroy(bufmgr); 3451 } 3452 3453 pthread_mutex_unlock(&bufmgr_list_mutex); 3454 } 3455} 3456 3457drm_public void *drm_intel_gem_bo_map__gtt(drm_intel_bo *bo) 3458{ 3459 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3460 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3461 3462 if (bo_gem->gtt_virtual) 3463 return bo_gem->gtt_virtual; 3464 3465 if (bo_gem->is_userptr) 3466 return NULL; 3467 3468 pthread_mutex_lock(&bufmgr_gem->lock); 3469 if (bo_gem->gtt_virtual == NULL) { 3470 struct drm_i915_gem_mmap_gtt mmap_arg; 3471 void *ptr; 3472 3473 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n", 3474 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3475 3476 if (bo_gem->map_count++ == 0) 3477 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3478 3479 memclear(mmap_arg); 3480 mmap_arg.handle = bo_gem->gem_handle; 3481 3482 /* Get the fake offset back... */ 3483 ptr = MAP_FAILED; 3484 if (drmIoctl(bufmgr_gem->fd, 3485 DRM_IOCTL_I915_GEM_MMAP_GTT, 3486 &mmap_arg) == 0) { 3487 /* and mmap it */ 3488 ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, 3489 MAP_SHARED, bufmgr_gem->fd, 3490 mmap_arg.offset); 3491 } 3492 if (ptr == MAP_FAILED) { 3493 if (--bo_gem->map_count == 0) 3494 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3495 ptr = NULL; 3496 } 3497 3498 bo_gem->gtt_virtual = ptr; 3499 } 3500 pthread_mutex_unlock(&bufmgr_gem->lock); 3501 3502 return bo_gem->gtt_virtual; 3503} 3504 3505drm_public void *drm_intel_gem_bo_map__cpu(drm_intel_bo *bo) 3506{ 3507 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3508 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3509 3510 if (bo_gem->mem_virtual) 3511 return bo_gem->mem_virtual; 3512 3513 if (bo_gem->is_userptr) { 3514 /* Return the same user ptr */ 3515 return bo_gem->user_virtual; 3516 } 3517 3518 pthread_mutex_lock(&bufmgr_gem->lock); 3519 if (!bo_gem->mem_virtual) { 3520 struct drm_i915_gem_mmap mmap_arg; 3521 3522 if (bo_gem->map_count++ == 0) 3523 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3524 3525 DBG("bo_map: %d (%s), map_count=%d\n", 3526 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3527 3528 memclear(mmap_arg); 3529 mmap_arg.handle = bo_gem->gem_handle; 3530 mmap_arg.size = bo->size; 3531 if (drmIoctl(bufmgr_gem->fd, 3532 DRM_IOCTL_I915_GEM_MMAP, 3533 &mmap_arg)) { 3534 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 3535 __FILE__, __LINE__, bo_gem->gem_handle, 3536 bo_gem->name, strerror(errno)); 3537 if (--bo_gem->map_count == 0) 3538 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3539 } else { 3540 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 3541 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 3542 } 3543 } 3544 pthread_mutex_unlock(&bufmgr_gem->lock); 3545 3546 return bo_gem->mem_virtual; 3547} 3548 3549drm_public void *drm_intel_gem_bo_map__wc(drm_intel_bo *bo) 3550{ 3551 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3552 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3553 3554 if (bo_gem->wc_virtual) 3555 return bo_gem->wc_virtual; 3556 3557 if (bo_gem->is_userptr) 3558 return NULL; 3559 3560 pthread_mutex_lock(&bufmgr_gem->lock); 3561 if (!bo_gem->wc_virtual) { 3562 struct drm_i915_gem_mmap mmap_arg; 3563 3564 if (bo_gem->map_count++ == 0) 3565 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3566 3567 DBG("bo_map: %d (%s), map_count=%d\n", 3568 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3569 3570 memclear(mmap_arg); 3571 mmap_arg.handle = bo_gem->gem_handle; 3572 mmap_arg.size = bo->size; 3573 mmap_arg.flags = I915_MMAP_WC; 3574 if (drmIoctl(bufmgr_gem->fd, 3575 DRM_IOCTL_I915_GEM_MMAP, 3576 &mmap_arg)) { 3577 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 3578 __FILE__, __LINE__, bo_gem->gem_handle, 3579 bo_gem->name, strerror(errno)); 3580 if (--bo_gem->map_count == 0) 3581 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3582 } else { 3583 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 3584 bo_gem->wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 3585 } 3586 } 3587 pthread_mutex_unlock(&bufmgr_gem->lock); 3588 3589 return bo_gem->wc_virtual; 3590} 3591 3592/** 3593 * Initializes the GEM buffer manager, which uses the kernel to allocate, map, 3594 * and manage map buffer objections. 3595 * 3596 * \param fd File descriptor of the opened DRM device. 3597 */ 3598drm_public drm_intel_bufmgr * 3599drm_intel_bufmgr_gem_init(int fd, int batch_size) 3600{ 3601 drm_intel_bufmgr_gem *bufmgr_gem; 3602 struct drm_i915_gem_get_aperture aperture; 3603 drm_i915_getparam_t gp; 3604 int ret, tmp; 3605 bool exec2 = false; 3606 3607 pthread_mutex_lock(&bufmgr_list_mutex); 3608 3609 bufmgr_gem = drm_intel_bufmgr_gem_find(fd); 3610 if (bufmgr_gem) 3611 goto exit; 3612 3613 bufmgr_gem = calloc(1, sizeof(*bufmgr_gem)); 3614 if (bufmgr_gem == NULL) 3615 goto exit; 3616 3617 bufmgr_gem->fd = fd; 3618 atomic_set(&bufmgr_gem->refcount, 1); 3619 3620 if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) { 3621 free(bufmgr_gem); 3622 bufmgr_gem = NULL; 3623 goto exit; 3624 } 3625 3626 memclear(aperture); 3627 ret = drmIoctl(bufmgr_gem->fd, 3628 DRM_IOCTL_I915_GEM_GET_APERTURE, 3629 &aperture); 3630 3631 if (ret == 0) 3632 bufmgr_gem->gtt_size = aperture.aper_available_size; 3633 else { 3634 fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n", 3635 strerror(errno)); 3636 bufmgr_gem->gtt_size = 128 * 1024 * 1024; 3637 fprintf(stderr, "Assuming %dkB available aperture size.\n" 3638 "May lead to reduced performance or incorrect " 3639 "rendering.\n", 3640 (int)bufmgr_gem->gtt_size / 1024); 3641 } 3642 3643 bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem); 3644 3645 if (IS_GEN2(bufmgr_gem->pci_device)) 3646 bufmgr_gem->gen = 2; 3647 else if (IS_GEN3(bufmgr_gem->pci_device)) 3648 bufmgr_gem->gen = 3; 3649 else if (IS_GEN4(bufmgr_gem->pci_device)) 3650 bufmgr_gem->gen = 4; 3651 else if (IS_GEN5(bufmgr_gem->pci_device)) 3652 bufmgr_gem->gen = 5; 3653 else if (IS_GEN6(bufmgr_gem->pci_device)) 3654 bufmgr_gem->gen = 6; 3655 else if (IS_GEN7(bufmgr_gem->pci_device)) 3656 bufmgr_gem->gen = 7; 3657 else if (IS_GEN8(bufmgr_gem->pci_device)) 3658 bufmgr_gem->gen = 8; 3659 else if (!intel_get_genx(bufmgr_gem->pci_device, &bufmgr_gem->gen)) { 3660 free(bufmgr_gem); 3661 bufmgr_gem = NULL; 3662 goto exit; 3663 } 3664 3665 if (IS_GEN3(bufmgr_gem->pci_device) && 3666 bufmgr_gem->gtt_size > 256*1024*1024) { 3667 /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't 3668 * be used for tiled blits. To simplify the accounting, just 3669 * subtract the unmappable part (fixed to 256MB on all known 3670 * gen3 devices) if the kernel advertises it. */ 3671 bufmgr_gem->gtt_size -= 256*1024*1024; 3672 } 3673 3674 memclear(gp); 3675 gp.value = &tmp; 3676 3677 gp.param = I915_PARAM_HAS_EXECBUF2; 3678 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3679 if (!ret) 3680 exec2 = true; 3681 3682 gp.param = I915_PARAM_HAS_BSD; 3683 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3684 bufmgr_gem->has_bsd = ret == 0; 3685 3686 gp.param = I915_PARAM_HAS_BLT; 3687 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3688 bufmgr_gem->has_blt = ret == 0; 3689 3690 gp.param = I915_PARAM_HAS_RELAXED_FENCING; 3691 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3692 bufmgr_gem->has_relaxed_fencing = ret == 0; 3693 3694 gp.param = I915_PARAM_HAS_EXEC_ASYNC; 3695 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3696 bufmgr_gem->has_exec_async = ret == 0; 3697 3698 bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr; 3699 3700 gp.param = I915_PARAM_HAS_WAIT_TIMEOUT; 3701 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3702 bufmgr_gem->has_wait_timeout = ret == 0; 3703 3704 gp.param = I915_PARAM_HAS_LLC; 3705 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3706 if (ret != 0) { 3707 /* Kernel does not supports HAS_LLC query, fallback to GPU 3708 * generation detection and assume that we have LLC on GEN6/7 3709 */ 3710 bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) | 3711 IS_GEN7(bufmgr_gem->pci_device)); 3712 } else 3713 bufmgr_gem->has_llc = *gp.value; 3714 3715 gp.param = I915_PARAM_HAS_VEBOX; 3716 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3717 bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0); 3718 3719 gp.param = I915_PARAM_HAS_EXEC_SOFTPIN; 3720 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3721 if (ret == 0 && *gp.value > 0) 3722 bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset; 3723 3724 if (bufmgr_gem->gen < 4) { 3725 gp.param = I915_PARAM_NUM_FENCES_AVAIL; 3726 gp.value = &bufmgr_gem->available_fences; 3727 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3728 if (ret) { 3729 fprintf(stderr, "get fences failed: %d [%d]\n", ret, 3730 errno); 3731 fprintf(stderr, "param: %d, val: %d\n", gp.param, 3732 *gp.value); 3733 bufmgr_gem->available_fences = 0; 3734 } else { 3735 /* XXX The kernel reports the total number of fences, 3736 * including any that may be pinned. 3737 * 3738 * We presume that there will be at least one pinned 3739 * fence for the scanout buffer, but there may be more 3740 * than one scanout and the user may be manually 3741 * pinning buffers. Let's move to execbuffer2 and 3742 * thereby forget the insanity of using fences... 3743 */ 3744 bufmgr_gem->available_fences -= 2; 3745 if (bufmgr_gem->available_fences < 0) 3746 bufmgr_gem->available_fences = 0; 3747 } 3748 } 3749 3750 if (bufmgr_gem->gen >= 8) { 3751 gp.param = I915_PARAM_HAS_ALIASING_PPGTT; 3752 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3753 if (ret == 0 && *gp.value == 3) 3754 bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range; 3755 } 3756 3757 /* Let's go with one relocation per every 2 dwords (but round down a bit 3758 * since a power of two will mean an extra page allocation for the reloc 3759 * buffer). 3760 * 3761 * Every 4 was too few for the blender benchmark. 3762 */ 3763 bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2; 3764 3765 bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc; 3766 bufmgr_gem->bufmgr.bo_alloc_for_render = 3767 drm_intel_gem_bo_alloc_for_render; 3768 bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled; 3769 bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference; 3770 bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference; 3771 bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map; 3772 bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap; 3773 bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata; 3774 bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata; 3775 bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering; 3776 bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc; 3777 bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence; 3778 bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin; 3779 bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin; 3780 bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling; 3781 bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling; 3782 bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink; 3783 /* Use the new one if available */ 3784 if (exec2) { 3785 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2; 3786 bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2; 3787 } else 3788 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec; 3789 bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy; 3790 bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise; 3791 bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref; 3792 bufmgr_gem->bufmgr.debug = 0; 3793 bufmgr_gem->bufmgr.check_aperture_space = 3794 drm_intel_gem_check_aperture_space; 3795 bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse; 3796 bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable; 3797 bufmgr_gem->bufmgr.get_pipe_from_crtc_id = 3798 drm_intel_gem_get_pipe_from_crtc_id; 3799 bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references; 3800 3801 init_cache_buckets(bufmgr_gem); 3802 3803 DRMINITLISTHEAD(&bufmgr_gem->vma_cache); 3804 bufmgr_gem->vma_max = -1; /* unlimited by default */ 3805 3806 DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list); 3807 3808exit: 3809 pthread_mutex_unlock(&bufmgr_list_mutex); 3810 3811 return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL; 3812} 3813