1/* gtf.c Generate mode timings using the GTF Timing Standard 2 * 3 * gcc gtf.c -o gtf -lm -Wall 4 * 5 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * o Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * o Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer 16 * in the documentation and/or other materials provided with the 17 * distribution. 18 * o Neither the name of NVIDIA nor the names of its contributors 19 * may be used to endorse or promote products derived from this 20 * software without specific prior written permission. 21 * 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT 25 * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 26 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 27 * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 * 36 * 37 * 38 * This program is based on the Generalized Timing Formula(GTF TM) 39 * Standard Version: 1.0, Revision: 1.0 40 * 41 * The GTF Document contains the following Copyright information: 42 * 43 * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards 44 * Association. Duplication of this document within VESA member 45 * companies for review purposes is permitted. All other rights 46 * reserved. 47 * 48 * While every precaution has been taken in the preparation 49 * of this standard, the Video Electronics Standards Association and 50 * its contributors assume no responsibility for errors or omissions, 51 * and make no warranties, expressed or implied, of functionality 52 * of suitability for any purpose. The sample code contained within 53 * this standard may be used without restriction. 54 * 55 * 56 * 57 * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive) 58 * implementation of the GTF Timing Standard, is available at: 59 * 60 * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls 61 * 62 * 63 * 64 * This program takes a desired resolution and vertical refresh rate, 65 * and computes mode timings according to the GTF Timing Standard. 66 * These mode timings can then be formatted as an XServer modeline 67 * or a mode description for use by fbset(8). 68 * 69 * 70 * 71 * NOTES: 72 * 73 * The GTF allows for computation of "margins" (the visible border 74 * surrounding the addressable video); on most non-overscan type 75 * systems, the margin period is zero. I've implemented the margin 76 * computations but not enabled it because 1) I don't really have 77 * any experience with this, and 2) neither XServer modelines nor 78 * fbset fb.modes provide an obvious way for margin timings to be 79 * included in their mode descriptions (needs more investigation). 80 * 81 * The GTF provides for computation of interlaced mode timings; 82 * I've implemented the computations but not enabled them, yet. 83 * I should probably enable and test this at some point. 84 * 85 * 86 * 87 * TODO: 88 * 89 * o Add support for interlaced modes. 90 * 91 * o Implement the other portions of the GTF: compute mode timings 92 * given either the desired pixel clock or the desired horizontal 93 * frequency. 94 * 95 * o It would be nice if this were more general purpose to do things 96 * outside the scope of the GTF: like generate double scan mode 97 * timings, for example. 98 * 99 * o Printing digits to the right of the decimal point when the 100 * digits are 0 annoys me. 101 * 102 * o Error checking. 103 * 104 */ 105 106#ifdef HAVE_XORG_CONFIG_H 107#include <xorg-config.h> 108#endif 109 110#include <stdio.h> 111#include <stdlib.h> 112#include <string.h> 113#include <math.h> 114 115#define MARGIN_PERCENT 1.8 /* % of active vertical image */ 116#define CELL_GRAN 8.0 /* assumed character cell granularity */ 117#define MIN_PORCH 1 /* minimum front porch */ 118#define V_SYNC_RQD 3 /* width of vsync in lines */ 119#define H_SYNC_PERCENT 8.0 /* width of hsync as % of total line */ 120#define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */ 121#define M 600.0 /* blanking formula gradient */ 122#define C 40.0 /* blanking formula offset */ 123#define K 128.0 /* blanking formula scaling factor */ 124#define J 20.0 /* blanking formula scaling factor */ 125 126/* C' and M' are part of the Blanking Duty Cycle computation */ 127 128#define C_PRIME (((C - J) * K/256.0) + J) 129#define M_PRIME (K/256.0 * M) 130 131/* struct definitions */ 132 133typedef struct __mode { 134 int hr, hss, hse, hfl; 135 int vr, vss, vse, vfl; 136 float pclk, h_freq, v_freq; 137} mode; 138 139typedef struct __options { 140 int x, y; 141 int xorgmode, fbmode; 142 float v_freq; 143} options; 144 145/* prototypes */ 146 147void print_value(int n, const char *name, float val); 148void print_xf86_mode(mode * m); 149void print_fb_mode(mode * m); 150mode *vert_refresh(int h_pixels, int v_lines, float freq, 151 int interlaced, int margins); 152options *parse_command_line(int argc, char *argv[]); 153 154/* 155 * print_value() - print the result of the named computation; this is 156 * useful when comparing against the GTF EXCEL spreadsheet. 157 */ 158 159int global_verbose = 0; 160 161void 162print_value(int n, const char *name, float val) 163{ 164 if (global_verbose) { 165 printf("%2d: %-27s: %15f\n", n, name, val); 166 } 167} 168 169/* print_xf86_mode() - print the XServer modeline, given mode timings. */ 170 171void 172print_xf86_mode(mode * m) 173{ 174 printf("\n"); 175 printf(" # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n", 176 m->hr, m->vr, m->v_freq, m->h_freq, m->pclk); 177 178 printf(" Modeline \"%dx%d_%.2f\" %.2f" 179 " %d %d %d %d" 180 " %d %d %d %d" 181 " -HSync +Vsync\n\n", 182 m->hr, m->vr, m->v_freq, m->pclk, 183 m->hr, m->hss, m->hse, m->hfl, m->vr, m->vss, m->vse, m->vfl); 184 185} 186 187/* 188 * print_fb_mode() - print a mode description in fbset(8) format; 189 * see the fb.modes(8) manpage. The timing description used in 190 * this is rather odd; they use "left and right margin" to refer 191 * to the portion of the hblank before and after the sync pulse 192 * by conceptually wrapping the portion of the blank after the pulse 193 * to infront of the visible region; ie: 194 * 195 * 196 * Timing description I'm accustomed to: 197 * 198 * 199 * 200 * <--------1--------> <--2--> <--3--> <--4--> 201 * _________ 202 * |-------------------|_______| |_______ 203 * 204 * R SS SE FL 205 * 206 * 1: visible image 207 * 2: blank before sync (aka front porch) 208 * 3: sync pulse 209 * 4: blank after sync (aka back porch) 210 * R: Resolution 211 * SS: Sync Start 212 * SE: Sync End 213 * FL: Frame Length 214 * 215 * 216 * But the fb.modes format is: 217 * 218 * 219 * <--4--> <--------1--------> <--2--> <--3--> 220 * _________ 221 * _______|-------------------|_______| | 222 * 223 * The fb.modes(8) manpage refers to <4> and <2> as the left and 224 * right "margin" (as well as upper and lower margin in the vertical 225 * direction) -- note that this has nothing to do with the term 226 * "margin" used in the GTF Timing Standard. 227 * 228 * XXX always prints the 32 bit mode -- should I provide a command 229 * line option to specify the bpp? It's simple enough for a user 230 * to edit the mode description after it's generated. 231 */ 232 233void 234print_fb_mode(mode * m) 235{ 236 printf("\n"); 237 printf("mode \"%dx%d %.2fHz 32bit (GTF)\"\n", m->hr, m->vr, m->v_freq); 238 printf(" # PCLK: %.2f MHz, H: %.2f kHz, V: %.2f Hz\n", 239 m->pclk, m->h_freq, m->v_freq); 240 printf(" geometry %d %d %d %d 32\n", m->hr, m->vr, m->hr, m->vr); 241 printf(" timings %d %d %d %d %d %d %d\n", (int)lrint(1000000.0 / m->pclk), /* pixclock in picoseconds */ 242 m->hfl - m->hse, /* left margin (in pixels) */ 243 m->hss - m->hr, /* right margin (in pixels) */ 244 m->vfl - m->vse, /* upper margin (in pixel lines) */ 245 m->vss - m->vr, /* lower margin (in pixel lines) */ 246 m->hse - m->hss, /* horizontal sync length (pixels) */ 247 m->vse - m->vss); /* vert sync length (pixel lines) */ 248 printf(" hsync low\n"); 249 printf(" vsync high\n"); 250 printf("endmode\n\n"); 251 252} 253 254/* 255 * vert_refresh() - as defined by the GTF Timing Standard, compute the 256 * Stage 1 Parameters using the vertical refresh frequency. In other 257 * words: input a desired resolution and desired refresh rate, and 258 * output the GTF mode timings. 259 * 260 * XXX All the code is in place to compute interlaced modes, but I don't 261 * feel like testing it right now. 262 * 263 * XXX margin computations are implemented but not tested (nor used by 264 * XServer of fbset mode descriptions, from what I can tell). 265 */ 266 267mode * 268vert_refresh(int h_pixels, int v_lines, float freq, int interlaced, int margins) 269{ 270 float h_pixels_rnd; 271 float v_lines_rnd; 272 float v_field_rate_rqd; 273 float top_margin; 274 float bottom_margin; 275 float interlace; 276 float h_period_est; 277 float vsync_plus_bp; 278 float v_back_porch; 279 float total_v_lines; 280 float v_field_rate_est; 281 float h_period; 282 float v_field_rate; 283 float v_frame_rate; 284 float left_margin; 285 float right_margin; 286 float total_active_pixels; 287 float ideal_duty_cycle; 288 float h_blank; 289 float total_pixels; 290 float pixel_freq; 291 float h_freq; 292 293 float h_sync; 294 float h_front_porch; 295 float v_odd_front_porch_lines; 296 297 mode *m = (mode *) malloc(sizeof(mode)); 298 299 /* 1. In order to give correct results, the number of horizontal 300 * pixels requested is first processed to ensure that it is divisible 301 * by the character size, by rounding it to the nearest character 302 * cell boundary: 303 * 304 * [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND]) 305 */ 306 307 h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN; 308 309 print_value(1, "[H PIXELS RND]", h_pixels_rnd); 310 311 /* 2. If interlace is requested, the number of vertical lines assumed 312 * by the calculation must be halved, as the computation calculates 313 * the number of vertical lines per field. In either case, the 314 * number of lines is rounded to the nearest integer. 315 * 316 * [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0), 317 * ROUND([V LINES],0)) 318 */ 319 320 v_lines_rnd = interlaced ? 321 rint((float) v_lines) / 2.0 : rint((float) v_lines); 322 323 print_value(2, "[V LINES RND]", v_lines_rnd); 324 325 /* 3. Find the frame rate required: 326 * 327 * [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2, 328 * [I/P FREQ RQD]) 329 */ 330 331 v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq); 332 333 print_value(3, "[V FIELD RATE RQD]", v_field_rate_rqd); 334 335 /* 4. Find number of lines in Top margin: 336 * 337 * [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y", 338 * ROUND(([MARGIN%]/100*[V LINES RND]),0), 339 * 0) 340 */ 341 342 top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0); 343 344 print_value(4, "[TOP MARGIN (LINES)]", top_margin); 345 346 /* 5. Find number of lines in Bottom margin: 347 * 348 * [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y", 349 * ROUND(([MARGIN%]/100*[V LINES RND]),0), 350 * 0) 351 */ 352 353 bottom_margin = 354 margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0); 355 356 print_value(5, "[BOT MARGIN (LINES)]", bottom_margin); 357 358 /* 6. If interlace is required, then set variable [INTERLACE]=0.5: 359 * 360 * [INTERLACE]=(IF([INT RQD?]="y",0.5,0)) 361 */ 362 363 interlace = interlaced ? 0.5 : 0.0; 364 365 print_value(6, "[INTERLACE]", interlace); 366 367 /* 7. Estimate the Horizontal period 368 * 369 * [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) / 370 * ([V LINES RND] + (2*[TOP MARGIN (LINES)]) + 371 * [MIN PORCH RND]+[INTERLACE]) * 1000000 372 */ 373 374 h_period_est = (((1.0 / v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP / 1000000.0)) 375 / (v_lines_rnd + (2 * top_margin) + MIN_PORCH + interlace) 376 * 1000000.0); 377 378 print_value(7, "[H PERIOD EST]", h_period_est); 379 380 /* 8. Find the number of lines in V sync + back porch: 381 * 382 * [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0) 383 */ 384 385 vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP / h_period_est); 386 387 print_value(8, "[V SYNC+BP]", vsync_plus_bp); 388 389 /* 9. Find the number of lines in V back porch alone: 390 * 391 * [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND] 392 * 393 * XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]? 394 */ 395 396 v_back_porch = vsync_plus_bp - V_SYNC_RQD; 397 398 print_value(9, "[V BACK PORCH]", v_back_porch); 399 400 /* 10. Find the total number of lines in Vertical field period: 401 * 402 * [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] + 403 * [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] + 404 * [MIN PORCH RND] 405 */ 406 407 total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp + 408 interlace + MIN_PORCH; 409 410 print_value(10, "[TOTAL V LINES]", total_v_lines); 411 412 /* 11. Estimate the Vertical field frequency: 413 * 414 * [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000 415 */ 416 417 v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0; 418 419 print_value(11, "[V FIELD RATE EST]", v_field_rate_est); 420 421 /* 12. Find the actual horizontal period: 422 * 423 * [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST]) 424 */ 425 426 h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est); 427 428 print_value(12, "[H PERIOD]", h_period); 429 430 /* 13. Find the actual Vertical field frequency: 431 * 432 * [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000 433 */ 434 435 v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0; 436 437 print_value(13, "[V FIELD RATE]", v_field_rate); 438 439 /* 14. Find the Vertical frame frequency: 440 * 441 * [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE])) 442 */ 443 444 v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate; 445 446 print_value(14, "[V FRAME RATE]", v_frame_rate); 447 448 /* 15. Find number of pixels in left margin: 449 * 450 * [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", 451 * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / 452 * [CELL GRAN RND]),0)) * [CELL GRAN RND], 453 * 0)) 454 */ 455 456 left_margin = margins ? 457 rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN : 458 0.0; 459 460 print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin); 461 462 /* 16. Find number of pixels in right margin: 463 * 464 * [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", 465 * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / 466 * [CELL GRAN RND]),0)) * [CELL GRAN RND], 467 * 0)) 468 */ 469 470 right_margin = margins ? 471 rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN : 472 0.0; 473 474 print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin); 475 476 /* 17. Find total number of active pixels in image and left and right 477 * margins: 478 * 479 * [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] + 480 * [RIGHT MARGIN (PIXELS)] 481 */ 482 483 total_active_pixels = h_pixels_rnd + left_margin + right_margin; 484 485 print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels); 486 487 /* 18. Find the ideal blanking duty cycle from the blanking duty cycle 488 * equation: 489 * 490 * [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000) 491 */ 492 493 ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0); 494 495 print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle); 496 497 /* 19. Find the number of pixels in the blanking time to the nearest 498 * double character cell: 499 * 500 * [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] * 501 * [IDEAL DUTY CYCLE] / 502 * (100-[IDEAL DUTY CYCLE]) / 503 * (2*[CELL GRAN RND])), 0)) 504 * * (2*[CELL GRAN RND]) 505 */ 506 507 h_blank = rint(total_active_pixels * 508 ideal_duty_cycle / 509 (100.0 - ideal_duty_cycle) / 510 (2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN); 511 512 print_value(19, "[H BLANK (PIXELS)]", h_blank); 513 514 /* 20. Find total number of pixels: 515 * 516 * [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)] 517 */ 518 519 total_pixels = total_active_pixels + h_blank; 520 521 print_value(20, "[TOTAL PIXELS]", total_pixels); 522 523 /* 21. Find pixel clock frequency: 524 * 525 * [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD] 526 */ 527 528 pixel_freq = total_pixels / h_period; 529 530 print_value(21, "[PIXEL FREQ]", pixel_freq); 531 532 /* 22. Find horizontal frequency: 533 * 534 * [H FREQ] = 1000 / [H PERIOD] 535 */ 536 537 h_freq = 1000.0 / h_period; 538 539 print_value(22, "[H FREQ]", h_freq); 540 541 /* Stage 1 computations are now complete; I should really pass 542 the results to another function and do the Stage 2 543 computations, but I only need a few more values so I'll just 544 append the computations here for now */ 545 546 /* 17. Find the number of pixels in the horizontal sync period: 547 * 548 * [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] / 549 * [CELL GRAN RND]),0))*[CELL GRAN RND] 550 */ 551 552 h_sync = 553 rint(H_SYNC_PERCENT / 100.0 * total_pixels / CELL_GRAN) * CELL_GRAN; 554 555 print_value(17, "[H SYNC (PIXELS)]", h_sync); 556 557 /* 18. Find the number of pixels in the horizontal front porch period: 558 * 559 * [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)] 560 */ 561 562 h_front_porch = (h_blank / 2.0) - h_sync; 563 564 print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch); 565 566 /* 36. Find the number of lines in the odd front porch period: 567 * 568 * [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE]) 569 */ 570 571 v_odd_front_porch_lines = MIN_PORCH + interlace; 572 573 print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines); 574 575 /* finally, pack the results in the mode struct */ 576 577 m->hr = (int) (h_pixels_rnd); 578 m->hss = (int) (h_pixels_rnd + h_front_porch); 579 m->hse = (int) (h_pixels_rnd + h_front_porch + h_sync); 580 m->hfl = (int) (total_pixels); 581 582 m->vr = (int) (v_lines_rnd); 583 m->vss = (int) (v_lines_rnd + v_odd_front_porch_lines); 584 m->vse = (int) (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD); 585 m->vfl = (int) (total_v_lines); 586 587 m->pclk = pixel_freq; 588 m->h_freq = h_freq; 589 m->v_freq = freq; 590 591 return m; 592 593} 594 595/* 596 * parse_command_line() - parse the command line and return an 597 * alloced structure containing the results. On error print usage 598 * and return NULL. 599 */ 600 601options * 602parse_command_line(int argc, char *argv[]) 603{ 604 int n; 605 606 options *o = (options *) calloc(1, sizeof(options)); 607 608 if (argc < 4) 609 goto bad_option; 610 611 o->x = atoi(argv[1]); 612 o->y = atoi(argv[2]); 613 o->v_freq = atof(argv[3]); 614 615 /* XXX should check for errors in the above */ 616 617 n = 4; 618 619 while (n < argc) { 620 if ((strcmp(argv[n], "-v") == 0) || (strcmp(argv[n], "--verbose") == 0)) { 621 global_verbose = 1; 622 } 623 else if ((strcmp(argv[n], "-f") == 0) || 624 (strcmp(argv[n], "--fbmode") == 0)) { 625 o->fbmode = 1; 626 } 627 else if ((strcmp(argv[n], "-x") == 0) || 628 (strcmp(argv[n], "--xorgmode") == 0) || 629 (strcmp(argv[n], "--xf86mode") == 0)) { 630 o->xorgmode = 1; 631 } 632 else { 633 goto bad_option; 634 } 635 636 n++; 637 } 638 639 /* if neither xorgmode nor fbmode were requested, default to 640 xorgmode */ 641 642 if (!o->fbmode && !o->xorgmode) 643 o->xorgmode = 1; 644 645 return o; 646 647 bad_option: 648 649 fprintf(stderr, "\n"); 650 fprintf(stderr, "usage: %s x y refresh [-v|--verbose] " 651 "[-f|--fbmode] [-x|--xorgmode]\n", argv[0]); 652 653 fprintf(stderr, "\n"); 654 655 fprintf(stderr, " x : the desired horizontal " 656 "resolution (required)\n"); 657 fprintf(stderr, " y : the desired vertical " 658 "resolution (required)\n"); 659 fprintf(stderr, " refresh : the desired refresh " "rate (required)\n"); 660 fprintf(stderr, " -v|--verbose : enable verbose printouts " 661 "(traces each step of the computation)\n"); 662 fprintf(stderr, " -f|--fbmode : output an fbset(8)-style mode " 663 "description\n"); 664 fprintf(stderr, " -x|--xorgmode : output an " __XSERVERNAME__ "-style mode " 665 "description (this is the default\n" 666 " if no mode description is requested)\n"); 667 668 fprintf(stderr, "\n"); 669 670 free(o); 671 return NULL; 672 673} 674 675int 676main(int argc, char *argv[]) 677{ 678 mode *m; 679 options *o; 680 681 o = parse_command_line(argc, argv); 682 if (!o) 683 exit(1); 684 685 m = vert_refresh(o->x, o->y, o->v_freq, 0, 0); 686 if (!m) 687 exit(1); 688 689 if (o->xorgmode) 690 print_xf86_mode(m); 691 692 if (o->fbmode) 693 print_fb_mode(m); 694 695 free(m); 696 697 return 0; 698 699} 700