1 /* $NetBSD: cpufreq_dt.c,v 1.20 2025/09/06 21:24:05 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.20 2025/09/06 21:24:05 thorpej Exp $"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/device.h> 35 #include <sys/kmem.h> 36 #include <sys/bus.h> 37 #include <sys/atomic.h> 38 #include <sys/xcall.h> 39 #include <sys/sysctl.h> 40 #include <sys/queue.h> 41 #include <sys/once.h> 42 #include <sys/cpu.h> 43 44 #include <dev/fdt/fdtvar.h> 45 #include <dev/fdt/fdt_opp.h> 46 47 struct cpufreq_dt_table { 48 int phandle; 49 TAILQ_ENTRY(cpufreq_dt_table) next; 50 }; 51 52 static TAILQ_HEAD(, cpufreq_dt_table) cpufreq_dt_tables = 53 TAILQ_HEAD_INITIALIZER(cpufreq_dt_tables); 54 static kmutex_t cpufreq_dt_tables_lock; 55 56 struct cpufreq_dt_opp { 57 u_int freq_khz; 58 u_int voltage_uv; 59 u_int latency_ns; 60 }; 61 62 struct cpufreq_dt_softc { 63 device_t sc_dev; 64 int sc_phandle; 65 struct clk *sc_clk; 66 struct fdtbus_regulator *sc_supply; 67 68 struct cpufreq_dt_opp *sc_opp; 69 ssize_t sc_nopp; 70 71 u_int sc_freq_target; 72 bool sc_freq_throttle; 73 74 u_int sc_busy; 75 76 char *sc_freq_available; 77 int sc_node_target; 78 int sc_node_current; 79 int sc_node_available; 80 81 struct cpufreq_dt_table sc_table; 82 }; 83 84 static void 85 cpufreq_dt_change_cb(void *arg1, void *arg2) 86 { 87 struct cpufreq_dt_softc * const sc = arg1; 88 struct cpu_info *ci = curcpu(); 89 90 ci->ci_data.cpu_cc_freq = clk_get_rate(sc->sc_clk); 91 } 92 93 static int 94 cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz) 95 { 96 struct cpufreq_dt_opp *opp = NULL; 97 u_int old_rate, new_rate, old_uv, new_uv; 98 uint64_t xc; 99 int error; 100 ssize_t n; 101 102 for (n = 0; n < sc->sc_nopp; n++) 103 if (sc->sc_opp[n].freq_khz == freq_khz) { 104 opp = &sc->sc_opp[n]; 105 break; 106 } 107 if (opp == NULL) 108 return EINVAL; 109 110 old_rate = clk_get_rate(sc->sc_clk); 111 new_rate = freq_khz * 1000; 112 new_uv = opp->voltage_uv; 113 114 if (old_rate == new_rate) 115 return 0; 116 117 if (sc->sc_supply != NULL) { 118 error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv); 119 if (error != 0) 120 return error; 121 122 if (new_uv > old_uv) { 123 error = fdtbus_regulator_set_voltage(sc->sc_supply, 124 new_uv, new_uv); 125 if (error != 0) 126 return error; 127 } 128 } 129 130 error = clk_set_rate(sc->sc_clk, new_rate); 131 if (error != 0) 132 return error; 133 134 const u_int latency_us = howmany(opp->latency_ns, 1000); 135 if (latency_us > 0) 136 delay(latency_us); 137 138 if (sc->sc_supply != NULL) { 139 if (new_uv < old_uv) { 140 error = fdtbus_regulator_set_voltage(sc->sc_supply, 141 new_uv, new_uv); 142 if (error != 0) 143 return error; 144 } 145 } 146 147 if (error == 0) { 148 xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL); 149 xc_wait(xc); 150 151 pmf_event_inject(NULL, PMFE_SPEED_CHANGED); 152 } 153 154 return 0; 155 } 156 157 static void 158 cpufreq_dt_throttle_enable(device_t dev) 159 { 160 struct cpufreq_dt_softc * const sc = device_private(dev); 161 162 if (sc->sc_freq_throttle) 163 return; 164 165 const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz; 166 167 while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0) 168 kpause("throttle", false, 1, NULL); 169 170 if (cpufreq_dt_set_rate(sc, freq_khz) == 0) { 171 aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n", 172 freq_khz / 1000, freq_khz % 1000); 173 sc->sc_freq_throttle = true; 174 if (sc->sc_freq_target == 0) 175 sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000; 176 } 177 178 atomic_dec_uint(&sc->sc_busy); 179 } 180 181 static void 182 cpufreq_dt_throttle_disable(device_t dev) 183 { 184 struct cpufreq_dt_softc * const sc = device_private(dev); 185 186 if (!sc->sc_freq_throttle) 187 return; 188 189 while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0) 190 kpause("throttle", false, 1, NULL); 191 192 const u_int freq_khz = sc->sc_freq_target * 1000; 193 194 if (cpufreq_dt_set_rate(sc, freq_khz) == 0) { 195 aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n", 196 freq_khz / 1000, freq_khz % 1000); 197 sc->sc_freq_throttle = false; 198 } 199 200 atomic_dec_uint(&sc->sc_busy); 201 } 202 203 static int 204 cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS) 205 { 206 struct cpufreq_dt_softc * const sc = rnode->sysctl_data; 207 struct sysctlnode node; 208 u_int fq, oldfq = 0; 209 int error, n; 210 211 node = *rnode; 212 node.sysctl_data = &fq; 213 214 if (rnode->sysctl_num == sc->sc_node_target) { 215 if (sc->sc_freq_target == 0) 216 sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000; 217 fq = sc->sc_freq_target; 218 } else 219 fq = clk_get_rate(sc->sc_clk) / 1000000; 220 221 if (rnode->sysctl_num == sc->sc_node_target) 222 oldfq = fq; 223 224 if (sc->sc_freq_target == 0) 225 sc->sc_freq_target = fq; 226 227 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 228 if (error || newp == NULL) 229 return error; 230 231 if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target) 232 return 0; 233 234 for (n = 0; n < sc->sc_nopp; n++) 235 if (sc->sc_opp[n].freq_khz / 1000 == fq) 236 break; 237 if (n == sc->sc_nopp) 238 return EINVAL; 239 240 if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0) 241 return EBUSY; 242 243 sc->sc_freq_target = fq; 244 245 if (sc->sc_freq_throttle) 246 error = 0; 247 else 248 error = cpufreq_dt_set_rate(sc, fq * 1000); 249 250 atomic_dec_uint(&sc->sc_busy); 251 252 return error; 253 } 254 255 static struct cpu_info * 256 cpufreq_dt_cpu_lookup(cpuid_t mpidr) 257 { 258 CPU_INFO_ITERATOR cii; 259 struct cpu_info *ci; 260 261 for (CPU_INFO_FOREACH(cii, ci)) { 262 if (ci->ci_cpuid == mpidr) 263 return ci; 264 } 265 266 return NULL; 267 } 268 269 static void 270 cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc) 271 { 272 const struct sysctlnode *node, *cpunode; 273 struct sysctllog *cpufreq_log = NULL; 274 struct cpu_info *ci; 275 bus_addr_t mpidr; 276 int error, i; 277 278 if (fdtbus_get_reg(sc->sc_phandle, 0, &mpidr, 0) != 0) 279 return; 280 281 ci = cpufreq_dt_cpu_lookup(mpidr); 282 if (ci == NULL) 283 return; 284 285 sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP); 286 for (i = 0; i < sc->sc_nopp; i++) { 287 char buf[6]; 288 snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000); 289 strcat(sc->sc_freq_available, buf); 290 } 291 292 error = sysctl_createv(&cpufreq_log, 0, NULL, &node, 293 CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL, 294 NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL); 295 if (error) 296 goto sysctl_failed; 297 error = sysctl_createv(&cpufreq_log, 0, &node, &node, 298 0, CTLTYPE_NODE, "cpufreq", NULL, 299 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); 300 if (error) 301 goto sysctl_failed; 302 error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode, 303 0, CTLTYPE_NODE, cpu_name(ci), NULL, 304 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); 305 if (error) 306 goto sysctl_failed; 307 308 error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node, 309 CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL, 310 cpufreq_dt_sysctl_helper, 0, (void *)sc, 0, 311 CTL_CREATE, CTL_EOL); 312 if (error) 313 goto sysctl_failed; 314 sc->sc_node_target = node->sysctl_num; 315 316 error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node, 317 CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL, 318 cpufreq_dt_sysctl_helper, 0, (void *)sc, 0, 319 CTL_CREATE, CTL_EOL); 320 if (error) 321 goto sysctl_failed; 322 sc->sc_node_current = node->sysctl_num; 323 324 error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node, 325 0, CTLTYPE_STRING, "available", NULL, 326 NULL, 0, sc->sc_freq_available, 0, 327 CTL_CREATE, CTL_EOL); 328 if (error) 329 goto sysctl_failed; 330 sc->sc_node_available = node->sysctl_num; 331 332 return; 333 334 sysctl_failed: 335 aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error); 336 sysctl_teardown(&cpufreq_log); 337 } 338 339 static int 340 cpufreq_dt_parse_opp(struct cpufreq_dt_softc *sc) 341 { 342 const int phandle = sc->sc_phandle; 343 const u_int *opp; 344 int len, i; 345 346 opp = fdtbus_get_prop(phandle, "operating-points", &len); 347 if (len < 8) 348 return ENXIO; 349 350 sc->sc_nopp = len / 8; 351 sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP); 352 for (i = 0; i < sc->sc_nopp; i++, opp += 2) { 353 sc->sc_opp[i].freq_khz = be32toh(opp[0]); 354 sc->sc_opp[i].voltage_uv = be32toh(opp[1]); 355 } 356 357 return 0; 358 } 359 360 static const struct fdt_opp_info * 361 cpufreq_dt_lookup_opp_info(const int opp_table) 362 { 363 __link_set_decl(fdt_opps, struct fdt_opp_info); 364 struct fdt_opp_info * const *opp; 365 const struct fdt_opp_info *best_opp = NULL; 366 int match, best_match = 0; 367 368 __link_set_foreach(opp, fdt_opps) { 369 const struct device_compatible_entry compat_data[] = { 370 { .compat = (*opp)->opp_compat }, 371 DEVICE_COMPAT_EOL 372 }; 373 374 match = of_compatible_match(opp_table, compat_data); 375 if (match > best_match) { 376 best_match = match; 377 best_opp = *opp; 378 } 379 } 380 381 return best_opp; 382 } 383 384 static bool 385 cpufreq_dt_opp_v2_supported(const int opp_table, const int opp_node) 386 { 387 return true; 388 } 389 390 FDT_OPP(opp_v2, "operating-points-v2", cpufreq_dt_opp_v2_supported); 391 392 static bool 393 cpufreq_dt_node_supported(const struct fdt_opp_info *opp_info, const int opp_table, const int opp_node) 394 { 395 if (!fdtbus_status_okay(opp_node)) 396 return false; 397 if (of_hasprop(opp_node, "opp-suspend")) 398 return false; 399 400 if (opp_info != NULL) 401 return opp_info->opp_supported(opp_table, opp_node); 402 403 return false; 404 } 405 406 static int 407 cpufreq_dt_parse_opp_v2(struct cpufreq_dt_softc *sc) 408 { 409 const int phandle = sc->sc_phandle; 410 struct cpufreq_dt_table *table; 411 const struct fdt_opp_info *opp_info; 412 const u_int *opp_uv; 413 uint64_t opp_hz; 414 int opp_node, len, i, index; 415 416 const int opp_table = fdtbus_get_phandle(phandle, "operating-points-v2"); 417 if (opp_table < 0) 418 return ENOENT; 419 420 /* If the table is shared, only setup a single instance */ 421 if (of_hasprop(opp_table, "opp-shared")) { 422 TAILQ_FOREACH(table, &cpufreq_dt_tables, next) 423 if (table->phandle == opp_table) 424 return EEXIST; 425 sc->sc_table.phandle = opp_table; 426 TAILQ_INSERT_TAIL(&cpufreq_dt_tables, &sc->sc_table, next); 427 } 428 429 opp_info = cpufreq_dt_lookup_opp_info(opp_table); 430 431 for (opp_node = OF_child(opp_table); opp_node; opp_node = OF_peer(opp_node)) { 432 if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node)) 433 continue; 434 sc->sc_nopp++; 435 } 436 437 if (sc->sc_nopp == 0) 438 return EINVAL; 439 440 sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP); 441 index = sc->sc_nopp - 1; 442 for (opp_node = OF_child(opp_table), i = 0; opp_node; opp_node = OF_peer(opp_node), i++) { 443 if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node)) 444 continue; 445 if (of_getprop_uint64(opp_node, "opp-hz", &opp_hz) != 0) 446 return EINVAL; 447 opp_uv = fdtbus_get_prop(opp_node, "opp-microvolt", &len); 448 if (opp_uv == NULL || len < 1) 449 return EINVAL; 450 /* Table is in reverse order */ 451 sc->sc_opp[index].freq_khz = (u_int)(opp_hz / 1000); 452 sc->sc_opp[index].voltage_uv = be32toh(opp_uv[0]); 453 of_getprop_uint32(opp_node, "clock-latency-ns", &sc->sc_opp[index].latency_ns); 454 --index; 455 } 456 457 return 0; 458 } 459 460 static int 461 cpufreq_dt_parse(struct cpufreq_dt_softc *sc) 462 { 463 const int phandle = sc->sc_phandle; 464 int error, i; 465 466 if (of_hasprop(phandle, "cpu-supply")) { 467 sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply"); 468 if (sc->sc_supply == NULL) { 469 aprint_error_dev(sc->sc_dev, 470 "couldn't acquire cpu-supply\n"); 471 return ENXIO; 472 } 473 } 474 sc->sc_clk = fdtbus_clock_get_index(phandle, 0); 475 if (sc->sc_clk == NULL) { 476 aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n"); 477 return ENXIO; 478 } 479 480 mutex_enter(&cpufreq_dt_tables_lock); 481 if (of_hasprop(phandle, "operating-points")) 482 error = cpufreq_dt_parse_opp(sc); 483 else if (of_hasprop(phandle, "operating-points-v2")) 484 error = cpufreq_dt_parse_opp_v2(sc); 485 else 486 error = EINVAL; 487 mutex_exit(&cpufreq_dt_tables_lock); 488 489 if (error) { 490 if (error != EEXIST) 491 aprint_error_dev(sc->sc_dev, 492 "couldn't parse operating points: %d\n", error); 493 return error; 494 } 495 496 for (i = 0; i < sc->sc_nopp; i++) { 497 aprint_debug_dev(sc->sc_dev, "supported rate: %u.%03u MHz, %u uV\n", 498 sc->sc_opp[i].freq_khz / 1000, 499 sc->sc_opp[i].freq_khz % 1000, 500 sc->sc_opp[i].voltage_uv); 501 } 502 503 return 0; 504 } 505 506 static int 507 cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux) 508 { 509 struct fdt_attach_args * const faa = aux; 510 const int phandle = faa->faa_phandle; 511 bus_addr_t addr; 512 513 if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0) 514 return 0; 515 516 if (!of_hasprop(phandle, "clocks")) 517 return 0; 518 519 if (!of_hasprop(phandle, "operating-points") && 520 !of_hasprop(phandle, "operating-points-v2")) 521 return 0; 522 523 return 1; 524 } 525 526 static void 527 cpufreq_dt_init(device_t self) 528 { 529 struct cpufreq_dt_softc * const sc = device_private(self); 530 int error; 531 532 if ((error = cpufreq_dt_parse(sc)) != 0) 533 return; 534 535 pmf_event_register(sc->sc_dev, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true); 536 pmf_event_register(sc->sc_dev, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true); 537 538 cpufreq_dt_init_sysctl(sc); 539 540 if (sc->sc_nopp > 0) { 541 struct cpufreq_dt_opp * const opp = &sc->sc_opp[0]; 542 543 aprint_normal_dev(sc->sc_dev, "rate: %u.%03u MHz, %u uV\n", 544 opp->freq_khz / 1000, opp->freq_khz % 1000, opp->voltage_uv); 545 cpufreq_dt_set_rate(sc, opp->freq_khz); 546 } 547 } 548 549 static int 550 cpufreq_dt_lock_init(void) 551 { 552 mutex_init(&cpufreq_dt_tables_lock, MUTEX_DEFAULT, IPL_NONE); 553 return 0; 554 } 555 556 static void 557 cpufreq_dt_attach(device_t parent, device_t self, void *aux) 558 { 559 static ONCE_DECL(locks); 560 struct cpufreq_dt_softc * const sc = device_private(self); 561 struct fdt_attach_args * const faa = aux; 562 563 RUN_ONCE(&locks, cpufreq_dt_lock_init); 564 565 sc->sc_dev = self; 566 sc->sc_phandle = faa->faa_phandle; 567 568 aprint_naive("\n"); 569 aprint_normal("\n"); 570 571 config_interrupts(self, cpufreq_dt_init); 572 } 573 574 CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc), 575 cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL); 576