Home | History | Annotate | Line # | Download | only in dev
      1 /* $NetBSD: sbmac.c,v 1.66 2024/02/09 17:57:03 andvar Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001, 2004
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
     19  *    used to endorse or promote products derived from this software
     20  *    without the prior written permission of Broadcom Corporation.
     21  *
     22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.66 2024/02/09 17:57:03 andvar Exp $");
     37 
     38 #include "opt_inet.h"
     39 #include "opt_ns.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/kmem.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/queue.h>
     49 #include <sys/device.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_arp.h>
     53 #include <net/if_ether.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #ifdef INET
     60 #include <netinet/in.h>
     61 #include <netinet/if_inarp.h>
     62 #endif
     63 
     64 #include <mips/locore.h>
     65 
     66 #include "sbobiovar.h"
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 #include <dev/mii/mii_bitbang.h>
     71 
     72 #include <mips/sibyte/include/sb1250_defs.h>
     73 #include <mips/sibyte/include/sb1250_regs.h>
     74 #include <mips/sibyte/include/sb1250_mac.h>
     75 #include <mips/sibyte/include/sb1250_dma.h>
     76 #include <mips/sibyte/include/sb1250_scd.h>
     77 
     78 #include <evbmips/sbmips/systemsw.h>
     79 
     80 /* Simple types */
     81 
     82 typedef u_long sbmac_port_t;
     83 typedef uint64_t sbmac_physaddr_t;
     84 typedef uint64_t sbmac_enetaddr_t;
     85 
     86 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     87 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     88 
     89 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     90 	       sbmac_duplex_full } sbmac_duplex_t;
     91 
     92 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
     93 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
     94 
     95 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
     96 	       sbmac_state_broken } sbmac_state_t;
     97 
     98 
     99 /* Macros */
    100 
    101 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
    102 
    103 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
    104 
    105 #define	CACHELINESIZE	32
    106 #define	NUMCACHEBLKS(x)	(((x)+CACHELINESIZE-1)/CACHELINESIZE)
    107 #define	KVTOPHYS(x)	kvtophys((vaddr_t)(x))
    108 
    109 #ifdef SBMACDEBUG
    110 #define	dprintf(x)	printf x
    111 #else
    112 #define	dprintf(x)
    113 #endif
    114 
    115 #define	SBMAC_READCSR(t) mips3_ld((register_t)(t))
    116 #define	SBMAC_WRITECSR(t, v) mips3_sd((register_t)(t), (v))
    117 
    118 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    119 
    120 /* These are limited to fit within one virtual page, and must be 2**N.  */
    121 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
    122 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
    123 
    124 /* DMA Descriptor structure */
    125 
    126 typedef struct sbdmadscr_s {
    127 	uint64_t dscr_a;
    128 	uint64_t dscr_b;
    129 } sbdmadscr_t;
    130 
    131 
    132 /* DMA Controller structure */
    133 
    134 typedef struct sbmacdma_s {
    135 
    136 	/*
    137 	 * This stuff is used to identify the channel and the registers
    138 	 * associated with it.
    139 	 */
    140 
    141 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    142 	int		sbdma_channel;	/* channel number */
    143 	int		sbdma_txdir;	/* direction (1=transmit) */
    144 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    145 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    146 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    147 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    148 	sbmac_port_t	sbdma_dscrcnt;	/* Descriptor count register */
    149 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    150 
    151 	/*
    152 	 * This stuff is for maintenance of the ring
    153 	 */
    154 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    155 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    156 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
    157 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    158 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
    159 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
    160 } sbmacdma_t;
    161 
    162 
    163 /* Ethernet softc structure */
    164 
    165 struct sbmac_softc {
    166 
    167 	/*
    168 	 * NetBSD-specific things
    169 	 */
    170 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    171 	struct mii_data	sc_mii;
    172 	struct callout	sc_tick_ch;
    173 
    174 	device_t	sc_dev;		/* device */
    175 	u_short		sbm_if_flags;
    176 	void		*sbm_intrhand;
    177 
    178 	/*
    179 	 * Controller-specific things
    180 	 */
    181 
    182 	sbmac_port_t	sbm_base;	/* MAC's base address */
    183 	sbmac_state_t	sbm_state;	/* current state */
    184 
    185 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    186 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    187 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    188 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    189 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    190 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    191 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    192 
    193 	sbmac_speed_t	sbm_speed;	/* current speed */
    194 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    195 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    196 	int		sbm_rxflags;	/* received packet flags */
    197 
    198 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    199 
    200 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    201 	sbmacdma_t	sbm_rxdma;
    202 
    203 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    204 
    205 #ifdef SBMAC_EVENT_COUNTERS
    206 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
    207 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
    208 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
    209 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
    210 
    211 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
    212 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
    213 #endif
    214 };
    215 
    216 
    217 #ifdef SBMAC_EVENT_COUNTERS
    218 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
    219 #else
    220 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
    221 #endif
    222 
    223 /* Externs */
    224 
    225 extern paddr_t kvtophys(vaddr_t);
    226 
    227 /* Prototypes */
    228 
    229 static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int);
    230 static void sbdma_channel_start(sbmacdma_t *);
    231 static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *);
    232 static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *);
    233 static void sbdma_emptyring(sbmacdma_t *);
    234 static void sbdma_fillring(sbmacdma_t *);
    235 static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *);
    236 static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *);
    237 static void sbmac_initctx(struct sbmac_softc *);
    238 static void sbmac_channel_start(struct sbmac_softc *);
    239 static void sbmac_channel_stop(struct sbmac_softc *);
    240 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    241     sbmac_state_t);
    242 static void sbmac_promiscuous_mode(struct sbmac_softc *, bool);
    243 static void sbmac_init_and_start(struct sbmac_softc *);
    244 static uint64_t sbmac_addr2reg(u_char *);
    245 static void sbmac_intr(void *, uint32_t, vaddr_t);
    246 static void sbmac_start(struct ifnet *);
    247 static void sbmac_setmulti(struct sbmac_softc *);
    248 static int sbmac_ether_ioctl(struct ifnet *, u_long, void *);
    249 static int sbmac_ioctl(struct ifnet *, u_long, void *);
    250 static void sbmac_watchdog(struct ifnet *);
    251 static int sbmac_match(device_t, cfdata_t, void *);
    252 static void sbmac_attach(device_t, device_t, void *);
    253 static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t);
    254 static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t);
    255 static void sbmac_tick(void *);
    256 
    257 
    258 /* Globals */
    259 
    260 CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc),
    261     sbmac_match, sbmac_attach, NULL, NULL);
    262 
    263 static uint32_t sbmac_mii_bitbang_read(device_t self);
    264 static void sbmac_mii_bitbang_write(device_t self, uint32_t val);
    265 
    266 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    267 	sbmac_mii_bitbang_read,
    268 	sbmac_mii_bitbang_write,
    269 	{
    270 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    271 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    272 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    273 		0,				/* MII_BIT_DIR_HOST_PHY */
    274 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    275 	}
    276 };
    277 
    278 static uint32_t
    279 sbmac_mii_bitbang_read(device_t self)
    280 {
    281 	struct sbmac_softc *sc = device_private(self);
    282 	sbmac_port_t reg;
    283 
    284 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    285 	return (uint32_t) SBMAC_READCSR(reg);
    286 }
    287 
    288 static void
    289 sbmac_mii_bitbang_write(device_t self, uint32_t val)
    290 {
    291 	struct sbmac_softc *sc = device_private(self);
    292 	sbmac_port_t reg;
    293 
    294 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    295 
    296 	SBMAC_WRITECSR(reg, (val &
    297 	    (M_MAC_MDC | M_MAC_MDIO_DIR | M_MAC_MDIO_OUT | M_MAC_MDIO_IN)));
    298 }
    299 
    300 /*
    301  * Read an PHY register through the MII.
    302  */
    303 static int
    304 sbmac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
    305 {
    306 
    307 	return mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg,
    308 	    val);
    309 }
    310 
    311 /*
    312  * Write to a PHY register through the MII.
    313  */
    314 static int
    315 sbmac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
    316 {
    317 
    318 	return mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg,
    319 	    val);
    320 }
    321 
    322 static void
    323 sbmac_mii_statchg(struct ifnet *ifp)
    324 {
    325 	struct sbmac_softc *sc = ifp->if_softc;
    326 	sbmac_state_t oldstate;
    327 
    328 	/* Stop the MAC in preparation for changing all of the parameters. */
    329 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    330 
    331 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    332 	default:		/* if autonegotiation fails, assume 10Mbit */
    333 	case IF_Mbps(10):
    334 		sbmac_set_speed(sc, sbmac_speed_10);
    335 		break;
    336 
    337 	case IF_Mbps(100):
    338 		sbmac_set_speed(sc, sbmac_speed_100);
    339 		break;
    340 
    341 	case IF_Mbps(1000):
    342 		sbmac_set_speed(sc, sbmac_speed_1000);
    343 		break;
    344 	}
    345 
    346 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    347 		/* Configure for full-duplex */
    348 		/* XXX: is flow control right for 10, 100? */
    349 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    350 	} else {
    351 		/* Configure for half-duplex */
    352 		/* XXX: is flow control right? */
    353 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    354 	}
    355 
    356 	/* And put it back into its former state. */
    357 	sbmac_set_channel_state(sc, oldstate);
    358 }
    359 
    360 /*
    361  *  SBDMA_INITCTX(d, sc, chan, txrx, maxdescr)
    362  *
    363  *  Initialize a DMA channel context.  Since there are potentially
    364  *  eight DMA channels per MAC, it's nice to do this in a standard
    365  *  way.
    366  *
    367  *  Input parameters:
    368  *	d - sbmacdma_t structure (DMA channel context)
    369  *	sc - sbmac_softc structure (pointer to a MAC)
    370  *	chan - channel number (0..1 right now)
    371  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    372  *	maxdescr - number of descriptors
    373  *
    374  *  Return value:
    375  *	nothing
    376  */
    377 
    378 static void
    379 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx,
    380     int maxdescr)
    381 {
    382 	uintptr_t ptr;
    383 
    384 	/*
    385 	 * Save away interesting stuff in the structure
    386 	 */
    387 
    388 	d->sbdma_eth = sc;
    389 	d->sbdma_channel = chan;
    390 	d->sbdma_txdir = txrx;
    391 
    392 	/*
    393 	 * initialize register pointers
    394 	 */
    395 
    396 	d->sbdma_config0 = PKSEG1(sc->sbm_base +
    397 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    398 	d->sbdma_config1 = PKSEG1(sc->sbm_base +
    399 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    400 	d->sbdma_dscrbase = PKSEG1(sc->sbm_base +
    401 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    402 	d->sbdma_dscrcnt = PKSEG1(sc->sbm_base +
    403 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    404 	d->sbdma_curdscr = PKSEG1(sc->sbm_base +
    405 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    406 
    407 	/*
    408 	 * Allocate memory for the ring.  This must be aligned to a
    409 	 * 32-byte cache line boundary on pass1 or pass2 silicon.
    410 	 */
    411 
    412 	d->sbdma_maxdescr = maxdescr;
    413 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
    414 	ptr = (uintptr_t)kmem_zalloc(d->sbdma_maxdescr * sizeof(sbdmadscr_t) +
    415 	    CACHELINESIZE - 1, KM_SLEEP);
    416 	d->sbdma_dscrtable = (sbdmadscr_t *)roundup2(ptr, CACHELINESIZE);
    417 
    418 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    419 
    420 	/*
    421 	 * And context table
    422 	 */
    423 
    424 	d->sbdma_ctxtable = (struct mbuf **)
    425 	    kmem_zalloc(d->sbdma_maxdescr * sizeof(struct mbuf *), KM_SLEEP);
    426 }
    427 
    428 /*
    429  *  SBDMA_CHANNEL_START(d)
    430  *
    431  *  Initialize the hardware registers for a DMA channel.
    432  *
    433  *  Input parameters:
    434  *	d - DMA channel to init (context must be previously init'd
    435  *
    436  *  Return value:
    437  *	nothing
    438  */
    439 
    440 static void
    441 sbdma_channel_start(sbmacdma_t *d)
    442 {
    443 	/*
    444 	 * Turn on the DMA channel
    445 	 */
    446 
    447 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    448 
    449 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    450 
    451 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    452 
    453 	/*
    454 	 * Initialize ring pointers
    455 	 */
    456 
    457 	d->sbdma_add_index = 0;
    458 	d->sbdma_rem_index = 0;
    459 }
    460 
    461 /*
    462  *  SBDMA_ADD_RCVBUFFER(d, m)
    463  *
    464  *  Add a buffer to the specified DMA channel.   For receive channels,
    465  *  this queues a buffer for inbound packets.
    466  *
    467  *  Input parameters:
    468  *	d - DMA channel descriptor
    469  *	m - mbuf to add, or NULL if we should allocate one.
    470  *
    471  *  Return value:
    472  *	0 if buffer could not be added (ring is full)
    473  *	1 if buffer added successfully
    474  */
    475 
    476 static int
    477 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    478 {
    479 	unsigned int dsc, nextdsc;
    480 	struct mbuf *m_new = NULL;
    481 
    482 	/* get pointer to our current place in the ring */
    483 
    484 	dsc = d->sbdma_add_index;
    485 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    486 
    487 	/*
    488 	 * figure out if the ring is full - if the next descriptor
    489 	 * is the same as the one that we're going to remove from
    490 	 * the ring, the ring is full
    491 	 */
    492 
    493 	if (nextdsc == d->sbdma_rem_index)
    494 		return ENOSPC;
    495 
    496 	/*
    497 	 * Allocate an mbuf if we don't already have one.
    498 	 * If we do have an mbuf, reset it so that it's empty.
    499 	 */
    500 
    501 	if (m == NULL) {
    502 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    503 		if (m_new == NULL) {
    504 			aprint_error_dev(d->sbdma_eth->sc_dev,
    505 			    "mbuf allocation failed\n");
    506 			return ENOBUFS;
    507 		}
    508 
    509 		MCLGET(m_new, M_DONTWAIT);
    510 		if (!(m_new->m_flags & M_EXT)) {
    511 			aprint_error_dev(d->sbdma_eth->sc_dev,
    512 			    "mbuf cluster allocation failed\n");
    513 			m_freem(m_new);
    514 			return ENOBUFS;
    515 		}
    516 
    517 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    518 		m_adj(m_new, ETHER_ALIGN);
    519 	} else {
    520 		m_new = m;
    521 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    522 		m_new->m_data = m_new->m_ext.ext_buf;
    523 		m_adj(m_new, ETHER_ALIGN);
    524 	}
    525 
    526 	/*
    527 	 * fill in the descriptor
    528 	 */
    529 
    530 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
    531 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    532 	    M_DMA_DSCRA_INTERRUPT;
    533 
    534 	/* receiving: no options */
    535 	d->sbdma_dscrtable[dsc].dscr_b = 0;
    536 
    537 	/*
    538 	 * fill in the context
    539 	 */
    540 
    541 	d->sbdma_ctxtable[dsc] = m_new;
    542 
    543 	/*
    544 	 * point at next packet
    545 	 */
    546 
    547 	d->sbdma_add_index = nextdsc;
    548 
    549 	/*
    550 	 * Give the buffer to the DMA engine.
    551 	 */
    552 
    553 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    554 
    555 	return 0;					/* we did it */
    556 }
    557 
    558 /*
    559  *  SBDMA_ADD_TXBUFFER(d, m)
    560  *
    561  *  Add a transmit buffer to the specified DMA channel, causing a
    562  *  transmit to start.
    563  *
    564  *  Input parameters:
    565  *	d - DMA channel descriptor
    566  *	m - mbuf to add
    567  *
    568  *  Return value:
    569  *	0 transmit queued successfully
    570  *	otherwise error code
    571  */
    572 
    573 static int
    574 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    575 {
    576 	unsigned int dsc, nextdsc, prevdsc, origdesc;
    577 	int length;
    578 	int num_mbufs = 0;
    579 	struct sbmac_softc *sc = d->sbdma_eth;
    580 
    581 	/* get pointer to our current place in the ring */
    582 
    583 	dsc = d->sbdma_add_index;
    584 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    585 
    586 	/*
    587 	 * figure out if the ring is full - if the next descriptor
    588 	 * is the same as the one that we're going to remove from
    589 	 * the ring, the ring is full
    590 	 */
    591 
    592 	if (nextdsc == d->sbdma_rem_index) {
    593 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    594 		return ENOSPC;
    595 	}
    596 
    597 	/*
    598 	 * PASS3 parts do not have buffer alignment restriction.
    599 	 * No need to copy/coalesce to new mbuf.  Also has different
    600 	 * descriptor format
    601 	 */
    602 	if (sc->sbm_pass3_dma) {
    603 		struct mbuf *m_temp = NULL;
    604 
    605 		/*
    606 		 * Loop thru this mbuf record.
    607 		 * The head mbuf will have SOP set.
    608 		 */
    609 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m, void *)) |
    610 		    M_DMA_ETHTX_SOP;
    611 
    612 		/*
    613 		 * transmitting: set outbound options,buffer A size(+ low 5
    614 		 * bits of start addr),and packet length.
    615 		 */
    616 		d->sbdma_dscrtable[dsc].dscr_b =
    617 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    618 		    V_DMA_DSCRB_A_SIZE((m->m_len +
    619 		      (mtod(m, uintptr_t) & 0x0000001F))) |
    620 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
    621 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
    622 
    623 		d->sbdma_add_index = nextdsc;
    624 		origdesc = prevdsc = dsc;
    625 		dsc = d->sbdma_add_index;
    626 		num_mbufs++;
    627 
    628 		/* Start with first non-head mbuf */
    629 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    630 			int len, next_len;
    631 			uint64_t addr;
    632 
    633 			if (m_temp->m_len == 0)
    634 				continue;	/* Skip 0-length mbufs */
    635 
    636 			len = m_temp->m_len;
    637 			addr = KVTOPHYS(mtod(m_temp, void *));
    638 
    639 			/*
    640 			 * Check to see if the mbuf spans a page boundary.  If
    641 			 * it does, and the physical pages behind the virtual
    642 			 * pages are not contiguous, split it so that each
    643 			 * virtual page uses its own Tx descriptor.
    644 			 */
    645 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
    646 				next_len = (addr + len) - trunc_page(addr + len);
    647 
    648 				len -= next_len;
    649 
    650 				if (addr + len ==
    651 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
    652 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
    653 					len += next_len;
    654 					next_len = 0;
    655 				} else {
    656 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
    657 				}
    658 			} else {
    659 				next_len = 0;
    660 			}
    661 
    662 again:
    663 			/*
    664 			 * fill in the descriptor
    665 			 */
    666 			d->sbdma_dscrtable[dsc].dscr_a = addr;
    667 
    668 			/*
    669 			 * transmitting: set outbound options,buffer A
    670 			 * size(+ low 5 bits of start addr)
    671 			 */
    672 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    673 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
    674 
    675 			d->sbdma_ctxtable[dsc] = NULL;
    676 
    677 			/*
    678 			 * point at next descriptor
    679 			 */
    680 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    681 			if (nextdsc == d->sbdma_rem_index) {
    682 				d->sbdma_add_index = origdesc;
    683 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    684 				return ENOSPC;
    685 			}
    686 			d->sbdma_add_index = nextdsc;
    687 
    688 			prevdsc = dsc;
    689 			dsc = d->sbdma_add_index;
    690 			num_mbufs++;
    691 
    692 			if (next_len != 0) {
    693 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
    694 				len = next_len;
    695 
    696 				next_len = 0;
    697 				goto again;
    698 			}
    699 
    700 		}
    701 		/* Set head mbuf to last context index */
    702 		d->sbdma_ctxtable[prevdsc] = m;
    703 
    704 		/* Interrupt on last dscr of packet.  */
    705 		d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
    706 	} else {
    707 		struct mbuf *m_new = NULL;
    708 		/*
    709 		 * [BEGIN XXX]
    710 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
    711 		 * assume it will fit).  This is a temporary hack to get us
    712 		 * going.
    713 		 */
    714 
    715 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    716 		if (m_new == NULL) {
    717 			aprint_error_dev(d->sbdma_eth->sc_dev,
    718 			    "mbuf allocation failed\n");
    719 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    720 			return ENOBUFS;
    721 		}
    722 
    723 		MCLGET(m_new, M_DONTWAIT);
    724 		if (!(m_new->m_flags & M_EXT)) {
    725 			aprint_error_dev(d->sbdma_eth->sc_dev,
    726 			    "mbuf cluster allocation failed\n");
    727 			m_freem(m_new);
    728 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    729 			return ENOBUFS;
    730 		}
    731 
    732 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    733 		/*m_adj(m_new, ETHER_ALIGN);*/
    734 
    735 		/*
    736 		 * XXX Don't forget to include the offset portion in the
    737 		 * XXX cache block calculation when this code is rewritten!
    738 		 */
    739 
    740 		/*
    741 		 * Copy data
    742 		 */
    743 
    744 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
    745 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    746 
    747 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    748 
    749 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    750 		// XXX: function succeeds.
    751 		// m_freem(m);
    752 		length = m_new->m_len;
    753 
    754 		/* [END XXX] */
    755 		/*
    756 		 * fill in the descriptor
    757 		 */
    758 
    759 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
    760 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    761 		    M_DMA_DSCRA_INTERRUPT |
    762 		    M_DMA_ETHTX_SOP;
    763 
    764 		/* transmitting: set outbound options and length */
    765 		d->sbdma_dscrtable[dsc].dscr_b =
    766 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    767 		    V_DMA_DSCRB_PKT_SIZE(length);
    768 
    769 		num_mbufs++;
    770 
    771 		/*
    772 		 * fill in the context
    773 		 */
    774 
    775 		d->sbdma_ctxtable[dsc] = m_new;
    776 
    777 		/*
    778 		 * point at next packet
    779 		 */
    780 		d->sbdma_add_index = nextdsc;
    781 	}
    782 
    783 	/*
    784 	 * Give the buffer to the DMA engine.
    785 	 */
    786 
    787 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    788 
    789 	return 0;					/* we did it */
    790 }
    791 
    792 /*
    793  *  SBDMA_EMPTYRING(d)
    794  *
    795  *  Free all allocated mbufs on the specified DMA channel;
    796  *
    797  *  Input parameters:
    798  *	d  - DMA channel
    799  *
    800  *  Return value:
    801  *	nothing
    802  */
    803 
    804 static void
    805 sbdma_emptyring(sbmacdma_t *d)
    806 {
    807 	int idx;
    808 	struct mbuf *m;
    809 
    810 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    811 		m = d->sbdma_ctxtable[idx];
    812 		if (m) {
    813 			m_freem(m);
    814 			d->sbdma_ctxtable[idx] = NULL;
    815 		}
    816 	}
    817 }
    818 
    819 /*
    820  *  SBDMA_FILLRING(d)
    821  *
    822  *  Fill the specified DMA channel (must be receive channel)
    823  *  with mbufs
    824  *
    825  *  Input parameters:
    826  *	d - DMA channel
    827  *
    828  *  Return value:
    829  *	nothing
    830  */
    831 
    832 static void
    833 sbdma_fillring(sbmacdma_t *d)
    834 {
    835 	int idx;
    836 
    837 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    838 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    839 			break;
    840 }
    841 
    842 /*
    843  *  SBDMA_RX_PROCESS(sc, d)
    844  *
    845  *  Process "completed" receive buffers on the specified DMA channel.
    846  *  Note that this isn't really ideal for priority channels, since
    847  *  it processes all of the packets on a given channel before
    848  *  returning.
    849  *
    850  *  Input parameters:
    851  *	sc - softc structure
    852  *	d - DMA channel context
    853  *
    854  *  Return value:
    855  *	nothing
    856  */
    857 
    858 static void
    859 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    860 {
    861 	int curidx;
    862 	int hwidx;
    863 	sbdmadscr_t *dscp;
    864 	struct mbuf *m;
    865 	int len;
    866 
    867 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    868 
    869 	for (;;) {
    870 		/*
    871 		 * figure out where we are (as an index) and where
    872 		 * the hardware is (also as an index)
    873 		 *
    874 		 * This could be done faster if (for example) the
    875 		 * descriptor table was page-aligned and contiguous in
    876 		 * both virtual and physical memory -- you could then
    877 		 * just compare the low-order bits of the virtual address
    878 		 * (sbdma_rem_index) and the physical address
    879 		 * (sbdma_curdscr CSR).
    880 		 */
    881 
    882 		curidx = d->sbdma_rem_index;
    883 		hwidx = (int)
    884 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    885 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    886 
    887 		/*
    888 		 * If they're the same, that means we've processed all
    889 		 * of the descriptors up to (but not including) the one that
    890 		 * the hardware is working on right now.
    891 		 */
    892 
    893 		if (curidx == hwidx)
    894 			break;
    895 
    896 		/*
    897 		 * Otherwise, get the packet's mbuf ptr back
    898 		 */
    899 
    900 		dscp = &(d->sbdma_dscrtable[curidx]);
    901 		m = d->sbdma_ctxtable[curidx];
    902 		d->sbdma_ctxtable[curidx] = NULL;
    903 
    904 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
    905 
    906 		/*
    907 		 * Check packet status.  If good, process it.
    908 		 * If not, silently drop it and put it back on the
    909 		 * receive ring.
    910 		 */
    911 
    912 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
    913 
    914 			/*
    915 			 * Set length into the packet
    916 			 * XXX do we remove the CRC here?
    917 			 */
    918 			m->m_pkthdr.len = m->m_len = len;
    919 
    920 			m_set_rcvif(m, ifp);
    921 
    922 
    923 			/*
    924 			 * Add a new buffer to replace the old one.
    925 			 */
    926 			sbdma_add_rcvbuffer(d, NULL);
    927 
    928 			/*
    929 			 * Handle BPF listeners. Let the BPF user see the
    930 			 * packet, but don't pass it up to the ether_input()
    931 			 * layer unless it's a broadcast packet, multicast
    932 			 * packet, matches our ethernet address or the
    933 			 * interface is in promiscuous mode.
    934 			 */
    935 
    936 			/*
    937 			 * Pass the buffer to the kernel
    938 			 */
    939 			if_percpuq_enqueue(ifp->if_percpuq, m);
    940 		} else {
    941 			/*
    942 			 * Packet was mangled somehow.  Just drop it and
    943 			 * put it back on the receive ring.
    944 			 */
    945 			sbdma_add_rcvbuffer(d, m);
    946 		}
    947 
    948 		/*
    949 		 * .. and advance to the next buffer.
    950 		 */
    951 
    952 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
    953 	}
    954 }
    955 
    956 /*
    957  *  SBDMA_TX_PROCESS(sc, d)
    958  *
    959  *  Process "completed" transmit buffers on the specified DMA channel.
    960  *  This is normally called within the interrupt service routine.
    961  *  Note that this isn't really ideal for priority channels, since
    962  *  it processes all of the packets on a given channel before
    963  *  returning.
    964  *
    965  *  Input parameters:
    966  *	sc - softc structure
    967  *	d - DMA channel context
    968  *
    969  *  Return value:
    970  *	nothing
    971  */
    972 
    973 static void
    974 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    975 {
    976 	int curidx;
    977 	int hwidx;
    978 	struct mbuf *m;
    979 
    980 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    981 
    982 	for (;;) {
    983 		/*
    984 		 * figure out where we are (as an index) and where
    985 		 * the hardware is (also as an index)
    986 		 *
    987 		 * This could be done faster if (for example) the
    988 		 * descriptor table was page-aligned and contiguous in
    989 		 * both virtual and physical memory -- you could then
    990 		 * just compare the low-order bits of the virtual address
    991 		 * (sbdma_rem_index) and the physical address
    992 		 * (sbdma_curdscr CSR).
    993 		 */
    994 
    995 		curidx = d->sbdma_rem_index;
    996 		hwidx = (int)
    997 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    998 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    999 
   1000 		/*
   1001 		 * If they're the same, that means we've processed all
   1002 		 * of the descriptors up to (but not including) the one that
   1003 		 * the hardware is working on right now.
   1004 		 */
   1005 
   1006 		if (curidx == hwidx)
   1007 			break;
   1008 
   1009 		/*
   1010 		 * Otherwise, get the packet's mbuf ptr back
   1011 		 */
   1012 
   1013 		m = d->sbdma_ctxtable[curidx];
   1014 		d->sbdma_ctxtable[curidx] = NULL;
   1015 
   1016 		/*
   1017 		 * for transmits we just free buffers and count packets.
   1018 		 */
   1019 		if_statinc(ifp, if_opackets);
   1020 		m_freem(m);
   1021 
   1022 		/*
   1023 		 * .. and advance to the next buffer.
   1024 		 */
   1025 
   1026 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
   1027 	}
   1028 }
   1029 
   1030 /*
   1031  *  SBMAC_INITCTX(s)
   1032  *
   1033  *  Initialize an Ethernet context structure - this is called
   1034  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1035  *  call it again from inside the ioctl routines that bring the
   1036  *  interface up/down
   1037  *
   1038  *  Input parameters:
   1039  *	sc - sbmac context structure
   1040  *
   1041  *  Return value:
   1042  *	0
   1043  */
   1044 
   1045 static void
   1046 sbmac_initctx(struct sbmac_softc *sc)
   1047 {
   1048 	uint64_t sysrev;
   1049 
   1050 	/*
   1051 	 * figure out the addresses of some ports
   1052 	 */
   1053 
   1054 	sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE);
   1055 	sc->sbm_maccfg	  = PKSEG1(sc->sbm_base + R_MAC_CFG);
   1056 	sc->sbm_fifocfg	  = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG);
   1057 	sc->sbm_framecfg  = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG);
   1058 	sc->sbm_rxfilter  = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG);
   1059 	sc->sbm_isr	  = PKSEG1(sc->sbm_base + R_MAC_STATUS);
   1060 	sc->sbm_imr	  = PKSEG1(sc->sbm_base + R_MAC_INT_MASK);
   1061 
   1062 	/*
   1063 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1064 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1065 	 */
   1066 
   1067 	sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1068 	sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1069 
   1070 	/*
   1071 	 * initial state is OFF
   1072 	 */
   1073 
   1074 	sc->sbm_state = sbmac_state_off;
   1075 
   1076 	/*
   1077 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1078 	 */
   1079 
   1080 	sc->sbm_speed = sbmac_speed_10;
   1081 	sc->sbm_duplex = sbmac_duplex_half;
   1082 	sc->sbm_fc = sbmac_fc_disabled;
   1083 
   1084 	/*
   1085 	 * Determine SOC type.  112x has Pass3 SOC features.
   1086 	 */
   1087 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1088 	sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1089 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1090 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1091 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1092 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
   1093 #ifdef SBMAC_EVENT_COUNTERS
   1094 	const char * const xname = device_xname(sc->sc_dev);
   1095 	evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR,
   1096 	    NULL, xname, "rxintr");
   1097 	evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR,
   1098 	    NULL, xname, "txintr");
   1099 	evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC,
   1100 	    NULL, xname, "txdrop");
   1101 	evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC,
   1102 	    NULL, xname, "txstall");
   1103 	if (sc->sbm_pass3_dma) {
   1104 		evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC,
   1105 		    NULL, xname, "pass3tx-split");
   1106 		evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC,
   1107 		    NULL, xname, "pass3tx-keep");
   1108 	}
   1109 #endif
   1110 }
   1111 
   1112 /*
   1113  *  SBMAC_CHANNEL_START(s)
   1114  *
   1115  *  Start packet processing on this MAC.
   1116  *
   1117  *  Input parameters:
   1118  *	sc - sbmac structure
   1119  *
   1120  *  Return value:
   1121  *	nothing
   1122  */
   1123 
   1124 static void
   1125 sbmac_channel_start(struct sbmac_softc *sc)
   1126 {
   1127 	uint64_t reg;
   1128 	sbmac_port_t port;
   1129 	uint64_t cfg, fifo, framecfg;
   1130 	int idx;
   1131 	uint64_t dma_cfg0, fifo_cfg;
   1132 	sbmacdma_t *txdma;
   1133 
   1134 	/*
   1135 	 * Don't do this if running
   1136 	 */
   1137 
   1138 	if (sc->sbm_state == sbmac_state_on)
   1139 		return;
   1140 
   1141 	/*
   1142 	 * Bring the controller out of reset, but leave it off.
   1143 	 */
   1144 
   1145 	SBMAC_WRITECSR(sc->sbm_macenable, 0);
   1146 
   1147 	/*
   1148 	 * Ignore all received packets
   1149 	 */
   1150 
   1151 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1152 
   1153 	/*
   1154 	 * Calculate values for various control registers.
   1155 	 */
   1156 
   1157 	cfg = M_MAC_RETRY_EN |
   1158 	      M_MAC_TX_HOLD_SOP_EN |
   1159 	      V_MAC_TX_PAUSE_CNT_16K |
   1160 	      M_MAC_AP_STAT_EN |
   1161 	      M_MAC_SS_EN |
   1162 	      0;
   1163 
   1164 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1165 	       V_MAC_TX_RD_THRSH(4) |
   1166 	       V_MAC_TX_RL_THRSH(4) |
   1167 	       V_MAC_RX_PL_THRSH(4) |
   1168 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1169 	       V_MAC_RX_PL_THRSH(4) |
   1170 	       V_MAC_RX_RL_THRSH(8) |
   1171 	       0;
   1172 
   1173 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1174 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1175 	    V_MAC_BACKOFF_SEL(1);
   1176 
   1177 	/*
   1178 	 * Clear out the hash address map
   1179 	 */
   1180 
   1181 	port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE);
   1182 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1183 		SBMAC_WRITECSR(port, 0);
   1184 		port += sizeof(uint64_t);
   1185 	}
   1186 
   1187 	/*
   1188 	 * Clear out the exact-match table
   1189 	 */
   1190 
   1191 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
   1192 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1193 		SBMAC_WRITECSR(port, 0);
   1194 		port += sizeof(uint64_t);
   1195 	}
   1196 
   1197 	/*
   1198 	 * Clear out the DMA Channel mapping table registers
   1199 	 */
   1200 
   1201 	port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE);
   1202 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1203 		SBMAC_WRITECSR(port, 0);
   1204 		port += sizeof(uint64_t);
   1205 	}
   1206 
   1207 	port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE);
   1208 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1209 		SBMAC_WRITECSR(port, 0);
   1210 		port += sizeof(uint64_t);
   1211 	}
   1212 
   1213 	/*
   1214 	 * Program the hardware address.  It goes into the hardware-address
   1215 	 * register as well as the first filter register.
   1216 	 */
   1217 
   1218 	reg = sbmac_addr2reg(sc->sbm_hwaddr);
   1219 
   1220 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
   1221 	SBMAC_WRITECSR(port, reg);
   1222 	port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR);
   1223 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1224 
   1225 	/*
   1226 	 * Set the receive filter for no packets, and write values
   1227 	 * to the various config registers
   1228 	 */
   1229 
   1230 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1231 	SBMAC_WRITECSR(sc->sbm_imr, 0);
   1232 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
   1233 	SBMAC_WRITECSR(sc->sbm_fifocfg, fifo);
   1234 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1235 
   1236 	/*
   1237 	 * Initialize DMA channels (rings should be ok now)
   1238 	 */
   1239 
   1240 	sbdma_channel_start(&(sc->sbm_rxdma));
   1241 	sbdma_channel_start(&(sc->sbm_txdma));
   1242 
   1243 	/*
   1244 	 * Configure the speed, duplex, and flow control
   1245 	 */
   1246 
   1247 	sbmac_set_speed(sc, sc->sbm_speed);
   1248 	sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc);
   1249 
   1250 	/*
   1251 	 * Fill the receive ring
   1252 	 */
   1253 
   1254 	sbdma_fillring(&(sc->sbm_rxdma));
   1255 
   1256 	/*
   1257 	 * Turn on the rest of the bits in the enable register
   1258 	 */
   1259 
   1260 	SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1261 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1262 
   1263 
   1264 	/*
   1265 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1266 	 */
   1267 	SBMAC_WRITECSR(sc->sbm_imr,
   1268 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1269 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1270 
   1271 	/*
   1272 	 * Enable receiving unicasts and broadcasts
   1273 	 */
   1274 
   1275 	SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1276 
   1277 	/*
   1278 	 * On chips which support unaligned DMA features, set the descriptor
   1279 	 * ring for transmit channels to use the unaligned buffer format.
   1280 	 */
   1281 	txdma = &(sc->sbm_txdma);
   1282 
   1283 	if (sc->sbm_pass3_dma) {
   1284 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1285 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1286 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1287 		SBMAC_WRITECSR(txdma->sbdma_config0, dma_cfg0);
   1288 
   1289 		fifo_cfg =  SBMAC_READCSR(sc->sbm_fifocfg);
   1290 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1291 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1292 		SBMAC_WRITECSR(sc->sbm_fifocfg, fifo_cfg);
   1293 	}
   1294 
   1295 	/*
   1296 	 * we're running now.
   1297 	 */
   1298 
   1299 	sc->sbm_state = sbmac_state_on;
   1300 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1301 
   1302 	/*
   1303 	 * Program multicast addresses
   1304 	 */
   1305 
   1306 	sbmac_setmulti(sc);
   1307 
   1308 	/*
   1309 	 * If channel was in promiscuous mode before, turn that on
   1310 	 */
   1311 
   1312 	if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1313 		sbmac_promiscuous_mode(sc, true);
   1314 
   1315 	/*
   1316 	 * Turn on the once-per-second timer
   1317 	 */
   1318 
   1319 	callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc);
   1320 }
   1321 
   1322 /*
   1323  *  SBMAC_CHANNEL_STOP(s)
   1324  *
   1325  *  Stop packet processing on this MAC.
   1326  *
   1327  *  Input parameters:
   1328  *	sc - sbmac structure
   1329  *
   1330  *  Return value:
   1331  *	nothing
   1332  */
   1333 
   1334 static void
   1335 sbmac_channel_stop(struct sbmac_softc *sc)
   1336 {
   1337 	uint64_t ctl;
   1338 
   1339 	/* don't do this if already stopped */
   1340 
   1341 	if (sc->sbm_state == sbmac_state_off)
   1342 		return;
   1343 
   1344 	/* don't accept any packets, disable all interrupts */
   1345 
   1346 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1347 	SBMAC_WRITECSR(sc->sbm_imr, 0);
   1348 
   1349 	/* Turn off ticker */
   1350 
   1351 	callout_stop(&(sc->sc_tick_ch));
   1352 
   1353 	/* turn off receiver and transmitter */
   1354 
   1355 	ctl = SBMAC_READCSR(sc->sbm_macenable);
   1356 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1357 	SBMAC_WRITECSR(sc->sbm_macenable, ctl);
   1358 
   1359 	/* We're stopped now. */
   1360 
   1361 	sc->sbm_state = sbmac_state_off;
   1362 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1363 
   1364 	/* Empty the receive and transmit rings */
   1365 
   1366 	sbdma_emptyring(&(sc->sbm_rxdma));
   1367 	sbdma_emptyring(&(sc->sbm_txdma));
   1368 }
   1369 
   1370 /*
   1371  *  SBMAC_SET_CHANNEL_STATE(state)
   1372  *
   1373  *  Set the channel's state ON or OFF
   1374  *
   1375  *  Input parameters:
   1376  *	state - new state
   1377  *
   1378  *  Return value:
   1379  *	old state
   1380  */
   1381 
   1382 static sbmac_state_t
   1383 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1384 {
   1385 	sbmac_state_t oldstate = sc->sbm_state;
   1386 
   1387 	/*
   1388 	 * If same as previous state, return
   1389 	 */
   1390 
   1391 	if (state == oldstate)
   1392 		return oldstate;
   1393 
   1394 	/*
   1395 	 * If new state is ON, turn channel on
   1396 	 */
   1397 
   1398 	if (state == sbmac_state_on)
   1399 		sbmac_channel_start(sc);
   1400 	else
   1401 		sbmac_channel_stop(sc);
   1402 
   1403 	/*
   1404 	 * Return previous state
   1405 	 */
   1406 
   1407 	return oldstate;
   1408 }
   1409 
   1410 /*
   1411  *  SBMAC_PROMISCUOUS_MODE(sc, enabled)
   1412  *
   1413  *  Turn on or off promiscuous mode
   1414  *
   1415  *  Input parameters:
   1416  *	sc - softc
   1417  *	enabled - true to turn on, false to turn off
   1418  *
   1419  *  Return value:
   1420  *	nothing
   1421  */
   1422 
   1423 static void
   1424 sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled)
   1425 {
   1426 	uint64_t reg;
   1427 
   1428 	if (sc->sbm_state != sbmac_state_on)
   1429 		return;
   1430 
   1431 	if (enabled) {
   1432 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1433 		reg |= M_MAC_ALLPKT_EN;
   1434 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1435 	} else {
   1436 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1437 		reg &= ~M_MAC_ALLPKT_EN;
   1438 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1439 	}
   1440 }
   1441 
   1442 /*
   1443  *  SBMAC_INIT_AND_START(sc)
   1444  *
   1445  *  Stop the channel and restart it.  This is generally used
   1446  *  when we have to do something to the channel that requires
   1447  *  a swift kick.
   1448  *
   1449  *  Input parameters:
   1450  *	sc - softc
   1451  */
   1452 
   1453 static void
   1454 sbmac_init_and_start(struct sbmac_softc *sc)
   1455 {
   1456 	int s;
   1457 
   1458 	s = splnet();
   1459 
   1460 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
   1461 	sbmac_mii_statchg(&sc->sc_ethercom.ec_if); /* set state to new speed */
   1462 	sbmac_set_channel_state(sc, sbmac_state_on);
   1463 
   1464 	splx(s);
   1465 }
   1466 
   1467 /*
   1468  *  SBMAC_ADDR2REG(ptr)
   1469  *
   1470  *  Convert six bytes into the 64-bit register value that
   1471  *  we typically write into the SBMAC's address/mcast registers
   1472  *
   1473  *  Input parameters:
   1474  *	ptr - pointer to 6 bytes
   1475  *
   1476  *  Return value:
   1477  *	register value
   1478  */
   1479 
   1480 static uint64_t
   1481 sbmac_addr2reg(u_char *ptr)
   1482 {
   1483 	uint64_t reg = 0;
   1484 
   1485 	ptr += 6;
   1486 
   1487 	reg |= (uint64_t) *(--ptr);
   1488 	reg <<= 8;
   1489 	reg |= (uint64_t) *(--ptr);
   1490 	reg <<= 8;
   1491 	reg |= (uint64_t) *(--ptr);
   1492 	reg <<= 8;
   1493 	reg |= (uint64_t) *(--ptr);
   1494 	reg <<= 8;
   1495 	reg |= (uint64_t) *(--ptr);
   1496 	reg <<= 8;
   1497 	reg |= (uint64_t) *(--ptr);
   1498 
   1499 	return reg;
   1500 }
   1501 
   1502 /*
   1503  *  SBMAC_SET_SPEED(sc, speed)
   1504  *
   1505  *  Configure LAN speed for the specified MAC.
   1506  *  Warning: must be called when MAC is off!
   1507  *
   1508  *  Input parameters:
   1509  *	sc - sbmac structure
   1510  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1511  *
   1512  *  Return value:
   1513  *	true if successful
   1514  *	false indicates invalid parameters
   1515  */
   1516 
   1517 static bool
   1518 sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed)
   1519 {
   1520 	uint64_t cfg;
   1521 	uint64_t framecfg;
   1522 
   1523 	/*
   1524 	 * Save new current values
   1525 	 */
   1526 
   1527 	sc->sbm_speed = speed;
   1528 
   1529 	if (sc->sbm_state != sbmac_state_off)
   1530 		panic("sbmac_set_speed while MAC not off");
   1531 
   1532 	/*
   1533 	 * Read current register values
   1534 	 */
   1535 
   1536 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
   1537 	framecfg = SBMAC_READCSR(sc->sbm_framecfg);
   1538 
   1539 	/*
   1540 	 * Mask out the stuff we want to change
   1541 	 */
   1542 
   1543 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1544 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1545 	    M_MAC_SLOT_SIZE);
   1546 
   1547 	/*
   1548 	 * Now add in the new bits
   1549 	 */
   1550 
   1551 	switch (speed) {
   1552 	case sbmac_speed_10:
   1553 		framecfg |= V_MAC_IFG_RX_10 |
   1554 		    V_MAC_IFG_TX_10 |
   1555 		    K_MAC_IFG_THRSH_10 |
   1556 		    V_MAC_SLOT_SIZE_10;
   1557 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1558 		break;
   1559 
   1560 	case sbmac_speed_100:
   1561 		framecfg |= V_MAC_IFG_RX_100 |
   1562 		    V_MAC_IFG_TX_100 |
   1563 		    V_MAC_IFG_THRSH_100 |
   1564 		    V_MAC_SLOT_SIZE_100;
   1565 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1566 		break;
   1567 
   1568 	case sbmac_speed_1000:
   1569 		framecfg |= V_MAC_IFG_RX_1000 |
   1570 		    V_MAC_IFG_TX_1000 |
   1571 		    V_MAC_IFG_THRSH_1000 |
   1572 		    V_MAC_SLOT_SIZE_1000;
   1573 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1574 		break;
   1575 
   1576 	case sbmac_speed_auto:		/* XXX not implemented */
   1577 		/* fall through */
   1578 	default:
   1579 		return false;
   1580 	}
   1581 
   1582 	/*
   1583 	 * Send the bits back to the hardware
   1584 	 */
   1585 
   1586 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
   1587 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1588 
   1589 	return true;
   1590 }
   1591 
   1592 /*
   1593  *  SBMAC_SET_DUPLEX(sc, duplex, fc)
   1594  *
   1595  *  Set Ethernet duplex and flow control options for this MAC
   1596  *  Warning: must be called when MAC is off!
   1597  *
   1598  *  Input parameters:
   1599  *	sc - sbmac structure
   1600  *	duplex - duplex setting (see sbmac_duplex_t)
   1601  *	fc - flow control setting (see sbmac_fc_t)
   1602  *
   1603  *  Return value:
   1604  *	true if ok
   1605  *	false if an invalid parameter combination was specified
   1606  */
   1607 
   1608 static bool
   1609 sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1610 {
   1611 	uint64_t cfg;
   1612 
   1613 	/*
   1614 	 * Save new current values
   1615 	 */
   1616 
   1617 	sc->sbm_duplex = duplex;
   1618 	sc->sbm_fc = fc;
   1619 
   1620 	if (sc->sbm_state != sbmac_state_off)
   1621 		panic("sbmac_set_duplex while MAC not off");
   1622 
   1623 	/*
   1624 	 * Read current register values
   1625 	 */
   1626 
   1627 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
   1628 
   1629 	/*
   1630 	 * Mask off the stuff we're about to change
   1631 	 */
   1632 
   1633 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1634 
   1635 	switch (duplex) {
   1636 	case sbmac_duplex_half:
   1637 		switch (fc) {
   1638 		case sbmac_fc_disabled:
   1639 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1640 			break;
   1641 
   1642 		case sbmac_fc_collision:
   1643 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1644 			break;
   1645 
   1646 		case sbmac_fc_carrier:
   1647 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1648 			break;
   1649 
   1650 		case sbmac_fc_auto:		/* XXX not implemented */
   1651 			/* fall through */
   1652 		case sbmac_fc_frame:		/* not valid in half duplex */
   1653 		default:			/* invalid selection */
   1654 			panic("%s: invalid half duplex fc selection %d",
   1655 			    device_xname(sc->sc_dev), fc);
   1656 			return false;
   1657 		}
   1658 		break;
   1659 
   1660 	case sbmac_duplex_full:
   1661 		switch (fc) {
   1662 		case sbmac_fc_disabled:
   1663 			cfg |= V_MAC_FC_CMD_DISABLED;
   1664 			break;
   1665 
   1666 		case sbmac_fc_frame:
   1667 			cfg |= V_MAC_FC_CMD_ENABLED;
   1668 			break;
   1669 
   1670 		case sbmac_fc_collision:	/* not valid in full duplex */
   1671 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1672 		case sbmac_fc_auto:		/* XXX not implemented */
   1673 			/* fall through */
   1674 		default:
   1675 			panic("%s: invalid full duplex fc selection %d",
   1676 			    device_xname(sc->sc_dev), fc);
   1677 			return false;
   1678 		}
   1679 		break;
   1680 
   1681 	default:
   1682 		/* fall through */
   1683 	case sbmac_duplex_auto:
   1684 		panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex);
   1685 		/* XXX not implemented */
   1686 		break;
   1687 	}
   1688 
   1689 	/*
   1690 	 * Send the bits back to the hardware
   1691 	 */
   1692 
   1693 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1694 
   1695 	return true;
   1696 }
   1697 
   1698 /*
   1699  *  SBMAC_INTR()
   1700  *
   1701  *  Interrupt handler for MAC interrupts
   1702  *
   1703  *  Input parameters:
   1704  *	MAC structure
   1705  *
   1706  *  Return value:
   1707  *	nothing
   1708  */
   1709 
   1710 /* ARGSUSED */
   1711 static void
   1712 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
   1713 {
   1714 	struct sbmac_softc *sc = xsc;
   1715 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1716 	uint64_t isr;
   1717 
   1718 	for (;;) {
   1719 
   1720 		/*
   1721 		 * Read the ISR (this clears the bits in the real register)
   1722 		 */
   1723 
   1724 		isr = SBMAC_READCSR(sc->sbm_isr);
   1725 
   1726 		if (isr == 0)
   1727 			break;
   1728 
   1729 		/*
   1730 		 * Transmits on channel 0
   1731 		 */
   1732 
   1733 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
   1734 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1735 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
   1736 		}
   1737 
   1738 		/*
   1739 		 * Receives on channel 0
   1740 		 */
   1741 
   1742 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
   1743 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1744 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
   1745 		}
   1746 	}
   1747 
   1748 	/* try to get more packets going */
   1749 	if_schedule_deferred_start(ifp);
   1750 }
   1751 
   1752 
   1753 /*
   1754  *  SBMAC_START(ifp)
   1755  *
   1756  *  Start output on the specified interface.  Basically, we
   1757  *  queue as many buffers as we can until the ring fills up, or
   1758  *  we run off the end of the queue, whichever comes first.
   1759  *
   1760  *  Input parameters:
   1761  *	ifp - interface
   1762  *
   1763  *  Return value:
   1764  *	nothing
   1765  */
   1766 
   1767 static void
   1768 sbmac_start(struct ifnet *ifp)
   1769 {
   1770 	struct sbmac_softc	*sc;
   1771 	struct mbuf		*m_head = NULL;
   1772 	int			rv;
   1773 
   1774 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1775 		return;
   1776 
   1777 	sc = ifp->if_softc;
   1778 
   1779 	for (;;) {
   1780 
   1781 		IF_POLL(&ifp->if_snd, m_head);
   1782 		if (m_head == NULL)
   1783 		    break;
   1784 
   1785 		/*
   1786 		 * Put the buffer on the transmit ring.  If we
   1787 		 * don't have room, we'll try to get things going
   1788 		 * again after a transmit interrupt.
   1789 		 */
   1790 
   1791 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1792 
   1793 		if (rv == 0) {
   1794 			/*
   1795 			 * If there's a BPF listener, bounce a copy of this
   1796 			 * frame to it.
   1797 			 */
   1798 			IF_DEQUEUE(&ifp->if_snd, m_head);
   1799 			bpf_mtap(ifp, m_head, BPF_D_OUT);
   1800 			if (!sc->sbm_pass3_dma) {
   1801 				/*
   1802 				 * Don't free mbuf if we're not copying to new
   1803 				 * mbuf in sbdma_add_txbuffer.  It will be
   1804 				 * freed in sbdma_tx_process.
   1805 				 */
   1806 				m_freem(m_head);
   1807 			}
   1808 		}
   1809 	}
   1810 }
   1811 
   1812 /*
   1813  *  SBMAC_SETMULTI(sc)
   1814  *
   1815  *  Reprogram the multicast table into the hardware, given
   1816  *  the list of multicasts associated with the interface
   1817  *  structure.
   1818  *
   1819  *  Input parameters:
   1820  *	sc - softc
   1821  *
   1822  *  Return value:
   1823  *	nothing
   1824  */
   1825 
   1826 static void
   1827 sbmac_setmulti(struct sbmac_softc *sc)
   1828 {
   1829 	struct ethercom *ec = &sc->sc_ethercom;
   1830 	struct ifnet *ifp = &ec->ec_if;
   1831 	uint64_t reg;
   1832 	sbmac_port_t port;
   1833 	int idx;
   1834 	struct ether_multi *enm;
   1835 	struct ether_multistep step;
   1836 
   1837 	/*
   1838 	 * Clear out entire multicast table.  We do this by nuking
   1839 	 * the entire hash table and all the direct matches except
   1840 	 * the first one, which is used for our station address
   1841 	 */
   1842 
   1843 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1844 		port = PKSEG1(sc->sbm_base +
   1845 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1846 		SBMAC_WRITECSR(port, 0);
   1847 	}
   1848 
   1849 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1850 		port = PKSEG1(sc->sbm_base +
   1851 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1852 		SBMAC_WRITECSR(port, 0);
   1853 	}
   1854 
   1855 	/*
   1856 	 * Clear the filter to say we don't want any multicasts.
   1857 	 */
   1858 
   1859 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1860 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1861 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1862 
   1863 	if (ifp->if_flags & IFF_ALLMULTI) {
   1864 		/*
   1865 		 * Enable ALL multicasts.  Do this by inverting the
   1866 		 * multicast enable bit.
   1867 		 */
   1868 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1869 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1870 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1871 		return;
   1872 	}
   1873 
   1874 	/*
   1875 	 * Program new multicast entries.  For now, only use the
   1876 	 * perfect filter.  In the future we'll need to use the
   1877 	 * hash filter if the perfect filter overflows
   1878 	 */
   1879 
   1880 	/*
   1881 	 * XXX only using perfect filter for now, need to use hash
   1882 	 * XXX if the table overflows
   1883 	 */
   1884 
   1885 	idx = 1;		/* skip station address */
   1886 	ETHER_LOCK(ec);
   1887 	ETHER_FIRST_MULTI(step, ec, enm);
   1888 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1889 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1890 		port = PKSEG1(sc->sbm_base +
   1891 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1892 		SBMAC_WRITECSR(port, reg);
   1893 		idx++;
   1894 		ETHER_NEXT_MULTI(step, enm);
   1895 	}
   1896 	ETHER_UNLOCK(ec);
   1897 
   1898 	/*
   1899 	 * Enable the "accept multicast bits" if we programmed at least one
   1900 	 * multicast.
   1901 	 */
   1902 
   1903 	if (idx > 1) {
   1904 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1905 	    reg |= M_MAC_MCAST_EN;
   1906 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1907 	}
   1908 }
   1909 
   1910 /*
   1911  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1912  *
   1913  *  Generic IOCTL requests for this interface.  The basic
   1914  *  stuff is handled here for bringing the interface up,
   1915  *  handling multicasts, etc.
   1916  *
   1917  *  Input parameters:
   1918  *	ifp - interface structure
   1919  *	cmd - command code
   1920  *	data - pointer to data
   1921  *
   1922  *  Return value:
   1923  *	return value (0 is success)
   1924  */
   1925 
   1926 static int
   1927 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1928 {
   1929 	struct ifaddr *ifa = (struct ifaddr *) data;
   1930 	struct sbmac_softc *sc = ifp->if_softc;
   1931 
   1932 	switch (cmd) {
   1933 	case SIOCINITIFADDR:
   1934 		ifp->if_flags |= IFF_UP;
   1935 
   1936 		switch (ifa->ifa_addr->sa_family) {
   1937 #ifdef INET
   1938 		case AF_INET:
   1939 			sbmac_init_and_start(sc);
   1940 			arp_ifinit(ifp, ifa);
   1941 			break;
   1942 #endif
   1943 		default:
   1944 			sbmac_init_and_start(sc);
   1945 			break;
   1946 		}
   1947 		break;
   1948 
   1949 	default:
   1950 		return ENOTTY;
   1951 	}
   1952 
   1953 	return 0;
   1954 }
   1955 
   1956 /*
   1957  *  SBMAC_IOCTL(ifp, cmd, data)
   1958  *
   1959  *  Main IOCTL handler - dispatches to other IOCTLs for various
   1960  *  types of requests.
   1961  *
   1962  *  Input parameters:
   1963  *	ifp - interface pointer
   1964  *	cmd - command code
   1965  *	data - pointer to argument data
   1966  *
   1967  *  Return value:
   1968  *	0 if ok
   1969  *	else error code
   1970  */
   1971 
   1972 static int
   1973 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1974 {
   1975 	struct sbmac_softc *sc = ifp->if_softc;
   1976 	struct ifreq *ifr = (struct ifreq *) data;
   1977 	int s, error = 0;
   1978 
   1979 	s = splnet();
   1980 
   1981 	switch (cmd) {
   1982 	case SIOCINITIFADDR:
   1983 		error = sbmac_ether_ioctl(ifp, cmd, data);
   1984 		break;
   1985 	case SIOCSIFMTU:
   1986 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
   1987 			error = EINVAL;
   1988 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   1989 			/* XXX Program new MTU here */
   1990 			error = 0;
   1991 		break;
   1992 	case SIOCSIFFLAGS:
   1993 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1994 			break;
   1995 		if (ifp->if_flags & IFF_UP) {
   1996 			/*
   1997 			 * If only the state of the PROMISC flag changed,
   1998 			 * just tweak the hardware registers.
   1999 			 */
   2000 			if ((ifp->if_flags & IFF_RUNNING) &&
   2001 			    (ifp->if_flags & IFF_PROMISC)) {
   2002 				/* turn on promiscuous mode */
   2003 				sbmac_promiscuous_mode(sc, true);
   2004 			} else if (ifp->if_flags & IFF_RUNNING &&
   2005 			    !(ifp->if_flags & IFF_PROMISC)) {
   2006 			    /* turn off promiscuous mode */
   2007 			    sbmac_promiscuous_mode(sc, false);
   2008 			} else
   2009 			    sbmac_set_channel_state(sc, sbmac_state_on);
   2010 		} else {
   2011 			if (ifp->if_flags & IFF_RUNNING)
   2012 				sbmac_set_channel_state(sc, sbmac_state_off);
   2013 		}
   2014 
   2015 		sc->sbm_if_flags = ifp->if_flags;
   2016 		error = 0;
   2017 		break;
   2018 
   2019 	default:
   2020 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2021 			error = 0;
   2022 			if (ifp->if_flags & IFF_RUNNING)
   2023 				sbmac_setmulti(sc);
   2024 		}
   2025 		break;
   2026 	}
   2027 
   2028 	(void)splx(s);
   2029 
   2030 	return error;
   2031 }
   2032 
   2033 /*
   2034  *  SBMAC_IFMEDIA_UPD(ifp)
   2035  *
   2036  *  Configure an appropriate media type for this interface,
   2037  *  given the data in the interface structure
   2038  *
   2039  *  Input parameters:
   2040  *	ifp - interface
   2041  *
   2042  *  Return value:
   2043  *	0 if ok
   2044  *	else error code
   2045  */
   2046 
   2047 /*
   2048  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2049  *
   2050  *  Report current media status (used by ifconfig, for example)
   2051  *
   2052  *  Input parameters:
   2053  *	ifp - interface structure
   2054  *	ifmr - media request structure
   2055  *
   2056  *  Return value:
   2057  *	nothing
   2058  */
   2059 
   2060 /*
   2061  *  SBMAC_WATCHDOG(ifp)
   2062  *
   2063  *  Called periodically to make sure we're still happy.
   2064  *
   2065  *  Input parameters:
   2066  *	ifp - interface structure
   2067  *
   2068  *  Return value:
   2069  *	nothing
   2070  */
   2071 
   2072 static void
   2073 sbmac_watchdog(struct ifnet *ifp)
   2074 {
   2075 
   2076 	/* XXX do something */
   2077 }
   2078 
   2079 /*
   2080  * One second timer, used to tick MII.
   2081  */
   2082 static void
   2083 sbmac_tick(void *arg)
   2084 {
   2085 	struct sbmac_softc *sc = arg;
   2086 	int s;
   2087 
   2088 	s = splnet();
   2089 	mii_tick(&sc->sc_mii);
   2090 	splx(s);
   2091 
   2092 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2093 }
   2094 
   2095 
   2096 /*
   2097  *  SBMAC_MATCH(parent, match, aux)
   2098  *
   2099  *  Part of the config process - see if this device matches the
   2100  *  info about what we expect to find on the bus.
   2101  *
   2102  *  Input parameters:
   2103  *	parent - parent bus structure
   2104  *	match -
   2105  *	aux - bus-specific args
   2106  *
   2107  *  Return value:
   2108  *	1 if we match
   2109  *	0 if we don't match
   2110  */
   2111 
   2112 static int
   2113 sbmac_match(device_t parent, cfdata_t match, void *aux)
   2114 {
   2115 	struct sbobio_attach_args *sa = aux;
   2116 
   2117 	/*
   2118 	 * Make sure it's a MAC
   2119 	 */
   2120 	if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2121 		return 0;
   2122 
   2123 	/*
   2124 	 * Yup, it is.
   2125 	 */
   2126 
   2127 	return 1;
   2128 }
   2129 
   2130 /*
   2131  *  SBMAC_PARSE_XDIGIT(str)
   2132  *
   2133  *  Parse a hex digit, returning its value
   2134  *
   2135  *  Input parameters:
   2136  *	str - character
   2137  *
   2138  *  Return value:
   2139  *	hex value, or -1 if invalid
   2140  */
   2141 
   2142 static int
   2143 sbmac_parse_xdigit(char str)
   2144 {
   2145 	int digit;
   2146 
   2147 	if ((str >= '0') && (str <= '9'))
   2148 		digit = str - '0';
   2149 	else if ((str >= 'a') && (str <= 'f'))
   2150 		digit = str - 'a' + 10;
   2151 	else if ((str >= 'A') && (str <= 'F'))
   2152 		digit = str - 'A' + 10;
   2153 	else
   2154 		digit = -1;
   2155 
   2156 	return digit;
   2157 }
   2158 
   2159 /*
   2160  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2161  *
   2162  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2163  *  Ethernet address.
   2164  *
   2165  *  Input parameters:
   2166  *	str - string
   2167  *	hwaddr - pointer to hardware address
   2168  *
   2169  *  Return value:
   2170  *	0 if ok, else -1
   2171  */
   2172 
   2173 static int
   2174 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
   2175 {
   2176 	int digit1, digit2;
   2177 	int idx = 6;
   2178 
   2179 	while (*str && (idx > 0)) {
   2180 		digit1 = sbmac_parse_xdigit(*str);
   2181 		if (digit1 < 0)
   2182 			return -1;
   2183 		str++;
   2184 		if (!*str)
   2185 			return -1;
   2186 
   2187 		if ((*str == ':') || (*str == '-')) {
   2188 			digit2 = digit1;
   2189 			digit1 = 0;
   2190 		} else {
   2191 			digit2 = sbmac_parse_xdigit(*str);
   2192 			if (digit2 < 0)
   2193 				return -1;
   2194 			str++;
   2195 		}
   2196 
   2197 		*hwaddr++ = (digit1 << 4) | digit2;
   2198 		idx--;
   2199 
   2200 		if (*str == '-')
   2201 			str++;
   2202 		if (*str == ':')
   2203 			str++;
   2204 	}
   2205 	return 0;
   2206 }
   2207 
   2208 /*
   2209  *  SBMAC_ATTACH(parent, self, aux)
   2210  *
   2211  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2212  *
   2213  *  Input parameters:
   2214  *	parent - parent bus device
   2215  *	self - our softc
   2216  *	aux - attach data
   2217  *
   2218  *  Return value:
   2219  *	nothing
   2220  */
   2221 
   2222 static void
   2223 sbmac_attach(device_t parent, device_t self, void *aux)
   2224 {
   2225 	struct sbmac_softc * const sc = device_private(self);
   2226 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   2227 	struct mii_data * const mii = &sc->sc_mii;
   2228 	struct sbobio_attach_args * const sa = aux;
   2229 	u_char *eaddr;
   2230 	static int unit = 0;	/* XXX */
   2231 	uint64_t ea_reg;
   2232 	int idx;
   2233 
   2234 	sc->sc_dev = self;
   2235 
   2236 	/* Determine controller base address */
   2237 
   2238 	sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset;
   2239 
   2240 	eaddr = sc->sbm_hwaddr;
   2241 
   2242 	/*
   2243 	 * Initialize context (get pointers to registers and stuff), then
   2244 	 * allocate the memory for the descriptor tables.
   2245 	 */
   2246 
   2247 	sbmac_initctx(sc);
   2248 
   2249 	callout_init(&(sc->sc_tick_ch), 0);
   2250 
   2251 	/*
   2252 	 * Read the ethernet address.  The firmware left this programmed
   2253 	 * for us in the ethernet address register for each mac.
   2254 	 */
   2255 
   2256 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2257 	for (idx = 0; idx < 6; idx++) {
   2258 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2259 		ea_reg >>= 8;
   2260 	}
   2261 
   2262 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2263 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2264 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2265 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2266 		eaddr[5] = unit;
   2267 	}
   2268 
   2269 #ifdef SBMAC_ETH0_HWADDR
   2270 	if (unit == 0)
   2271 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2272 #endif
   2273 #ifdef SBMAC_ETH1_HWADDR
   2274 	if (unit == 1)
   2275 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2276 #endif
   2277 #ifdef SBMAC_ETH2_HWADDR
   2278 	if (unit == 2)
   2279 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2280 #endif
   2281 	unit++;
   2282 
   2283 	/*
   2284 	 * Display Ethernet address (this is called during the config process
   2285 	 * so we need to finish off the config message that was being displayed)
   2286 	 */
   2287 	aprint_normal(": Ethernet%s\n",
   2288 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2289 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
   2290 
   2291 
   2292 	/*
   2293 	 * Set up ifnet structure
   2294 	 */
   2295 
   2296 	ifp->if_softc = sc;
   2297 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   2298 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2299 	ifp->if_ioctl = sbmac_ioctl;
   2300 	ifp->if_start = sbmac_start;
   2301 	ifp->if_watchdog = sbmac_watchdog;
   2302 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2303 
   2304 	/*
   2305 	 * Set up ifmedia support.
   2306 	 */
   2307 
   2308 	/*
   2309 	 * Initialize MII/media info.
   2310 	 */
   2311 	mii->mii_ifp	  = ifp;
   2312 	mii->mii_readreg  = sbmac_mii_readreg;
   2313 	mii->mii_writereg = sbmac_mii_writereg;
   2314 	mii->mii_statchg  = sbmac_mii_statchg;
   2315 	sc->sc_ethercom.ec_mii = mii;
   2316 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
   2317 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   2318 	    MII_OFFSET_ANY, 0);
   2319 
   2320 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   2321 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
   2322 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
   2323 	} else
   2324 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   2325 
   2326 	/*
   2327 	 * map/route interrupt
   2328 	 */
   2329 
   2330 	sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET,
   2331 	    sbmac_intr, sc);
   2332 
   2333 	/*
   2334 	 * Call MI attach routines.
   2335 	 */
   2336 	if_attach(ifp);
   2337 	if_deferred_start_init(ifp, NULL);
   2338 	ether_ifattach(ifp, eaddr);
   2339 }
   2340