Home | History | Annotate | Line # | Download | only in arm32
      1 /*	$NetBSD: pmap.h,v 1.177 2023/10/12 11:33:37 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #if defined(_KERNEL_OPT)
     77 #include "opt_arm32_pmap.h"
     78 #include "opt_multiprocessor.h"
     79 #endif
     80 #include <arm/cpufunc.h>
     81 #include <arm/locore.h>
     82 
     83 #include <uvm/uvm_object.h>
     84 
     85 #include <uvm/pmap/pmap_devmap.h>
     86 #include <uvm/pmap/pmap_pvt.h>
     87 #endif
     88 
     89 #ifdef ARM_MMU_EXTENDED
     90 #define	PMAP_HWPAGEWALKER		1
     91 #define	PMAP_TLB_MAX			1
     92 #if PMAP_TLB_MAX > 1
     93 #define	PMAP_TLB_NEED_SHOOTDOWN		1
     94 #endif
     95 #define	PMAP_TLB_FLUSH_ASID_ON_RESET	arm_has_tlbiasid_p
     96 #define	PMAP_TLB_NUM_PIDS		256
     97 
     98 #define	pmap_md_tlb_asid_max()		(PMAP_TLB_NUM_PIDS - 1)
     99 #include <uvm/pmap/tlb.h>
    100 #include <uvm/pmap/pmap_tlb.h>
    101 
    102 /*
    103  * If we have an EXTENDED MMU and the address space is split evenly between
    104  * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
    105  * user and kernel address spaces.
    106  */
    107 #if (KERNEL_BASE & 0x80000000) == 0
    108 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
    109 #endif
    110 #endif  /* ARM_MMU_EXTENDED */
    111 
    112 /*
    113  * a pmap describes a processes' 4GB virtual address space.  this
    114  * virtual address space can be broken up into 4096 1MB regions which
    115  * are described by L1 PTEs in the L1 table.
    116  *
    117  * There is a line drawn at KERNEL_BASE.  Everything below that line
    118  * changes when the VM context is switched.  Everything above that line
    119  * is the same no matter which VM context is running.  This is achieved
    120  * by making the L1 PTEs for those slots above KERNEL_BASE reference
    121  * kernel L2 tables.
    122  *
    123  * The basic layout of the virtual address space thus looks like this:
    124  *
    125  *	0xffffffff
    126  *	.
    127  *	.
    128  *	.
    129  *	KERNEL_BASE
    130  *	--------------------
    131  *	.
    132  *	.
    133  *	.
    134  *	0x00000000
    135  */
    136 
    137 /*
    138  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    139  * A bucket size of 16 provides for 16MB of contiguous virtual address
    140  * space per l2_dtable. Most processes will, therefore, require only two or
    141  * three of these to map their whole working set.
    142  */
    143 #define	L2_BUCKET_XLOG2	(L1_S_SHIFT)
    144 #define	L2_BUCKET_XSIZE	(1 << L2_BUCKET_XLOG2)
    145 #define	L2_BUCKET_LOG2	4
    146 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    147 
    148 /*
    149  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    150  * of l2_dtable structures required to track all possible page descriptors
    151  * mappable by an L1 translation table is given by the following constants:
    152  */
    153 #define	L2_LOG2		(32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
    154 #define	L2_SIZE		(1 << L2_LOG2)
    155 
    156 /*
    157  * tell MI code that the cache is virtually-indexed.
    158  * ARMv6 is physically-tagged but all others are virtually-tagged.
    159  */
    160 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    161 #define	PMAP_CACHE_VIPT
    162 #else
    163 #define	PMAP_CACHE_VIVT
    164 #endif
    165 
    166 #ifndef _LOCORE
    167 
    168 #ifndef ARM_MMU_EXTENDED
    169 struct l1_ttable;
    170 struct l2_dtable;
    171 
    172 /*
    173  * Track cache/tlb occupancy using the following structure
    174  */
    175 union pmap_cache_state {
    176 	struct {
    177 		union {
    178 			uint8_t csu_cache_b[2];
    179 			uint16_t csu_cache;
    180 		} cs_cache_u;
    181 
    182 		union {
    183 			uint8_t csu_tlb_b[2];
    184 			uint16_t csu_tlb;
    185 		} cs_tlb_u;
    186 	} cs_s;
    187 	uint32_t cs_all;
    188 };
    189 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    190 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    191 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    192 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    193 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    194 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    195 
    196 /*
    197  * Assigned to cs_all to force cacheops to work for a particular pmap
    198  */
    199 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    200 #endif /* !ARM_MMU_EXTENDED */
    201 
    202 
    203 #define	DEVMAP_ALIGN(a)	((a) & ~L1_S_OFFSET)
    204 #define	DEVMAP_SIZE(s)	roundup2((s), L1_S_SIZE)
    205 #define	DEVMAP_FLAGS	PMAP_DEV
    206 
    207 /*
    208  * The pmap structure itself
    209  */
    210 struct pmap {
    211 	kmutex_t		pm_lock;
    212 	u_int			pm_refs;
    213 #ifndef ARM_HAS_VBAR
    214 	pd_entry_t		*pm_pl1vec;
    215 	pd_entry_t		pm_l1vec;
    216 #endif
    217 	struct l2_dtable	*pm_l2[L2_SIZE];
    218 	struct pmap_statistics	pm_stats;
    219 	LIST_ENTRY(pmap)	pm_list;
    220 	bool			pm_remove_all;
    221 #ifdef ARM_MMU_EXTENDED
    222 	pd_entry_t		*pm_l1;
    223 	paddr_t			pm_l1_pa;
    224 #ifdef MULTIPROCESSOR
    225 	kcpuset_t		*pm_onproc;
    226 	kcpuset_t		*pm_active;
    227 #if PMAP_TLB_MAX > 1
    228 	u_int			pm_shootdown_pending;
    229 #endif
    230 #endif
    231 	struct pmap_asid_info	pm_pai[PMAP_TLB_MAX];
    232 #else
    233 	struct l1_ttable	*pm_l1;
    234 	union pmap_cache_state	pm_cstate;
    235 	uint8_t			pm_domain;
    236 	bool			pm_activated;
    237 #endif
    238 };
    239 
    240 struct pmap_kernel {
    241 	struct pmap		kernel_pmap;
    242 };
    243 
    244 /*
    245  * Physical / virtual address structure. In a number of places (particularly
    246  * during bootstrapping) we need to keep track of the physical and virtual
    247  * addresses of various pages
    248  */
    249 typedef struct pv_addr {
    250 	SLIST_ENTRY(pv_addr) pv_list;
    251 	paddr_t pv_pa;
    252 	vaddr_t pv_va;
    253 	vsize_t pv_size;
    254 	uint8_t pv_cache;
    255 	uint8_t pv_prot;
    256 } pv_addr_t;
    257 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
    258 
    259 extern pv_addrqh_t pmap_freeq;
    260 extern pv_addr_t kernelstack;
    261 extern pv_addr_t abtstack;
    262 extern pv_addr_t fiqstack;
    263 extern pv_addr_t irqstack;
    264 extern pv_addr_t undstack;
    265 extern pv_addr_t idlestack;
    266 extern pv_addr_t systempage;
    267 extern pv_addr_t kernel_l1pt;
    268 #if defined(EFI_RUNTIME)
    269 extern pv_addr_t efirt_l1pt;
    270 #endif
    271 
    272 #ifdef ARM_MMU_EXTENDED
    273 extern bool arm_has_tlbiasid_p;	/* also in <arm/locore.h> */
    274 #endif
    275 
    276 /*
    277  * Determine various modes for PTEs (user vs. kernel, cacheable
    278  * vs. non-cacheable).
    279  */
    280 #define	PTE_KERNEL	0
    281 #define	PTE_USER	1
    282 #define	PTE_NOCACHE	0
    283 #define	PTE_CACHE	1
    284 #define	PTE_PAGETABLE	2
    285 #define	PTE_DEV		3
    286 
    287 /*
    288  * Flags that indicate attributes of pages or mappings of pages.
    289  *
    290  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    291  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    292  * pv_entry's for each page.  They live in the same "namespace" so
    293  * that we can clear multiple attributes at a time.
    294  *
    295  * Note the "non-cacheable" flag generally means the page has
    296  * multiple mappings in a given address space.
    297  */
    298 #define	PVF_MOD		0x01		/* page is modified */
    299 #define	PVF_REF		0x02		/* page is referenced */
    300 #define	PVF_WIRED	0x04		/* mapping is wired */
    301 #define	PVF_WRITE	0x08		/* mapping is writable */
    302 #define	PVF_EXEC	0x10		/* mapping is executable */
    303 #ifdef PMAP_CACHE_VIVT
    304 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    305 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    306 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    307 #endif
    308 #ifdef PMAP_CACHE_VIPT
    309 #define	PVF_NC		0x20		/* mapping is 'kernel' non-cacheable */
    310 #define	PVF_MULTCLR	0x40		/* mapping is multi-colored */
    311 #endif
    312 #define	PVF_COLORED	0x80		/* page has or had a color */
    313 #define	PVF_KENTRY	0x0100		/* page entered via pmap_kenter_pa */
    314 #define	PVF_KMPAGE	0x0200		/* page is used for kmem */
    315 #define	PVF_DIRTY	0x0400		/* page may have dirty cache lines */
    316 #define	PVF_KMOD	0x0800		/* unmanaged page is modified  */
    317 #define	PVF_KWRITE	(PVF_KENTRY|PVF_WRITE)
    318 #define	PVF_DMOD	(PVF_MOD|PVF_KMOD|PVF_KMPAGE)
    319 
    320 /*
    321  * Commonly referenced structures
    322  */
    323 extern int		arm_poolpage_vmfreelist;
    324 
    325 /*
    326  * Macros that we need to export
    327  */
    328 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    329 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    330 
    331 #define	pmap_is_modified(pg)	\
    332 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    333 #define	pmap_is_referenced(pg)	\
    334 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    335 #define	pmap_is_page_colored_p(md)	\
    336 	(((md)->pvh_attrs & PVF_COLORED) != 0)
    337 
    338 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    339 
    340 #define	pmap_phys_address(ppn)		(arm_ptob((ppn)))
    341 u_int arm32_mmap_flags(paddr_t);
    342 #define	ARM32_MMAP_WRITECOMBINE		0x40000000
    343 #define	ARM32_MMAP_CACHEABLE		0x20000000
    344 #define	ARM_MMAP_WRITECOMBINE		ARM32_MMAP_WRITECOMBINE
    345 #define	ARM_MMAP_CACHEABLE		ARM32_MMAP_CACHEABLE
    346 #define	pmap_mmap_flags(ppn)		arm32_mmap_flags(ppn)
    347 
    348 #define	PMAP_PTE			0x10000000 /* kenter_pa */
    349 #define	PMAP_DEV			0x20000000 /* kenter_pa */
    350 #define	PMAP_DEV_SO			0x40000000 /* kenter_pa */
    351 #define	PMAP_DEV_MASK			(PMAP_DEV | PMAP_DEV_SO)
    352 
    353 /*
    354  * Functions that we need to export
    355  */
    356 void	pmap_procwr(struct proc *, vaddr_t, int);
    357 bool	pmap_remove_all(pmap_t);
    358 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
    359 
    360 #define	PMAP_NEED_PROCWR
    361 #define	PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    362 #define	PMAP_ENABLE_PMAP_KMPAGE	/* enable the PMAP_KMPAGE flag */
    363 
    364 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
    365 #define	PMAP_PREFER(hint, vap, sz, td)	pmap_prefer((hint), (vap), (td))
    366 void	pmap_prefer(vaddr_t, vaddr_t *, int);
    367 #endif
    368 
    369 #ifdef ARM_MMU_EXTENDED
    370 int	pmap_maxproc_set(int);
    371 struct pmap *
    372 	pmap_efirt(void);
    373 #endif
    374 
    375 void	pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
    376 
    377 /* Functions we use internally. */
    378 #ifdef PMAP_STEAL_MEMORY
    379 void	pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
    380 void	pmap_boot_pageadd(pv_addr_t *);
    381 vaddr_t	pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    382 #endif
    383 void	pmap_bootstrap(vaddr_t, vaddr_t);
    384 
    385 struct pmap *
    386 	pmap_efirt(void);
    387 void	pmap_activate_efirt(void);
    388 void	pmap_deactivate_efirt(void);
    389 
    390 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
    391 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    392 int	pmap_prefetchabt_fixup(void *);
    393 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    394 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    395 bool	pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
    396 
    397 void	pmap_postinit(void);
    398 
    399 void	vector_page_setprot(int);
    400 
    401 /* Bootstrapping routines. */
    402 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    403 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    404 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    405 void	pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
    406 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    407 
    408 vsize_t pmap_kenter_range(vaddr_t, paddr_t, vsize_t, vm_prot_t, u_int);
    409 
    410 /*
    411  * Special page zero routine for use by the idle loop (no cache cleans).
    412  */
    413 bool	pmap_pageidlezero(paddr_t);
    414 #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    415 
    416 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    417 /*
    418  * For the pmap, this is a more useful way to map a direct mapped page.
    419  * It returns either the direct-mapped VA or the VA supplied if it can't
    420  * be direct mapped.
    421  */
    422 vaddr_t	pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
    423 #endif
    424 
    425 /*
    426  * used by dumpsys to record the PA of the L1 table
    427  */
    428 uint32_t pmap_kernel_L1_addr(void);
    429 /*
    430  * The current top of kernel VM
    431  */
    432 extern vaddr_t	pmap_curmaxkvaddr;
    433 
    434 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    435 /*
    436  * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
    437  */
    438 extern vaddr_t pmap_directlimit;
    439 #endif
    440 
    441 /*
    442  * Useful macros and constants
    443  */
    444 
    445 /* Virtual address to page table entry */
    446 static inline pt_entry_t *
    447 vtopte(vaddr_t va)
    448 {
    449 	pd_entry_t *pdep;
    450 	pt_entry_t *ptep;
    451 
    452 	KASSERT(trunc_page(va) == va);
    453 
    454 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
    455 		return (NULL);
    456 	return (ptep);
    457 }
    458 
    459 /*
    460  * Virtual address to physical address
    461  */
    462 static inline paddr_t
    463 vtophys(vaddr_t va)
    464 {
    465 	paddr_t pa;
    466 
    467 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
    468 		return (0);	/* XXXSCW: Panic? */
    469 
    470 	return (pa);
    471 }
    472 
    473 /*
    474  * The new pmap ensures that page-tables are always mapping Write-Thru.
    475  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    476  * on every change.
    477  *
    478  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    479  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    480  * and if there is the chance for PTE syncs to be needed, we define
    481  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    482  * the code.
    483  */
    484 extern int pmap_needs_pte_sync;
    485 #if defined(_KERNEL_OPT)
    486 /*
    487  * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
    488  * single MMU type is selected.
    489  *
    490  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    491  * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
    492  * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
    493  *
    494  * Use run time evaluation for all other cases.
    495  *
    496  */
    497 #if (ARM_NMMUS == 1)
    498 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
    499 #define	PMAP_INCLUDE_PTE_SYNC
    500 #define	PMAP_NEEDS_PTE_SYNC	1
    501 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
    502 #define	PMAP_NEEDS_PTE_SYNC	0
    503 #endif
    504 #endif
    505 #endif /* _KERNEL_OPT */
    506 
    507 /*
    508  * Provide a fallback in case we were not able to determine it at
    509  * compile-time.
    510  */
    511 #ifndef PMAP_NEEDS_PTE_SYNC
    512 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    513 #define	PMAP_INCLUDE_PTE_SYNC
    514 #endif
    515 
    516 static inline void
    517 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
    518 {
    519 	if (PMAP_NEEDS_PTE_SYNC) {
    520 		cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
    521 #ifdef SHEEVA_L2_CACHE
    522 		cpu_sdcache_wb_range((vaddr_t)ptep, -1,
    523 		    cnt * sizeof(pt_entry_t));
    524 #endif
    525 	}
    526 	dsb(sy);
    527 }
    528 
    529 #define	PDE_SYNC(pdep)			pmap_ptesync((pdep), 1)
    530 #define	PDE_SYNC_RANGE(pdep, cnt)	pmap_ptesync((pdep), (cnt))
    531 #define	PTE_SYNC(ptep)			pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
    532 #define	PTE_SYNC_RANGE(ptep, cnt)	pmap_ptesync((ptep), (cnt))
    533 
    534 #define	l1pte_valid_p(pde)	((pde) != 0)
    535 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    536 #define	l1pte_supersection_p(pde) (l1pte_section_p(pde)	\
    537 				&& ((pde) & L1_S_V6_SUPER) != 0)
    538 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    539 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    540 #define	l1pte_pa(pde)		((pde) & L1_C_ADDR_MASK)
    541 #define	l1pte_index(v)		((vaddr_t)(v) >> L1_S_SHIFT)
    542 
    543 static inline void
    544 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
    545 {
    546 	*pdep = pde;
    547 }
    548 
    549 static inline void
    550 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
    551 {
    552 	*pdep = pde;
    553 	if (l1pte_page_p(pde)) {
    554 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
    555 		for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
    556 			pde += L2_T_SIZE;
    557 			pdep[k] = pde;
    558 		}
    559 	} else if (l1pte_supersection_p(pde)) {
    560 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
    561 		for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
    562 			pdep[k] = pde;
    563 		}
    564 	}
    565 }
    566 
    567 #define	l2pte_index(v)		((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
    568 #define	l2pte_valid_p(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
    569 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    570 #define	l1pte_lpage_p(pte)	(((pte) & L2_TYPE_MASK) == L2_TYPE_L)
    571 #define	l2pte_minidata_p(pte)	(((pte) & \
    572 				 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
    573 				 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
    574 
    575 static inline void
    576 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
    577 {
    578 	if (l1pte_lpage_p(pte)) {
    579 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    580 		for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
    581 			*ptep++ = pte;
    582 		}
    583 	} else {
    584 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    585 		for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
    586 			KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
    587 			*ptep++ = pte;
    588 			pte += L2_S_SIZE;
    589 			if (opte)
    590 				opte += L2_S_SIZE;
    591 		}
    592 	}
    593 }
    594 
    595 static inline void
    596 l2pte_reset(pt_entry_t *ptep)
    597 {
    598 	KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
    599 	*ptep = 0;
    600 	for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
    601 		ptep[k] = 0;
    602 	}
    603 }
    604 
    605 /* L1 and L2 page table macros */
    606 #define	pmap_pde_v(pde)		l1pte_valid(*(pde))
    607 #define	pmap_pde_section(pde)	l1pte_section_p(*(pde))
    608 #define	pmap_pde_supersection(pde)	l1pte_supersection_p(*(pde))
    609 #define	pmap_pde_page(pde)	l1pte_page_p(*(pde))
    610 #define	pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    611 
    612 #define	pmap_pte_v(pte)		l2pte_valid_p(*(pte))
    613 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    614 
    615 static inline uint32_t
    616 pte_value(pt_entry_t pte)
    617 {
    618 	return pte;
    619 }
    620 
    621 static inline bool
    622 pte_valid_p(pt_entry_t pte)
    623 {
    624 
    625 	return l2pte_valid_p(pte);
    626 }
    627 
    628 
    629 /* Size of the kernel part of the L1 page table */
    630 #define	KERNEL_PD_SIZE	\
    631 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    632 
    633 void	bzero_page(vaddr_t);
    634 void	bcopy_page(vaddr_t, vaddr_t);
    635 
    636 #ifdef FPU_VFP
    637 void	bzero_page_vfp(vaddr_t);
    638 void	bcopy_page_vfp(vaddr_t, vaddr_t);
    639 #endif
    640 
    641 /************************* ARM MMU configuration *****************************/
    642 
    643 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
    644 void	pmap_copy_page_generic(paddr_t, paddr_t);
    645 void	pmap_zero_page_generic(paddr_t);
    646 
    647 void	pmap_pte_init_generic(void);
    648 #if defined(CPU_ARM8)
    649 void	pmap_pte_init_arm8(void);
    650 #endif
    651 #if defined(CPU_ARM9)
    652 void	pmap_pte_init_arm9(void);
    653 #endif /* CPU_ARM9 */
    654 #if defined(CPU_ARM10)
    655 void	pmap_pte_init_arm10(void);
    656 #endif /* CPU_ARM10 */
    657 #if defined(CPU_ARM11)	/* ARM_MMU_V6 */
    658 void	pmap_pte_init_arm11(void);
    659 #endif /* CPU_ARM11 */
    660 #if defined(CPU_ARM11MPCORE)	/* ARM_MMU_V6 */
    661 void	pmap_pte_init_arm11mpcore(void);
    662 #endif
    663 #if ARM_MMU_V6 == 1
    664 void	pmap_pte_init_armv6(void);
    665 #endif /* ARM_MMU_V6 */
    666 #if ARM_MMU_V7 == 1
    667 void	pmap_pte_init_armv7(void);
    668 #endif /* ARM_MMU_V7 */
    669 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    670 
    671 #if ARM_MMU_SA1 == 1
    672 void	pmap_pte_init_sa1(void);
    673 #endif /* ARM_MMU_SA1 == 1 */
    674 
    675 #if ARM_MMU_XSCALE == 1
    676 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    677 void	pmap_zero_page_xscale(paddr_t);
    678 
    679 void	pmap_pte_init_xscale(void);
    680 
    681 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    682 
    683 #define	PMAP_UAREA(va)		pmap_uarea(va)
    684 void	pmap_uarea(vaddr_t);
    685 #endif /* ARM_MMU_XSCALE == 1 */
    686 
    687 extern pt_entry_t		pte_l1_s_nocache_mode;
    688 extern pt_entry_t		pte_l2_l_nocache_mode;
    689 extern pt_entry_t		pte_l2_s_nocache_mode;
    690 
    691 extern pt_entry_t		pte_l1_s_cache_mode;
    692 extern pt_entry_t		pte_l2_l_cache_mode;
    693 extern pt_entry_t		pte_l2_s_cache_mode;
    694 
    695 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    696 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    697 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    698 
    699 extern pt_entry_t		pte_l1_s_wc_mode;
    700 extern pt_entry_t		pte_l2_l_wc_mode;
    701 extern pt_entry_t		pte_l2_s_wc_mode;
    702 
    703 extern pt_entry_t		pte_l1_s_cache_mask;
    704 extern pt_entry_t		pte_l2_l_cache_mask;
    705 extern pt_entry_t		pte_l2_s_cache_mask;
    706 
    707 extern pt_entry_t		pte_l1_s_prot_u;
    708 extern pt_entry_t		pte_l1_s_prot_w;
    709 extern pt_entry_t		pte_l1_s_prot_ro;
    710 extern pt_entry_t		pte_l1_s_prot_mask;
    711 
    712 extern pt_entry_t		pte_l2_s_prot_u;
    713 extern pt_entry_t		pte_l2_s_prot_w;
    714 extern pt_entry_t		pte_l2_s_prot_ro;
    715 extern pt_entry_t		pte_l2_s_prot_mask;
    716 
    717 extern pt_entry_t		pte_l2_l_prot_u;
    718 extern pt_entry_t		pte_l2_l_prot_w;
    719 extern pt_entry_t		pte_l2_l_prot_ro;
    720 extern pt_entry_t		pte_l2_l_prot_mask;
    721 
    722 extern pt_entry_t		pte_l1_ss_proto;
    723 extern pt_entry_t		pte_l1_s_proto;
    724 extern pt_entry_t		pte_l1_c_proto;
    725 extern pt_entry_t		pte_l2_s_proto;
    726 
    727 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    728 extern void (*pmap_zero_page_func)(paddr_t);
    729 
    730 /*
    731  * Global varaiables in cpufunc_asm_xscale.S supporting the Xscale
    732  * cache clean/purge functions.
    733  */
    734 extern vaddr_t xscale_minidata_clean_addr;
    735 extern vsize_t xscale_minidata_clean_size;
    736 extern vaddr_t xscale_cache_clean_addr;
    737 extern vsize_t xscale_cache_clean_size;
    738 
    739 #endif /* !_LOCORE */
    740 
    741 /*****************************************************************************/
    742 
    743 #define	KERNEL_PID		0	/* The kernel uses ASID 0 */
    744 
    745 /*
    746  * Definitions for MMU domains
    747  */
    748 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
    749 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel pmap uses domain #0 */
    750 
    751 #ifdef ARM_MMU_EXTENDED
    752 #define	PMAP_DOMAIN_USER	1	/* User pmaps use domain #1 */
    753 #define	DOMAIN_DEFAULT		((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
    754 #else
    755 #define	DOMAIN_DEFAULT		((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
    756 #endif
    757 
    758 /*
    759  * These macros define the various bit masks in the PTE.
    760  *
    761  * We use these macros since we use different bits on different processor
    762  * models.
    763  */
    764 #define	L1_S_PROT_U_generic	(L1_S_AP(AP_U))
    765 #define	L1_S_PROT_W_generic	(L1_S_AP(AP_W))
    766 #define	L1_S_PROT_RO_generic	(0)
    767 #define	L1_S_PROT_MASK_generic	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    768 
    769 #define	L1_S_PROT_U_xscale	(L1_S_AP(AP_U))
    770 #define	L1_S_PROT_W_xscale	(L1_S_AP(AP_W))
    771 #define	L1_S_PROT_RO_xscale	(0)
    772 #define	L1_S_PROT_MASK_xscale	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    773 
    774 #define	L1_S_PROT_U_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    775 #define	L1_S_PROT_W_armv6	(L1_S_AP(AP_W))
    776 #define	L1_S_PROT_RO_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    777 #define	L1_S_PROT_MASK_armv6	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    778 
    779 #define	L1_S_PROT_U_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
    780 #define	L1_S_PROT_W_armv7	(L1_S_AP(AP_W))
    781 #define	L1_S_PROT_RO_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
    782 #define	L1_S_PROT_MASK_armv7	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
    783 
    784 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    785 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
    786 #define	L1_S_CACHE_MASK_armv6	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
    787 #define	L1_S_CACHE_MASK_armv6n	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    788 #define	L1_S_CACHE_MASK_armv7	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
    789 
    790 #define	L2_L_PROT_U_generic	(L2_AP(AP_U))
    791 #define	L2_L_PROT_W_generic	(L2_AP(AP_W))
    792 #define	L2_L_PROT_RO_generic	(0)
    793 #define	L2_L_PROT_MASK_generic	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    794 
    795 #define	L2_L_PROT_U_xscale	(L2_AP(AP_U))
    796 #define	L2_L_PROT_W_xscale	(L2_AP(AP_W))
    797 #define	L2_L_PROT_RO_xscale	(0)
    798 #define	L2_L_PROT_MASK_xscale	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    799 
    800 #define	L2_L_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    801 #define	L2_L_PROT_W_armv6n	(L2_AP0(AP_W))
    802 #define	L2_L_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    803 #define	L2_L_PROT_MASK_armv6n	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    804 
    805 #define	L2_L_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    806 #define	L2_L_PROT_W_armv7	(L2_AP0(AP_W))
    807 #define	L2_L_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    808 #define	L2_L_PROT_MASK_armv7	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
    809 
    810 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    811 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
    812 #define	L2_L_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
    813 #define	L2_L_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    814 #define	L2_L_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    815 
    816 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    817 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    818 #define	L2_S_PROT_RO_generic	(0)
    819 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    820 
    821 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    822 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    823 #define	L2_S_PROT_RO_xscale	(0)
    824 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    825 
    826 #define	L2_S_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
    827 #define	L2_S_PROT_W_armv6n	(L2_AP0(AP_W))
    828 #define	L2_S_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    829 #define	L2_S_PROT_MASK_armv6n	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    830 
    831 #define	L2_S_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
    832 #define	L2_S_PROT_W_armv7	(L2_AP0(AP_W))
    833 #define	L2_S_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
    834 #define	L2_S_PROT_MASK_armv7	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
    835 
    836 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    837 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
    838 #define	L2_XS_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
    839 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    840 #define	L2_S_CACHE_MASK_armv6c	L2_XS_CACHE_MASK_armv6
    841 #else
    842 #define	L2_S_CACHE_MASK_armv6c	L2_S_CACHE_MASK_generic
    843 #endif
    844 #define	L2_S_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    845 #define	L2_S_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
    846 
    847 
    848 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    849 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    850 #define	L1_S_PROTO_armv6	(L1_TYPE_S)
    851 #define	L1_S_PROTO_armv7	(L1_TYPE_S)
    852 
    853 #define	L1_SS_PROTO_generic	0
    854 #define	L1_SS_PROTO_xscale	0
    855 #define	L1_SS_PROTO_armv6	(L1_TYPE_S | L1_S_V6_SS)
    856 #define	L1_SS_PROTO_armv7	(L1_TYPE_S | L1_S_V6_SS)
    857 
    858 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    859 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    860 #define	L1_C_PROTO_armv6	(L1_TYPE_C)
    861 #define	L1_C_PROTO_armv7	(L1_TYPE_C)
    862 
    863 #define	L2_L_PROTO		(L2_TYPE_L)
    864 
    865 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    866 #define	L2_S_PROTO_xscale	(L2_TYPE_XS)
    867 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
    868 #define	L2_S_PROTO_armv6c	(L2_TYPE_XS)    /* XP=0, extended small page */
    869 #else
    870 #define	L2_S_PROTO_armv6c	(L2_TYPE_S)	/* XP=0, subpage APs */
    871 #endif
    872 #ifdef ARM_MMU_EXTENDED
    873 #define	L2_S_PROTO_armv6n	(L2_TYPE_S|L2_XS_XN)
    874 #else
    875 #define	L2_S_PROTO_armv6n	(L2_TYPE_S)	/* with XP=1 */
    876 #endif
    877 #ifdef ARM_MMU_EXTENDED
    878 #define	L2_S_PROTO_armv7	(L2_TYPE_S|L2_XS_XN)
    879 #else
    880 #define	L2_S_PROTO_armv7	(L2_TYPE_S)
    881 #endif
    882 
    883 /*
    884  * User-visible names for the ones that vary with MMU class.
    885  */
    886 
    887 #if ARM_NMMUS > 1
    888 /* More than one MMU class configured; use variables. */
    889 #define	L1_S_PROT_U		pte_l1_s_prot_u
    890 #define	L1_S_PROT_W		pte_l1_s_prot_w
    891 #define	L1_S_PROT_RO		pte_l1_s_prot_ro
    892 #define	L1_S_PROT_MASK		pte_l1_s_prot_mask
    893 
    894 #define	L2_S_PROT_U		pte_l2_s_prot_u
    895 #define	L2_S_PROT_W		pte_l2_s_prot_w
    896 #define	L2_S_PROT_RO		pte_l2_s_prot_ro
    897 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    898 
    899 #define	L2_L_PROT_U		pte_l2_l_prot_u
    900 #define	L2_L_PROT_W		pte_l2_l_prot_w
    901 #define	L2_L_PROT_RO		pte_l2_l_prot_ro
    902 #define	L2_L_PROT_MASK		pte_l2_l_prot_mask
    903 
    904 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    905 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    906 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    907 
    908 #define	L1_SS_PROTO		pte_l1_ss_proto
    909 #define	L1_S_PROTO		pte_l1_s_proto
    910 #define	L1_C_PROTO		pte_l1_c_proto
    911 #define	L2_S_PROTO		pte_l2_s_proto
    912 
    913 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    914 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    915 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    916 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    917 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    918 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    919 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    920 
    921 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    922 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    923 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    924 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    925 
    926 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    927 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    928 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    929 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    930 
    931 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    932 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    933 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    934 
    935 #define	L1_SS_PROTO		L1_SS_PROTO_generic
    936 #define	L1_S_PROTO		L1_S_PROTO_generic
    937 #define	L1_C_PROTO		L1_C_PROTO_generic
    938 #define	L2_S_PROTO		L2_S_PROTO_generic
    939 
    940 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    941 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    942 #elif ARM_MMU_V6N != 0
    943 #define	L1_S_PROT_U		L1_S_PROT_U_armv6
    944 #define	L1_S_PROT_W		L1_S_PROT_W_armv6
    945 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv6
    946 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv6
    947 
    948 #define	L2_S_PROT_U		L2_S_PROT_U_armv6n
    949 #define	L2_S_PROT_W		L2_S_PROT_W_armv6n
    950 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv6n
    951 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv6n
    952 
    953 #define	L2_L_PROT_U		L2_L_PROT_U_armv6n
    954 #define	L2_L_PROT_W		L2_L_PROT_W_armv6n
    955 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv6n
    956 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv6n
    957 
    958 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv6n
    959 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv6n
    960 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv6n
    961 
    962 /*
    963  * These prototypes make writeable mappings, while the other MMU types
    964  * make read-only mappings.
    965  */
    966 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
    967 #define	L1_S_PROTO		L1_S_PROTO_armv6
    968 #define	L1_C_PROTO		L1_C_PROTO_armv6
    969 #define	L2_S_PROTO		L2_S_PROTO_armv6n
    970 
    971 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    972 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    973 #elif ARM_MMU_V6C != 0
    974 #define	L1_S_PROT_U		L1_S_PROT_U_generic
    975 #define	L1_S_PROT_W		L1_S_PROT_W_generic
    976 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
    977 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
    978 
    979 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    980 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    981 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
    982 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    983 
    984 #define	L2_L_PROT_U		L2_L_PROT_U_generic
    985 #define	L2_L_PROT_W		L2_L_PROT_W_generic
    986 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
    987 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
    988 
    989 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    990 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    991 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    992 
    993 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
    994 #define	L1_S_PROTO		L1_S_PROTO_generic
    995 #define	L1_C_PROTO		L1_C_PROTO_generic
    996 #define	L2_S_PROTO		L2_S_PROTO_generic
    997 
    998 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    999 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
   1000 #elif ARM_MMU_XSCALE == 1
   1001 #define	L1_S_PROT_U		L1_S_PROT_U_generic
   1002 #define	L1_S_PROT_W		L1_S_PROT_W_generic
   1003 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
   1004 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
   1005 
   1006 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
   1007 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
   1008 #define	L2_S_PROT_RO		L2_S_PROT_RO_xscale
   1009 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
   1010 
   1011 #define	L2_L_PROT_U		L2_L_PROT_U_generic
   1012 #define	L2_L_PROT_W		L2_L_PROT_W_generic
   1013 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
   1014 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
   1015 
   1016 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
   1017 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
   1018 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
   1019 
   1020 #define	L1_SS_PROTO		L1_SS_PROTO_xscale
   1021 #define	L1_S_PROTO		L1_S_PROTO_xscale
   1022 #define	L1_C_PROTO		L1_C_PROTO_xscale
   1023 #define	L2_S_PROTO		L2_S_PROTO_xscale
   1024 
   1025 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
   1026 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
   1027 #elif ARM_MMU_V7 == 1
   1028 #define	L1_S_PROT_U		L1_S_PROT_U_armv7
   1029 #define	L1_S_PROT_W		L1_S_PROT_W_armv7
   1030 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv7
   1031 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv7
   1032 
   1033 #define	L2_S_PROT_U		L2_S_PROT_U_armv7
   1034 #define	L2_S_PROT_W		L2_S_PROT_W_armv7
   1035 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv7
   1036 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv7
   1037 
   1038 #define	L2_L_PROT_U		L2_L_PROT_U_armv7
   1039 #define	L2_L_PROT_W		L2_L_PROT_W_armv7
   1040 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv7
   1041 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv7
   1042 
   1043 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv7
   1044 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv7
   1045 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv7
   1046 
   1047 /*
   1048  * These prototypes make writeable mappings, while the other MMU types
   1049  * make read-only mappings.
   1050  */
   1051 #define	L1_SS_PROTO		L1_SS_PROTO_armv7
   1052 #define	L1_S_PROTO		L1_S_PROTO_armv7
   1053 #define	L1_C_PROTO		L1_C_PROTO_armv7
   1054 #define	L2_S_PROTO		L2_S_PROTO_armv7
   1055 
   1056 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
   1057 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
   1058 #endif /* ARM_NMMUS > 1 */
   1059 
   1060 /*
   1061  * Macros to set and query the write permission on page descriptors.
   1062  */
   1063 #define	l1pte_set_writable(pte)	(((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
   1064 #define	l1pte_set_readonly(pte)	(((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
   1065 
   1066 #define	l2pte_set_writable(pte)	(((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
   1067 #define	l2pte_set_readonly(pte)	(((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
   1068 
   1069 #define	l2pte_writable_p(pte)	(((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
   1070 				 (L2_S_PROT_RO == 0 || \
   1071 				  ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
   1072 
   1073 /*
   1074  * These macros return various bits based on kernel/user and protection.
   1075  * Note that the compiler will usually fold these at compile time.
   1076  */
   1077 
   1078 #define	L1_S_PROT(ku, pr)	(					   \
   1079 	(((ku) == PTE_USER) ? 						   \
   1080 	    L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)	   \
   1081 	: 								   \
   1082 	    (((L1_S_PROT_RO && 						   \
   1083 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
   1084 		    L1_S_PROT_RO : L1_S_PROT_W)))			   \
   1085     )
   1086 
   1087 #define	L2_L_PROT(ku, pr)	(					   \
   1088 	(((ku) == PTE_USER) ?						   \
   1089 	    L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)	   \
   1090 	:								   \
   1091 	    (((L2_L_PROT_RO && 						   \
   1092 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
   1093 		    L2_L_PROT_RO : L2_L_PROT_W)))			   \
   1094     )
   1095 
   1096 #define	L2_S_PROT(ku, pr)	(					   \
   1097 	(((ku) == PTE_USER) ?						   \
   1098 	    L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)	   \
   1099 	:								   \
   1100 	    (((L2_S_PROT_RO &&						   \
   1101 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
   1102 		    L2_S_PROT_RO : L2_S_PROT_W)))			   \
   1103     )
   1104 
   1105 /*
   1106  * Macros to test if a mapping is mappable with an L1 SuperSection,
   1107  * L1 Section, or an L2 Large Page mapping.
   1108  */
   1109 #define	L1_SS_MAPPABLE_P(va, pa, size)					\
   1110 	((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
   1111 
   1112 #define	L1_S_MAPPABLE_P(va, pa, size)					\
   1113 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
   1114 
   1115 #define	L2_L_MAPPABLE_P(va, pa, size)					\
   1116 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
   1117 
   1118 #define	PMAP_MAPSIZE1	L2_L_SIZE
   1119 #define	PMAP_MAPSIZE2	L1_S_SIZE
   1120 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   1121 #define	PMAP_MAPSIZE3	L1_SS_SIZE
   1122 #endif
   1123 
   1124 #ifndef _LOCORE
   1125 /*
   1126  * Hooks for the pool allocator.
   1127  */
   1128 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
   1129 extern paddr_t physical_start, physical_end;
   1130 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1131 struct vm_page *arm_pmap_alloc_poolpage(int);
   1132 #define	PMAP_ALLOC_POOLPAGE	arm_pmap_alloc_poolpage
   1133 #endif
   1134 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   1135 vaddr_t	pmap_map_poolpage(paddr_t);
   1136 paddr_t	pmap_unmap_poolpage(vaddr_t);
   1137 #define	PMAP_MAP_POOLPAGE(pa)	pmap_map_poolpage(pa)
   1138 #define	PMAP_UNMAP_POOLPAGE(va)	pmap_unmap_poolpage(va)
   1139 #endif
   1140 
   1141 #define	__HAVE_PMAP_PV_TRACK	1
   1142 
   1143 void pmap_pv_protect(paddr_t, vm_prot_t);
   1144 
   1145 struct pmap_page {
   1146 	SLIST_HEAD(,pv_entry) pvh_list;		/* pv_entry list */
   1147 	int pvh_attrs;				/* page attributes */
   1148 	u_int uro_mappings;
   1149 	u_int urw_mappings;
   1150 	union {
   1151 		u_short s_mappings[2];	/* Assume kernel count <= 65535 */
   1152 		u_int i_mappings;
   1153 	} k_u;
   1154 };
   1155 
   1156 /*
   1157  * pmap-specific data store in the vm_page structure.
   1158  */
   1159 #define	__HAVE_VM_PAGE_MD
   1160 struct vm_page_md {
   1161 	struct pmap_page pp;
   1162 #define	pvh_list	pp.pvh_list
   1163 #define	pvh_attrs	pp.pvh_attrs
   1164 #define	uro_mappings	pp.uro_mappings
   1165 #define	urw_mappings	pp.urw_mappings
   1166 #define	kro_mappings	pp.k_u.s_mappings[0]
   1167 #define	krw_mappings	pp.k_u.s_mappings[1]
   1168 #define	k_mappings	pp.k_u.i_mappings
   1169 };
   1170 
   1171 #define	PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
   1172 
   1173 /*
   1174  * Set the default color of each page.
   1175  */
   1176 #if ARM_MMU_V6 > 0
   1177 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
   1178 	(pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask
   1179 #else
   1180 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
   1181 	(pg)->mdpage.pvh_attrs = 0
   1182 #endif
   1183 
   1184 #define	VM_MDPAGE_INIT(pg)						\
   1185 do {									\
   1186 	SLIST_INIT(&(pg)->mdpage.pvh_list);				\
   1187 	VM_MDPAGE_PVH_ATTRS_INIT(pg);					\
   1188 	(pg)->mdpage.uro_mappings = 0;					\
   1189 	(pg)->mdpage.urw_mappings = 0;					\
   1190 	(pg)->mdpage.k_mappings = 0;					\
   1191 } while (/*CONSTCOND*/0)
   1192 
   1193 #ifndef	__BSD_PTENTRY_T__
   1194 #define	__BSD_PTENTRY_T__
   1195 typedef uint32_t pt_entry_t;
   1196 #define	PRIxPTE		PRIx32
   1197 #endif
   1198 
   1199 #endif /* !_LOCORE */
   1200 
   1201 #endif /* _KERNEL */
   1202 
   1203 #endif	/* _ARM32_PMAP_H_ */
   1204