1 /* $NetBSD: pmap.h,v 1.177 2023/10/12 11:33:37 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1994,1995 Mark Brinicombe. 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by Mark Brinicombe 53 * 4. The name of the author may not be used to endorse or promote products 54 * derived from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 #ifndef _ARM32_PMAP_H_ 69 #define _ARM32_PMAP_H_ 70 71 #ifdef _KERNEL 72 73 #include <arm/cpuconf.h> 74 #include <arm/arm32/pte.h> 75 #ifndef _LOCORE 76 #if defined(_KERNEL_OPT) 77 #include "opt_arm32_pmap.h" 78 #include "opt_multiprocessor.h" 79 #endif 80 #include <arm/cpufunc.h> 81 #include <arm/locore.h> 82 83 #include <uvm/uvm_object.h> 84 85 #include <uvm/pmap/pmap_devmap.h> 86 #include <uvm/pmap/pmap_pvt.h> 87 #endif 88 89 #ifdef ARM_MMU_EXTENDED 90 #define PMAP_HWPAGEWALKER 1 91 #define PMAP_TLB_MAX 1 92 #if PMAP_TLB_MAX > 1 93 #define PMAP_TLB_NEED_SHOOTDOWN 1 94 #endif 95 #define PMAP_TLB_FLUSH_ASID_ON_RESET arm_has_tlbiasid_p 96 #define PMAP_TLB_NUM_PIDS 256 97 98 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1) 99 #include <uvm/pmap/tlb.h> 100 #include <uvm/pmap/pmap_tlb.h> 101 102 /* 103 * If we have an EXTENDED MMU and the address space is split evenly between 104 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for 105 * user and kernel address spaces. 106 */ 107 #if (KERNEL_BASE & 0x80000000) == 0 108 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000 109 #endif 110 #endif /* ARM_MMU_EXTENDED */ 111 112 /* 113 * a pmap describes a processes' 4GB virtual address space. this 114 * virtual address space can be broken up into 4096 1MB regions which 115 * are described by L1 PTEs in the L1 table. 116 * 117 * There is a line drawn at KERNEL_BASE. Everything below that line 118 * changes when the VM context is switched. Everything above that line 119 * is the same no matter which VM context is running. This is achieved 120 * by making the L1 PTEs for those slots above KERNEL_BASE reference 121 * kernel L2 tables. 122 * 123 * The basic layout of the virtual address space thus looks like this: 124 * 125 * 0xffffffff 126 * . 127 * . 128 * . 129 * KERNEL_BASE 130 * -------------------- 131 * . 132 * . 133 * . 134 * 0x00000000 135 */ 136 137 /* 138 * The number of L2 descriptor tables which can be tracked by an l2_dtable. 139 * A bucket size of 16 provides for 16MB of contiguous virtual address 140 * space per l2_dtable. Most processes will, therefore, require only two or 141 * three of these to map their whole working set. 142 */ 143 #define L2_BUCKET_XLOG2 (L1_S_SHIFT) 144 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2) 145 #define L2_BUCKET_LOG2 4 146 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 147 148 /* 149 * Given the above "L2-descriptors-per-l2_dtable" constant, the number 150 * of l2_dtable structures required to track all possible page descriptors 151 * mappable by an L1 translation table is given by the following constants: 152 */ 153 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2)) 154 #define L2_SIZE (1 << L2_LOG2) 155 156 /* 157 * tell MI code that the cache is virtually-indexed. 158 * ARMv6 is physically-tagged but all others are virtually-tagged. 159 */ 160 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 161 #define PMAP_CACHE_VIPT 162 #else 163 #define PMAP_CACHE_VIVT 164 #endif 165 166 #ifndef _LOCORE 167 168 #ifndef ARM_MMU_EXTENDED 169 struct l1_ttable; 170 struct l2_dtable; 171 172 /* 173 * Track cache/tlb occupancy using the following structure 174 */ 175 union pmap_cache_state { 176 struct { 177 union { 178 uint8_t csu_cache_b[2]; 179 uint16_t csu_cache; 180 } cs_cache_u; 181 182 union { 183 uint8_t csu_tlb_b[2]; 184 uint16_t csu_tlb; 185 } cs_tlb_u; 186 } cs_s; 187 uint32_t cs_all; 188 }; 189 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] 190 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] 191 #define cs_cache cs_s.cs_cache_u.csu_cache 192 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] 193 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] 194 #define cs_tlb cs_s.cs_tlb_u.csu_tlb 195 196 /* 197 * Assigned to cs_all to force cacheops to work for a particular pmap 198 */ 199 #define PMAP_CACHE_STATE_ALL 0xffffffffu 200 #endif /* !ARM_MMU_EXTENDED */ 201 202 203 #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET) 204 #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE) 205 #define DEVMAP_FLAGS PMAP_DEV 206 207 /* 208 * The pmap structure itself 209 */ 210 struct pmap { 211 kmutex_t pm_lock; 212 u_int pm_refs; 213 #ifndef ARM_HAS_VBAR 214 pd_entry_t *pm_pl1vec; 215 pd_entry_t pm_l1vec; 216 #endif 217 struct l2_dtable *pm_l2[L2_SIZE]; 218 struct pmap_statistics pm_stats; 219 LIST_ENTRY(pmap) pm_list; 220 bool pm_remove_all; 221 #ifdef ARM_MMU_EXTENDED 222 pd_entry_t *pm_l1; 223 paddr_t pm_l1_pa; 224 #ifdef MULTIPROCESSOR 225 kcpuset_t *pm_onproc; 226 kcpuset_t *pm_active; 227 #if PMAP_TLB_MAX > 1 228 u_int pm_shootdown_pending; 229 #endif 230 #endif 231 struct pmap_asid_info pm_pai[PMAP_TLB_MAX]; 232 #else 233 struct l1_ttable *pm_l1; 234 union pmap_cache_state pm_cstate; 235 uint8_t pm_domain; 236 bool pm_activated; 237 #endif 238 }; 239 240 struct pmap_kernel { 241 struct pmap kernel_pmap; 242 }; 243 244 /* 245 * Physical / virtual address structure. In a number of places (particularly 246 * during bootstrapping) we need to keep track of the physical and virtual 247 * addresses of various pages 248 */ 249 typedef struct pv_addr { 250 SLIST_ENTRY(pv_addr) pv_list; 251 paddr_t pv_pa; 252 vaddr_t pv_va; 253 vsize_t pv_size; 254 uint8_t pv_cache; 255 uint8_t pv_prot; 256 } pv_addr_t; 257 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t; 258 259 extern pv_addrqh_t pmap_freeq; 260 extern pv_addr_t kernelstack; 261 extern pv_addr_t abtstack; 262 extern pv_addr_t fiqstack; 263 extern pv_addr_t irqstack; 264 extern pv_addr_t undstack; 265 extern pv_addr_t idlestack; 266 extern pv_addr_t systempage; 267 extern pv_addr_t kernel_l1pt; 268 #if defined(EFI_RUNTIME) 269 extern pv_addr_t efirt_l1pt; 270 #endif 271 272 #ifdef ARM_MMU_EXTENDED 273 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */ 274 #endif 275 276 /* 277 * Determine various modes for PTEs (user vs. kernel, cacheable 278 * vs. non-cacheable). 279 */ 280 #define PTE_KERNEL 0 281 #define PTE_USER 1 282 #define PTE_NOCACHE 0 283 #define PTE_CACHE 1 284 #define PTE_PAGETABLE 2 285 #define PTE_DEV 3 286 287 /* 288 * Flags that indicate attributes of pages or mappings of pages. 289 * 290 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 291 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 292 * pv_entry's for each page. They live in the same "namespace" so 293 * that we can clear multiple attributes at a time. 294 * 295 * Note the "non-cacheable" flag generally means the page has 296 * multiple mappings in a given address space. 297 */ 298 #define PVF_MOD 0x01 /* page is modified */ 299 #define PVF_REF 0x02 /* page is referenced */ 300 #define PVF_WIRED 0x04 /* mapping is wired */ 301 #define PVF_WRITE 0x08 /* mapping is writable */ 302 #define PVF_EXEC 0x10 /* mapping is executable */ 303 #ifdef PMAP_CACHE_VIVT 304 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ 305 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ 306 #define PVF_NC (PVF_UNC|PVF_KNC) 307 #endif 308 #ifdef PMAP_CACHE_VIPT 309 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */ 310 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */ 311 #endif 312 #define PVF_COLORED 0x80 /* page has or had a color */ 313 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */ 314 #define PVF_KMPAGE 0x0200 /* page is used for kmem */ 315 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */ 316 #define PVF_KMOD 0x0800 /* unmanaged page is modified */ 317 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE) 318 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE) 319 320 /* 321 * Commonly referenced structures 322 */ 323 extern int arm_poolpage_vmfreelist; 324 325 /* 326 * Macros that we need to export 327 */ 328 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 329 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 330 331 #define pmap_is_modified(pg) \ 332 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) 333 #define pmap_is_referenced(pg) \ 334 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) 335 #define pmap_is_page_colored_p(md) \ 336 (((md)->pvh_attrs & PVF_COLORED) != 0) 337 338 #define pmap_copy(dp, sp, da, l, sa) /* nothing */ 339 340 #define pmap_phys_address(ppn) (arm_ptob((ppn))) 341 u_int arm32_mmap_flags(paddr_t); 342 #define ARM32_MMAP_WRITECOMBINE 0x40000000 343 #define ARM32_MMAP_CACHEABLE 0x20000000 344 #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE 345 #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE 346 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn) 347 348 #define PMAP_PTE 0x10000000 /* kenter_pa */ 349 #define PMAP_DEV 0x20000000 /* kenter_pa */ 350 #define PMAP_DEV_SO 0x40000000 /* kenter_pa */ 351 #define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO) 352 353 /* 354 * Functions that we need to export 355 */ 356 void pmap_procwr(struct proc *, vaddr_t, int); 357 bool pmap_remove_all(pmap_t); 358 bool pmap_extract(pmap_t, vaddr_t, paddr_t *); 359 360 #define PMAP_NEED_PROCWR 361 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 362 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */ 363 364 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 365 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td)) 366 void pmap_prefer(vaddr_t, vaddr_t *, int); 367 #endif 368 369 #ifdef ARM_MMU_EXTENDED 370 int pmap_maxproc_set(int); 371 struct pmap * 372 pmap_efirt(void); 373 #endif 374 375 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t); 376 377 /* Functions we use internally. */ 378 #ifdef PMAP_STEAL_MEMORY 379 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *); 380 void pmap_boot_pageadd(pv_addr_t *); 381 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *); 382 #endif 383 void pmap_bootstrap(vaddr_t, vaddr_t); 384 385 struct pmap * 386 pmap_efirt(void); 387 void pmap_activate_efirt(void); 388 void pmap_deactivate_efirt(void); 389 390 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int); 391 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); 392 int pmap_prefetchabt_fixup(void *); 393 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); 394 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); 395 bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *); 396 397 void pmap_postinit(void); 398 399 void vector_page_setprot(int); 400 401 /* Bootstrapping routines. */ 402 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); 403 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); 404 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); 405 void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t); 406 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); 407 408 vsize_t pmap_kenter_range(vaddr_t, paddr_t, vsize_t, vm_prot_t, u_int); 409 410 /* 411 * Special page zero routine for use by the idle loop (no cache cleans). 412 */ 413 bool pmap_pageidlezero(paddr_t); 414 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 415 416 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 417 /* 418 * For the pmap, this is a more useful way to map a direct mapped page. 419 * It returns either the direct-mapped VA or the VA supplied if it can't 420 * be direct mapped. 421 */ 422 vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t); 423 #endif 424 425 /* 426 * used by dumpsys to record the PA of the L1 table 427 */ 428 uint32_t pmap_kernel_L1_addr(void); 429 /* 430 * The current top of kernel VM 431 */ 432 extern vaddr_t pmap_curmaxkvaddr; 433 434 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 435 /* 436 * Ending VA of direct mapped memory (usually KERNEL_VM_BASE). 437 */ 438 extern vaddr_t pmap_directlimit; 439 #endif 440 441 /* 442 * Useful macros and constants 443 */ 444 445 /* Virtual address to page table entry */ 446 static inline pt_entry_t * 447 vtopte(vaddr_t va) 448 { 449 pd_entry_t *pdep; 450 pt_entry_t *ptep; 451 452 KASSERT(trunc_page(va) == va); 453 454 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false) 455 return (NULL); 456 return (ptep); 457 } 458 459 /* 460 * Virtual address to physical address 461 */ 462 static inline paddr_t 463 vtophys(vaddr_t va) 464 { 465 paddr_t pa; 466 467 if (pmap_extract(pmap_kernel(), va, &pa) == false) 468 return (0); /* XXXSCW: Panic? */ 469 470 return (pa); 471 } 472 473 /* 474 * The new pmap ensures that page-tables are always mapping Write-Thru. 475 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 476 * on every change. 477 * 478 * Unfortunately, not all CPUs have a write-through cache mode. So we 479 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 480 * and if there is the chance for PTE syncs to be needed, we define 481 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 482 * the code. 483 */ 484 extern int pmap_needs_pte_sync; 485 #if defined(_KERNEL_OPT) 486 /* 487 * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a 488 * single MMU type is selected. 489 * 490 * StrongARM SA-1 caches do not have a write-through mode. So, on these, 491 * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs. 492 * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs. 493 * 494 * Use run time evaluation for all other cases. 495 * 496 */ 497 #if (ARM_NMMUS == 1) 498 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) 499 #define PMAP_INCLUDE_PTE_SYNC 500 #define PMAP_NEEDS_PTE_SYNC 1 501 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0) 502 #define PMAP_NEEDS_PTE_SYNC 0 503 #endif 504 #endif 505 #endif /* _KERNEL_OPT */ 506 507 /* 508 * Provide a fallback in case we were not able to determine it at 509 * compile-time. 510 */ 511 #ifndef PMAP_NEEDS_PTE_SYNC 512 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 513 #define PMAP_INCLUDE_PTE_SYNC 514 #endif 515 516 static inline void 517 pmap_ptesync(pt_entry_t *ptep, size_t cnt) 518 { 519 if (PMAP_NEEDS_PTE_SYNC) { 520 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t)); 521 #ifdef SHEEVA_L2_CACHE 522 cpu_sdcache_wb_range((vaddr_t)ptep, -1, 523 cnt * sizeof(pt_entry_t)); 524 #endif 525 } 526 dsb(sy); 527 } 528 529 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1) 530 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt)) 531 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE) 532 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt)) 533 534 #define l1pte_valid_p(pde) ((pde) != 0) 535 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 536 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \ 537 && ((pde) & L1_S_V6_SUPER) != 0) 538 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 539 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 540 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK) 541 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT) 542 543 static inline void 544 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde) 545 { 546 *pdep = pde; 547 } 548 549 static inline void 550 l1pte_set(pt_entry_t *pdep, pt_entry_t pde) 551 { 552 *pdep = pde; 553 if (l1pte_page_p(pde)) { 554 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep); 555 for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) { 556 pde += L2_T_SIZE; 557 pdep[k] = pde; 558 } 559 } else if (l1pte_supersection_p(pde)) { 560 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep); 561 for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) { 562 pdep[k] = pde; 563 } 564 } 565 } 566 567 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT)) 568 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV) 569 #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 570 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L) 571 #define l2pte_minidata_p(pte) (((pte) & \ 572 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\ 573 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X))) 574 575 static inline void 576 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte) 577 { 578 if (l1pte_lpage_p(pte)) { 579 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 580 for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) { 581 *ptep++ = pte; 582 } 583 } else { 584 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 585 for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) { 586 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte); 587 *ptep++ = pte; 588 pte += L2_S_SIZE; 589 if (opte) 590 opte += L2_S_SIZE; 591 } 592 } 593 } 594 595 static inline void 596 l2pte_reset(pt_entry_t *ptep) 597 { 598 KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 599 *ptep = 0; 600 for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) { 601 ptep[k] = 0; 602 } 603 } 604 605 /* L1 and L2 page table macros */ 606 #define pmap_pde_v(pde) l1pte_valid(*(pde)) 607 #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 608 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde)) 609 #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 610 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 611 612 #define pmap_pte_v(pte) l2pte_valid_p(*(pte)) 613 #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 614 615 static inline uint32_t 616 pte_value(pt_entry_t pte) 617 { 618 return pte; 619 } 620 621 static inline bool 622 pte_valid_p(pt_entry_t pte) 623 { 624 625 return l2pte_valid_p(pte); 626 } 627 628 629 /* Size of the kernel part of the L1 page table */ 630 #define KERNEL_PD_SIZE \ 631 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) 632 633 void bzero_page(vaddr_t); 634 void bcopy_page(vaddr_t, vaddr_t); 635 636 #ifdef FPU_VFP 637 void bzero_page_vfp(vaddr_t); 638 void bcopy_page_vfp(vaddr_t, vaddr_t); 639 #endif 640 641 /************************* ARM MMU configuration *****************************/ 642 643 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 644 void pmap_copy_page_generic(paddr_t, paddr_t); 645 void pmap_zero_page_generic(paddr_t); 646 647 void pmap_pte_init_generic(void); 648 #if defined(CPU_ARM8) 649 void pmap_pte_init_arm8(void); 650 #endif 651 #if defined(CPU_ARM9) 652 void pmap_pte_init_arm9(void); 653 #endif /* CPU_ARM9 */ 654 #if defined(CPU_ARM10) 655 void pmap_pte_init_arm10(void); 656 #endif /* CPU_ARM10 */ 657 #if defined(CPU_ARM11) /* ARM_MMU_V6 */ 658 void pmap_pte_init_arm11(void); 659 #endif /* CPU_ARM11 */ 660 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */ 661 void pmap_pte_init_arm11mpcore(void); 662 #endif 663 #if ARM_MMU_V6 == 1 664 void pmap_pte_init_armv6(void); 665 #endif /* ARM_MMU_V6 */ 666 #if ARM_MMU_V7 == 1 667 void pmap_pte_init_armv7(void); 668 #endif /* ARM_MMU_V7 */ 669 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 670 671 #if ARM_MMU_SA1 == 1 672 void pmap_pte_init_sa1(void); 673 #endif /* ARM_MMU_SA1 == 1 */ 674 675 #if ARM_MMU_XSCALE == 1 676 void pmap_copy_page_xscale(paddr_t, paddr_t); 677 void pmap_zero_page_xscale(paddr_t); 678 679 void pmap_pte_init_xscale(void); 680 681 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); 682 683 #define PMAP_UAREA(va) pmap_uarea(va) 684 void pmap_uarea(vaddr_t); 685 #endif /* ARM_MMU_XSCALE == 1 */ 686 687 extern pt_entry_t pte_l1_s_nocache_mode; 688 extern pt_entry_t pte_l2_l_nocache_mode; 689 extern pt_entry_t pte_l2_s_nocache_mode; 690 691 extern pt_entry_t pte_l1_s_cache_mode; 692 extern pt_entry_t pte_l2_l_cache_mode; 693 extern pt_entry_t pte_l2_s_cache_mode; 694 695 extern pt_entry_t pte_l1_s_cache_mode_pt; 696 extern pt_entry_t pte_l2_l_cache_mode_pt; 697 extern pt_entry_t pte_l2_s_cache_mode_pt; 698 699 extern pt_entry_t pte_l1_s_wc_mode; 700 extern pt_entry_t pte_l2_l_wc_mode; 701 extern pt_entry_t pte_l2_s_wc_mode; 702 703 extern pt_entry_t pte_l1_s_cache_mask; 704 extern pt_entry_t pte_l2_l_cache_mask; 705 extern pt_entry_t pte_l2_s_cache_mask; 706 707 extern pt_entry_t pte_l1_s_prot_u; 708 extern pt_entry_t pte_l1_s_prot_w; 709 extern pt_entry_t pte_l1_s_prot_ro; 710 extern pt_entry_t pte_l1_s_prot_mask; 711 712 extern pt_entry_t pte_l2_s_prot_u; 713 extern pt_entry_t pte_l2_s_prot_w; 714 extern pt_entry_t pte_l2_s_prot_ro; 715 extern pt_entry_t pte_l2_s_prot_mask; 716 717 extern pt_entry_t pte_l2_l_prot_u; 718 extern pt_entry_t pte_l2_l_prot_w; 719 extern pt_entry_t pte_l2_l_prot_ro; 720 extern pt_entry_t pte_l2_l_prot_mask; 721 722 extern pt_entry_t pte_l1_ss_proto; 723 extern pt_entry_t pte_l1_s_proto; 724 extern pt_entry_t pte_l1_c_proto; 725 extern pt_entry_t pte_l2_s_proto; 726 727 extern void (*pmap_copy_page_func)(paddr_t, paddr_t); 728 extern void (*pmap_zero_page_func)(paddr_t); 729 730 /* 731 * Global varaiables in cpufunc_asm_xscale.S supporting the Xscale 732 * cache clean/purge functions. 733 */ 734 extern vaddr_t xscale_minidata_clean_addr; 735 extern vsize_t xscale_minidata_clean_size; 736 extern vaddr_t xscale_cache_clean_addr; 737 extern vsize_t xscale_cache_clean_size; 738 739 #endif /* !_LOCORE */ 740 741 /*****************************************************************************/ 742 743 #define KERNEL_PID 0 /* The kernel uses ASID 0 */ 744 745 /* 746 * Definitions for MMU domains 747 */ 748 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */ 749 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */ 750 751 #ifdef ARM_MMU_EXTENDED 752 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */ 753 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2))) 754 #else 755 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))) 756 #endif 757 758 /* 759 * These macros define the various bit masks in the PTE. 760 * 761 * We use these macros since we use different bits on different processor 762 * models. 763 */ 764 #define L1_S_PROT_U_generic (L1_S_AP(AP_U)) 765 #define L1_S_PROT_W_generic (L1_S_AP(AP_W)) 766 #define L1_S_PROT_RO_generic (0) 767 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 768 769 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U)) 770 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W)) 771 #define L1_S_PROT_RO_xscale (0) 772 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 773 774 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 775 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W)) 776 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 777 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 778 779 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 780 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W)) 781 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 782 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 783 784 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 785 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X)) 786 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)) 787 #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) 788 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) 789 790 #define L2_L_PROT_U_generic (L2_AP(AP_U)) 791 #define L2_L_PROT_W_generic (L2_AP(AP_W)) 792 #define L2_L_PROT_RO_generic (0) 793 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 794 795 #define L2_L_PROT_U_xscale (L2_AP(AP_U)) 796 #define L2_L_PROT_W_xscale (L2_AP(AP_W)) 797 #define L2_L_PROT_RO_xscale (0) 798 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 799 800 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) 801 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W)) 802 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) 803 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 804 805 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 806 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W)) 807 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 808 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 809 810 #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 811 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X)) 812 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)) 813 #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) 814 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) 815 816 #define L2_S_PROT_U_generic (L2_AP(AP_U)) 817 #define L2_S_PROT_W_generic (L2_AP(AP_W)) 818 #define L2_S_PROT_RO_generic (0) 819 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 820 821 #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 822 #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 823 #define L2_S_PROT_RO_xscale (0) 824 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 825 826 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) 827 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W)) 828 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) 829 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 830 831 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 832 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W)) 833 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 834 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 835 836 #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 837 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X)) 838 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)) 839 #ifdef ARMV6_EXTENDED_SMALL_PAGE 840 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6 841 #else 842 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic 843 #endif 844 #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) 845 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) 846 847 848 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 849 #define L1_S_PROTO_xscale (L1_TYPE_S) 850 #define L1_S_PROTO_armv6 (L1_TYPE_S) 851 #define L1_S_PROTO_armv7 (L1_TYPE_S) 852 853 #define L1_SS_PROTO_generic 0 854 #define L1_SS_PROTO_xscale 0 855 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS) 856 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS) 857 858 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 859 #define L1_C_PROTO_xscale (L1_TYPE_C) 860 #define L1_C_PROTO_armv6 (L1_TYPE_C) 861 #define L1_C_PROTO_armv7 (L1_TYPE_C) 862 863 #define L2_L_PROTO (L2_TYPE_L) 864 865 #define L2_S_PROTO_generic (L2_TYPE_S) 866 #define L2_S_PROTO_xscale (L2_TYPE_XS) 867 #ifdef ARMV6_EXTENDED_SMALL_PAGE 868 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */ 869 #else 870 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */ 871 #endif 872 #ifdef ARM_MMU_EXTENDED 873 #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN) 874 #else 875 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */ 876 #endif 877 #ifdef ARM_MMU_EXTENDED 878 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN) 879 #else 880 #define L2_S_PROTO_armv7 (L2_TYPE_S) 881 #endif 882 883 /* 884 * User-visible names for the ones that vary with MMU class. 885 */ 886 887 #if ARM_NMMUS > 1 888 /* More than one MMU class configured; use variables. */ 889 #define L1_S_PROT_U pte_l1_s_prot_u 890 #define L1_S_PROT_W pte_l1_s_prot_w 891 #define L1_S_PROT_RO pte_l1_s_prot_ro 892 #define L1_S_PROT_MASK pte_l1_s_prot_mask 893 894 #define L2_S_PROT_U pte_l2_s_prot_u 895 #define L2_S_PROT_W pte_l2_s_prot_w 896 #define L2_S_PROT_RO pte_l2_s_prot_ro 897 #define L2_S_PROT_MASK pte_l2_s_prot_mask 898 899 #define L2_L_PROT_U pte_l2_l_prot_u 900 #define L2_L_PROT_W pte_l2_l_prot_w 901 #define L2_L_PROT_RO pte_l2_l_prot_ro 902 #define L2_L_PROT_MASK pte_l2_l_prot_mask 903 904 #define L1_S_CACHE_MASK pte_l1_s_cache_mask 905 #define L2_L_CACHE_MASK pte_l2_l_cache_mask 906 #define L2_S_CACHE_MASK pte_l2_s_cache_mask 907 908 #define L1_SS_PROTO pte_l1_ss_proto 909 #define L1_S_PROTO pte_l1_s_proto 910 #define L1_C_PROTO pte_l1_c_proto 911 #define L2_S_PROTO pte_l2_s_proto 912 913 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) 914 #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) 915 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 916 #define L1_S_PROT_U L1_S_PROT_U_generic 917 #define L1_S_PROT_W L1_S_PROT_W_generic 918 #define L1_S_PROT_RO L1_S_PROT_RO_generic 919 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 920 921 #define L2_S_PROT_U L2_S_PROT_U_generic 922 #define L2_S_PROT_W L2_S_PROT_W_generic 923 #define L2_S_PROT_RO L2_S_PROT_RO_generic 924 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 925 926 #define L2_L_PROT_U L2_L_PROT_U_generic 927 #define L2_L_PROT_W L2_L_PROT_W_generic 928 #define L2_L_PROT_RO L2_L_PROT_RO_generic 929 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 930 931 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 932 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 933 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 934 935 #define L1_SS_PROTO L1_SS_PROTO_generic 936 #define L1_S_PROTO L1_S_PROTO_generic 937 #define L1_C_PROTO L1_C_PROTO_generic 938 #define L2_S_PROTO L2_S_PROTO_generic 939 940 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 941 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 942 #elif ARM_MMU_V6N != 0 943 #define L1_S_PROT_U L1_S_PROT_U_armv6 944 #define L1_S_PROT_W L1_S_PROT_W_armv6 945 #define L1_S_PROT_RO L1_S_PROT_RO_armv6 946 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6 947 948 #define L2_S_PROT_U L2_S_PROT_U_armv6n 949 #define L2_S_PROT_W L2_S_PROT_W_armv6n 950 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n 951 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n 952 953 #define L2_L_PROT_U L2_L_PROT_U_armv6n 954 #define L2_L_PROT_W L2_L_PROT_W_armv6n 955 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n 956 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n 957 958 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n 959 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n 960 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n 961 962 /* 963 * These prototypes make writeable mappings, while the other MMU types 964 * make read-only mappings. 965 */ 966 #define L1_SS_PROTO L1_SS_PROTO_armv6 967 #define L1_S_PROTO L1_S_PROTO_armv6 968 #define L1_C_PROTO L1_C_PROTO_armv6 969 #define L2_S_PROTO L2_S_PROTO_armv6n 970 971 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 972 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 973 #elif ARM_MMU_V6C != 0 974 #define L1_S_PROT_U L1_S_PROT_U_generic 975 #define L1_S_PROT_W L1_S_PROT_W_generic 976 #define L1_S_PROT_RO L1_S_PROT_RO_generic 977 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 978 979 #define L2_S_PROT_U L2_S_PROT_U_generic 980 #define L2_S_PROT_W L2_S_PROT_W_generic 981 #define L2_S_PROT_RO L2_S_PROT_RO_generic 982 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 983 984 #define L2_L_PROT_U L2_L_PROT_U_generic 985 #define L2_L_PROT_W L2_L_PROT_W_generic 986 #define L2_L_PROT_RO L2_L_PROT_RO_generic 987 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 988 989 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 990 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 991 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 992 993 #define L1_SS_PROTO L1_SS_PROTO_armv6 994 #define L1_S_PROTO L1_S_PROTO_generic 995 #define L1_C_PROTO L1_C_PROTO_generic 996 #define L2_S_PROTO L2_S_PROTO_generic 997 998 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 999 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 1000 #elif ARM_MMU_XSCALE == 1 1001 #define L1_S_PROT_U L1_S_PROT_U_generic 1002 #define L1_S_PROT_W L1_S_PROT_W_generic 1003 #define L1_S_PROT_RO L1_S_PROT_RO_generic 1004 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 1005 1006 #define L2_S_PROT_U L2_S_PROT_U_xscale 1007 #define L2_S_PROT_W L2_S_PROT_W_xscale 1008 #define L2_S_PROT_RO L2_S_PROT_RO_xscale 1009 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 1010 1011 #define L2_L_PROT_U L2_L_PROT_U_generic 1012 #define L2_L_PROT_W L2_L_PROT_W_generic 1013 #define L2_L_PROT_RO L2_L_PROT_RO_generic 1014 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 1015 1016 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 1017 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 1018 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 1019 1020 #define L1_SS_PROTO L1_SS_PROTO_xscale 1021 #define L1_S_PROTO L1_S_PROTO_xscale 1022 #define L1_C_PROTO L1_C_PROTO_xscale 1023 #define L2_S_PROTO L2_S_PROTO_xscale 1024 1025 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) 1026 #define pmap_zero_page(d) pmap_zero_page_xscale((d)) 1027 #elif ARM_MMU_V7 == 1 1028 #define L1_S_PROT_U L1_S_PROT_U_armv7 1029 #define L1_S_PROT_W L1_S_PROT_W_armv7 1030 #define L1_S_PROT_RO L1_S_PROT_RO_armv7 1031 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7 1032 1033 #define L2_S_PROT_U L2_S_PROT_U_armv7 1034 #define L2_S_PROT_W L2_S_PROT_W_armv7 1035 #define L2_S_PROT_RO L2_S_PROT_RO_armv7 1036 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7 1037 1038 #define L2_L_PROT_U L2_L_PROT_U_armv7 1039 #define L2_L_PROT_W L2_L_PROT_W_armv7 1040 #define L2_L_PROT_RO L2_L_PROT_RO_armv7 1041 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7 1042 1043 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7 1044 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7 1045 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7 1046 1047 /* 1048 * These prototypes make writeable mappings, while the other MMU types 1049 * make read-only mappings. 1050 */ 1051 #define L1_SS_PROTO L1_SS_PROTO_armv7 1052 #define L1_S_PROTO L1_S_PROTO_armv7 1053 #define L1_C_PROTO L1_C_PROTO_armv7 1054 #define L2_S_PROTO L2_S_PROTO_armv7 1055 1056 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 1057 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 1058 #endif /* ARM_NMMUS > 1 */ 1059 1060 /* 1061 * Macros to set and query the write permission on page descriptors. 1062 */ 1063 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W) 1064 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO) 1065 1066 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W) 1067 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO) 1068 1069 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \ 1070 (L2_S_PROT_RO == 0 || \ 1071 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO)) 1072 1073 /* 1074 * These macros return various bits based on kernel/user and protection. 1075 * Note that the compiler will usually fold these at compile time. 1076 */ 1077 1078 #define L1_S_PROT(ku, pr) ( \ 1079 (((ku) == PTE_USER) ? \ 1080 L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \ 1081 : \ 1082 (((L1_S_PROT_RO && \ 1083 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1084 L1_S_PROT_RO : L1_S_PROT_W))) \ 1085 ) 1086 1087 #define L2_L_PROT(ku, pr) ( \ 1088 (((ku) == PTE_USER) ? \ 1089 L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \ 1090 : \ 1091 (((L2_L_PROT_RO && \ 1092 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1093 L2_L_PROT_RO : L2_L_PROT_W))) \ 1094 ) 1095 1096 #define L2_S_PROT(ku, pr) ( \ 1097 (((ku) == PTE_USER) ? \ 1098 L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \ 1099 : \ 1100 (((L2_S_PROT_RO && \ 1101 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1102 L2_S_PROT_RO : L2_S_PROT_W))) \ 1103 ) 1104 1105 /* 1106 * Macros to test if a mapping is mappable with an L1 SuperSection, 1107 * L1 Section, or an L2 Large Page mapping. 1108 */ 1109 #define L1_SS_MAPPABLE_P(va, pa, size) \ 1110 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE) 1111 1112 #define L1_S_MAPPABLE_P(va, pa, size) \ 1113 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 1114 1115 #define L2_L_MAPPABLE_P(va, pa, size) \ 1116 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 1117 1118 #define PMAP_MAPSIZE1 L2_L_SIZE 1119 #define PMAP_MAPSIZE2 L1_S_SIZE 1120 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 1121 #define PMAP_MAPSIZE3 L1_SS_SIZE 1122 #endif 1123 1124 #ifndef _LOCORE 1125 /* 1126 * Hooks for the pool allocator. 1127 */ 1128 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 1129 extern paddr_t physical_start, physical_end; 1130 #ifdef PMAP_NEED_ALLOC_POOLPAGE 1131 struct vm_page *arm_pmap_alloc_poolpage(int); 1132 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage 1133 #endif 1134 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 1135 vaddr_t pmap_map_poolpage(paddr_t); 1136 paddr_t pmap_unmap_poolpage(vaddr_t); 1137 #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa) 1138 #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va) 1139 #endif 1140 1141 #define __HAVE_PMAP_PV_TRACK 1 1142 1143 void pmap_pv_protect(paddr_t, vm_prot_t); 1144 1145 struct pmap_page { 1146 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */ 1147 int pvh_attrs; /* page attributes */ 1148 u_int uro_mappings; 1149 u_int urw_mappings; 1150 union { 1151 u_short s_mappings[2]; /* Assume kernel count <= 65535 */ 1152 u_int i_mappings; 1153 } k_u; 1154 }; 1155 1156 /* 1157 * pmap-specific data store in the vm_page structure. 1158 */ 1159 #define __HAVE_VM_PAGE_MD 1160 struct vm_page_md { 1161 struct pmap_page pp; 1162 #define pvh_list pp.pvh_list 1163 #define pvh_attrs pp.pvh_attrs 1164 #define uro_mappings pp.uro_mappings 1165 #define urw_mappings pp.urw_mappings 1166 #define kro_mappings pp.k_u.s_mappings[0] 1167 #define krw_mappings pp.k_u.s_mappings[1] 1168 #define k_mappings pp.k_u.i_mappings 1169 }; 1170 1171 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp) 1172 1173 /* 1174 * Set the default color of each page. 1175 */ 1176 #if ARM_MMU_V6 > 0 1177 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 1178 (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask 1179 #else 1180 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 1181 (pg)->mdpage.pvh_attrs = 0 1182 #endif 1183 1184 #define VM_MDPAGE_INIT(pg) \ 1185 do { \ 1186 SLIST_INIT(&(pg)->mdpage.pvh_list); \ 1187 VM_MDPAGE_PVH_ATTRS_INIT(pg); \ 1188 (pg)->mdpage.uro_mappings = 0; \ 1189 (pg)->mdpage.urw_mappings = 0; \ 1190 (pg)->mdpage.k_mappings = 0; \ 1191 } while (/*CONSTCOND*/0) 1192 1193 #ifndef __BSD_PTENTRY_T__ 1194 #define __BSD_PTENTRY_T__ 1195 typedef uint32_t pt_entry_t; 1196 #define PRIxPTE PRIx32 1197 #endif 1198 1199 #endif /* !_LOCORE */ 1200 1201 #endif /* _KERNEL */ 1202 1203 #endif /* _ARM32_PMAP_H_ */ 1204