pmap.h revision 1.15
11.15Sbouyer/* $NetBSD: pmap.h,v 1.15 2007/11/22 16:16:45 bouyer Exp $ */ 21.1Sfvdl 31.1Sfvdl/* 41.1Sfvdl * 51.1Sfvdl * Copyright (c) 1997 Charles D. Cranor and Washington University. 61.1Sfvdl * All rights reserved. 71.1Sfvdl * 81.1Sfvdl * Redistribution and use in source and binary forms, with or without 91.1Sfvdl * modification, are permitted provided that the following conditions 101.1Sfvdl * are met: 111.1Sfvdl * 1. Redistributions of source code must retain the above copyright 121.1Sfvdl * notice, this list of conditions and the following disclaimer. 131.1Sfvdl * 2. Redistributions in binary form must reproduce the above copyright 141.1Sfvdl * notice, this list of conditions and the following disclaimer in the 151.1Sfvdl * documentation and/or other materials provided with the distribution. 161.1Sfvdl * 3. All advertising materials mentioning features or use of this software 171.1Sfvdl * must display the following acknowledgment: 181.1Sfvdl * This product includes software developed by Charles D. Cranor and 191.1Sfvdl * Washington University. 201.1Sfvdl * 4. The name of the author may not be used to endorse or promote products 211.1Sfvdl * derived from this software without specific prior written permission. 221.1Sfvdl * 231.1Sfvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 241.1Sfvdl * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 251.1Sfvdl * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 261.1Sfvdl * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 271.1Sfvdl * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 281.1Sfvdl * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 291.1Sfvdl * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 301.1Sfvdl * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 311.1Sfvdl * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 321.1Sfvdl * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 331.1Sfvdl */ 341.1Sfvdl 351.1Sfvdl/* 361.1Sfvdl * Copyright (c) 2001 Wasabi Systems, Inc. 371.1Sfvdl * All rights reserved. 381.1Sfvdl * 391.1Sfvdl * Written by Frank van der Linden for Wasabi Systems, Inc. 401.1Sfvdl * 411.1Sfvdl * Redistribution and use in source and binary forms, with or without 421.1Sfvdl * modification, are permitted provided that the following conditions 431.1Sfvdl * are met: 441.1Sfvdl * 1. Redistributions of source code must retain the above copyright 451.1Sfvdl * notice, this list of conditions and the following disclaimer. 461.1Sfvdl * 2. Redistributions in binary form must reproduce the above copyright 471.1Sfvdl * notice, this list of conditions and the following disclaimer in the 481.1Sfvdl * documentation and/or other materials provided with the distribution. 491.1Sfvdl * 3. All advertising materials mentioning features or use of this software 501.1Sfvdl * must display the following acknowledgement: 511.1Sfvdl * This product includes software developed for the NetBSD Project by 521.1Sfvdl * Wasabi Systems, Inc. 531.1Sfvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse 541.1Sfvdl * or promote products derived from this software without specific prior 551.1Sfvdl * written permission. 561.1Sfvdl * 571.1Sfvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 581.1Sfvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 591.1Sfvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 601.1Sfvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 611.1Sfvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 621.1Sfvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 631.1Sfvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 641.1Sfvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 651.1Sfvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 661.1Sfvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 671.1Sfvdl * POSSIBILITY OF SUCH DAMAGE. 681.1Sfvdl */ 691.1Sfvdl 701.1Sfvdl#ifndef _AMD64_PMAP_H_ 711.1Sfvdl#define _AMD64_PMAP_H_ 721.1Sfvdl 731.15Sbouyer#if defined(_KERNEL_OPT) 741.15Sbouyer#include "opt_xen.h" 751.15Sbouyer#endif 761.15Sbouyer 771.1Sfvdl#include <machine/pte.h> 781.1Sfvdl#include <machine/segments.h> 791.11Sad#include <machine/atomic.h> 801.12Sad#ifdef _KERNEL 811.12Sad#include <machine/cpufunc.h> 821.12Sad#endif 831.11Sad 841.1Sfvdl#include <uvm/uvm_object.h> 851.15Sbouyer#ifdef XEN 861.15Sbouyer#include <xen/xenfunc.h> 871.15Sbouyer#include <xen/xenpmap.h> 881.15Sbouyer#endif /* XEN */ 891.1Sfvdl 901.1Sfvdl/* 911.1Sfvdl * The x86_64 pmap module closely resembles the i386 one. It uses 921.1Sfvdl * the same recursive entry scheme, and the same alternate area 931.1Sfvdl * trick for accessing non-current pmaps. See the i386 pmap.h 941.1Sfvdl * for a description. The obvious difference is that 3 extra 951.1Sfvdl * levels of page table need to be dealt with. The level 1 page 961.1Sfvdl * table pages are at: 971.1Sfvdl * 981.1Sfvdl * l1: 0x00007f8000000000 - 0x00007fffffffffff (39 bits, needs PML4 entry) 991.1Sfvdl * 1001.1Sfvdl * The alternate space is at: 1011.1Sfvdl * 1021.1Sfvdl * l1: 0xffffff8000000000 - 0xffffffffffffffff (39 bits, needs PML4 entry) 1031.1Sfvdl * 1041.1Sfvdl * The rest is kept as physical pages in 3 UVM objects, and is 1051.1Sfvdl * temporarily mapped for virtual access when needed. 1061.1Sfvdl * 1071.1Sfvdl * Note that address space is signed, so the layout for 48 bits is: 1081.1Sfvdl * 1091.1Sfvdl * +---------------------------------+ 0xffffffffffffffff 1101.1Sfvdl * | | 1111.1Sfvdl * | alt.L1 table (PTE pages) | 1121.1Sfvdl * | | 1131.1Sfvdl * +---------------------------------+ 0xffffff8000000000 1141.1Sfvdl * ~ ~ 1151.1Sfvdl * | | 1161.1Sfvdl * | Kernel Space | 1171.1Sfvdl * | | 1181.1Sfvdl * | | 1191.4Syamt * +---------------------------------+ 0xffff800000000000 = 0x0000800000000000 1201.1Sfvdl * | | 1211.1Sfvdl * | alt.L1 table (PTE pages) | 1221.1Sfvdl * | | 1231.1Sfvdl * +---------------------------------+ 0x00007f8000000000 1241.1Sfvdl * ~ ~ 1251.1Sfvdl * | | 1261.1Sfvdl * | User Space | 1271.1Sfvdl * | | 1281.1Sfvdl * | | 1291.1Sfvdl * +---------------------------------+ 0x0000000000000000 1301.1Sfvdl * 1311.4Syamt * In other words, there is a 'VA hole' at 0x0000800000000000 - 1321.1Sfvdl * 0xffff800000000000 which will trap, just as on, for example, 1331.1Sfvdl * sparcv9. 1341.1Sfvdl * 1351.1Sfvdl * The unused space can be used if needed, but it adds a little more 1361.1Sfvdl * complexity to the calculations. 1371.1Sfvdl */ 1381.1Sfvdl 1391.1Sfvdl/* 1401.1Sfvdl * The first generation of Hammer processors can use 48 bits of 1411.1Sfvdl * virtual memory, and 40 bits of physical memory. This will be 1421.1Sfvdl * more for later generations. These defines can be changed to 1431.1Sfvdl * variable names containing the # of bits, extracted from an 1441.1Sfvdl * extended cpuid instruction (variables are harder to use during 1451.1Sfvdl * bootstrap, though) 1461.1Sfvdl */ 1471.1Sfvdl#define VIRT_BITS 48 1481.1Sfvdl#define PHYS_BITS 40 1491.1Sfvdl 1501.1Sfvdl/* 1511.1Sfvdl * Mask to get rid of the sign-extended part of addresses. 1521.1Sfvdl */ 1531.1Sfvdl#define VA_SIGN_MASK 0xffff000000000000 1541.1Sfvdl#define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK) 1551.1Sfvdl/* 1561.1Sfvdl * XXXfvdl this one's not right. 1571.1Sfvdl */ 1581.1Sfvdl#define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK) 1591.1Sfvdl 1601.1Sfvdl#define L4_SLOT_PTE 255 1611.15Sbouyer#ifndef XEN 1621.1Sfvdl#define L4_SLOT_KERN 256 1631.15Sbouyer#else 1641.15Sbouyer/* Xen use slots 256-272, let's move farther */ 1651.15Sbouyer#define L4_SLOT_KERN 320 1661.15Sbouyer#endif 1671.1Sfvdl#define L4_SLOT_KERNBASE 511 1681.1Sfvdl#define L4_SLOT_APTE 510 1691.1Sfvdl 1701.1Sfvdl#define PDIR_SLOT_KERN L4_SLOT_KERN 1711.1Sfvdl#define PDIR_SLOT_PTE L4_SLOT_PTE 1721.1Sfvdl#define PDIR_SLOT_APTE L4_SLOT_APTE 1731.1Sfvdl 1741.1Sfvdl/* 1751.1Sfvdl * the following defines give the virtual addresses of various MMU 1761.1Sfvdl * data structures: 1771.1Sfvdl * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings 1781.1Sfvdl * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD 1791.1Sfvdl * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP 1801.1Sfvdl * 1811.1Sfvdl */ 1821.1Sfvdl 1831.1Sfvdl#define PTE_BASE ((pt_entry_t *) (L4_SLOT_PTE * NBPD_L4)) 1841.1Sfvdl#define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L4_SLOT_APTE * NBPD_L4)))) 1851.1Sfvdl 1861.1Sfvdl#define L1_BASE PTE_BASE 1871.1Sfvdl#define AL1_BASE APTE_BASE 1881.1Sfvdl 1891.1Sfvdl#define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L4_SLOT_PTE * NBPD_L3)) 1901.1Sfvdl#define L3_BASE ((pd_entry_t *)((char *)L2_BASE + L4_SLOT_PTE * NBPD_L2)) 1911.1Sfvdl#define L4_BASE ((pd_entry_t *)((char *)L3_BASE + L4_SLOT_PTE * NBPD_L1)) 1921.1Sfvdl 1931.1Sfvdl#define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L4_SLOT_PTE * NBPD_L3)) 1941.1Sfvdl#define AL3_BASE ((pd_entry_t *)((char *)AL2_BASE + L4_SLOT_PTE * NBPD_L2)) 1951.1Sfvdl#define AL4_BASE ((pd_entry_t *)((char *)AL3_BASE + L4_SLOT_PTE * NBPD_L1)) 1961.1Sfvdl 1971.1Sfvdl#define PDP_PDE (L4_BASE + PDIR_SLOT_PTE) 1981.1Sfvdl#define APDP_PDE (L4_BASE + PDIR_SLOT_APTE) 1991.1Sfvdl 2001.1Sfvdl#define PDP_BASE L4_BASE 2011.1Sfvdl#define APDP_BASE AL4_BASE 2021.1Sfvdl 2031.1Sfvdl#define NKL4_MAX_ENTRIES (unsigned long)1 2041.1Sfvdl#define NKL3_MAX_ENTRIES (unsigned long)(NKL4_MAX_ENTRIES * 512) 2051.1Sfvdl#define NKL2_MAX_ENTRIES (unsigned long)(NKL3_MAX_ENTRIES * 512) 2061.1Sfvdl#define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * 512) 2071.1Sfvdl 2081.1Sfvdl#define NKL4_KIMG_ENTRIES 1 2091.1Sfvdl#define NKL3_KIMG_ENTRIES 1 2101.1Sfvdl#define NKL2_KIMG_ENTRIES 8 2111.1Sfvdl 2121.1Sfvdl/* 2131.1Sfvdl * Since kva space is below the kernel in its entirety, we start off 2141.1Sfvdl * with zero entries on each level. 2151.1Sfvdl */ 2161.1Sfvdl#define NKL4_START_ENTRIES 0 2171.1Sfvdl#define NKL3_START_ENTRIES 0 2181.1Sfvdl#define NKL2_START_ENTRIES 0 2191.1Sfvdl#define NKL1_START_ENTRIES 0 /* XXX */ 2201.1Sfvdl 2211.1Sfvdl#define NTOPLEVEL_PDES (PAGE_SIZE / (sizeof (pd_entry_t))) 2221.1Sfvdl 2231.1Sfvdl#define NPDPG (PAGE_SIZE / sizeof (pd_entry_t)) 2241.1Sfvdl 2251.1Sfvdl#define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME, L3_FRAME, L4_FRAME } 2261.1Sfvdl#define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT, L3_SHIFT, L4_SHIFT } 2271.1Sfvdl#define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES, \ 2281.1Sfvdl NKL3_START_ENTRIES, NKL4_START_ENTRIES } 2291.1Sfvdl#define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES, \ 2301.1Sfvdl NKL3_MAX_ENTRIES, NKL4_MAX_ENTRIES } 2311.1Sfvdl#define NBPD_INITIALIZER { NBPD_L1, NBPD_L2, NBPD_L3, NBPD_L4 } 2321.1Sfvdl#define PDES_INITIALIZER { L2_BASE, L3_BASE, L4_BASE } 2331.1Sfvdl#define APDES_INITIALIZER { AL2_BASE, AL3_BASE, AL4_BASE } 2341.1Sfvdl 2351.1Sfvdl#define PTP_LEVELS 4 2361.1Sfvdl 2371.1Sfvdl/* 2381.1Sfvdl * PG_AVAIL usage: we make use of the ignored bits of the PTE 2391.1Sfvdl */ 2401.1Sfvdl 2411.1Sfvdl#define PG_W PG_AVAIL1 /* "wired" mapping */ 2421.1Sfvdl#define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */ 2431.1Sfvdl/* PG_AVAIL3 not used */ 2441.1Sfvdl 2451.14Syamt#define PG_X 0 /* XXX dummy */ 2461.14Syamt 2471.1Sfvdl/* 2481.1Sfvdl * Number of PTE's per cache line. 8 byte pte, 64-byte cache line 2491.1Sfvdl * Used to avoid false sharing of cache lines. 2501.1Sfvdl */ 2511.1Sfvdl#define NPTECL 8 2521.1Sfvdl 2531.15Sbouyer#include <x86/pmap.h> 2541.15Sbouyer 2551.15Sbouyer#ifndef XEN 2561.15Sbouyer#define pmap_pa2pte(a) (a) 2571.15Sbouyer#define pmap_pte2pa(a) ((a) & PG_FRAME) 2581.15Sbouyer#define pmap_pte_set(p, n) do { *(p) = (n); } while (0) 2591.15Sbouyer#define pmap_pte_testset(p, n) x86_atomic_testset_u64(p, n) 2601.11Sad#define pmap_pte_setbits(p, b) x86_atomic_setbits_u64(p, b) 2611.1Sfvdl#define pmap_pte_clearbits(p, b) x86_atomic_clearbits_u64(p, b) 2621.15Sbouyer#define pmap_pte_flush() /* nothing */ 2631.1Sfvdl#define pmap_cpu_has_pg_n() (1) 2641.1Sfvdl#define pmap_cpu_has_invlpg (1) 2651.15Sbouyer#else 2661.15Sbouyerstatic __inline pt_entry_t 2671.15Sbouyerpmap_pa2pte(paddr_t pa) 2681.15Sbouyer{ 2691.15Sbouyer return (pt_entry_t)xpmap_ptom_masked(pa); 2701.15Sbouyer} 2711.15Sbouyer 2721.15Sbouyerstatic __inline paddr_t 2731.15Sbouyerpmap_pte2pa(pt_entry_t pte) 2741.15Sbouyer{ 2751.15Sbouyer return xpmap_mtop_masked(pte & PG_FRAME); 2761.15Sbouyer} 2771.15Sbouyerstatic __inline void 2781.15Sbouyerpmap_pte_set(pt_entry_t *pte, pt_entry_t npte) 2791.15Sbouyer{ 2801.15Sbouyer int s = splvm(); 2811.15Sbouyer xpq_queue_pte_update((pt_entry_t *)xpmap_ptetomach(pte), npte); 2821.15Sbouyer splx(s); 2831.15Sbouyer} 2841.15Sbouyer 2851.15Sbouyerstatic __inline pt_entry_t 2861.15Sbouyerpmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte) 2871.15Sbouyer{ 2881.15Sbouyer int s = splvm(); 2891.15Sbouyer pt_entry_t opte = *pte; 2901.15Sbouyer xpq_queue_pte_update((pt_entry_t *)xpmap_ptetomach(__UNVOLATILE(pte)), 2911.15Sbouyer npte); 2921.15Sbouyer xpq_flush_queue(); 2931.15Sbouyer splx(s); 2941.15Sbouyer return opte; 2951.15Sbouyer} 2961.15Sbouyer 2971.15Sbouyerstatic __inline void 2981.15Sbouyerpmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits) 2991.15Sbouyer{ 3001.15Sbouyer int s = splvm(); 3011.15Sbouyer xpq_queue_pte_update((pt_entry_t *)xpmap_ptetomach(__UNVOLATILE(pte)), 3021.15Sbouyer (*pte) | bits); 3031.15Sbouyer xpq_flush_queue(); 3041.15Sbouyer splx(s); 3051.15Sbouyer} 3061.15Sbouyer 3071.15Sbouyerstatic __inline void 3081.15Sbouyerpmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits) 3091.15Sbouyer{ 3101.15Sbouyer int s = splvm(); 3111.15Sbouyer xpq_queue_pte_update((pt_entry_t *)xpmap_ptetomach(__UNVOLATILE(pte)), 3121.15Sbouyer (*pte) & ~bits); 3131.15Sbouyer xpq_flush_queue(); 3141.15Sbouyer splx(s); 3151.15Sbouyer} 3161.1Sfvdl 3171.15Sbouyer#define pmap_cpu_has_pg_n() (1) 3181.15Sbouyer#define pmap_cpu_has_invlpg (1) 3191.15Sbouyerstatic __inline void 3201.15Sbouyerpmap_pte_flush(void) 3211.15Sbouyer{ 3221.15Sbouyer int s = splvm(); 3231.15Sbouyer xpq_flush_queue(); 3241.15Sbouyer splx(s); 3251.15Sbouyer} 3261.15Sbouyer#endif 3271.11Sad 3281.14Syamtvoid pmap_prealloc_lowmem_ptps(void); 3291.14Syamtvoid pmap_changeprot_local(vaddr_t, vm_prot_t); 3301.11Sad 3311.1Sfvdl#endif /* _AMD64_PMAP_H_ */ 332