octeon_intr.c revision 1.11 1 1.11 simonb /* $NetBSD: octeon_intr.c,v 1.11 2020/05/31 06:27:06 simonb Exp $ */
2 1.1 hikaru /*
3 1.1 hikaru * Copyright 2001, 2002 Wasabi Systems, Inc.
4 1.1 hikaru * All rights reserved.
5 1.1 hikaru *
6 1.1 hikaru * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 1.1 hikaru *
8 1.1 hikaru * Redistribution and use in source and binary forms, with or without
9 1.1 hikaru * modification, are permitted provided that the following conditions
10 1.1 hikaru * are met:
11 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
12 1.1 hikaru * notice, this list of conditions and the following disclaimer.
13 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
15 1.1 hikaru * documentation and/or other materials provided with the distribution.
16 1.1 hikaru * 3. All advertising materials mentioning features or use of this software
17 1.1 hikaru * must display the following acknowledgement:
18 1.1 hikaru * This product includes software developed for the NetBSD Project by
19 1.1 hikaru * Wasabi Systems, Inc.
20 1.1 hikaru * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 1.1 hikaru * or promote products derived from this software without specific prior
22 1.1 hikaru * written permission.
23 1.1 hikaru *
24 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hikaru * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hikaru * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 hikaru * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hikaru * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hikaru * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hikaru * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hikaru * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hikaru * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hikaru * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hikaru */
36 1.1 hikaru
37 1.1 hikaru /*
38 1.1 hikaru * Platform-specific interrupt support for the MIPS Malta.
39 1.1 hikaru */
40 1.1 hikaru
41 1.1 hikaru #include "opt_octeon.h"
42 1.6 skrll #include "opt_multiprocessor.h"
43 1.6 skrll
44 1.4 matt #include "cpunode.h"
45 1.1 hikaru #define __INTR_PRIVATE
46 1.1 hikaru
47 1.1 hikaru #include <sys/cdefs.h>
48 1.11 simonb __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.11 2020/05/31 06:27:06 simonb Exp $");
49 1.1 hikaru
50 1.1 hikaru #include <sys/param.h>
51 1.1 hikaru #include <sys/cpu.h>
52 1.1 hikaru #include <sys/systm.h>
53 1.1 hikaru #include <sys/device.h>
54 1.1 hikaru #include <sys/intr.h>
55 1.1 hikaru #include <sys/kernel.h>
56 1.3 matt #include <sys/kmem.h>
57 1.3 matt #include <sys/atomic.h>
58 1.1 hikaru
59 1.1 hikaru #include <lib/libkern/libkern.h>
60 1.1 hikaru
61 1.1 hikaru #include <mips/locore.h>
62 1.1 hikaru
63 1.1 hikaru #include <mips/cavium/dev/octeon_ciureg.h>
64 1.1 hikaru #include <mips/cavium/octeonvar.h>
65 1.1 hikaru
66 1.1 hikaru /*
67 1.1 hikaru * This is a mask of bits to clear in the SR when we go to a
68 1.1 hikaru * given hardware interrupt priority level.
69 1.1 hikaru */
70 1.1 hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
71 1.1 hikaru .sr_bits = {
72 1.1 hikaru [IPL_NONE] = 0,
73 1.1 hikaru [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
74 1.1 hikaru [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
75 1.1 hikaru [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
76 1.1 hikaru [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
77 1.8 skrll | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
78 1.3 matt [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
79 1.3 matt | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
80 1.1 hikaru [IPL_HIGH] = MIPS_INT_MASK,
81 1.1 hikaru },
82 1.1 hikaru };
83 1.1 hikaru
84 1.2 matt const char * const octeon_intrnames[NIRQS] = {
85 1.1 hikaru "workq 0",
86 1.1 hikaru "workq 1",
87 1.1 hikaru "workq 2",
88 1.1 hikaru "workq 3",
89 1.1 hikaru "workq 4",
90 1.1 hikaru "workq 5",
91 1.1 hikaru "workq 6",
92 1.1 hikaru "workq 7",
93 1.1 hikaru "workq 8",
94 1.1 hikaru "workq 9",
95 1.1 hikaru "workq 10",
96 1.1 hikaru "workq 11",
97 1.1 hikaru "workq 12",
98 1.1 hikaru "workq 13",
99 1.1 hikaru "workq 14",
100 1.1 hikaru "workq 15",
101 1.1 hikaru "gpio 0",
102 1.1 hikaru "gpio 1",
103 1.1 hikaru "gpio 2",
104 1.1 hikaru "gpio 3",
105 1.1 hikaru "gpio 4",
106 1.1 hikaru "gpio 5",
107 1.1 hikaru "gpio 6",
108 1.1 hikaru "gpio 7",
109 1.1 hikaru "gpio 8",
110 1.1 hikaru "gpio 9",
111 1.1 hikaru "gpio 10",
112 1.1 hikaru "gpio 11",
113 1.1 hikaru "gpio 12",
114 1.1 hikaru "gpio 13",
115 1.1 hikaru "gpio 14",
116 1.1 hikaru "gpio 15",
117 1.1 hikaru "mbox 0-15",
118 1.1 hikaru "mbox 16-31",
119 1.1 hikaru "uart 0",
120 1.1 hikaru "uart 1",
121 1.1 hikaru "pci inta",
122 1.1 hikaru "pci intb",
123 1.1 hikaru "pci intc",
124 1.1 hikaru "pci intd",
125 1.1 hikaru "pci msi 0-15",
126 1.1 hikaru "pci msi 16-31",
127 1.1 hikaru "pci msi 32-47",
128 1.1 hikaru "pci msi 48-63",
129 1.1 hikaru "wdog summary",
130 1.1 hikaru "twsi",
131 1.1 hikaru "rml",
132 1.1 hikaru "trace",
133 1.1 hikaru "gmx drop",
134 1.1 hikaru "reserved",
135 1.1 hikaru "ipd drop",
136 1.1 hikaru "reserved",
137 1.1 hikaru "timer 0",
138 1.1 hikaru "timer 1",
139 1.1 hikaru "timer 2",
140 1.1 hikaru "timer 3",
141 1.1 hikaru "usb",
142 1.1 hikaru "pcm/tdm",
143 1.1 hikaru "mpi/spi",
144 1.1 hikaru "reserved",
145 1.1 hikaru "reserved",
146 1.1 hikaru "reserved",
147 1.1 hikaru "reserved",
148 1.1 hikaru "reserved",
149 1.1 hikaru };
150 1.1 hikaru
151 1.1 hikaru struct octeon_intrhand {
152 1.1 hikaru int (*ih_func)(void *);
153 1.1 hikaru void *ih_arg;
154 1.1 hikaru int ih_irq;
155 1.1 hikaru int ih_ipl;
156 1.1 hikaru };
157 1.1 hikaru
158 1.3 matt #ifdef MULTIPROCESSOR
159 1.3 matt static int octeon_send_ipi(struct cpu_info *, int);
160 1.3 matt static int octeon_ipi_intr(void *);
161 1.3 matt
162 1.3 matt struct octeon_intrhand ipi_intrhands[2] = {
163 1.3 matt [0] = {
164 1.3 matt .ih_func = octeon_ipi_intr,
165 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(15,0),
166 1.3 matt .ih_irq = _CIU_INT_MBOX_15_0_SHIFT,
167 1.3 matt .ih_ipl = IPL_SCHED,
168 1.3 matt },
169 1.3 matt [1] = {
170 1.3 matt .ih_func = octeon_ipi_intr,
171 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(31,16),
172 1.3 matt .ih_irq = _CIU_INT_MBOX_31_16_SHIFT,
173 1.3 matt .ih_ipl = IPL_HIGH,
174 1.3 matt },
175 1.1 hikaru };
176 1.3 matt #endif
177 1.1 hikaru
178 1.11 simonb struct octeon_intrhand *octciu_intrs[NIRQS] = {
179 1.3 matt #ifdef MULTIPROCESSOR
180 1.3 matt [_CIU_INT_MBOX_15_0_SHIFT] = &ipi_intrhands[0],
181 1.3 matt [_CIU_INT_MBOX_31_16_SHIFT] = &ipi_intrhands[1],
182 1.3 matt #endif
183 1.1 hikaru };
184 1.1 hikaru
185 1.3 matt kmutex_t octeon_intr_lock;
186 1.1 hikaru
187 1.3 matt #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
188 1.1 hikaru
189 1.3 matt struct cpu_softc octeon_cpu0_softc = {
190 1.3 matt .cpu_ci = &cpu_info_store,
191 1.3 matt .cpu_int0_sum0 = X(CIU_INT0_SUM0),
192 1.3 matt .cpu_int1_sum0 = X(CIU_INT1_SUM0),
193 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM0),
194 1.1 hikaru
195 1.3 matt .cpu_int0_en0 = X(CIU_INT0_EN0),
196 1.3 matt .cpu_int1_en0 = X(CIU_INT1_EN0),
197 1.3 matt .cpu_int2_en0 = X(CIU_INT4_EN00),
198 1.1 hikaru
199 1.3 matt .cpu_int0_en1 = X(CIU_INT0_EN1),
200 1.3 matt .cpu_int1_en1 = X(CIU_INT1_EN1),
201 1.3 matt .cpu_int2_en1 = X(CIU_INT4_EN01),
202 1.1 hikaru
203 1.3 matt .cpu_int32_en = X(CIU_INT32_EN0),
204 1.1 hikaru
205 1.4 matt .cpu_wdog = X(CIU_WDOG0),
206 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE0),
207 1.4 matt
208 1.3 matt #ifdef MULTIPROCESSOR
209 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET0),
210 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR0),
211 1.3 matt #endif
212 1.3 matt };
213 1.1 hikaru
214 1.3 matt #ifdef MULTIPROCESSOR
215 1.3 matt struct cpu_softc octeon_cpu1_softc = {
216 1.3 matt .cpu_int0_sum0 = X(CIU_INT2_SUM0),
217 1.3 matt .cpu_int1_sum0 = X(CIU_INT3_SUM0),
218 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM1),
219 1.3 matt
220 1.3 matt .cpu_int0_en0 = X(CIU_INT2_EN0),
221 1.3 matt .cpu_int1_en0 = X(CIU_INT3_EN0),
222 1.3 matt .cpu_int2_en0 = X(CIU_INT4_EN10),
223 1.3 matt
224 1.3 matt .cpu_int0_en1 = X(CIU_INT2_EN1),
225 1.3 matt .cpu_int1_en1 = X(CIU_INT3_EN1),
226 1.3 matt .cpu_int2_en1 = X(CIU_INT4_EN11),
227 1.1 hikaru
228 1.3 matt .cpu_int32_en = X(CIU_INT32_EN1),
229 1.1 hikaru
230 1.4 matt .cpu_wdog = X(CIU_WDOG1),
231 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE1),
232 1.4 matt
233 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET1),
234 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR1),
235 1.3 matt };
236 1.3 matt #endif
237 1.1 hikaru
238 1.4 matt #ifdef DEBUG
239 1.4 matt static void
240 1.4 matt octeon_mbox_test(void)
241 1.4 matt {
242 1.4 matt const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
243 1.4 matt const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
244 1.4 matt const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
245 1.4 matt const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
246 1.4 matt const uint64_t int_sum0 = X(CIU_INT0_SUM0);
247 1.4 matt const uint64_t int_sum1 = X(CIU_INT2_SUM0);
248 1.4 matt const uint64_t sum_mbox_lo = __BIT(_CIU_INT_MBOX_15_0_SHIFT);
249 1.4 matt const uint64_t sum_mbox_hi = __BIT(_CIU_INT_MBOX_31_16_SHIFT);
250 1.4 matt
251 1.5 matt mips3_sd(mbox_clr0, ~0ULL);
252 1.5 matt mips3_sd(mbox_clr1, ~0ULL);
253 1.4 matt
254 1.5 matt uint32_t mbox0 = mips3_ld(mbox_set0);
255 1.5 matt uint32_t mbox1 = mips3_ld(mbox_set1);
256 1.4 matt
257 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
258 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
259 1.4 matt
260 1.5 matt mips3_sd(mbox_set0, __BIT(0));
261 1.4 matt
262 1.5 matt mbox0 = mips3_ld(mbox_set0);
263 1.5 matt mbox1 = mips3_ld(mbox_set1);
264 1.4 matt
265 1.4 matt KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
266 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
267 1.4 matt
268 1.5 matt uint64_t sum0 = mips3_ld(int_sum0);
269 1.5 matt uint64_t sum1 = mips3_ld(int_sum1);
270 1.4 matt
271 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
272 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
273 1.4 matt
274 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
275 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
276 1.4 matt
277 1.5 matt mips3_sd(mbox_clr0, mbox0);
278 1.5 matt mbox0 = mips3_ld(mbox_set0);
279 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
280 1.4 matt
281 1.5 matt mips3_sd(mbox_set0, __BIT(16));
282 1.4 matt
283 1.5 matt mbox0 = mips3_ld(mbox_set0);
284 1.5 matt mbox1 = mips3_ld(mbox_set1);
285 1.4 matt
286 1.4 matt KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
287 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
288 1.4 matt
289 1.5 matt sum0 = mips3_ld(int_sum0);
290 1.5 matt sum1 = mips3_ld(int_sum1);
291 1.4 matt
292 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
293 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
294 1.4 matt
295 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
296 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
297 1.4 matt }
298 1.4 matt #endif
299 1.4 matt
300 1.3 matt #undef X
301 1.1 hikaru
302 1.3 matt void
303 1.3 matt octeon_intr_init(struct cpu_info *ci)
304 1.3 matt {
305 1.9 mrg #ifdef DIAGNOSTIC
306 1.3 matt const int cpunum = cpu_index(ci);
307 1.9 mrg #endif
308 1.3 matt const char * const xname = cpu_name(ci);
309 1.4 matt struct cpu_softc *cpu = ci->ci_softc;
310 1.1 hikaru
311 1.1 hikaru
312 1.3 matt if (ci->ci_cpuid == 0) {
313 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu0_softc);
314 1.4 matt ipl_sr_map = octeon_ipl_sr_map;
315 1.3 matt mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
316 1.3 matt #ifdef MULTIPROCESSOR
317 1.3 matt mips_locoresw.lsw_send_ipi = octeon_send_ipi;
318 1.3 matt #endif
319 1.4 matt #ifdef DEBUG
320 1.4 matt octeon_mbox_test();
321 1.4 matt #endif
322 1.3 matt } else {
323 1.3 matt KASSERT(cpunum == 1);
324 1.3 matt #ifdef MULTIPROCESSOR
325 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu1_softc);
326 1.3 matt #endif
327 1.1 hikaru }
328 1.1 hikaru
329 1.3 matt #ifdef MULTIPROCESSOR
330 1.3 matt // Enable the IPIs
331 1.8 skrll cpu->cpu_int1_enable0 |= __BIT(_CIU_INT_MBOX_15_0_SHIFT);
332 1.3 matt cpu->cpu_int2_enable0 |= __BIT(_CIU_INT_MBOX_31_16_SHIFT);
333 1.1 hikaru #endif
334 1.1 hikaru
335 1.4 matt if (ci->ci_dev)
336 1.10 skrll aprint_verbose_dev(ci->ci_dev,
337 1.10 skrll "enabling intr masks %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
338 1.10 skrll cpu->cpu_int0_enable0, cpu->cpu_int1_enable0,
339 1.10 skrll cpu->cpu_int2_enable0);
340 1.4 matt
341 1.5 matt mips3_sd(cpu->cpu_int0_en0, cpu->cpu_int0_enable0);
342 1.5 matt mips3_sd(cpu->cpu_int1_en0, cpu->cpu_int1_enable0);
343 1.5 matt mips3_sd(cpu->cpu_int2_en0, cpu->cpu_int2_enable0);
344 1.3 matt
345 1.5 matt mips3_sd(cpu->cpu_int32_en, 0);
346 1.3 matt
347 1.5 matt mips3_sd(cpu->cpu_int0_en1, 0); // WDOG IPL2
348 1.5 matt mips3_sd(cpu->cpu_int1_en1, 0); // WDOG IPL3
349 1.5 matt mips3_sd(cpu->cpu_int2_en1, 0); // WDOG IPL4
350 1.1 hikaru
351 1.3 matt #ifdef MULTIPROCESSOR
352 1.5 matt mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
353 1.3 matt #endif
354 1.1 hikaru
355 1.1 hikaru for (size_t i = 0; i < NIRQS; i++) {
356 1.3 matt evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
357 1.3 matt EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
358 1.1 hikaru }
359 1.1 hikaru }
360 1.1 hikaru
361 1.1 hikaru void
362 1.1 hikaru octeon_cal_timer(int corefreq)
363 1.1 hikaru {
364 1.1 hikaru /* Compute the number of cycles per second. */
365 1.1 hikaru curcpu()->ci_cpu_freq = corefreq;
366 1.1 hikaru
367 1.1 hikaru /* Compute the number of ticks for hz. */
368 1.1 hikaru curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
369 1.1 hikaru
370 1.1 hikaru /* Compute the delay divisor and reciprical. */
371 1.1 hikaru curcpu()->ci_divisor_delay =
372 1.1 hikaru ((curcpu()->ci_cpu_freq + 500000) / 1000000);
373 1.1 hikaru #if 0
374 1.1 hikaru MIPS_SET_CI_RECIPRICAL(curcpu());
375 1.1 hikaru #endif
376 1.1 hikaru
377 1.1 hikaru mips3_cp0_count_write(0);
378 1.1 hikaru mips3_cp0_compare_write(0);
379 1.1 hikaru }
380 1.1 hikaru
381 1.1 hikaru void *
382 1.3 matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
383 1.1 hikaru {
384 1.1 hikaru struct octeon_intrhand *ih;
385 1.1 hikaru
386 1.1 hikaru if (irq >= NIRQS)
387 1.1 hikaru panic("octeon_intr_establish: bogus IRQ %d", irq);
388 1.3 matt if (ipl < IPL_VM)
389 1.3 matt panic("octeon_intr_establish: bogus IPL %d", ipl);
390 1.1 hikaru
391 1.3 matt ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
392 1.1 hikaru if (ih == NULL)
393 1.1 hikaru return (NULL);
394 1.1 hikaru
395 1.1 hikaru ih->ih_func = func;
396 1.1 hikaru ih->ih_arg = arg;
397 1.1 hikaru ih->ih_irq = irq;
398 1.3 matt ih->ih_ipl = ipl;
399 1.1 hikaru
400 1.3 matt mutex_enter(&octeon_intr_lock);
401 1.1 hikaru
402 1.1 hikaru /*
403 1.3 matt * First, make it known.
404 1.1 hikaru */
405 1.11 simonb KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
406 1.11 simonb irq, octciu_intrs[irq]);
407 1.3 matt
408 1.11 simonb octciu_intrs[irq] = ih;
409 1.3 matt membar_producer();
410 1.1 hikaru
411 1.1 hikaru /*
412 1.1 hikaru * Now enable it.
413 1.1 hikaru */
414 1.3 matt const uint64_t irq_mask = __BIT(irq);
415 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
416 1.3 matt #if MULTIPROCESSOR
417 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
418 1.3 matt #endif
419 1.3 matt
420 1.3 matt switch (ipl) {
421 1.3 matt case IPL_VM:
422 1.3 matt cpu0->cpu_int0_enable0 |= irq_mask;
423 1.5 matt mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
424 1.3 matt break;
425 1.1 hikaru
426 1.3 matt case IPL_SCHED:
427 1.3 matt cpu0->cpu_int1_enable0 |= irq_mask;
428 1.5 matt mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
429 1.3 matt #ifdef MULTIPROCESSOR
430 1.3 matt cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
431 1.5 matt mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
432 1.3 matt #endif
433 1.3 matt break;
434 1.3 matt
435 1.3 matt case IPL_DDB:
436 1.3 matt case IPL_HIGH:
437 1.3 matt cpu0->cpu_int2_enable0 |= irq_mask;
438 1.5 matt mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
439 1.3 matt #ifdef MULTIPROCESSOR
440 1.3 matt cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
441 1.5 matt mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
442 1.3 matt #endif
443 1.3 matt break;
444 1.1 hikaru }
445 1.1 hikaru
446 1.3 matt mutex_exit(&octeon_intr_lock);
447 1.3 matt
448 1.3 matt return ih;
449 1.1 hikaru }
450 1.1 hikaru
451 1.1 hikaru void
452 1.1 hikaru octeon_intr_disestablish(void *cookie)
453 1.1 hikaru {
454 1.3 matt struct octeon_intrhand * const ih = cookie;
455 1.3 matt const int irq = ih->ih_irq & (NIRQS-1);
456 1.3 matt const int ipl = ih->ih_ipl;
457 1.1 hikaru
458 1.3 matt mutex_enter(&octeon_intr_lock);
459 1.1 hikaru
460 1.1 hikaru /*
461 1.3 matt * First disable it.
462 1.1 hikaru */
463 1.3 matt const uint64_t irq_mask = ~__BIT(irq);
464 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
465 1.3 matt #if MULTIPROCESSOR
466 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
467 1.3 matt #endif
468 1.3 matt
469 1.3 matt switch (ipl) {
470 1.3 matt case IPL_VM:
471 1.3 matt cpu0->cpu_int0_enable0 &= ~irq_mask;
472 1.5 matt mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
473 1.3 matt break;
474 1.3 matt
475 1.3 matt case IPL_SCHED:
476 1.3 matt cpu0->cpu_int1_enable0 &= ~irq_mask;
477 1.5 matt mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
478 1.3 matt #ifdef MULTIPROCESSOR
479 1.3 matt cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
480 1.5 matt mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
481 1.3 matt #endif
482 1.3 matt break;
483 1.3 matt
484 1.3 matt case IPL_DDB:
485 1.3 matt case IPL_HIGH:
486 1.3 matt cpu0->cpu_int2_enable0 &= ~irq_mask;
487 1.5 matt mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
488 1.3 matt #ifdef MULTIPROCESSOR
489 1.3 matt cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
490 1.5 matt mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
491 1.3 matt #endif
492 1.3 matt break;
493 1.3 matt }
494 1.1 hikaru
495 1.1 hikaru /*
496 1.3 matt * Now remove it since we shouldn't get interrupts for it.
497 1.1 hikaru */
498 1.11 simonb octciu_intrs[irq] = NULL;
499 1.3 matt
500 1.3 matt mutex_exit(&octeon_intr_lock);
501 1.1 hikaru
502 1.3 matt kmem_free(ih, sizeof(*ih));
503 1.1 hikaru }
504 1.1 hikaru
505 1.1 hikaru void
506 1.1 hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
507 1.1 hikaru {
508 1.3 matt struct cpu_info * const ci = curcpu();
509 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
510 1.3 matt
511 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
512 1.3 matt KASSERT((ipending & ~MIPS_INT_MASK) == 0);
513 1.3 matt KASSERT(ipending & MIPS_HARD_INT_MASK);
514 1.1 hikaru uint64_t hwpend = 0;
515 1.1 hikaru
516 1.3 matt if (ipending & MIPS_INT_MASK_2) {
517 1.5 matt hwpend = mips3_ld(cpu->cpu_int2_sum0)
518 1.3 matt & cpu->cpu_int2_enable0;
519 1.3 matt } else if (ipending & MIPS_INT_MASK_1) {
520 1.5 matt hwpend = mips3_ld(cpu->cpu_int1_sum0)
521 1.3 matt & cpu->cpu_int1_enable0;
522 1.3 matt } else if (ipending & MIPS_INT_MASK_0) {
523 1.5 matt hwpend = mips3_ld(cpu->cpu_int0_sum0)
524 1.3 matt & cpu->cpu_int0_enable0;
525 1.3 matt } else {
526 1.3 matt panic("octeon_iointr: unexpected ipending %#x", ipending);
527 1.3 matt }
528 1.3 matt while (hwpend != 0) {
529 1.3 matt const int irq = ffs64(hwpend) - 1;
530 1.3 matt hwpend &= ~__BIT(irq);
531 1.3 matt
532 1.11 simonb struct octeon_intrhand * const ih = octciu_intrs[irq];
533 1.3 matt cpu->cpu_intr_evs[irq].ev_count++;
534 1.3 matt if (__predict_true(ih != NULL)) {
535 1.3 matt #ifdef MULTIPROCESSOR
536 1.3 matt if (ipl == IPL_VM) {
537 1.3 matt KERNEL_LOCK(1, NULL);
538 1.3 matt #endif
539 1.3 matt (*ih->ih_func)(ih->ih_arg);
540 1.3 matt #ifdef MULTIPROCESSOR
541 1.3 matt KERNEL_UNLOCK_ONE(NULL);
542 1.3 matt } else {
543 1.3 matt (*ih->ih_func)(ih->ih_arg);
544 1.3 matt }
545 1.3 matt #endif
546 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
547 1.3 matt }
548 1.3 matt }
549 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
550 1.3 matt }
551 1.3 matt
552 1.3 matt #ifdef MULTIPROCESSOR
553 1.3 matt __CTASSERT(NIPIS < 16);
554 1.3 matt
555 1.3 matt int
556 1.3 matt octeon_ipi_intr(void *arg)
557 1.3 matt {
558 1.3 matt struct cpu_info * const ci = curcpu();
559 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
560 1.4 matt uint32_t ipi_mask = (uintptr_t) arg;
561 1.4 matt
562 1.4 matt KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
563 1.4 matt "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
564 1.3 matt
565 1.5 matt ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
566 1.4 matt if (ipi_mask == 0)
567 1.4 matt return 0;
568 1.4 matt
569 1.5 matt mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
570 1.3 matt
571 1.3 matt ipi_mask |= (ipi_mask >> 16);
572 1.3 matt ipi_mask &= __BITS(15,0);
573 1.3 matt
574 1.3 matt KASSERT(ipi_mask < __BIT(NIPIS));
575 1.3 matt
576 1.4 matt #if NWDOG > 0
577 1.4 matt // Handle WDOG requests ourselves.
578 1.4 matt if (ipi_mask & __BIT(IPI_WDOG)) {
579 1.4 matt softint_schedule(cpu->cpu_wdog_sih);
580 1.4 matt atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
581 1.4 matt ipi_mask &= ~__BIT(IPI_WDOG);
582 1.4 matt ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
583 1.4 matt if (__predict_true(ipi_mask == 0))
584 1.4 matt return 1;
585 1.4 matt }
586 1.4 matt #endif
587 1.4 matt
588 1.3 matt /* if the request is clear, it was previously processed */
589 1.3 matt if ((ci->ci_request_ipis & ipi_mask) == 0)
590 1.3 matt return 0;
591 1.3 matt
592 1.3 matt atomic_or_64(&ci->ci_active_ipis, ipi_mask);
593 1.3 matt atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
594 1.3 matt
595 1.3 matt ipi_process(ci, ipi_mask);
596 1.3 matt
597 1.3 matt atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
598 1.3 matt
599 1.3 matt return 1;
600 1.3 matt }
601 1.1 hikaru
602 1.3 matt int
603 1.3 matt octeon_send_ipi(struct cpu_info *ci, int req)
604 1.3 matt {
605 1.3 matt KASSERT(req < NIPIS);
606 1.3 matt if (ci == NULL) {
607 1.4 matt CPU_INFO_ITERATOR cii;
608 1.4 matt for (CPU_INFO_FOREACH(cii, ci)) {
609 1.4 matt if (ci != curcpu()) {
610 1.4 matt octeon_send_ipi(ci, req);
611 1.4 matt }
612 1.4 matt }
613 1.4 matt return 0;
614 1.1 hikaru }
615 1.4 matt KASSERT(cold || ci->ci_softc != NULL);
616 1.4 matt if (ci->ci_softc == NULL)
617 1.4 matt return -1;
618 1.3 matt
619 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
620 1.3 matt uint64_t ipi_mask = __BIT(req);
621 1.3 matt
622 1.7 skrll atomic_or_64(&ci->ci_request_ipis, ipi_mask);
623 1.7 skrll if (req == IPI_SUSPEND || req == IPI_WDOG) {
624 1.3 matt ipi_mask <<= 16;
625 1.1 hikaru }
626 1.3 matt
627 1.5 matt mips3_sd(cpu->cpu_mbox_set, ipi_mask);
628 1.3 matt return 0;
629 1.1 hikaru }
630 1.3 matt #endif /* MULTIPROCESSOR */
631