Home | History | Annotate | Line # | Download | only in cavium
octeon_intr.c revision 1.11
      1  1.11  simonb /*	$NetBSD: octeon_intr.c,v 1.11 2020/05/31 06:27:06 simonb Exp $	*/
      2   1.1  hikaru /*
      3   1.1  hikaru  * Copyright 2001, 2002 Wasabi Systems, Inc.
      4   1.1  hikaru  * All rights reserved.
      5   1.1  hikaru  *
      6   1.1  hikaru  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
      7   1.1  hikaru  *
      8   1.1  hikaru  * Redistribution and use in source and binary forms, with or without
      9   1.1  hikaru  * modification, are permitted provided that the following conditions
     10   1.1  hikaru  * are met:
     11   1.1  hikaru  * 1. Redistributions of source code must retain the above copyright
     12   1.1  hikaru  *    notice, this list of conditions and the following disclaimer.
     13   1.1  hikaru  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1  hikaru  *    notice, this list of conditions and the following disclaimer in the
     15   1.1  hikaru  *    documentation and/or other materials provided with the distribution.
     16   1.1  hikaru  * 3. All advertising materials mentioning features or use of this software
     17   1.1  hikaru  *    must display the following acknowledgement:
     18   1.1  hikaru  *      This product includes software developed for the NetBSD Project by
     19   1.1  hikaru  *      Wasabi Systems, Inc.
     20   1.1  hikaru  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     21   1.1  hikaru  *    or promote products derived from this software without specific prior
     22   1.1  hikaru  *    written permission.
     23   1.1  hikaru  *
     24   1.1  hikaru  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     25   1.1  hikaru  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26   1.1  hikaru  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27   1.1  hikaru  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28   1.1  hikaru  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29   1.1  hikaru  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30   1.1  hikaru  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31   1.1  hikaru  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32   1.1  hikaru  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33   1.1  hikaru  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34   1.1  hikaru  * POSSIBILITY OF SUCH DAMAGE.
     35   1.1  hikaru  */
     36   1.1  hikaru 
     37   1.1  hikaru /*
     38   1.1  hikaru  * Platform-specific interrupt support for the MIPS Malta.
     39   1.1  hikaru  */
     40   1.1  hikaru 
     41   1.1  hikaru #include "opt_octeon.h"
     42   1.6   skrll #include "opt_multiprocessor.h"
     43   1.6   skrll 
     44   1.4    matt #include "cpunode.h"
     45   1.1  hikaru #define __INTR_PRIVATE
     46   1.1  hikaru 
     47   1.1  hikaru #include <sys/cdefs.h>
     48  1.11  simonb __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.11 2020/05/31 06:27:06 simonb Exp $");
     49   1.1  hikaru 
     50   1.1  hikaru #include <sys/param.h>
     51   1.1  hikaru #include <sys/cpu.h>
     52   1.1  hikaru #include <sys/systm.h>
     53   1.1  hikaru #include <sys/device.h>
     54   1.1  hikaru #include <sys/intr.h>
     55   1.1  hikaru #include <sys/kernel.h>
     56   1.3    matt #include <sys/kmem.h>
     57   1.3    matt #include <sys/atomic.h>
     58   1.1  hikaru 
     59   1.1  hikaru #include <lib/libkern/libkern.h>
     60   1.1  hikaru 
     61   1.1  hikaru #include <mips/locore.h>
     62   1.1  hikaru 
     63   1.1  hikaru #include <mips/cavium/dev/octeon_ciureg.h>
     64   1.1  hikaru #include <mips/cavium/octeonvar.h>
     65   1.1  hikaru 
     66   1.1  hikaru /*
     67   1.1  hikaru  * This is a mask of bits to clear in the SR when we go to a
     68   1.1  hikaru  * given hardware interrupt priority level.
     69   1.1  hikaru  */
     70   1.1  hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
     71   1.1  hikaru     .sr_bits = {
     72   1.1  hikaru 	[IPL_NONE] =		0,
     73   1.1  hikaru 	[IPL_SOFTCLOCK] =	MIPS_SOFT_INT_MASK_0,
     74   1.1  hikaru 	[IPL_SOFTNET] =		MIPS_SOFT_INT_MASK,
     75   1.1  hikaru 	[IPL_VM] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
     76   1.1  hikaru 	[IPL_SCHED] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     77   1.8   skrll 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
     78   1.3    matt 	[IPL_DDB] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     79   1.3    matt 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
     80   1.1  hikaru 	[IPL_HIGH] =		MIPS_INT_MASK,
     81   1.1  hikaru     },
     82   1.1  hikaru };
     83   1.1  hikaru 
     84   1.2    matt const char * const octeon_intrnames[NIRQS] = {
     85   1.1  hikaru 	"workq 0",
     86   1.1  hikaru 	"workq 1",
     87   1.1  hikaru 	"workq 2",
     88   1.1  hikaru 	"workq 3",
     89   1.1  hikaru 	"workq 4",
     90   1.1  hikaru 	"workq 5",
     91   1.1  hikaru 	"workq 6",
     92   1.1  hikaru 	"workq 7",
     93   1.1  hikaru 	"workq 8",
     94   1.1  hikaru 	"workq 9",
     95   1.1  hikaru 	"workq 10",
     96   1.1  hikaru 	"workq 11",
     97   1.1  hikaru 	"workq 12",
     98   1.1  hikaru 	"workq 13",
     99   1.1  hikaru 	"workq 14",
    100   1.1  hikaru 	"workq 15",
    101   1.1  hikaru 	"gpio 0",
    102   1.1  hikaru 	"gpio 1",
    103   1.1  hikaru 	"gpio 2",
    104   1.1  hikaru 	"gpio 3",
    105   1.1  hikaru 	"gpio 4",
    106   1.1  hikaru 	"gpio 5",
    107   1.1  hikaru 	"gpio 6",
    108   1.1  hikaru 	"gpio 7",
    109   1.1  hikaru 	"gpio 8",
    110   1.1  hikaru 	"gpio 9",
    111   1.1  hikaru 	"gpio 10",
    112   1.1  hikaru 	"gpio 11",
    113   1.1  hikaru 	"gpio 12",
    114   1.1  hikaru 	"gpio 13",
    115   1.1  hikaru 	"gpio 14",
    116   1.1  hikaru 	"gpio 15",
    117   1.1  hikaru 	"mbox 0-15",
    118   1.1  hikaru 	"mbox 16-31",
    119   1.1  hikaru 	"uart 0",
    120   1.1  hikaru 	"uart 1",
    121   1.1  hikaru 	"pci inta",
    122   1.1  hikaru 	"pci intb",
    123   1.1  hikaru 	"pci intc",
    124   1.1  hikaru 	"pci intd",
    125   1.1  hikaru 	"pci msi 0-15",
    126   1.1  hikaru 	"pci msi 16-31",
    127   1.1  hikaru 	"pci msi 32-47",
    128   1.1  hikaru 	"pci msi 48-63",
    129   1.1  hikaru 	"wdog summary",
    130   1.1  hikaru 	"twsi",
    131   1.1  hikaru 	"rml",
    132   1.1  hikaru 	"trace",
    133   1.1  hikaru 	"gmx drop",
    134   1.1  hikaru 	"reserved",
    135   1.1  hikaru 	"ipd drop",
    136   1.1  hikaru 	"reserved",
    137   1.1  hikaru 	"timer 0",
    138   1.1  hikaru 	"timer 1",
    139   1.1  hikaru 	"timer 2",
    140   1.1  hikaru 	"timer 3",
    141   1.1  hikaru 	"usb",
    142   1.1  hikaru 	"pcm/tdm",
    143   1.1  hikaru 	"mpi/spi",
    144   1.1  hikaru 	"reserved",
    145   1.1  hikaru 	"reserved",
    146   1.1  hikaru 	"reserved",
    147   1.1  hikaru 	"reserved",
    148   1.1  hikaru 	"reserved",
    149   1.1  hikaru };
    150   1.1  hikaru 
    151   1.1  hikaru struct octeon_intrhand {
    152   1.1  hikaru 	int (*ih_func)(void *);
    153   1.1  hikaru 	void *ih_arg;
    154   1.1  hikaru 	int ih_irq;
    155   1.1  hikaru 	int ih_ipl;
    156   1.1  hikaru };
    157   1.1  hikaru 
    158   1.3    matt #ifdef MULTIPROCESSOR
    159   1.3    matt static int octeon_send_ipi(struct cpu_info *, int);
    160   1.3    matt static int octeon_ipi_intr(void *);
    161   1.3    matt 
    162   1.3    matt struct octeon_intrhand ipi_intrhands[2] = {
    163   1.3    matt 	[0] = {
    164   1.3    matt 		.ih_func = octeon_ipi_intr,
    165   1.3    matt 		.ih_arg = (void *)(uintptr_t)__BITS(15,0),
    166   1.3    matt 		.ih_irq = _CIU_INT_MBOX_15_0_SHIFT,
    167   1.3    matt 		.ih_ipl = IPL_SCHED,
    168   1.3    matt 	},
    169   1.3    matt 	[1] = {
    170   1.3    matt 		.ih_func = octeon_ipi_intr,
    171   1.3    matt 		.ih_arg = (void *)(uintptr_t)__BITS(31,16),
    172   1.3    matt 		.ih_irq = _CIU_INT_MBOX_31_16_SHIFT,
    173   1.3    matt 		.ih_ipl = IPL_HIGH,
    174   1.3    matt 	},
    175   1.1  hikaru };
    176   1.3    matt #endif
    177   1.1  hikaru 
    178  1.11  simonb struct octeon_intrhand *octciu_intrs[NIRQS] = {
    179   1.3    matt #ifdef MULTIPROCESSOR
    180   1.3    matt 	[_CIU_INT_MBOX_15_0_SHIFT] = &ipi_intrhands[0],
    181   1.3    matt 	[_CIU_INT_MBOX_31_16_SHIFT] = &ipi_intrhands[1],
    182   1.3    matt #endif
    183   1.1  hikaru };
    184   1.1  hikaru 
    185   1.3    matt kmutex_t octeon_intr_lock;
    186   1.1  hikaru 
    187   1.3    matt #define X(a)	MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
    188   1.1  hikaru 
    189   1.3    matt struct cpu_softc octeon_cpu0_softc = {
    190   1.3    matt 	.cpu_ci = &cpu_info_store,
    191   1.3    matt 	.cpu_int0_sum0 = X(CIU_INT0_SUM0),
    192   1.3    matt 	.cpu_int1_sum0 = X(CIU_INT1_SUM0),
    193   1.3    matt 	.cpu_int2_sum0 = X(CIU_INT4_SUM0),
    194   1.1  hikaru 
    195   1.3    matt 	.cpu_int0_en0 = X(CIU_INT0_EN0),
    196   1.3    matt 	.cpu_int1_en0 = X(CIU_INT1_EN0),
    197   1.3    matt 	.cpu_int2_en0 = X(CIU_INT4_EN00),
    198   1.1  hikaru 
    199   1.3    matt 	.cpu_int0_en1 = X(CIU_INT0_EN1),
    200   1.3    matt 	.cpu_int1_en1 = X(CIU_INT1_EN1),
    201   1.3    matt 	.cpu_int2_en1 = X(CIU_INT4_EN01),
    202   1.1  hikaru 
    203   1.3    matt 	.cpu_int32_en = X(CIU_INT32_EN0),
    204   1.1  hikaru 
    205   1.4    matt 	.cpu_wdog = X(CIU_WDOG0),
    206   1.4    matt 	.cpu_pp_poke = X(CIU_PP_POKE0),
    207   1.4    matt 
    208   1.3    matt #ifdef MULTIPROCESSOR
    209   1.3    matt 	.cpu_mbox_set = X(CIU_MBOX_SET0),
    210   1.3    matt 	.cpu_mbox_clr = X(CIU_MBOX_CLR0),
    211   1.3    matt #endif
    212   1.3    matt };
    213   1.1  hikaru 
    214   1.3    matt #ifdef MULTIPROCESSOR
    215   1.3    matt struct cpu_softc octeon_cpu1_softc = {
    216   1.3    matt 	.cpu_int0_sum0 = X(CIU_INT2_SUM0),
    217   1.3    matt 	.cpu_int1_sum0 = X(CIU_INT3_SUM0),
    218   1.3    matt 	.cpu_int2_sum0 = X(CIU_INT4_SUM1),
    219   1.3    matt 
    220   1.3    matt 	.cpu_int0_en0 = X(CIU_INT2_EN0),
    221   1.3    matt 	.cpu_int1_en0 = X(CIU_INT3_EN0),
    222   1.3    matt 	.cpu_int2_en0 = X(CIU_INT4_EN10),
    223   1.3    matt 
    224   1.3    matt 	.cpu_int0_en1 = X(CIU_INT2_EN1),
    225   1.3    matt 	.cpu_int1_en1 = X(CIU_INT3_EN1),
    226   1.3    matt 	.cpu_int2_en1 = X(CIU_INT4_EN11),
    227   1.1  hikaru 
    228   1.3    matt 	.cpu_int32_en = X(CIU_INT32_EN1),
    229   1.1  hikaru 
    230   1.4    matt 	.cpu_wdog = X(CIU_WDOG1),
    231   1.4    matt 	.cpu_pp_poke = X(CIU_PP_POKE1),
    232   1.4    matt 
    233   1.3    matt 	.cpu_mbox_set = X(CIU_MBOX_SET1),
    234   1.3    matt 	.cpu_mbox_clr = X(CIU_MBOX_CLR1),
    235   1.3    matt };
    236   1.3    matt #endif
    237   1.1  hikaru 
    238   1.4    matt #ifdef DEBUG
    239   1.4    matt static void
    240   1.4    matt octeon_mbox_test(void)
    241   1.4    matt {
    242   1.4    matt 	const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
    243   1.4    matt 	const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
    244   1.4    matt 	const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
    245   1.4    matt 	const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
    246   1.4    matt 	const uint64_t int_sum0 = X(CIU_INT0_SUM0);
    247   1.4    matt 	const uint64_t int_sum1 = X(CIU_INT2_SUM0);
    248   1.4    matt 	const uint64_t sum_mbox_lo = __BIT(_CIU_INT_MBOX_15_0_SHIFT);
    249   1.4    matt 	const uint64_t sum_mbox_hi = __BIT(_CIU_INT_MBOX_31_16_SHIFT);
    250   1.4    matt 
    251   1.5    matt 	mips3_sd(mbox_clr0, ~0ULL);
    252   1.5    matt 	mips3_sd(mbox_clr1, ~0ULL);
    253   1.4    matt 
    254   1.5    matt 	uint32_t mbox0 = mips3_ld(mbox_set0);
    255   1.5    matt 	uint32_t mbox1 = mips3_ld(mbox_set1);
    256   1.4    matt 
    257   1.4    matt 	KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
    258   1.4    matt 	KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
    259   1.4    matt 
    260   1.5    matt 	mips3_sd(mbox_set0, __BIT(0));
    261   1.4    matt 
    262   1.5    matt 	mbox0 = mips3_ld(mbox_set0);
    263   1.5    matt 	mbox1 = mips3_ld(mbox_set1);
    264   1.4    matt 
    265   1.4    matt 	KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
    266   1.4    matt 	KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
    267   1.4    matt 
    268   1.5    matt 	uint64_t sum0 = mips3_ld(int_sum0);
    269   1.5    matt 	uint64_t sum1 = mips3_ld(int_sum1);
    270   1.4    matt 
    271   1.4    matt 	KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
    272   1.4    matt 	KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
    273   1.4    matt 
    274   1.4    matt 	KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
    275   1.4    matt 	KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
    276   1.4    matt 
    277   1.5    matt 	mips3_sd(mbox_clr0, mbox0);
    278   1.5    matt 	mbox0 = mips3_ld(mbox_set0);
    279   1.4    matt 	KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
    280   1.4    matt 
    281   1.5    matt 	mips3_sd(mbox_set0, __BIT(16));
    282   1.4    matt 
    283   1.5    matt 	mbox0 = mips3_ld(mbox_set0);
    284   1.5    matt 	mbox1 = mips3_ld(mbox_set1);
    285   1.4    matt 
    286   1.4    matt 	KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
    287   1.4    matt 	KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
    288   1.4    matt 
    289   1.5    matt 	sum0 = mips3_ld(int_sum0);
    290   1.5    matt 	sum1 = mips3_ld(int_sum1);
    291   1.4    matt 
    292   1.4    matt 	KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
    293   1.4    matt 	KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
    294   1.4    matt 
    295   1.4    matt 	KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
    296   1.4    matt 	KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
    297   1.4    matt }
    298   1.4    matt #endif
    299   1.4    matt 
    300   1.3    matt #undef X
    301   1.1  hikaru 
    302   1.3    matt void
    303   1.3    matt octeon_intr_init(struct cpu_info *ci)
    304   1.3    matt {
    305   1.9     mrg #ifdef DIAGNOSTIC
    306   1.3    matt 	const int cpunum = cpu_index(ci);
    307   1.9     mrg #endif
    308   1.3    matt 	const char * const xname = cpu_name(ci);
    309   1.4    matt 	struct cpu_softc *cpu = ci->ci_softc;
    310   1.1  hikaru 
    311   1.1  hikaru 
    312   1.3    matt 	if (ci->ci_cpuid == 0) {
    313   1.4    matt 		KASSERT(ci->ci_softc == &octeon_cpu0_softc);
    314   1.4    matt 		ipl_sr_map = octeon_ipl_sr_map;
    315   1.3    matt 		mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
    316   1.3    matt #ifdef MULTIPROCESSOR
    317   1.3    matt 		mips_locoresw.lsw_send_ipi = octeon_send_ipi;
    318   1.3    matt #endif
    319   1.4    matt #ifdef DEBUG
    320   1.4    matt 		octeon_mbox_test();
    321   1.4    matt #endif
    322   1.3    matt 	} else {
    323   1.3    matt 		KASSERT(cpunum == 1);
    324   1.3    matt #ifdef MULTIPROCESSOR
    325   1.4    matt 		KASSERT(ci->ci_softc == &octeon_cpu1_softc);
    326   1.3    matt #endif
    327   1.1  hikaru 	}
    328   1.1  hikaru 
    329   1.3    matt #ifdef MULTIPROCESSOR
    330   1.3    matt 	// Enable the IPIs
    331   1.8   skrll 	cpu->cpu_int1_enable0 |= __BIT(_CIU_INT_MBOX_15_0_SHIFT);
    332   1.3    matt 	cpu->cpu_int2_enable0 |= __BIT(_CIU_INT_MBOX_31_16_SHIFT);
    333   1.1  hikaru #endif
    334   1.1  hikaru 
    335   1.4    matt 	if (ci->ci_dev)
    336  1.10   skrll 		aprint_verbose_dev(ci->ci_dev,
    337  1.10   skrll 		    "enabling intr masks %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
    338  1.10   skrll 		    cpu->cpu_int0_enable0, cpu->cpu_int1_enable0,
    339  1.10   skrll 		    cpu->cpu_int2_enable0);
    340   1.4    matt 
    341   1.5    matt 	mips3_sd(cpu->cpu_int0_en0, cpu->cpu_int0_enable0);
    342   1.5    matt 	mips3_sd(cpu->cpu_int1_en0, cpu->cpu_int1_enable0);
    343   1.5    matt 	mips3_sd(cpu->cpu_int2_en0, cpu->cpu_int2_enable0);
    344   1.3    matt 
    345   1.5    matt 	mips3_sd(cpu->cpu_int32_en, 0);
    346   1.3    matt 
    347   1.5    matt 	mips3_sd(cpu->cpu_int0_en1, 0);	// WDOG IPL2
    348   1.5    matt 	mips3_sd(cpu->cpu_int1_en1, 0);	// WDOG IPL3
    349   1.5    matt 	mips3_sd(cpu->cpu_int2_en1, 0);	// WDOG IPL4
    350   1.1  hikaru 
    351   1.3    matt #ifdef MULTIPROCESSOR
    352   1.5    matt 	mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
    353   1.3    matt #endif
    354   1.1  hikaru 
    355   1.1  hikaru 	for (size_t i = 0; i < NIRQS; i++) {
    356   1.3    matt 		evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
    357   1.3    matt 		    EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
    358   1.1  hikaru 	}
    359   1.1  hikaru }
    360   1.1  hikaru 
    361   1.1  hikaru void
    362   1.1  hikaru octeon_cal_timer(int corefreq)
    363   1.1  hikaru {
    364   1.1  hikaru 	/* Compute the number of cycles per second. */
    365   1.1  hikaru 	curcpu()->ci_cpu_freq = corefreq;
    366   1.1  hikaru 
    367   1.1  hikaru 	/* Compute the number of ticks for hz. */
    368   1.1  hikaru 	curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
    369   1.1  hikaru 
    370   1.1  hikaru 	/* Compute the delay divisor and reciprical. */
    371   1.1  hikaru 	curcpu()->ci_divisor_delay =
    372   1.1  hikaru 	    ((curcpu()->ci_cpu_freq + 500000) / 1000000);
    373   1.1  hikaru #if 0
    374   1.1  hikaru 	MIPS_SET_CI_RECIPRICAL(curcpu());
    375   1.1  hikaru #endif
    376   1.1  hikaru 
    377   1.1  hikaru 	mips3_cp0_count_write(0);
    378   1.1  hikaru 	mips3_cp0_compare_write(0);
    379   1.1  hikaru }
    380   1.1  hikaru 
    381   1.1  hikaru void *
    382   1.3    matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
    383   1.1  hikaru {
    384   1.1  hikaru 	struct octeon_intrhand *ih;
    385   1.1  hikaru 
    386   1.1  hikaru 	if (irq >= NIRQS)
    387   1.1  hikaru 		panic("octeon_intr_establish: bogus IRQ %d", irq);
    388   1.3    matt 	if (ipl < IPL_VM)
    389   1.3    matt 		panic("octeon_intr_establish: bogus IPL %d", ipl);
    390   1.1  hikaru 
    391   1.3    matt 	ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
    392   1.1  hikaru 	if (ih == NULL)
    393   1.1  hikaru 		return (NULL);
    394   1.1  hikaru 
    395   1.1  hikaru 	ih->ih_func = func;
    396   1.1  hikaru 	ih->ih_arg = arg;
    397   1.1  hikaru 	ih->ih_irq = irq;
    398   1.3    matt 	ih->ih_ipl = ipl;
    399   1.1  hikaru 
    400   1.3    matt 	mutex_enter(&octeon_intr_lock);
    401   1.1  hikaru 
    402   1.1  hikaru 	/*
    403   1.3    matt 	 * First, make it known.
    404   1.1  hikaru 	 */
    405  1.11  simonb 	KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
    406  1.11  simonb 	    irq, octciu_intrs[irq]);
    407   1.3    matt 
    408  1.11  simonb 	octciu_intrs[irq] = ih;
    409   1.3    matt 	membar_producer();
    410   1.1  hikaru 
    411   1.1  hikaru 	/*
    412   1.1  hikaru 	 * Now enable it.
    413   1.1  hikaru 	 */
    414   1.3    matt 	const uint64_t irq_mask = __BIT(irq);
    415   1.3    matt 	struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
    416   1.3    matt #if MULTIPROCESSOR
    417   1.3    matt 	struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
    418   1.3    matt #endif
    419   1.3    matt 
    420   1.3    matt 	switch (ipl) {
    421   1.3    matt 	case IPL_VM:
    422   1.3    matt 		cpu0->cpu_int0_enable0 |= irq_mask;
    423   1.5    matt 		mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
    424   1.3    matt 		break;
    425   1.1  hikaru 
    426   1.3    matt 	case IPL_SCHED:
    427   1.3    matt 		cpu0->cpu_int1_enable0 |= irq_mask;
    428   1.5    matt 		mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
    429   1.3    matt #ifdef MULTIPROCESSOR
    430   1.3    matt 		cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
    431   1.5    matt 		mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
    432   1.3    matt #endif
    433   1.3    matt 		break;
    434   1.3    matt 
    435   1.3    matt 	case IPL_DDB:
    436   1.3    matt 	case IPL_HIGH:
    437   1.3    matt 		cpu0->cpu_int2_enable0 |= irq_mask;
    438   1.5    matt 		mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
    439   1.3    matt #ifdef MULTIPROCESSOR
    440   1.3    matt 		cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
    441   1.5    matt 		mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
    442   1.3    matt #endif
    443   1.3    matt 		break;
    444   1.1  hikaru 	}
    445   1.1  hikaru 
    446   1.3    matt 	mutex_exit(&octeon_intr_lock);
    447   1.3    matt 
    448   1.3    matt 	return ih;
    449   1.1  hikaru }
    450   1.1  hikaru 
    451   1.1  hikaru void
    452   1.1  hikaru octeon_intr_disestablish(void *cookie)
    453   1.1  hikaru {
    454   1.3    matt 	struct octeon_intrhand * const ih = cookie;
    455   1.3    matt 	const int irq = ih->ih_irq & (NIRQS-1);
    456   1.3    matt 	const int ipl = ih->ih_ipl;
    457   1.1  hikaru 
    458   1.3    matt 	mutex_enter(&octeon_intr_lock);
    459   1.1  hikaru 
    460   1.1  hikaru 	/*
    461   1.3    matt 	 * First disable it.
    462   1.1  hikaru 	 */
    463   1.3    matt 	const uint64_t irq_mask = ~__BIT(irq);
    464   1.3    matt 	struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
    465   1.3    matt #if MULTIPROCESSOR
    466   1.3    matt 	struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
    467   1.3    matt #endif
    468   1.3    matt 
    469   1.3    matt 	switch (ipl) {
    470   1.3    matt 	case IPL_VM:
    471   1.3    matt 		cpu0->cpu_int0_enable0 &= ~irq_mask;
    472   1.5    matt 		mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
    473   1.3    matt 		break;
    474   1.3    matt 
    475   1.3    matt 	case IPL_SCHED:
    476   1.3    matt 		cpu0->cpu_int1_enable0 &= ~irq_mask;
    477   1.5    matt 		mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
    478   1.3    matt #ifdef MULTIPROCESSOR
    479   1.3    matt 		cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
    480   1.5    matt 		mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
    481   1.3    matt #endif
    482   1.3    matt 		break;
    483   1.3    matt 
    484   1.3    matt 	case IPL_DDB:
    485   1.3    matt 	case IPL_HIGH:
    486   1.3    matt 		cpu0->cpu_int2_enable0 &= ~irq_mask;
    487   1.5    matt 		mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
    488   1.3    matt #ifdef MULTIPROCESSOR
    489   1.3    matt 		cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
    490   1.5    matt 		mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
    491   1.3    matt #endif
    492   1.3    matt 		break;
    493   1.3    matt 	}
    494   1.1  hikaru 
    495   1.1  hikaru 	/*
    496   1.3    matt 	 * Now remove it since we shouldn't get interrupts for it.
    497   1.1  hikaru 	 */
    498  1.11  simonb 	octciu_intrs[irq] = NULL;
    499   1.3    matt 
    500   1.3    matt 	mutex_exit(&octeon_intr_lock);
    501   1.1  hikaru 
    502   1.3    matt 	kmem_free(ih, sizeof(*ih));
    503   1.1  hikaru }
    504   1.1  hikaru 
    505   1.1  hikaru void
    506   1.1  hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
    507   1.1  hikaru {
    508   1.3    matt 	struct cpu_info * const ci = curcpu();
    509   1.3    matt 	struct cpu_softc * const cpu = ci->ci_softc;
    510   1.3    matt 
    511   1.4    matt 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    512   1.3    matt 	KASSERT((ipending & ~MIPS_INT_MASK) == 0);
    513   1.3    matt 	KASSERT(ipending & MIPS_HARD_INT_MASK);
    514   1.1  hikaru 	uint64_t hwpend = 0;
    515   1.1  hikaru 
    516   1.3    matt 	if (ipending & MIPS_INT_MASK_2) {
    517   1.5    matt 		hwpend = mips3_ld(cpu->cpu_int2_sum0)
    518   1.3    matt 		    & cpu->cpu_int2_enable0;
    519   1.3    matt 	} else if (ipending & MIPS_INT_MASK_1) {
    520   1.5    matt 		hwpend = mips3_ld(cpu->cpu_int1_sum0)
    521   1.3    matt 		    & cpu->cpu_int1_enable0;
    522   1.3    matt 	} else if (ipending & MIPS_INT_MASK_0) {
    523   1.5    matt 		hwpend = mips3_ld(cpu->cpu_int0_sum0)
    524   1.3    matt 		    & cpu->cpu_int0_enable0;
    525   1.3    matt 	} else {
    526   1.3    matt 		panic("octeon_iointr: unexpected ipending %#x", ipending);
    527   1.3    matt 	}
    528   1.3    matt 	while (hwpend != 0) {
    529   1.3    matt 		const int irq = ffs64(hwpend) - 1;
    530   1.3    matt 		hwpend &= ~__BIT(irq);
    531   1.3    matt 
    532  1.11  simonb 		struct octeon_intrhand * const ih = octciu_intrs[irq];
    533   1.3    matt 		cpu->cpu_intr_evs[irq].ev_count++;
    534   1.3    matt 		if (__predict_true(ih != NULL)) {
    535   1.3    matt #ifdef MULTIPROCESSOR
    536   1.3    matt 			if (ipl == IPL_VM) {
    537   1.3    matt 				KERNEL_LOCK(1, NULL);
    538   1.3    matt #endif
    539   1.3    matt 				(*ih->ih_func)(ih->ih_arg);
    540   1.3    matt #ifdef MULTIPROCESSOR
    541   1.3    matt 				KERNEL_UNLOCK_ONE(NULL);
    542   1.3    matt 			} else {
    543   1.3    matt 				(*ih->ih_func)(ih->ih_arg);
    544   1.3    matt 			}
    545   1.3    matt #endif
    546   1.4    matt 			KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    547   1.3    matt 		}
    548   1.3    matt 	}
    549   1.4    matt 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    550   1.3    matt }
    551   1.3    matt 
    552   1.3    matt #ifdef MULTIPROCESSOR
    553   1.3    matt __CTASSERT(NIPIS < 16);
    554   1.3    matt 
    555   1.3    matt int
    556   1.3    matt octeon_ipi_intr(void *arg)
    557   1.3    matt {
    558   1.3    matt 	struct cpu_info * const ci = curcpu();
    559   1.3    matt 	struct cpu_softc * const cpu = ci->ci_softc;
    560   1.4    matt 	uint32_t ipi_mask = (uintptr_t) arg;
    561   1.4    matt 
    562   1.4    matt 	KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
    563   1.4    matt 	    "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
    564   1.3    matt 
    565   1.5    matt 	ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
    566   1.4    matt 	if (ipi_mask == 0)
    567   1.4    matt 		return 0;
    568   1.4    matt 
    569   1.5    matt 	mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
    570   1.3    matt 
    571   1.3    matt 	ipi_mask |= (ipi_mask >> 16);
    572   1.3    matt 	ipi_mask &= __BITS(15,0);
    573   1.3    matt 
    574   1.3    matt 	KASSERT(ipi_mask < __BIT(NIPIS));
    575   1.3    matt 
    576   1.4    matt #if NWDOG > 0
    577   1.4    matt 	// Handle WDOG requests ourselves.
    578   1.4    matt 	if (ipi_mask & __BIT(IPI_WDOG)) {
    579   1.4    matt 		softint_schedule(cpu->cpu_wdog_sih);
    580   1.4    matt 		atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
    581   1.4    matt 		ipi_mask &= ~__BIT(IPI_WDOG);
    582   1.4    matt 		ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
    583   1.4    matt 		if (__predict_true(ipi_mask == 0))
    584   1.4    matt 			return 1;
    585   1.4    matt 	}
    586   1.4    matt #endif
    587   1.4    matt 
    588   1.3    matt 	/* if the request is clear, it was previously processed */
    589   1.3    matt 	if ((ci->ci_request_ipis & ipi_mask) == 0)
    590   1.3    matt 		return 0;
    591   1.3    matt 
    592   1.3    matt 	atomic_or_64(&ci->ci_active_ipis, ipi_mask);
    593   1.3    matt 	atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
    594   1.3    matt 
    595   1.3    matt 	ipi_process(ci, ipi_mask);
    596   1.3    matt 
    597   1.3    matt 	atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
    598   1.3    matt 
    599   1.3    matt 	return 1;
    600   1.3    matt }
    601   1.1  hikaru 
    602   1.3    matt int
    603   1.3    matt octeon_send_ipi(struct cpu_info *ci, int req)
    604   1.3    matt {
    605   1.3    matt 	KASSERT(req < NIPIS);
    606   1.3    matt 	if (ci == NULL) {
    607   1.4    matt 		CPU_INFO_ITERATOR cii;
    608   1.4    matt 		for (CPU_INFO_FOREACH(cii, ci)) {
    609   1.4    matt 			if (ci != curcpu()) {
    610   1.4    matt 				octeon_send_ipi(ci, req);
    611   1.4    matt 			}
    612   1.4    matt 		}
    613   1.4    matt 		return 0;
    614   1.1  hikaru 	}
    615   1.4    matt 	KASSERT(cold || ci->ci_softc != NULL);
    616   1.4    matt 	if (ci->ci_softc == NULL)
    617   1.4    matt 		return -1;
    618   1.3    matt 
    619   1.3    matt 	struct cpu_softc * const cpu = ci->ci_softc;
    620   1.3    matt 	uint64_t ipi_mask = __BIT(req);
    621   1.3    matt 
    622   1.7   skrll 	atomic_or_64(&ci->ci_request_ipis, ipi_mask);
    623   1.7   skrll 	if (req == IPI_SUSPEND || req == IPI_WDOG) {
    624   1.3    matt 		ipi_mask <<= 16;
    625   1.1  hikaru 	}
    626   1.3    matt 
    627   1.5    matt 	mips3_sd(cpu->cpu_mbox_set, ipi_mask);
    628   1.3    matt 	return 0;
    629   1.1  hikaru }
    630   1.3    matt #endif	/* MULTIPROCESSOR */
    631