octeon_intr.c revision 1.15 1 1.15 jmcneill /* $NetBSD: octeon_intr.c,v 1.15 2020/07/16 21:33:50 jmcneill Exp $ */
2 1.1 hikaru /*
3 1.1 hikaru * Copyright 2001, 2002 Wasabi Systems, Inc.
4 1.1 hikaru * All rights reserved.
5 1.1 hikaru *
6 1.1 hikaru * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 1.1 hikaru *
8 1.1 hikaru * Redistribution and use in source and binary forms, with or without
9 1.1 hikaru * modification, are permitted provided that the following conditions
10 1.1 hikaru * are met:
11 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
12 1.1 hikaru * notice, this list of conditions and the following disclaimer.
13 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
15 1.1 hikaru * documentation and/or other materials provided with the distribution.
16 1.1 hikaru * 3. All advertising materials mentioning features or use of this software
17 1.1 hikaru * must display the following acknowledgement:
18 1.1 hikaru * This product includes software developed for the NetBSD Project by
19 1.1 hikaru * Wasabi Systems, Inc.
20 1.1 hikaru * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 1.1 hikaru * or promote products derived from this software without specific prior
22 1.1 hikaru * written permission.
23 1.1 hikaru *
24 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hikaru * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hikaru * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 hikaru * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hikaru * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hikaru * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hikaru * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hikaru * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hikaru * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hikaru * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hikaru */
36 1.1 hikaru
37 1.1 hikaru /*
38 1.1 hikaru * Platform-specific interrupt support for the MIPS Malta.
39 1.1 hikaru */
40 1.1 hikaru
41 1.6 skrll #include "opt_multiprocessor.h"
42 1.6 skrll
43 1.4 matt #include "cpunode.h"
44 1.1 hikaru #define __INTR_PRIVATE
45 1.1 hikaru
46 1.1 hikaru #include <sys/cdefs.h>
47 1.15 jmcneill __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.15 2020/07/16 21:33:50 jmcneill Exp $");
48 1.1 hikaru
49 1.1 hikaru #include <sys/param.h>
50 1.1 hikaru #include <sys/cpu.h>
51 1.1 hikaru #include <sys/systm.h>
52 1.1 hikaru #include <sys/device.h>
53 1.1 hikaru #include <sys/intr.h>
54 1.1 hikaru #include <sys/kernel.h>
55 1.3 matt #include <sys/kmem.h>
56 1.3 matt #include <sys/atomic.h>
57 1.1 hikaru
58 1.1 hikaru #include <lib/libkern/libkern.h>
59 1.1 hikaru
60 1.1 hikaru #include <mips/locore.h>
61 1.1 hikaru
62 1.1 hikaru #include <mips/cavium/dev/octeon_ciureg.h>
63 1.1 hikaru #include <mips/cavium/octeonvar.h>
64 1.1 hikaru
65 1.1 hikaru /*
66 1.1 hikaru * This is a mask of bits to clear in the SR when we go to a
67 1.1 hikaru * given hardware interrupt priority level.
68 1.1 hikaru */
69 1.1 hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
70 1.1 hikaru .sr_bits = {
71 1.1 hikaru [IPL_NONE] = 0,
72 1.1 hikaru [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
73 1.1 hikaru [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
74 1.1 hikaru [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
75 1.1 hikaru [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
76 1.8 skrll | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
77 1.3 matt [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
78 1.3 matt | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
79 1.1 hikaru [IPL_HIGH] = MIPS_INT_MASK,
80 1.1 hikaru },
81 1.1 hikaru };
82 1.1 hikaru
83 1.15 jmcneill const char * octeon_intrnames[NIRQS] = {
84 1.1 hikaru "workq 0",
85 1.1 hikaru "workq 1",
86 1.1 hikaru "workq 2",
87 1.1 hikaru "workq 3",
88 1.1 hikaru "workq 4",
89 1.1 hikaru "workq 5",
90 1.1 hikaru "workq 6",
91 1.1 hikaru "workq 7",
92 1.1 hikaru "workq 8",
93 1.1 hikaru "workq 9",
94 1.1 hikaru "workq 10",
95 1.1 hikaru "workq 11",
96 1.1 hikaru "workq 12",
97 1.1 hikaru "workq 13",
98 1.1 hikaru "workq 14",
99 1.1 hikaru "workq 15",
100 1.1 hikaru "gpio 0",
101 1.1 hikaru "gpio 1",
102 1.1 hikaru "gpio 2",
103 1.1 hikaru "gpio 3",
104 1.1 hikaru "gpio 4",
105 1.1 hikaru "gpio 5",
106 1.1 hikaru "gpio 6",
107 1.1 hikaru "gpio 7",
108 1.1 hikaru "gpio 8",
109 1.1 hikaru "gpio 9",
110 1.1 hikaru "gpio 10",
111 1.1 hikaru "gpio 11",
112 1.1 hikaru "gpio 12",
113 1.1 hikaru "gpio 13",
114 1.1 hikaru "gpio 14",
115 1.1 hikaru "gpio 15",
116 1.1 hikaru "mbox 0-15",
117 1.1 hikaru "mbox 16-31",
118 1.1 hikaru "uart 0",
119 1.1 hikaru "uart 1",
120 1.1 hikaru "pci inta",
121 1.1 hikaru "pci intb",
122 1.1 hikaru "pci intc",
123 1.1 hikaru "pci intd",
124 1.1 hikaru "pci msi 0-15",
125 1.1 hikaru "pci msi 16-31",
126 1.1 hikaru "pci msi 32-47",
127 1.1 hikaru "pci msi 48-63",
128 1.1 hikaru "wdog summary",
129 1.1 hikaru "twsi",
130 1.1 hikaru "rml",
131 1.1 hikaru "trace",
132 1.1 hikaru "gmx drop",
133 1.1 hikaru "reserved",
134 1.1 hikaru "ipd drop",
135 1.1 hikaru "reserved",
136 1.1 hikaru "timer 0",
137 1.1 hikaru "timer 1",
138 1.1 hikaru "timer 2",
139 1.1 hikaru "timer 3",
140 1.1 hikaru "usb",
141 1.1 hikaru "pcm/tdm",
142 1.1 hikaru "mpi/spi",
143 1.1 hikaru "reserved",
144 1.1 hikaru "reserved",
145 1.1 hikaru "reserved",
146 1.1 hikaru "reserved",
147 1.1 hikaru "reserved",
148 1.1 hikaru };
149 1.1 hikaru
150 1.1 hikaru struct octeon_intrhand {
151 1.1 hikaru int (*ih_func)(void *);
152 1.1 hikaru void *ih_arg;
153 1.1 hikaru int ih_irq;
154 1.1 hikaru int ih_ipl;
155 1.1 hikaru };
156 1.1 hikaru
157 1.3 matt #ifdef MULTIPROCESSOR
158 1.3 matt static int octeon_send_ipi(struct cpu_info *, int);
159 1.3 matt static int octeon_ipi_intr(void *);
160 1.3 matt
161 1.3 matt struct octeon_intrhand ipi_intrhands[2] = {
162 1.3 matt [0] = {
163 1.3 matt .ih_func = octeon_ipi_intr,
164 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(15,0),
165 1.12 simonb .ih_irq = CIU_INT_MBOX_15_0,
166 1.3 matt .ih_ipl = IPL_SCHED,
167 1.3 matt },
168 1.3 matt [1] = {
169 1.3 matt .ih_func = octeon_ipi_intr,
170 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(31,16),
171 1.12 simonb .ih_irq = CIU_INT_MBOX_31_16,
172 1.3 matt .ih_ipl = IPL_HIGH,
173 1.3 matt },
174 1.1 hikaru };
175 1.3 matt #endif
176 1.1 hikaru
177 1.11 simonb struct octeon_intrhand *octciu_intrs[NIRQS] = {
178 1.3 matt #ifdef MULTIPROCESSOR
179 1.12 simonb [CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
180 1.12 simonb [CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
181 1.3 matt #endif
182 1.1 hikaru };
183 1.1 hikaru
184 1.3 matt kmutex_t octeon_intr_lock;
185 1.1 hikaru
186 1.3 matt #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
187 1.1 hikaru
188 1.3 matt struct cpu_softc octeon_cpu0_softc = {
189 1.3 matt .cpu_ci = &cpu_info_store,
190 1.3 matt .cpu_int0_sum0 = X(CIU_INT0_SUM0),
191 1.3 matt .cpu_int1_sum0 = X(CIU_INT1_SUM0),
192 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM0),
193 1.1 hikaru
194 1.15 jmcneill .cpu_int_sum1 = X(CIU_INT_SUM1),
195 1.15 jmcneill
196 1.3 matt .cpu_int0_en0 = X(CIU_INT0_EN0),
197 1.3 matt .cpu_int1_en0 = X(CIU_INT1_EN0),
198 1.3 matt .cpu_int2_en0 = X(CIU_INT4_EN00),
199 1.1 hikaru
200 1.3 matt .cpu_int0_en1 = X(CIU_INT0_EN1),
201 1.3 matt .cpu_int1_en1 = X(CIU_INT1_EN1),
202 1.3 matt .cpu_int2_en1 = X(CIU_INT4_EN01),
203 1.1 hikaru
204 1.3 matt .cpu_int32_en = X(CIU_INT32_EN0),
205 1.1 hikaru
206 1.4 matt .cpu_wdog = X(CIU_WDOG0),
207 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE0),
208 1.4 matt
209 1.3 matt #ifdef MULTIPROCESSOR
210 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET0),
211 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR0),
212 1.3 matt #endif
213 1.3 matt };
214 1.1 hikaru
215 1.3 matt #ifdef MULTIPROCESSOR
216 1.12 simonb /* XXX limit of two CPUs ... */
217 1.3 matt struct cpu_softc octeon_cpu1_softc = {
218 1.3 matt .cpu_int0_sum0 = X(CIU_INT2_SUM0),
219 1.3 matt .cpu_int1_sum0 = X(CIU_INT3_SUM0),
220 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM1),
221 1.3 matt
222 1.15 jmcneill .cpu_int_sum1 = X(CIU_INT_SUM1),
223 1.15 jmcneill
224 1.3 matt .cpu_int0_en0 = X(CIU_INT2_EN0),
225 1.3 matt .cpu_int1_en0 = X(CIU_INT3_EN0),
226 1.3 matt .cpu_int2_en0 = X(CIU_INT4_EN10),
227 1.3 matt
228 1.3 matt .cpu_int0_en1 = X(CIU_INT2_EN1),
229 1.3 matt .cpu_int1_en1 = X(CIU_INT3_EN1),
230 1.3 matt .cpu_int2_en1 = X(CIU_INT4_EN11),
231 1.1 hikaru
232 1.3 matt .cpu_int32_en = X(CIU_INT32_EN1),
233 1.1 hikaru
234 1.12 simonb .cpu_wdog = X(CIU_WDOG(1)),
235 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE1),
236 1.4 matt
237 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET1),
238 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR1),
239 1.3 matt };
240 1.3 matt #endif
241 1.1 hikaru
242 1.4 matt #ifdef DEBUG
243 1.4 matt static void
244 1.4 matt octeon_mbox_test(void)
245 1.4 matt {
246 1.4 matt const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
247 1.4 matt const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
248 1.4 matt const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
249 1.4 matt const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
250 1.4 matt const uint64_t int_sum0 = X(CIU_INT0_SUM0);
251 1.4 matt const uint64_t int_sum1 = X(CIU_INT2_SUM0);
252 1.12 simonb const uint64_t sum_mbox_lo = __BIT(CIU_INT_MBOX_15_0);
253 1.12 simonb const uint64_t sum_mbox_hi = __BIT(CIU_INT_MBOX_31_16);
254 1.4 matt
255 1.5 matt mips3_sd(mbox_clr0, ~0ULL);
256 1.5 matt mips3_sd(mbox_clr1, ~0ULL);
257 1.4 matt
258 1.5 matt uint32_t mbox0 = mips3_ld(mbox_set0);
259 1.5 matt uint32_t mbox1 = mips3_ld(mbox_set1);
260 1.4 matt
261 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
262 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
263 1.4 matt
264 1.5 matt mips3_sd(mbox_set0, __BIT(0));
265 1.4 matt
266 1.5 matt mbox0 = mips3_ld(mbox_set0);
267 1.5 matt mbox1 = mips3_ld(mbox_set1);
268 1.4 matt
269 1.4 matt KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
270 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
271 1.4 matt
272 1.5 matt uint64_t sum0 = mips3_ld(int_sum0);
273 1.5 matt uint64_t sum1 = mips3_ld(int_sum1);
274 1.4 matt
275 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
276 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
277 1.4 matt
278 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
279 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
280 1.4 matt
281 1.5 matt mips3_sd(mbox_clr0, mbox0);
282 1.5 matt mbox0 = mips3_ld(mbox_set0);
283 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
284 1.4 matt
285 1.5 matt mips3_sd(mbox_set0, __BIT(16));
286 1.4 matt
287 1.5 matt mbox0 = mips3_ld(mbox_set0);
288 1.5 matt mbox1 = mips3_ld(mbox_set1);
289 1.4 matt
290 1.4 matt KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
291 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
292 1.4 matt
293 1.5 matt sum0 = mips3_ld(int_sum0);
294 1.5 matt sum1 = mips3_ld(int_sum1);
295 1.4 matt
296 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
297 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
298 1.4 matt
299 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
300 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
301 1.4 matt }
302 1.4 matt #endif
303 1.4 matt
304 1.3 matt #undef X
305 1.1 hikaru
306 1.3 matt void
307 1.3 matt octeon_intr_init(struct cpu_info *ci)
308 1.3 matt {
309 1.9 mrg #ifdef DIAGNOSTIC
310 1.3 matt const int cpunum = cpu_index(ci);
311 1.9 mrg #endif
312 1.3 matt const char * const xname = cpu_name(ci);
313 1.4 matt struct cpu_softc *cpu = ci->ci_softc;
314 1.1 hikaru
315 1.1 hikaru
316 1.3 matt if (ci->ci_cpuid == 0) {
317 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu0_softc);
318 1.4 matt ipl_sr_map = octeon_ipl_sr_map;
319 1.3 matt mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
320 1.3 matt #ifdef MULTIPROCESSOR
321 1.3 matt mips_locoresw.lsw_send_ipi = octeon_send_ipi;
322 1.3 matt #endif
323 1.4 matt #ifdef DEBUG
324 1.4 matt octeon_mbox_test();
325 1.4 matt #endif
326 1.3 matt } else {
327 1.3 matt KASSERT(cpunum == 1);
328 1.3 matt #ifdef MULTIPROCESSOR
329 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu1_softc);
330 1.3 matt #endif
331 1.1 hikaru }
332 1.1 hikaru
333 1.3 matt #ifdef MULTIPROCESSOR
334 1.3 matt // Enable the IPIs
335 1.12 simonb cpu->cpu_int1_enable0 |= __BIT(CIU_INT_MBOX_15_0);
336 1.12 simonb cpu->cpu_int2_enable0 |= __BIT(CIU_INT_MBOX_31_16);
337 1.1 hikaru #endif
338 1.1 hikaru
339 1.4 matt if (ci->ci_dev)
340 1.10 skrll aprint_verbose_dev(ci->ci_dev,
341 1.10 skrll "enabling intr masks %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
342 1.10 skrll cpu->cpu_int0_enable0, cpu->cpu_int1_enable0,
343 1.10 skrll cpu->cpu_int2_enable0);
344 1.4 matt
345 1.5 matt mips3_sd(cpu->cpu_int0_en0, cpu->cpu_int0_enable0);
346 1.5 matt mips3_sd(cpu->cpu_int1_en0, cpu->cpu_int1_enable0);
347 1.5 matt mips3_sd(cpu->cpu_int2_en0, cpu->cpu_int2_enable0);
348 1.3 matt
349 1.5 matt mips3_sd(cpu->cpu_int32_en, 0);
350 1.3 matt
351 1.15 jmcneill mips3_sd(cpu->cpu_int0_en1, cpu->cpu_int0_enable1);
352 1.15 jmcneill mips3_sd(cpu->cpu_int1_en1, cpu->cpu_int1_enable1);
353 1.15 jmcneill mips3_sd(cpu->cpu_int2_en1, cpu->cpu_int2_enable1);
354 1.1 hikaru
355 1.3 matt #ifdef MULTIPROCESSOR
356 1.5 matt mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
357 1.3 matt #endif
358 1.1 hikaru
359 1.15 jmcneill for (int i = 0; i < NIRQS; i++) {
360 1.15 jmcneill if (octeon_intrnames[i] == NULL)
361 1.15 jmcneill octeon_intrnames[i] = kmem_asprintf("irq %d", i);
362 1.3 matt evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
363 1.3 matt EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
364 1.1 hikaru }
365 1.1 hikaru }
366 1.1 hikaru
367 1.1 hikaru void
368 1.1 hikaru octeon_cal_timer(int corefreq)
369 1.1 hikaru {
370 1.1 hikaru /* Compute the number of cycles per second. */
371 1.1 hikaru curcpu()->ci_cpu_freq = corefreq;
372 1.1 hikaru
373 1.1 hikaru /* Compute the number of ticks for hz. */
374 1.1 hikaru curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
375 1.1 hikaru
376 1.1 hikaru /* Compute the delay divisor and reciprical. */
377 1.1 hikaru curcpu()->ci_divisor_delay =
378 1.1 hikaru ((curcpu()->ci_cpu_freq + 500000) / 1000000);
379 1.1 hikaru #if 0
380 1.1 hikaru MIPS_SET_CI_RECIPRICAL(curcpu());
381 1.1 hikaru #endif
382 1.1 hikaru
383 1.1 hikaru mips3_cp0_count_write(0);
384 1.1 hikaru mips3_cp0_compare_write(0);
385 1.1 hikaru }
386 1.1 hikaru
387 1.1 hikaru void *
388 1.3 matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
389 1.1 hikaru {
390 1.1 hikaru struct octeon_intrhand *ih;
391 1.1 hikaru
392 1.1 hikaru if (irq >= NIRQS)
393 1.1 hikaru panic("octeon_intr_establish: bogus IRQ %d", irq);
394 1.3 matt if (ipl < IPL_VM)
395 1.3 matt panic("octeon_intr_establish: bogus IPL %d", ipl);
396 1.1 hikaru
397 1.3 matt ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
398 1.1 hikaru if (ih == NULL)
399 1.1 hikaru return (NULL);
400 1.1 hikaru
401 1.1 hikaru ih->ih_func = func;
402 1.1 hikaru ih->ih_arg = arg;
403 1.1 hikaru ih->ih_irq = irq;
404 1.3 matt ih->ih_ipl = ipl;
405 1.1 hikaru
406 1.3 matt mutex_enter(&octeon_intr_lock);
407 1.1 hikaru
408 1.1 hikaru /*
409 1.3 matt * First, make it known.
410 1.1 hikaru */
411 1.11 simonb KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
412 1.11 simonb irq, octciu_intrs[irq]);
413 1.3 matt
414 1.11 simonb octciu_intrs[irq] = ih;
415 1.3 matt membar_producer();
416 1.1 hikaru
417 1.1 hikaru /*
418 1.1 hikaru * Now enable it.
419 1.1 hikaru */
420 1.15 jmcneill const int bank = irq / 64;
421 1.15 jmcneill const uint64_t irq_mask = __BIT(irq % 64);
422 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
423 1.3 matt #if MULTIPROCESSOR
424 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
425 1.3 matt #endif
426 1.3 matt
427 1.3 matt switch (ipl) {
428 1.3 matt case IPL_VM:
429 1.15 jmcneill if (bank == 0) {
430 1.15 jmcneill cpu0->cpu_int0_enable0 |= irq_mask;
431 1.15 jmcneill mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
432 1.15 jmcneill } else {
433 1.15 jmcneill cpu0->cpu_int0_enable1 |= irq_mask;
434 1.15 jmcneill mips3_sd(cpu0->cpu_int0_en1, cpu0->cpu_int0_enable1);
435 1.15 jmcneill }
436 1.3 matt break;
437 1.1 hikaru
438 1.3 matt case IPL_SCHED:
439 1.15 jmcneill if (bank == 0) {
440 1.15 jmcneill cpu0->cpu_int1_enable0 |= irq_mask;
441 1.15 jmcneill mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
442 1.15 jmcneill #ifdef MULTIPROCESSOR
443 1.15 jmcneill cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
444 1.15 jmcneill mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
445 1.15 jmcneill #endif
446 1.15 jmcneill } else {
447 1.15 jmcneill cpu0->cpu_int1_enable1 |= irq_mask;
448 1.15 jmcneill mips3_sd(cpu0->cpu_int1_en1, cpu0->cpu_int1_enable1);
449 1.3 matt #ifdef MULTIPROCESSOR
450 1.15 jmcneill cpu1->cpu_int1_enable1 = cpu0->cpu_int1_enable1;
451 1.15 jmcneill mips3_sd(cpu1->cpu_int1_en1, cpu1->cpu_int1_enable1);
452 1.3 matt #endif
453 1.15 jmcneill }
454 1.15 jmcneill
455 1.3 matt break;
456 1.3 matt
457 1.3 matt case IPL_DDB:
458 1.3 matt case IPL_HIGH:
459 1.15 jmcneill if (bank == 0) {
460 1.15 jmcneill cpu0->cpu_int2_enable0 |= irq_mask;
461 1.15 jmcneill mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
462 1.15 jmcneill #ifdef MULTIPROCESSOR
463 1.15 jmcneill cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
464 1.15 jmcneill mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
465 1.15 jmcneill #endif
466 1.15 jmcneill } else {
467 1.15 jmcneill cpu0->cpu_int2_enable1 |= irq_mask;
468 1.15 jmcneill mips3_sd(cpu0->cpu_int2_en1, cpu0->cpu_int2_enable1);
469 1.3 matt #ifdef MULTIPROCESSOR
470 1.15 jmcneill cpu1->cpu_int2_enable1 = cpu0->cpu_int2_enable1;
471 1.15 jmcneill mips3_sd(cpu1->cpu_int2_en1, cpu1->cpu_int2_enable1);
472 1.3 matt #endif
473 1.15 jmcneill }
474 1.3 matt break;
475 1.1 hikaru }
476 1.1 hikaru
477 1.3 matt mutex_exit(&octeon_intr_lock);
478 1.3 matt
479 1.3 matt return ih;
480 1.1 hikaru }
481 1.1 hikaru
482 1.1 hikaru void
483 1.1 hikaru octeon_intr_disestablish(void *cookie)
484 1.1 hikaru {
485 1.3 matt struct octeon_intrhand * const ih = cookie;
486 1.3 matt const int irq = ih->ih_irq & (NIRQS-1);
487 1.3 matt const int ipl = ih->ih_ipl;
488 1.1 hikaru
489 1.3 matt mutex_enter(&octeon_intr_lock);
490 1.1 hikaru
491 1.1 hikaru /*
492 1.3 matt * First disable it.
493 1.1 hikaru */
494 1.15 jmcneill const int bank = irq / 64;
495 1.15 jmcneill const uint64_t irq_mask = ~__BIT(irq % 64);
496 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
497 1.3 matt #if MULTIPROCESSOR
498 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
499 1.3 matt #endif
500 1.3 matt
501 1.3 matt switch (ipl) {
502 1.3 matt case IPL_VM:
503 1.15 jmcneill if (bank == 0) {
504 1.15 jmcneill cpu0->cpu_int0_enable0 &= ~irq_mask;
505 1.15 jmcneill mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
506 1.15 jmcneill } else {
507 1.15 jmcneill cpu0->cpu_int0_enable1 &= ~irq_mask;
508 1.15 jmcneill mips3_sd(cpu0->cpu_int0_en1, cpu0->cpu_int0_enable1);
509 1.15 jmcneill }
510 1.3 matt break;
511 1.3 matt
512 1.3 matt case IPL_SCHED:
513 1.15 jmcneill if (bank == 0) {
514 1.15 jmcneill cpu0->cpu_int1_enable0 &= ~irq_mask;
515 1.15 jmcneill mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
516 1.15 jmcneill #ifdef MULTIPROCESSOR
517 1.15 jmcneill cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
518 1.15 jmcneill mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
519 1.15 jmcneill #endif
520 1.15 jmcneill } else {
521 1.15 jmcneill cpu0->cpu_int1_enable1 &= ~irq_mask;
522 1.15 jmcneill mips3_sd(cpu0->cpu_int1_en1, cpu0->cpu_int1_enable1);
523 1.3 matt #ifdef MULTIPROCESSOR
524 1.15 jmcneill cpu1->cpu_int1_enable1 = cpu0->cpu_int1_enable1;
525 1.15 jmcneill mips3_sd(cpu1->cpu_int1_en1, cpu1->cpu_int1_enable1);
526 1.3 matt #endif
527 1.15 jmcneill }
528 1.3 matt break;
529 1.3 matt
530 1.3 matt case IPL_DDB:
531 1.3 matt case IPL_HIGH:
532 1.15 jmcneill if (bank == 0) {
533 1.15 jmcneill cpu0->cpu_int2_enable0 &= ~irq_mask;
534 1.15 jmcneill mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
535 1.15 jmcneill #ifdef MULTIPROCESSOR
536 1.15 jmcneill cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
537 1.15 jmcneill mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
538 1.15 jmcneill #endif
539 1.15 jmcneill } else {
540 1.15 jmcneill cpu0->cpu_int2_enable1 &= ~irq_mask;
541 1.15 jmcneill mips3_sd(cpu0->cpu_int2_en1, cpu0->cpu_int2_enable1);
542 1.3 matt #ifdef MULTIPROCESSOR
543 1.15 jmcneill cpu1->cpu_int2_enable1 = cpu0->cpu_int2_enable1;
544 1.15 jmcneill mips3_sd(cpu1->cpu_int2_en1, cpu1->cpu_int2_enable1);
545 1.3 matt #endif
546 1.15 jmcneill }
547 1.3 matt break;
548 1.3 matt }
549 1.1 hikaru
550 1.1 hikaru /*
551 1.3 matt * Now remove it since we shouldn't get interrupts for it.
552 1.1 hikaru */
553 1.11 simonb octciu_intrs[irq] = NULL;
554 1.3 matt
555 1.3 matt mutex_exit(&octeon_intr_lock);
556 1.1 hikaru
557 1.3 matt kmem_free(ih, sizeof(*ih));
558 1.1 hikaru }
559 1.1 hikaru
560 1.1 hikaru void
561 1.1 hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
562 1.1 hikaru {
563 1.3 matt struct cpu_info * const ci = curcpu();
564 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
565 1.15 jmcneill int bank;
566 1.3 matt
567 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
568 1.3 matt KASSERT((ipending & ~MIPS_INT_MASK) == 0);
569 1.3 matt KASSERT(ipending & MIPS_HARD_INT_MASK);
570 1.15 jmcneill uint64_t hwpend[2] = { 0, 0 };
571 1.15 jmcneill
572 1.15 jmcneill const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
573 1.1 hikaru
574 1.3 matt if (ipending & MIPS_INT_MASK_2) {
575 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int2_sum0)
576 1.3 matt & cpu->cpu_int2_enable0;
577 1.15 jmcneill hwpend[1] = sum1 & cpu->cpu_int2_enable1;
578 1.3 matt } else if (ipending & MIPS_INT_MASK_1) {
579 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int1_sum0)
580 1.3 matt & cpu->cpu_int1_enable0;
581 1.15 jmcneill hwpend[1] = sum1 & cpu->cpu_int1_enable1;
582 1.3 matt } else if (ipending & MIPS_INT_MASK_0) {
583 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int0_sum0)
584 1.3 matt & cpu->cpu_int0_enable0;
585 1.15 jmcneill hwpend[1] = sum1 & cpu->cpu_int0_enable1;
586 1.3 matt } else {
587 1.3 matt panic("octeon_iointr: unexpected ipending %#x", ipending);
588 1.3 matt }
589 1.15 jmcneill for (bank = 0; bank <= 1; bank++) {
590 1.15 jmcneill while (hwpend[bank] != 0) {
591 1.15 jmcneill const int bit = ffs64(hwpend[bank]) - 1;
592 1.15 jmcneill const int irq = (bank * 64) + bit;
593 1.15 jmcneill hwpend[bank] &= ~__BIT(bit);
594 1.15 jmcneill
595 1.15 jmcneill struct octeon_intrhand * const ih = octciu_intrs[irq];
596 1.15 jmcneill cpu->cpu_intr_evs[irq].ev_count++;
597 1.15 jmcneill if (__predict_true(ih != NULL)) {
598 1.15 jmcneill #ifdef MULTIPROCESSOR
599 1.15 jmcneill if (ipl == IPL_VM) {
600 1.15 jmcneill KERNEL_LOCK(1, NULL);
601 1.15 jmcneill #endif
602 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
603 1.15 jmcneill #ifdef MULTIPROCESSOR
604 1.15 jmcneill KERNEL_UNLOCK_ONE(NULL);
605 1.15 jmcneill } else {
606 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
607 1.15 jmcneill }
608 1.15 jmcneill #endif
609 1.15 jmcneill KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
610 1.3 matt }
611 1.3 matt }
612 1.3 matt }
613 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
614 1.3 matt }
615 1.3 matt
616 1.3 matt #ifdef MULTIPROCESSOR
617 1.3 matt __CTASSERT(NIPIS < 16);
618 1.3 matt
619 1.3 matt int
620 1.3 matt octeon_ipi_intr(void *arg)
621 1.3 matt {
622 1.3 matt struct cpu_info * const ci = curcpu();
623 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
624 1.4 matt uint32_t ipi_mask = (uintptr_t) arg;
625 1.4 matt
626 1.4 matt KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
627 1.4 matt "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
628 1.3 matt
629 1.5 matt ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
630 1.4 matt if (ipi_mask == 0)
631 1.4 matt return 0;
632 1.4 matt
633 1.5 matt mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
634 1.3 matt
635 1.3 matt ipi_mask |= (ipi_mask >> 16);
636 1.3 matt ipi_mask &= __BITS(15,0);
637 1.3 matt
638 1.3 matt KASSERT(ipi_mask < __BIT(NIPIS));
639 1.3 matt
640 1.4 matt #if NWDOG > 0
641 1.4 matt // Handle WDOG requests ourselves.
642 1.4 matt if (ipi_mask & __BIT(IPI_WDOG)) {
643 1.4 matt softint_schedule(cpu->cpu_wdog_sih);
644 1.4 matt atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
645 1.4 matt ipi_mask &= ~__BIT(IPI_WDOG);
646 1.4 matt ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
647 1.4 matt if (__predict_true(ipi_mask == 0))
648 1.4 matt return 1;
649 1.4 matt }
650 1.4 matt #endif
651 1.4 matt
652 1.3 matt /* if the request is clear, it was previously processed */
653 1.3 matt if ((ci->ci_request_ipis & ipi_mask) == 0)
654 1.3 matt return 0;
655 1.3 matt
656 1.3 matt atomic_or_64(&ci->ci_active_ipis, ipi_mask);
657 1.3 matt atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
658 1.3 matt
659 1.3 matt ipi_process(ci, ipi_mask);
660 1.3 matt
661 1.3 matt atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
662 1.3 matt
663 1.3 matt return 1;
664 1.3 matt }
665 1.1 hikaru
666 1.3 matt int
667 1.3 matt octeon_send_ipi(struct cpu_info *ci, int req)
668 1.3 matt {
669 1.3 matt KASSERT(req < NIPIS);
670 1.3 matt if (ci == NULL) {
671 1.4 matt CPU_INFO_ITERATOR cii;
672 1.4 matt for (CPU_INFO_FOREACH(cii, ci)) {
673 1.4 matt if (ci != curcpu()) {
674 1.4 matt octeon_send_ipi(ci, req);
675 1.4 matt }
676 1.4 matt }
677 1.4 matt return 0;
678 1.1 hikaru }
679 1.4 matt KASSERT(cold || ci->ci_softc != NULL);
680 1.4 matt if (ci->ci_softc == NULL)
681 1.4 matt return -1;
682 1.3 matt
683 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
684 1.3 matt uint64_t ipi_mask = __BIT(req);
685 1.3 matt
686 1.7 skrll atomic_or_64(&ci->ci_request_ipis, ipi_mask);
687 1.7 skrll if (req == IPI_SUSPEND || req == IPI_WDOG) {
688 1.3 matt ipi_mask <<= 16;
689 1.1 hikaru }
690 1.3 matt
691 1.5 matt mips3_sd(cpu->cpu_mbox_set, ipi_mask);
692 1.3 matt return 0;
693 1.1 hikaru }
694 1.3 matt #endif /* MULTIPROCESSOR */
695