octeon_intr.c revision 1.16 1 1.16 jmcneill /* $NetBSD: octeon_intr.c,v 1.16 2020/07/17 17:57:16 jmcneill Exp $ */
2 1.1 hikaru /*
3 1.1 hikaru * Copyright 2001, 2002 Wasabi Systems, Inc.
4 1.1 hikaru * All rights reserved.
5 1.1 hikaru *
6 1.1 hikaru * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 1.1 hikaru *
8 1.1 hikaru * Redistribution and use in source and binary forms, with or without
9 1.1 hikaru * modification, are permitted provided that the following conditions
10 1.1 hikaru * are met:
11 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
12 1.1 hikaru * notice, this list of conditions and the following disclaimer.
13 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
15 1.1 hikaru * documentation and/or other materials provided with the distribution.
16 1.1 hikaru * 3. All advertising materials mentioning features or use of this software
17 1.1 hikaru * must display the following acknowledgement:
18 1.1 hikaru * This product includes software developed for the NetBSD Project by
19 1.1 hikaru * Wasabi Systems, Inc.
20 1.1 hikaru * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 1.1 hikaru * or promote products derived from this software without specific prior
22 1.1 hikaru * written permission.
23 1.1 hikaru *
24 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hikaru * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hikaru * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 hikaru * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hikaru * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hikaru * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hikaru * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hikaru * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hikaru * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hikaru * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hikaru */
36 1.1 hikaru
37 1.1 hikaru /*
38 1.1 hikaru * Platform-specific interrupt support for the MIPS Malta.
39 1.1 hikaru */
40 1.1 hikaru
41 1.6 skrll #include "opt_multiprocessor.h"
42 1.6 skrll
43 1.4 matt #include "cpunode.h"
44 1.1 hikaru #define __INTR_PRIVATE
45 1.1 hikaru
46 1.1 hikaru #include <sys/cdefs.h>
47 1.16 jmcneill __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.16 2020/07/17 17:57:16 jmcneill Exp $");
48 1.1 hikaru
49 1.1 hikaru #include <sys/param.h>
50 1.1 hikaru #include <sys/cpu.h>
51 1.1 hikaru #include <sys/systm.h>
52 1.1 hikaru #include <sys/device.h>
53 1.1 hikaru #include <sys/intr.h>
54 1.1 hikaru #include <sys/kernel.h>
55 1.3 matt #include <sys/kmem.h>
56 1.3 matt #include <sys/atomic.h>
57 1.1 hikaru
58 1.1 hikaru #include <lib/libkern/libkern.h>
59 1.1 hikaru
60 1.1 hikaru #include <mips/locore.h>
61 1.1 hikaru
62 1.1 hikaru #include <mips/cavium/dev/octeon_ciureg.h>
63 1.1 hikaru #include <mips/cavium/octeonvar.h>
64 1.1 hikaru
65 1.1 hikaru /*
66 1.1 hikaru * This is a mask of bits to clear in the SR when we go to a
67 1.1 hikaru * given hardware interrupt priority level.
68 1.1 hikaru */
69 1.1 hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
70 1.1 hikaru .sr_bits = {
71 1.1 hikaru [IPL_NONE] = 0,
72 1.1 hikaru [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
73 1.1 hikaru [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
74 1.1 hikaru [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
75 1.1 hikaru [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
76 1.8 skrll | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
77 1.3 matt [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
78 1.3 matt | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
79 1.1 hikaru [IPL_HIGH] = MIPS_INT_MASK,
80 1.1 hikaru },
81 1.1 hikaru };
82 1.1 hikaru
83 1.15 jmcneill const char * octeon_intrnames[NIRQS] = {
84 1.1 hikaru "workq 0",
85 1.1 hikaru "workq 1",
86 1.1 hikaru "workq 2",
87 1.1 hikaru "workq 3",
88 1.1 hikaru "workq 4",
89 1.1 hikaru "workq 5",
90 1.1 hikaru "workq 6",
91 1.1 hikaru "workq 7",
92 1.1 hikaru "workq 8",
93 1.1 hikaru "workq 9",
94 1.1 hikaru "workq 10",
95 1.1 hikaru "workq 11",
96 1.1 hikaru "workq 12",
97 1.1 hikaru "workq 13",
98 1.1 hikaru "workq 14",
99 1.1 hikaru "workq 15",
100 1.1 hikaru "gpio 0",
101 1.1 hikaru "gpio 1",
102 1.1 hikaru "gpio 2",
103 1.1 hikaru "gpio 3",
104 1.1 hikaru "gpio 4",
105 1.1 hikaru "gpio 5",
106 1.1 hikaru "gpio 6",
107 1.1 hikaru "gpio 7",
108 1.1 hikaru "gpio 8",
109 1.1 hikaru "gpio 9",
110 1.1 hikaru "gpio 10",
111 1.1 hikaru "gpio 11",
112 1.1 hikaru "gpio 12",
113 1.1 hikaru "gpio 13",
114 1.1 hikaru "gpio 14",
115 1.1 hikaru "gpio 15",
116 1.1 hikaru "mbox 0-15",
117 1.1 hikaru "mbox 16-31",
118 1.1 hikaru "uart 0",
119 1.1 hikaru "uart 1",
120 1.1 hikaru "pci inta",
121 1.1 hikaru "pci intb",
122 1.1 hikaru "pci intc",
123 1.1 hikaru "pci intd",
124 1.1 hikaru "pci msi 0-15",
125 1.1 hikaru "pci msi 16-31",
126 1.1 hikaru "pci msi 32-47",
127 1.1 hikaru "pci msi 48-63",
128 1.1 hikaru "wdog summary",
129 1.1 hikaru "twsi",
130 1.1 hikaru "rml",
131 1.1 hikaru "trace",
132 1.1 hikaru "gmx drop",
133 1.1 hikaru "reserved",
134 1.1 hikaru "ipd drop",
135 1.1 hikaru "reserved",
136 1.1 hikaru "timer 0",
137 1.1 hikaru "timer 1",
138 1.1 hikaru "timer 2",
139 1.1 hikaru "timer 3",
140 1.1 hikaru "usb",
141 1.1 hikaru "pcm/tdm",
142 1.1 hikaru "mpi/spi",
143 1.1 hikaru "reserved",
144 1.1 hikaru "reserved",
145 1.1 hikaru "reserved",
146 1.1 hikaru "reserved",
147 1.1 hikaru "reserved",
148 1.1 hikaru };
149 1.1 hikaru
150 1.1 hikaru struct octeon_intrhand {
151 1.1 hikaru int (*ih_func)(void *);
152 1.1 hikaru void *ih_arg;
153 1.1 hikaru int ih_irq;
154 1.1 hikaru int ih_ipl;
155 1.1 hikaru };
156 1.1 hikaru
157 1.3 matt #ifdef MULTIPROCESSOR
158 1.3 matt static int octeon_send_ipi(struct cpu_info *, int);
159 1.3 matt static int octeon_ipi_intr(void *);
160 1.3 matt
161 1.3 matt struct octeon_intrhand ipi_intrhands[2] = {
162 1.3 matt [0] = {
163 1.3 matt .ih_func = octeon_ipi_intr,
164 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(15,0),
165 1.12 simonb .ih_irq = CIU_INT_MBOX_15_0,
166 1.3 matt .ih_ipl = IPL_SCHED,
167 1.3 matt },
168 1.3 matt [1] = {
169 1.3 matt .ih_func = octeon_ipi_intr,
170 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(31,16),
171 1.12 simonb .ih_irq = CIU_INT_MBOX_31_16,
172 1.3 matt .ih_ipl = IPL_HIGH,
173 1.3 matt },
174 1.1 hikaru };
175 1.3 matt #endif
176 1.1 hikaru
177 1.11 simonb struct octeon_intrhand *octciu_intrs[NIRQS] = {
178 1.3 matt #ifdef MULTIPROCESSOR
179 1.12 simonb [CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
180 1.12 simonb [CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
181 1.3 matt #endif
182 1.1 hikaru };
183 1.1 hikaru
184 1.3 matt kmutex_t octeon_intr_lock;
185 1.1 hikaru
186 1.3 matt #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
187 1.1 hikaru
188 1.3 matt struct cpu_softc octeon_cpu0_softc = {
189 1.3 matt .cpu_ci = &cpu_info_store,
190 1.3 matt .cpu_int0_sum0 = X(CIU_INT0_SUM0),
191 1.3 matt .cpu_int1_sum0 = X(CIU_INT1_SUM0),
192 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM0),
193 1.1 hikaru
194 1.15 jmcneill .cpu_int_sum1 = X(CIU_INT_SUM1),
195 1.15 jmcneill
196 1.16 jmcneill .cpu_int0_en[0] = X(CIU_INT0_EN0),
197 1.16 jmcneill .cpu_int1_en[0] = X(CIU_INT1_EN0),
198 1.16 jmcneill .cpu_int2_en[0] = X(CIU_INT4_EN00),
199 1.16 jmcneill
200 1.16 jmcneill .cpu_int0_en[1] = X(CIU_INT0_EN1),
201 1.16 jmcneill .cpu_int1_en[1] = X(CIU_INT1_EN1),
202 1.16 jmcneill .cpu_int2_en[1] = X(CIU_INT4_EN01),
203 1.1 hikaru
204 1.3 matt .cpu_int32_en = X(CIU_INT32_EN0),
205 1.1 hikaru
206 1.4 matt .cpu_wdog = X(CIU_WDOG0),
207 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE0),
208 1.4 matt
209 1.3 matt #ifdef MULTIPROCESSOR
210 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET0),
211 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR0),
212 1.3 matt #endif
213 1.3 matt };
214 1.1 hikaru
215 1.3 matt #ifdef MULTIPROCESSOR
216 1.12 simonb /* XXX limit of two CPUs ... */
217 1.3 matt struct cpu_softc octeon_cpu1_softc = {
218 1.3 matt .cpu_int0_sum0 = X(CIU_INT2_SUM0),
219 1.3 matt .cpu_int1_sum0 = X(CIU_INT3_SUM0),
220 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM1),
221 1.3 matt
222 1.15 jmcneill .cpu_int_sum1 = X(CIU_INT_SUM1),
223 1.15 jmcneill
224 1.16 jmcneill .cpu_int0_en[0] = X(CIU_INT2_EN0),
225 1.16 jmcneill .cpu_int1_en[0] = X(CIU_INT3_EN0),
226 1.16 jmcneill .cpu_int2_en[0] = X(CIU_INT4_EN10),
227 1.16 jmcneill
228 1.16 jmcneill .cpu_int0_en[1] = X(CIU_INT2_EN1),
229 1.16 jmcneill .cpu_int1_en[1] = X(CIU_INT3_EN1),
230 1.16 jmcneill .cpu_int2_en[1] = X(CIU_INT4_EN11),
231 1.1 hikaru
232 1.3 matt .cpu_int32_en = X(CIU_INT32_EN1),
233 1.1 hikaru
234 1.12 simonb .cpu_wdog = X(CIU_WDOG(1)),
235 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE1),
236 1.4 matt
237 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET1),
238 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR1),
239 1.3 matt };
240 1.3 matt #endif
241 1.1 hikaru
242 1.4 matt #ifdef DEBUG
243 1.4 matt static void
244 1.4 matt octeon_mbox_test(void)
245 1.4 matt {
246 1.4 matt const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
247 1.4 matt const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
248 1.4 matt const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
249 1.4 matt const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
250 1.4 matt const uint64_t int_sum0 = X(CIU_INT0_SUM0);
251 1.4 matt const uint64_t int_sum1 = X(CIU_INT2_SUM0);
252 1.12 simonb const uint64_t sum_mbox_lo = __BIT(CIU_INT_MBOX_15_0);
253 1.12 simonb const uint64_t sum_mbox_hi = __BIT(CIU_INT_MBOX_31_16);
254 1.4 matt
255 1.5 matt mips3_sd(mbox_clr0, ~0ULL);
256 1.5 matt mips3_sd(mbox_clr1, ~0ULL);
257 1.4 matt
258 1.5 matt uint32_t mbox0 = mips3_ld(mbox_set0);
259 1.5 matt uint32_t mbox1 = mips3_ld(mbox_set1);
260 1.4 matt
261 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
262 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
263 1.4 matt
264 1.5 matt mips3_sd(mbox_set0, __BIT(0));
265 1.4 matt
266 1.5 matt mbox0 = mips3_ld(mbox_set0);
267 1.5 matt mbox1 = mips3_ld(mbox_set1);
268 1.4 matt
269 1.4 matt KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
270 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
271 1.4 matt
272 1.5 matt uint64_t sum0 = mips3_ld(int_sum0);
273 1.5 matt uint64_t sum1 = mips3_ld(int_sum1);
274 1.4 matt
275 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
276 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
277 1.4 matt
278 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
279 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
280 1.4 matt
281 1.5 matt mips3_sd(mbox_clr0, mbox0);
282 1.5 matt mbox0 = mips3_ld(mbox_set0);
283 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
284 1.4 matt
285 1.5 matt mips3_sd(mbox_set0, __BIT(16));
286 1.4 matt
287 1.5 matt mbox0 = mips3_ld(mbox_set0);
288 1.5 matt mbox1 = mips3_ld(mbox_set1);
289 1.4 matt
290 1.4 matt KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
291 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
292 1.4 matt
293 1.5 matt sum0 = mips3_ld(int_sum0);
294 1.5 matt sum1 = mips3_ld(int_sum1);
295 1.4 matt
296 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
297 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
298 1.4 matt
299 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
300 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
301 1.4 matt }
302 1.4 matt #endif
303 1.4 matt
304 1.3 matt #undef X
305 1.1 hikaru
306 1.3 matt void
307 1.3 matt octeon_intr_init(struct cpu_info *ci)
308 1.3 matt {
309 1.9 mrg #ifdef DIAGNOSTIC
310 1.3 matt const int cpunum = cpu_index(ci);
311 1.9 mrg #endif
312 1.3 matt const char * const xname = cpu_name(ci);
313 1.4 matt struct cpu_softc *cpu = ci->ci_softc;
314 1.16 jmcneill int bank;
315 1.1 hikaru
316 1.1 hikaru
317 1.3 matt if (ci->ci_cpuid == 0) {
318 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu0_softc);
319 1.4 matt ipl_sr_map = octeon_ipl_sr_map;
320 1.3 matt mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
321 1.3 matt #ifdef MULTIPROCESSOR
322 1.3 matt mips_locoresw.lsw_send_ipi = octeon_send_ipi;
323 1.3 matt #endif
324 1.4 matt #ifdef DEBUG
325 1.4 matt octeon_mbox_test();
326 1.4 matt #endif
327 1.3 matt } else {
328 1.3 matt KASSERT(cpunum == 1);
329 1.3 matt #ifdef MULTIPROCESSOR
330 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu1_softc);
331 1.3 matt #endif
332 1.1 hikaru }
333 1.1 hikaru
334 1.3 matt #ifdef MULTIPROCESSOR
335 1.3 matt // Enable the IPIs
336 1.16 jmcneill cpu->cpu_int1_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
337 1.16 jmcneill cpu->cpu_int2_enable[0] |= __BIT(CIU_INT_MBOX_31_16);
338 1.1 hikaru #endif
339 1.1 hikaru
340 1.16 jmcneill if (ci->ci_dev) {
341 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
342 1.16 jmcneill aprint_verbose_dev(ci->ci_dev,
343 1.16 jmcneill "enabling intr masks %u "
344 1.16 jmcneill " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
345 1.16 jmcneill bank,
346 1.16 jmcneill cpu->cpu_int0_enable[0],
347 1.16 jmcneill cpu->cpu_int1_enable[0],
348 1.16 jmcneill cpu->cpu_int2_enable[0]);
349 1.16 jmcneill }
350 1.16 jmcneill }
351 1.16 jmcneill
352 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
353 1.16 jmcneill mips3_sd(cpu->cpu_int0_en[bank], cpu->cpu_int0_enable[bank]);
354 1.16 jmcneill mips3_sd(cpu->cpu_int1_en[bank], cpu->cpu_int1_enable[bank]);
355 1.16 jmcneill mips3_sd(cpu->cpu_int2_en[bank], cpu->cpu_int2_enable[bank]);
356 1.16 jmcneill }
357 1.3 matt
358 1.5 matt mips3_sd(cpu->cpu_int32_en, 0);
359 1.3 matt
360 1.3 matt #ifdef MULTIPROCESSOR
361 1.5 matt mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
362 1.3 matt #endif
363 1.1 hikaru
364 1.15 jmcneill for (int i = 0; i < NIRQS; i++) {
365 1.15 jmcneill if (octeon_intrnames[i] == NULL)
366 1.15 jmcneill octeon_intrnames[i] = kmem_asprintf("irq %d", i);
367 1.3 matt evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
368 1.3 matt EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
369 1.1 hikaru }
370 1.1 hikaru }
371 1.1 hikaru
372 1.1 hikaru void
373 1.1 hikaru octeon_cal_timer(int corefreq)
374 1.1 hikaru {
375 1.1 hikaru /* Compute the number of cycles per second. */
376 1.1 hikaru curcpu()->ci_cpu_freq = corefreq;
377 1.1 hikaru
378 1.1 hikaru /* Compute the number of ticks for hz. */
379 1.1 hikaru curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
380 1.1 hikaru
381 1.1 hikaru /* Compute the delay divisor and reciprical. */
382 1.1 hikaru curcpu()->ci_divisor_delay =
383 1.1 hikaru ((curcpu()->ci_cpu_freq + 500000) / 1000000);
384 1.1 hikaru #if 0
385 1.1 hikaru MIPS_SET_CI_RECIPRICAL(curcpu());
386 1.1 hikaru #endif
387 1.1 hikaru
388 1.1 hikaru mips3_cp0_count_write(0);
389 1.1 hikaru mips3_cp0_compare_write(0);
390 1.1 hikaru }
391 1.1 hikaru
392 1.1 hikaru void *
393 1.3 matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
394 1.1 hikaru {
395 1.1 hikaru struct octeon_intrhand *ih;
396 1.1 hikaru
397 1.1 hikaru if (irq >= NIRQS)
398 1.1 hikaru panic("octeon_intr_establish: bogus IRQ %d", irq);
399 1.3 matt if (ipl < IPL_VM)
400 1.3 matt panic("octeon_intr_establish: bogus IPL %d", ipl);
401 1.1 hikaru
402 1.3 matt ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
403 1.1 hikaru if (ih == NULL)
404 1.1 hikaru return (NULL);
405 1.1 hikaru
406 1.1 hikaru ih->ih_func = func;
407 1.1 hikaru ih->ih_arg = arg;
408 1.1 hikaru ih->ih_irq = irq;
409 1.3 matt ih->ih_ipl = ipl;
410 1.1 hikaru
411 1.3 matt mutex_enter(&octeon_intr_lock);
412 1.1 hikaru
413 1.1 hikaru /*
414 1.3 matt * First, make it known.
415 1.1 hikaru */
416 1.11 simonb KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
417 1.11 simonb irq, octciu_intrs[irq]);
418 1.3 matt
419 1.11 simonb octciu_intrs[irq] = ih;
420 1.3 matt membar_producer();
421 1.1 hikaru
422 1.1 hikaru /*
423 1.1 hikaru * Now enable it.
424 1.1 hikaru */
425 1.15 jmcneill const int bank = irq / 64;
426 1.15 jmcneill const uint64_t irq_mask = __BIT(irq % 64);
427 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
428 1.3 matt #if MULTIPROCESSOR
429 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
430 1.3 matt #endif
431 1.3 matt
432 1.3 matt switch (ipl) {
433 1.3 matt case IPL_VM:
434 1.16 jmcneill cpu0->cpu_int0_enable[bank] |= irq_mask;
435 1.16 jmcneill mips3_sd(cpu0->cpu_int0_en[bank], cpu0->cpu_int0_enable[bank]);
436 1.3 matt break;
437 1.1 hikaru
438 1.3 matt case IPL_SCHED:
439 1.16 jmcneill cpu0->cpu_int1_enable[bank] |= irq_mask;
440 1.16 jmcneill mips3_sd(cpu0->cpu_int1_en[bank], cpu0->cpu_int1_enable[bank]);
441 1.3 matt #ifdef MULTIPROCESSOR
442 1.16 jmcneill cpu1->cpu_int1_enable[bank] = cpu0->cpu_int1_enable[bank];
443 1.16 jmcneill mips3_sd(cpu1->cpu_int1_en[bank], cpu1->cpu_int1_enable[bank]);
444 1.3 matt #endif
445 1.15 jmcneill
446 1.3 matt break;
447 1.3 matt
448 1.3 matt case IPL_DDB:
449 1.3 matt case IPL_HIGH:
450 1.16 jmcneill cpu0->cpu_int2_enable[bank] |= irq_mask;
451 1.16 jmcneill mips3_sd(cpu0->cpu_int2_en[bank], cpu0->cpu_int2_enable[bank]);
452 1.3 matt #ifdef MULTIPROCESSOR
453 1.16 jmcneill cpu1->cpu_int2_enable[bank] = cpu0->cpu_int2_enable[bank];
454 1.16 jmcneill mips3_sd(cpu1->cpu_int2_en[bank], cpu1->cpu_int2_enable[bank]);
455 1.3 matt #endif
456 1.16 jmcneill
457 1.3 matt break;
458 1.1 hikaru }
459 1.1 hikaru
460 1.3 matt mutex_exit(&octeon_intr_lock);
461 1.3 matt
462 1.3 matt return ih;
463 1.1 hikaru }
464 1.1 hikaru
465 1.1 hikaru void
466 1.1 hikaru octeon_intr_disestablish(void *cookie)
467 1.1 hikaru {
468 1.3 matt struct octeon_intrhand * const ih = cookie;
469 1.3 matt const int irq = ih->ih_irq & (NIRQS-1);
470 1.3 matt const int ipl = ih->ih_ipl;
471 1.1 hikaru
472 1.3 matt mutex_enter(&octeon_intr_lock);
473 1.1 hikaru
474 1.1 hikaru /*
475 1.3 matt * First disable it.
476 1.1 hikaru */
477 1.15 jmcneill const int bank = irq / 64;
478 1.15 jmcneill const uint64_t irq_mask = ~__BIT(irq % 64);
479 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
480 1.3 matt #if MULTIPROCESSOR
481 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
482 1.3 matt #endif
483 1.3 matt
484 1.3 matt switch (ipl) {
485 1.3 matt case IPL_VM:
486 1.16 jmcneill cpu0->cpu_int0_enable[bank] &= ~irq_mask;
487 1.16 jmcneill mips3_sd(cpu0->cpu_int0_en[bank], cpu0->cpu_int0_enable[bank]);
488 1.3 matt break;
489 1.3 matt
490 1.3 matt case IPL_SCHED:
491 1.16 jmcneill cpu0->cpu_int1_enable[bank] &= ~irq_mask;
492 1.16 jmcneill mips3_sd(cpu0->cpu_int1_en[bank], cpu0->cpu_int1_enable[bank]);
493 1.3 matt #ifdef MULTIPROCESSOR
494 1.16 jmcneill cpu1->cpu_int1_enable[bank] = cpu0->cpu_int1_enable[bank];
495 1.16 jmcneill mips3_sd(cpu1->cpu_int1_en[bank], cpu1->cpu_int1_enable[bank]);
496 1.3 matt #endif
497 1.3 matt break;
498 1.3 matt
499 1.3 matt case IPL_DDB:
500 1.3 matt case IPL_HIGH:
501 1.16 jmcneill cpu0->cpu_int2_enable[bank] &= ~irq_mask;
502 1.16 jmcneill mips3_sd(cpu0->cpu_int2_en[bank], cpu0->cpu_int2_enable[bank]);
503 1.3 matt #ifdef MULTIPROCESSOR
504 1.16 jmcneill cpu1->cpu_int2_enable[bank] = cpu0->cpu_int2_enable[bank];
505 1.16 jmcneill mips3_sd(cpu1->cpu_int2_en[bank], cpu1->cpu_int2_enable[bank]);
506 1.3 matt #endif
507 1.3 matt break;
508 1.3 matt }
509 1.1 hikaru
510 1.1 hikaru /*
511 1.3 matt * Now remove it since we shouldn't get interrupts for it.
512 1.1 hikaru */
513 1.11 simonb octciu_intrs[irq] = NULL;
514 1.3 matt
515 1.3 matt mutex_exit(&octeon_intr_lock);
516 1.1 hikaru
517 1.3 matt kmem_free(ih, sizeof(*ih));
518 1.1 hikaru }
519 1.1 hikaru
520 1.1 hikaru void
521 1.1 hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
522 1.1 hikaru {
523 1.3 matt struct cpu_info * const ci = curcpu();
524 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
525 1.15 jmcneill int bank;
526 1.3 matt
527 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
528 1.3 matt KASSERT((ipending & ~MIPS_INT_MASK) == 0);
529 1.3 matt KASSERT(ipending & MIPS_HARD_INT_MASK);
530 1.15 jmcneill uint64_t hwpend[2] = { 0, 0 };
531 1.15 jmcneill
532 1.15 jmcneill const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
533 1.1 hikaru
534 1.3 matt if (ipending & MIPS_INT_MASK_2) {
535 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int2_sum0)
536 1.16 jmcneill & cpu->cpu_int2_enable[0];
537 1.16 jmcneill hwpend[1] = sum1 & cpu->cpu_int2_enable[1];
538 1.3 matt } else if (ipending & MIPS_INT_MASK_1) {
539 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int1_sum0)
540 1.16 jmcneill & cpu->cpu_int1_enable[0];
541 1.16 jmcneill hwpend[1] = sum1 & cpu->cpu_int1_enable[1];
542 1.3 matt } else if (ipending & MIPS_INT_MASK_0) {
543 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int0_sum0)
544 1.16 jmcneill & cpu->cpu_int0_enable[0];
545 1.16 jmcneill hwpend[1] = sum1 & cpu->cpu_int0_enable[1];
546 1.3 matt } else {
547 1.3 matt panic("octeon_iointr: unexpected ipending %#x", ipending);
548 1.3 matt }
549 1.15 jmcneill for (bank = 0; bank <= 1; bank++) {
550 1.15 jmcneill while (hwpend[bank] != 0) {
551 1.15 jmcneill const int bit = ffs64(hwpend[bank]) - 1;
552 1.15 jmcneill const int irq = (bank * 64) + bit;
553 1.15 jmcneill hwpend[bank] &= ~__BIT(bit);
554 1.15 jmcneill
555 1.15 jmcneill struct octeon_intrhand * const ih = octciu_intrs[irq];
556 1.15 jmcneill cpu->cpu_intr_evs[irq].ev_count++;
557 1.15 jmcneill if (__predict_true(ih != NULL)) {
558 1.15 jmcneill #ifdef MULTIPROCESSOR
559 1.15 jmcneill if (ipl == IPL_VM) {
560 1.15 jmcneill KERNEL_LOCK(1, NULL);
561 1.15 jmcneill #endif
562 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
563 1.15 jmcneill #ifdef MULTIPROCESSOR
564 1.15 jmcneill KERNEL_UNLOCK_ONE(NULL);
565 1.15 jmcneill } else {
566 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
567 1.15 jmcneill }
568 1.15 jmcneill #endif
569 1.15 jmcneill KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
570 1.3 matt }
571 1.3 matt }
572 1.3 matt }
573 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
574 1.3 matt }
575 1.3 matt
576 1.3 matt #ifdef MULTIPROCESSOR
577 1.3 matt __CTASSERT(NIPIS < 16);
578 1.3 matt
579 1.3 matt int
580 1.3 matt octeon_ipi_intr(void *arg)
581 1.3 matt {
582 1.3 matt struct cpu_info * const ci = curcpu();
583 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
584 1.4 matt uint32_t ipi_mask = (uintptr_t) arg;
585 1.4 matt
586 1.4 matt KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
587 1.4 matt "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
588 1.3 matt
589 1.5 matt ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
590 1.4 matt if (ipi_mask == 0)
591 1.4 matt return 0;
592 1.4 matt
593 1.5 matt mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
594 1.3 matt
595 1.3 matt ipi_mask |= (ipi_mask >> 16);
596 1.3 matt ipi_mask &= __BITS(15,0);
597 1.3 matt
598 1.3 matt KASSERT(ipi_mask < __BIT(NIPIS));
599 1.3 matt
600 1.4 matt #if NWDOG > 0
601 1.4 matt // Handle WDOG requests ourselves.
602 1.4 matt if (ipi_mask & __BIT(IPI_WDOG)) {
603 1.4 matt softint_schedule(cpu->cpu_wdog_sih);
604 1.4 matt atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
605 1.4 matt ipi_mask &= ~__BIT(IPI_WDOG);
606 1.4 matt ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
607 1.4 matt if (__predict_true(ipi_mask == 0))
608 1.4 matt return 1;
609 1.4 matt }
610 1.4 matt #endif
611 1.4 matt
612 1.3 matt /* if the request is clear, it was previously processed */
613 1.3 matt if ((ci->ci_request_ipis & ipi_mask) == 0)
614 1.3 matt return 0;
615 1.3 matt
616 1.3 matt atomic_or_64(&ci->ci_active_ipis, ipi_mask);
617 1.3 matt atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
618 1.3 matt
619 1.3 matt ipi_process(ci, ipi_mask);
620 1.3 matt
621 1.3 matt atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
622 1.3 matt
623 1.3 matt return 1;
624 1.3 matt }
625 1.1 hikaru
626 1.3 matt int
627 1.3 matt octeon_send_ipi(struct cpu_info *ci, int req)
628 1.3 matt {
629 1.3 matt KASSERT(req < NIPIS);
630 1.3 matt if (ci == NULL) {
631 1.4 matt CPU_INFO_ITERATOR cii;
632 1.4 matt for (CPU_INFO_FOREACH(cii, ci)) {
633 1.4 matt if (ci != curcpu()) {
634 1.4 matt octeon_send_ipi(ci, req);
635 1.4 matt }
636 1.4 matt }
637 1.4 matt return 0;
638 1.1 hikaru }
639 1.4 matt KASSERT(cold || ci->ci_softc != NULL);
640 1.4 matt if (ci->ci_softc == NULL)
641 1.4 matt return -1;
642 1.3 matt
643 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
644 1.3 matt uint64_t ipi_mask = __BIT(req);
645 1.3 matt
646 1.7 skrll atomic_or_64(&ci->ci_request_ipis, ipi_mask);
647 1.7 skrll if (req == IPI_SUSPEND || req == IPI_WDOG) {
648 1.3 matt ipi_mask <<= 16;
649 1.1 hikaru }
650 1.3 matt
651 1.5 matt mips3_sd(cpu->cpu_mbox_set, ipi_mask);
652 1.3 matt return 0;
653 1.1 hikaru }
654 1.3 matt #endif /* MULTIPROCESSOR */
655