octeon_intr.c revision 1.17 1 1.17 jmcneill /* $NetBSD: octeon_intr.c,v 1.17 2020/07/17 19:40:47 jmcneill Exp $ */
2 1.1 hikaru /*
3 1.1 hikaru * Copyright 2001, 2002 Wasabi Systems, Inc.
4 1.1 hikaru * All rights reserved.
5 1.1 hikaru *
6 1.1 hikaru * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 1.1 hikaru *
8 1.1 hikaru * Redistribution and use in source and binary forms, with or without
9 1.1 hikaru * modification, are permitted provided that the following conditions
10 1.1 hikaru * are met:
11 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
12 1.1 hikaru * notice, this list of conditions and the following disclaimer.
13 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
15 1.1 hikaru * documentation and/or other materials provided with the distribution.
16 1.1 hikaru * 3. All advertising materials mentioning features or use of this software
17 1.1 hikaru * must display the following acknowledgement:
18 1.1 hikaru * This product includes software developed for the NetBSD Project by
19 1.1 hikaru * Wasabi Systems, Inc.
20 1.1 hikaru * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 1.1 hikaru * or promote products derived from this software without specific prior
22 1.1 hikaru * written permission.
23 1.1 hikaru *
24 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hikaru * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hikaru * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 hikaru * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hikaru * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hikaru * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hikaru * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hikaru * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hikaru * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hikaru * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hikaru */
36 1.1 hikaru
37 1.1 hikaru /*
38 1.1 hikaru * Platform-specific interrupt support for the MIPS Malta.
39 1.1 hikaru */
40 1.1 hikaru
41 1.6 skrll #include "opt_multiprocessor.h"
42 1.6 skrll
43 1.4 matt #include "cpunode.h"
44 1.1 hikaru #define __INTR_PRIVATE
45 1.1 hikaru
46 1.1 hikaru #include <sys/cdefs.h>
47 1.17 jmcneill __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.17 2020/07/17 19:40:47 jmcneill Exp $");
48 1.1 hikaru
49 1.1 hikaru #include <sys/param.h>
50 1.1 hikaru #include <sys/cpu.h>
51 1.1 hikaru #include <sys/systm.h>
52 1.1 hikaru #include <sys/device.h>
53 1.1 hikaru #include <sys/intr.h>
54 1.1 hikaru #include <sys/kernel.h>
55 1.3 matt #include <sys/kmem.h>
56 1.3 matt #include <sys/atomic.h>
57 1.1 hikaru
58 1.1 hikaru #include <lib/libkern/libkern.h>
59 1.1 hikaru
60 1.1 hikaru #include <mips/locore.h>
61 1.1 hikaru
62 1.1 hikaru #include <mips/cavium/dev/octeon_ciureg.h>
63 1.1 hikaru #include <mips/cavium/octeonvar.h>
64 1.1 hikaru
65 1.1 hikaru /*
66 1.1 hikaru * This is a mask of bits to clear in the SR when we go to a
67 1.1 hikaru * given hardware interrupt priority level.
68 1.1 hikaru */
69 1.1 hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
70 1.1 hikaru .sr_bits = {
71 1.1 hikaru [IPL_NONE] = 0,
72 1.1 hikaru [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
73 1.1 hikaru [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
74 1.1 hikaru [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
75 1.1 hikaru [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
76 1.8 skrll | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
77 1.3 matt [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
78 1.3 matt | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
79 1.1 hikaru [IPL_HIGH] = MIPS_INT_MASK,
80 1.1 hikaru },
81 1.1 hikaru };
82 1.1 hikaru
83 1.15 jmcneill const char * octeon_intrnames[NIRQS] = {
84 1.1 hikaru "workq 0",
85 1.1 hikaru "workq 1",
86 1.1 hikaru "workq 2",
87 1.1 hikaru "workq 3",
88 1.1 hikaru "workq 4",
89 1.1 hikaru "workq 5",
90 1.1 hikaru "workq 6",
91 1.1 hikaru "workq 7",
92 1.1 hikaru "workq 8",
93 1.1 hikaru "workq 9",
94 1.1 hikaru "workq 10",
95 1.1 hikaru "workq 11",
96 1.1 hikaru "workq 12",
97 1.1 hikaru "workq 13",
98 1.1 hikaru "workq 14",
99 1.1 hikaru "workq 15",
100 1.1 hikaru "gpio 0",
101 1.1 hikaru "gpio 1",
102 1.1 hikaru "gpio 2",
103 1.1 hikaru "gpio 3",
104 1.1 hikaru "gpio 4",
105 1.1 hikaru "gpio 5",
106 1.1 hikaru "gpio 6",
107 1.1 hikaru "gpio 7",
108 1.1 hikaru "gpio 8",
109 1.1 hikaru "gpio 9",
110 1.1 hikaru "gpio 10",
111 1.1 hikaru "gpio 11",
112 1.1 hikaru "gpio 12",
113 1.1 hikaru "gpio 13",
114 1.1 hikaru "gpio 14",
115 1.1 hikaru "gpio 15",
116 1.1 hikaru "mbox 0-15",
117 1.1 hikaru "mbox 16-31",
118 1.1 hikaru "uart 0",
119 1.1 hikaru "uart 1",
120 1.1 hikaru "pci inta",
121 1.1 hikaru "pci intb",
122 1.1 hikaru "pci intc",
123 1.1 hikaru "pci intd",
124 1.1 hikaru "pci msi 0-15",
125 1.1 hikaru "pci msi 16-31",
126 1.1 hikaru "pci msi 32-47",
127 1.1 hikaru "pci msi 48-63",
128 1.1 hikaru "wdog summary",
129 1.1 hikaru "twsi",
130 1.1 hikaru "rml",
131 1.1 hikaru "trace",
132 1.1 hikaru "gmx drop",
133 1.1 hikaru "reserved",
134 1.1 hikaru "ipd drop",
135 1.1 hikaru "reserved",
136 1.1 hikaru "timer 0",
137 1.1 hikaru "timer 1",
138 1.1 hikaru "timer 2",
139 1.1 hikaru "timer 3",
140 1.1 hikaru "usb",
141 1.1 hikaru "pcm/tdm",
142 1.1 hikaru "mpi/spi",
143 1.1 hikaru "reserved",
144 1.1 hikaru "reserved",
145 1.1 hikaru "reserved",
146 1.1 hikaru "reserved",
147 1.1 hikaru "reserved",
148 1.1 hikaru };
149 1.1 hikaru
150 1.1 hikaru struct octeon_intrhand {
151 1.1 hikaru int (*ih_func)(void *);
152 1.1 hikaru void *ih_arg;
153 1.1 hikaru int ih_irq;
154 1.1 hikaru int ih_ipl;
155 1.1 hikaru };
156 1.1 hikaru
157 1.3 matt #ifdef MULTIPROCESSOR
158 1.3 matt static int octeon_send_ipi(struct cpu_info *, int);
159 1.3 matt static int octeon_ipi_intr(void *);
160 1.3 matt
161 1.3 matt struct octeon_intrhand ipi_intrhands[2] = {
162 1.3 matt [0] = {
163 1.3 matt .ih_func = octeon_ipi_intr,
164 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(15,0),
165 1.12 simonb .ih_irq = CIU_INT_MBOX_15_0,
166 1.3 matt .ih_ipl = IPL_SCHED,
167 1.3 matt },
168 1.3 matt [1] = {
169 1.3 matt .ih_func = octeon_ipi_intr,
170 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(31,16),
171 1.12 simonb .ih_irq = CIU_INT_MBOX_31_16,
172 1.3 matt .ih_ipl = IPL_HIGH,
173 1.3 matt },
174 1.1 hikaru };
175 1.17 jmcneill
176 1.17 jmcneill #define OCTEON_IPI_SCHED(n) __BIT((n) + 0)
177 1.17 jmcneill #define OCTEON_IPI_HIGH(n) __BIT((n) + 16)
178 1.17 jmcneill
179 1.17 jmcneill static uint64_t octeon_ipi_mask[NIPIS] = {
180 1.17 jmcneill [IPI_NOP] = OCTEON_IPI_SCHED(IPI_NOP),
181 1.17 jmcneill [IPI_AST] = OCTEON_IPI_SCHED(IPI_AST),
182 1.17 jmcneill [IPI_SHOOTDOWN] = OCTEON_IPI_SCHED(IPI_SHOOTDOWN),
183 1.17 jmcneill [IPI_SYNCICACHE] = OCTEON_IPI_SCHED(IPI_SYNCICACHE),
184 1.17 jmcneill [IPI_KPREEMPT] = OCTEON_IPI_SCHED(IPI_KPREEMPT),
185 1.17 jmcneill [IPI_SUSPEND] = OCTEON_IPI_HIGH(IPI_SUSPEND),
186 1.17 jmcneill [IPI_HALT] = OCTEON_IPI_HIGH(IPI_HALT),
187 1.17 jmcneill [IPI_XCALL] = OCTEON_IPI_HIGH(IPI_XCALL),
188 1.17 jmcneill [IPI_GENERIC] = OCTEON_IPI_HIGH(IPI_GENERIC),
189 1.17 jmcneill [IPI_WDOG] = OCTEON_IPI_HIGH(IPI_WDOG),
190 1.17 jmcneill };
191 1.3 matt #endif
192 1.1 hikaru
193 1.11 simonb struct octeon_intrhand *octciu_intrs[NIRQS] = {
194 1.3 matt #ifdef MULTIPROCESSOR
195 1.12 simonb [CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
196 1.12 simonb [CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
197 1.3 matt #endif
198 1.1 hikaru };
199 1.1 hikaru
200 1.3 matt kmutex_t octeon_intr_lock;
201 1.1 hikaru
202 1.3 matt #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
203 1.1 hikaru
204 1.3 matt struct cpu_softc octeon_cpu0_softc = {
205 1.3 matt .cpu_ci = &cpu_info_store,
206 1.3 matt .cpu_int0_sum0 = X(CIU_INT0_SUM0),
207 1.3 matt .cpu_int1_sum0 = X(CIU_INT1_SUM0),
208 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM0),
209 1.1 hikaru
210 1.15 jmcneill .cpu_int_sum1 = X(CIU_INT_SUM1),
211 1.15 jmcneill
212 1.16 jmcneill .cpu_int0_en[0] = X(CIU_INT0_EN0),
213 1.16 jmcneill .cpu_int1_en[0] = X(CIU_INT1_EN0),
214 1.16 jmcneill .cpu_int2_en[0] = X(CIU_INT4_EN00),
215 1.16 jmcneill
216 1.16 jmcneill .cpu_int0_en[1] = X(CIU_INT0_EN1),
217 1.16 jmcneill .cpu_int1_en[1] = X(CIU_INT1_EN1),
218 1.16 jmcneill .cpu_int2_en[1] = X(CIU_INT4_EN01),
219 1.1 hikaru
220 1.3 matt .cpu_int32_en = X(CIU_INT32_EN0),
221 1.1 hikaru
222 1.4 matt .cpu_wdog = X(CIU_WDOG0),
223 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE0),
224 1.4 matt
225 1.3 matt #ifdef MULTIPROCESSOR
226 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET0),
227 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR0),
228 1.3 matt #endif
229 1.3 matt };
230 1.1 hikaru
231 1.3 matt #ifdef MULTIPROCESSOR
232 1.12 simonb /* XXX limit of two CPUs ... */
233 1.3 matt struct cpu_softc octeon_cpu1_softc = {
234 1.3 matt .cpu_int0_sum0 = X(CIU_INT2_SUM0),
235 1.3 matt .cpu_int1_sum0 = X(CIU_INT3_SUM0),
236 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM1),
237 1.3 matt
238 1.15 jmcneill .cpu_int_sum1 = X(CIU_INT_SUM1),
239 1.15 jmcneill
240 1.16 jmcneill .cpu_int0_en[0] = X(CIU_INT2_EN0),
241 1.16 jmcneill .cpu_int1_en[0] = X(CIU_INT3_EN0),
242 1.16 jmcneill .cpu_int2_en[0] = X(CIU_INT4_EN10),
243 1.16 jmcneill
244 1.16 jmcneill .cpu_int0_en[1] = X(CIU_INT2_EN1),
245 1.16 jmcneill .cpu_int1_en[1] = X(CIU_INT3_EN1),
246 1.16 jmcneill .cpu_int2_en[1] = X(CIU_INT4_EN11),
247 1.1 hikaru
248 1.3 matt .cpu_int32_en = X(CIU_INT32_EN1),
249 1.1 hikaru
250 1.12 simonb .cpu_wdog = X(CIU_WDOG(1)),
251 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE1),
252 1.4 matt
253 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET1),
254 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR1),
255 1.3 matt };
256 1.3 matt #endif
257 1.1 hikaru
258 1.4 matt #ifdef DEBUG
259 1.4 matt static void
260 1.4 matt octeon_mbox_test(void)
261 1.4 matt {
262 1.4 matt const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
263 1.4 matt const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
264 1.4 matt const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
265 1.4 matt const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
266 1.4 matt const uint64_t int_sum0 = X(CIU_INT0_SUM0);
267 1.4 matt const uint64_t int_sum1 = X(CIU_INT2_SUM0);
268 1.12 simonb const uint64_t sum_mbox_lo = __BIT(CIU_INT_MBOX_15_0);
269 1.12 simonb const uint64_t sum_mbox_hi = __BIT(CIU_INT_MBOX_31_16);
270 1.4 matt
271 1.5 matt mips3_sd(mbox_clr0, ~0ULL);
272 1.5 matt mips3_sd(mbox_clr1, ~0ULL);
273 1.4 matt
274 1.5 matt uint32_t mbox0 = mips3_ld(mbox_set0);
275 1.5 matt uint32_t mbox1 = mips3_ld(mbox_set1);
276 1.4 matt
277 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
278 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
279 1.4 matt
280 1.5 matt mips3_sd(mbox_set0, __BIT(0));
281 1.4 matt
282 1.5 matt mbox0 = mips3_ld(mbox_set0);
283 1.5 matt mbox1 = mips3_ld(mbox_set1);
284 1.4 matt
285 1.4 matt KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
286 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
287 1.4 matt
288 1.5 matt uint64_t sum0 = mips3_ld(int_sum0);
289 1.5 matt uint64_t sum1 = mips3_ld(int_sum1);
290 1.4 matt
291 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
292 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
293 1.4 matt
294 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
295 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
296 1.4 matt
297 1.5 matt mips3_sd(mbox_clr0, mbox0);
298 1.5 matt mbox0 = mips3_ld(mbox_set0);
299 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
300 1.4 matt
301 1.5 matt mips3_sd(mbox_set0, __BIT(16));
302 1.4 matt
303 1.5 matt mbox0 = mips3_ld(mbox_set0);
304 1.5 matt mbox1 = mips3_ld(mbox_set1);
305 1.4 matt
306 1.4 matt KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
307 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
308 1.4 matt
309 1.5 matt sum0 = mips3_ld(int_sum0);
310 1.5 matt sum1 = mips3_ld(int_sum1);
311 1.4 matt
312 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
313 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
314 1.4 matt
315 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
316 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
317 1.4 matt }
318 1.4 matt #endif
319 1.4 matt
320 1.3 matt #undef X
321 1.1 hikaru
322 1.3 matt void
323 1.3 matt octeon_intr_init(struct cpu_info *ci)
324 1.3 matt {
325 1.9 mrg #ifdef DIAGNOSTIC
326 1.3 matt const int cpunum = cpu_index(ci);
327 1.9 mrg #endif
328 1.3 matt const char * const xname = cpu_name(ci);
329 1.4 matt struct cpu_softc *cpu = ci->ci_softc;
330 1.16 jmcneill int bank;
331 1.1 hikaru
332 1.1 hikaru
333 1.3 matt if (ci->ci_cpuid == 0) {
334 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu0_softc);
335 1.4 matt ipl_sr_map = octeon_ipl_sr_map;
336 1.3 matt mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
337 1.3 matt #ifdef MULTIPROCESSOR
338 1.3 matt mips_locoresw.lsw_send_ipi = octeon_send_ipi;
339 1.3 matt #endif
340 1.4 matt #ifdef DEBUG
341 1.4 matt octeon_mbox_test();
342 1.4 matt #endif
343 1.3 matt } else {
344 1.3 matt KASSERT(cpunum == 1);
345 1.3 matt #ifdef MULTIPROCESSOR
346 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu1_softc);
347 1.3 matt #endif
348 1.1 hikaru }
349 1.1 hikaru
350 1.3 matt #ifdef MULTIPROCESSOR
351 1.3 matt // Enable the IPIs
352 1.16 jmcneill cpu->cpu_int1_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
353 1.16 jmcneill cpu->cpu_int2_enable[0] |= __BIT(CIU_INT_MBOX_31_16);
354 1.1 hikaru #endif
355 1.1 hikaru
356 1.16 jmcneill if (ci->ci_dev) {
357 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
358 1.16 jmcneill aprint_verbose_dev(ci->ci_dev,
359 1.16 jmcneill "enabling intr masks %u "
360 1.16 jmcneill " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
361 1.16 jmcneill bank,
362 1.16 jmcneill cpu->cpu_int0_enable[0],
363 1.16 jmcneill cpu->cpu_int1_enable[0],
364 1.16 jmcneill cpu->cpu_int2_enable[0]);
365 1.16 jmcneill }
366 1.16 jmcneill }
367 1.16 jmcneill
368 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
369 1.16 jmcneill mips3_sd(cpu->cpu_int0_en[bank], cpu->cpu_int0_enable[bank]);
370 1.16 jmcneill mips3_sd(cpu->cpu_int1_en[bank], cpu->cpu_int1_enable[bank]);
371 1.16 jmcneill mips3_sd(cpu->cpu_int2_en[bank], cpu->cpu_int2_enable[bank]);
372 1.16 jmcneill }
373 1.3 matt
374 1.5 matt mips3_sd(cpu->cpu_int32_en, 0);
375 1.3 matt
376 1.3 matt #ifdef MULTIPROCESSOR
377 1.5 matt mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
378 1.3 matt #endif
379 1.1 hikaru
380 1.15 jmcneill for (int i = 0; i < NIRQS; i++) {
381 1.15 jmcneill if (octeon_intrnames[i] == NULL)
382 1.15 jmcneill octeon_intrnames[i] = kmem_asprintf("irq %d", i);
383 1.3 matt evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
384 1.3 matt EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
385 1.1 hikaru }
386 1.1 hikaru }
387 1.1 hikaru
388 1.1 hikaru void
389 1.1 hikaru octeon_cal_timer(int corefreq)
390 1.1 hikaru {
391 1.1 hikaru /* Compute the number of cycles per second. */
392 1.1 hikaru curcpu()->ci_cpu_freq = corefreq;
393 1.1 hikaru
394 1.1 hikaru /* Compute the number of ticks for hz. */
395 1.1 hikaru curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
396 1.1 hikaru
397 1.1 hikaru /* Compute the delay divisor and reciprical. */
398 1.1 hikaru curcpu()->ci_divisor_delay =
399 1.1 hikaru ((curcpu()->ci_cpu_freq + 500000) / 1000000);
400 1.1 hikaru #if 0
401 1.1 hikaru MIPS_SET_CI_RECIPRICAL(curcpu());
402 1.1 hikaru #endif
403 1.1 hikaru
404 1.1 hikaru mips3_cp0_count_write(0);
405 1.1 hikaru mips3_cp0_compare_write(0);
406 1.1 hikaru }
407 1.1 hikaru
408 1.1 hikaru void *
409 1.3 matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
410 1.1 hikaru {
411 1.1 hikaru struct octeon_intrhand *ih;
412 1.1 hikaru
413 1.1 hikaru if (irq >= NIRQS)
414 1.1 hikaru panic("octeon_intr_establish: bogus IRQ %d", irq);
415 1.3 matt if (ipl < IPL_VM)
416 1.3 matt panic("octeon_intr_establish: bogus IPL %d", ipl);
417 1.1 hikaru
418 1.3 matt ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
419 1.1 hikaru if (ih == NULL)
420 1.1 hikaru return (NULL);
421 1.1 hikaru
422 1.1 hikaru ih->ih_func = func;
423 1.1 hikaru ih->ih_arg = arg;
424 1.1 hikaru ih->ih_irq = irq;
425 1.3 matt ih->ih_ipl = ipl;
426 1.1 hikaru
427 1.3 matt mutex_enter(&octeon_intr_lock);
428 1.1 hikaru
429 1.1 hikaru /*
430 1.3 matt * First, make it known.
431 1.1 hikaru */
432 1.11 simonb KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
433 1.11 simonb irq, octciu_intrs[irq]);
434 1.3 matt
435 1.11 simonb octciu_intrs[irq] = ih;
436 1.3 matt membar_producer();
437 1.1 hikaru
438 1.1 hikaru /*
439 1.1 hikaru * Now enable it.
440 1.1 hikaru */
441 1.15 jmcneill const int bank = irq / 64;
442 1.15 jmcneill const uint64_t irq_mask = __BIT(irq % 64);
443 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
444 1.3 matt #if MULTIPROCESSOR
445 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
446 1.3 matt #endif
447 1.3 matt
448 1.3 matt switch (ipl) {
449 1.3 matt case IPL_VM:
450 1.16 jmcneill cpu0->cpu_int0_enable[bank] |= irq_mask;
451 1.16 jmcneill mips3_sd(cpu0->cpu_int0_en[bank], cpu0->cpu_int0_enable[bank]);
452 1.3 matt break;
453 1.1 hikaru
454 1.3 matt case IPL_SCHED:
455 1.16 jmcneill cpu0->cpu_int1_enable[bank] |= irq_mask;
456 1.16 jmcneill mips3_sd(cpu0->cpu_int1_en[bank], cpu0->cpu_int1_enable[bank]);
457 1.3 matt #ifdef MULTIPROCESSOR
458 1.16 jmcneill cpu1->cpu_int1_enable[bank] = cpu0->cpu_int1_enable[bank];
459 1.16 jmcneill mips3_sd(cpu1->cpu_int1_en[bank], cpu1->cpu_int1_enable[bank]);
460 1.3 matt #endif
461 1.15 jmcneill
462 1.3 matt break;
463 1.3 matt
464 1.3 matt case IPL_DDB:
465 1.3 matt case IPL_HIGH:
466 1.16 jmcneill cpu0->cpu_int2_enable[bank] |= irq_mask;
467 1.16 jmcneill mips3_sd(cpu0->cpu_int2_en[bank], cpu0->cpu_int2_enable[bank]);
468 1.3 matt #ifdef MULTIPROCESSOR
469 1.16 jmcneill cpu1->cpu_int2_enable[bank] = cpu0->cpu_int2_enable[bank];
470 1.16 jmcneill mips3_sd(cpu1->cpu_int2_en[bank], cpu1->cpu_int2_enable[bank]);
471 1.3 matt #endif
472 1.16 jmcneill
473 1.3 matt break;
474 1.1 hikaru }
475 1.1 hikaru
476 1.3 matt mutex_exit(&octeon_intr_lock);
477 1.3 matt
478 1.3 matt return ih;
479 1.1 hikaru }
480 1.1 hikaru
481 1.1 hikaru void
482 1.1 hikaru octeon_intr_disestablish(void *cookie)
483 1.1 hikaru {
484 1.3 matt struct octeon_intrhand * const ih = cookie;
485 1.3 matt const int irq = ih->ih_irq & (NIRQS-1);
486 1.3 matt const int ipl = ih->ih_ipl;
487 1.1 hikaru
488 1.3 matt mutex_enter(&octeon_intr_lock);
489 1.1 hikaru
490 1.1 hikaru /*
491 1.3 matt * First disable it.
492 1.1 hikaru */
493 1.15 jmcneill const int bank = irq / 64;
494 1.15 jmcneill const uint64_t irq_mask = ~__BIT(irq % 64);
495 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
496 1.3 matt #if MULTIPROCESSOR
497 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
498 1.3 matt #endif
499 1.3 matt
500 1.3 matt switch (ipl) {
501 1.3 matt case IPL_VM:
502 1.16 jmcneill cpu0->cpu_int0_enable[bank] &= ~irq_mask;
503 1.16 jmcneill mips3_sd(cpu0->cpu_int0_en[bank], cpu0->cpu_int0_enable[bank]);
504 1.3 matt break;
505 1.3 matt
506 1.3 matt case IPL_SCHED:
507 1.16 jmcneill cpu0->cpu_int1_enable[bank] &= ~irq_mask;
508 1.16 jmcneill mips3_sd(cpu0->cpu_int1_en[bank], cpu0->cpu_int1_enable[bank]);
509 1.3 matt #ifdef MULTIPROCESSOR
510 1.16 jmcneill cpu1->cpu_int1_enable[bank] = cpu0->cpu_int1_enable[bank];
511 1.16 jmcneill mips3_sd(cpu1->cpu_int1_en[bank], cpu1->cpu_int1_enable[bank]);
512 1.3 matt #endif
513 1.3 matt break;
514 1.3 matt
515 1.3 matt case IPL_DDB:
516 1.3 matt case IPL_HIGH:
517 1.16 jmcneill cpu0->cpu_int2_enable[bank] &= ~irq_mask;
518 1.16 jmcneill mips3_sd(cpu0->cpu_int2_en[bank], cpu0->cpu_int2_enable[bank]);
519 1.3 matt #ifdef MULTIPROCESSOR
520 1.16 jmcneill cpu1->cpu_int2_enable[bank] = cpu0->cpu_int2_enable[bank];
521 1.16 jmcneill mips3_sd(cpu1->cpu_int2_en[bank], cpu1->cpu_int2_enable[bank]);
522 1.3 matt #endif
523 1.3 matt break;
524 1.3 matt }
525 1.1 hikaru
526 1.1 hikaru /*
527 1.3 matt * Now remove it since we shouldn't get interrupts for it.
528 1.1 hikaru */
529 1.11 simonb octciu_intrs[irq] = NULL;
530 1.3 matt
531 1.3 matt mutex_exit(&octeon_intr_lock);
532 1.1 hikaru
533 1.3 matt kmem_free(ih, sizeof(*ih));
534 1.1 hikaru }
535 1.1 hikaru
536 1.1 hikaru void
537 1.1 hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
538 1.1 hikaru {
539 1.3 matt struct cpu_info * const ci = curcpu();
540 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
541 1.15 jmcneill int bank;
542 1.3 matt
543 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
544 1.3 matt KASSERT((ipending & ~MIPS_INT_MASK) == 0);
545 1.3 matt KASSERT(ipending & MIPS_HARD_INT_MASK);
546 1.15 jmcneill uint64_t hwpend[2] = { 0, 0 };
547 1.15 jmcneill
548 1.15 jmcneill const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
549 1.1 hikaru
550 1.3 matt if (ipending & MIPS_INT_MASK_2) {
551 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int2_sum0)
552 1.16 jmcneill & cpu->cpu_int2_enable[0];
553 1.16 jmcneill hwpend[1] = sum1 & cpu->cpu_int2_enable[1];
554 1.3 matt } else if (ipending & MIPS_INT_MASK_1) {
555 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int1_sum0)
556 1.16 jmcneill & cpu->cpu_int1_enable[0];
557 1.16 jmcneill hwpend[1] = sum1 & cpu->cpu_int1_enable[1];
558 1.3 matt } else if (ipending & MIPS_INT_MASK_0) {
559 1.15 jmcneill hwpend[0] = mips3_ld(cpu->cpu_int0_sum0)
560 1.16 jmcneill & cpu->cpu_int0_enable[0];
561 1.16 jmcneill hwpend[1] = sum1 & cpu->cpu_int0_enable[1];
562 1.3 matt } else {
563 1.3 matt panic("octeon_iointr: unexpected ipending %#x", ipending);
564 1.3 matt }
565 1.15 jmcneill for (bank = 0; bank <= 1; bank++) {
566 1.15 jmcneill while (hwpend[bank] != 0) {
567 1.15 jmcneill const int bit = ffs64(hwpend[bank]) - 1;
568 1.15 jmcneill const int irq = (bank * 64) + bit;
569 1.15 jmcneill hwpend[bank] &= ~__BIT(bit);
570 1.15 jmcneill
571 1.15 jmcneill struct octeon_intrhand * const ih = octciu_intrs[irq];
572 1.15 jmcneill cpu->cpu_intr_evs[irq].ev_count++;
573 1.15 jmcneill if (__predict_true(ih != NULL)) {
574 1.15 jmcneill #ifdef MULTIPROCESSOR
575 1.15 jmcneill if (ipl == IPL_VM) {
576 1.15 jmcneill KERNEL_LOCK(1, NULL);
577 1.15 jmcneill #endif
578 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
579 1.15 jmcneill #ifdef MULTIPROCESSOR
580 1.15 jmcneill KERNEL_UNLOCK_ONE(NULL);
581 1.15 jmcneill } else {
582 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
583 1.15 jmcneill }
584 1.15 jmcneill #endif
585 1.15 jmcneill KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
586 1.3 matt }
587 1.3 matt }
588 1.3 matt }
589 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
590 1.3 matt }
591 1.3 matt
592 1.3 matt #ifdef MULTIPROCESSOR
593 1.3 matt __CTASSERT(NIPIS < 16);
594 1.3 matt
595 1.3 matt int
596 1.3 matt octeon_ipi_intr(void *arg)
597 1.3 matt {
598 1.3 matt struct cpu_info * const ci = curcpu();
599 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
600 1.4 matt uint32_t ipi_mask = (uintptr_t) arg;
601 1.4 matt
602 1.4 matt KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
603 1.4 matt "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
604 1.3 matt
605 1.5 matt ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
606 1.4 matt if (ipi_mask == 0)
607 1.4 matt return 0;
608 1.4 matt
609 1.5 matt mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
610 1.3 matt
611 1.3 matt KASSERT(ipi_mask < __BIT(NIPIS));
612 1.3 matt
613 1.4 matt #if NWDOG > 0
614 1.4 matt // Handle WDOG requests ourselves.
615 1.4 matt if (ipi_mask & __BIT(IPI_WDOG)) {
616 1.4 matt softint_schedule(cpu->cpu_wdog_sih);
617 1.4 matt atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
618 1.4 matt ipi_mask &= ~__BIT(IPI_WDOG);
619 1.4 matt ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
620 1.4 matt if (__predict_true(ipi_mask == 0))
621 1.4 matt return 1;
622 1.4 matt }
623 1.4 matt #endif
624 1.4 matt
625 1.3 matt /* if the request is clear, it was previously processed */
626 1.3 matt if ((ci->ci_request_ipis & ipi_mask) == 0)
627 1.3 matt return 0;
628 1.3 matt
629 1.3 matt atomic_or_64(&ci->ci_active_ipis, ipi_mask);
630 1.3 matt atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
631 1.3 matt
632 1.3 matt ipi_process(ci, ipi_mask);
633 1.3 matt
634 1.3 matt atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
635 1.3 matt
636 1.3 matt return 1;
637 1.3 matt }
638 1.1 hikaru
639 1.3 matt int
640 1.3 matt octeon_send_ipi(struct cpu_info *ci, int req)
641 1.3 matt {
642 1.3 matt KASSERT(req < NIPIS);
643 1.3 matt if (ci == NULL) {
644 1.4 matt CPU_INFO_ITERATOR cii;
645 1.4 matt for (CPU_INFO_FOREACH(cii, ci)) {
646 1.4 matt if (ci != curcpu()) {
647 1.4 matt octeon_send_ipi(ci, req);
648 1.4 matt }
649 1.4 matt }
650 1.4 matt return 0;
651 1.1 hikaru }
652 1.4 matt KASSERT(cold || ci->ci_softc != NULL);
653 1.4 matt if (ci->ci_softc == NULL)
654 1.4 matt return -1;
655 1.3 matt
656 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
657 1.17 jmcneill const uint64_t ipi_mask = octeon_ipi_mask[req];
658 1.3 matt
659 1.7 skrll atomic_or_64(&ci->ci_request_ipis, ipi_mask);
660 1.3 matt
661 1.5 matt mips3_sd(cpu->cpu_mbox_set, ipi_mask);
662 1.17 jmcneill
663 1.3 matt return 0;
664 1.1 hikaru }
665 1.3 matt #endif /* MULTIPROCESSOR */
666