octeon_intr.c revision 1.19 1 1.19 jmcneill /* $NetBSD: octeon_intr.c,v 1.19 2020/07/20 13:30:41 jmcneill Exp $ */
2 1.1 hikaru /*
3 1.1 hikaru * Copyright 2001, 2002 Wasabi Systems, Inc.
4 1.1 hikaru * All rights reserved.
5 1.1 hikaru *
6 1.1 hikaru * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 1.1 hikaru *
8 1.1 hikaru * Redistribution and use in source and binary forms, with or without
9 1.1 hikaru * modification, are permitted provided that the following conditions
10 1.1 hikaru * are met:
11 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
12 1.1 hikaru * notice, this list of conditions and the following disclaimer.
13 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
15 1.1 hikaru * documentation and/or other materials provided with the distribution.
16 1.1 hikaru * 3. All advertising materials mentioning features or use of this software
17 1.1 hikaru * must display the following acknowledgement:
18 1.1 hikaru * This product includes software developed for the NetBSD Project by
19 1.1 hikaru * Wasabi Systems, Inc.
20 1.1 hikaru * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 1.1 hikaru * or promote products derived from this software without specific prior
22 1.1 hikaru * written permission.
23 1.1 hikaru *
24 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hikaru * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hikaru * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 hikaru * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hikaru * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hikaru * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hikaru * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hikaru * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hikaru * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hikaru * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hikaru */
36 1.1 hikaru
37 1.1 hikaru /*
38 1.1 hikaru * Platform-specific interrupt support for the MIPS Malta.
39 1.1 hikaru */
40 1.1 hikaru
41 1.6 skrll #include "opt_multiprocessor.h"
42 1.6 skrll
43 1.4 matt #include "cpunode.h"
44 1.1 hikaru #define __INTR_PRIVATE
45 1.1 hikaru
46 1.1 hikaru #include <sys/cdefs.h>
47 1.19 jmcneill __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.19 2020/07/20 13:30:41 jmcneill Exp $");
48 1.1 hikaru
49 1.1 hikaru #include <sys/param.h>
50 1.1 hikaru #include <sys/cpu.h>
51 1.1 hikaru #include <sys/systm.h>
52 1.1 hikaru #include <sys/device.h>
53 1.1 hikaru #include <sys/intr.h>
54 1.1 hikaru #include <sys/kernel.h>
55 1.3 matt #include <sys/kmem.h>
56 1.3 matt #include <sys/atomic.h>
57 1.1 hikaru
58 1.1 hikaru #include <lib/libkern/libkern.h>
59 1.1 hikaru
60 1.1 hikaru #include <mips/locore.h>
61 1.1 hikaru
62 1.1 hikaru #include <mips/cavium/dev/octeon_ciureg.h>
63 1.1 hikaru #include <mips/cavium/octeonvar.h>
64 1.1 hikaru
65 1.1 hikaru /*
66 1.1 hikaru * This is a mask of bits to clear in the SR when we go to a
67 1.1 hikaru * given hardware interrupt priority level.
68 1.1 hikaru */
69 1.1 hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
70 1.1 hikaru .sr_bits = {
71 1.1 hikaru [IPL_NONE] = 0,
72 1.1 hikaru [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
73 1.1 hikaru [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
74 1.1 hikaru [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
75 1.1 hikaru [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
76 1.8 skrll | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
77 1.3 matt [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
78 1.3 matt | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
79 1.1 hikaru [IPL_HIGH] = MIPS_INT_MASK,
80 1.1 hikaru },
81 1.1 hikaru };
82 1.1 hikaru
83 1.15 jmcneill const char * octeon_intrnames[NIRQS] = {
84 1.1 hikaru "workq 0",
85 1.1 hikaru "workq 1",
86 1.1 hikaru "workq 2",
87 1.1 hikaru "workq 3",
88 1.1 hikaru "workq 4",
89 1.1 hikaru "workq 5",
90 1.1 hikaru "workq 6",
91 1.1 hikaru "workq 7",
92 1.1 hikaru "workq 8",
93 1.1 hikaru "workq 9",
94 1.1 hikaru "workq 10",
95 1.1 hikaru "workq 11",
96 1.1 hikaru "workq 12",
97 1.1 hikaru "workq 13",
98 1.1 hikaru "workq 14",
99 1.1 hikaru "workq 15",
100 1.1 hikaru "gpio 0",
101 1.1 hikaru "gpio 1",
102 1.1 hikaru "gpio 2",
103 1.1 hikaru "gpio 3",
104 1.1 hikaru "gpio 4",
105 1.1 hikaru "gpio 5",
106 1.1 hikaru "gpio 6",
107 1.1 hikaru "gpio 7",
108 1.1 hikaru "gpio 8",
109 1.1 hikaru "gpio 9",
110 1.1 hikaru "gpio 10",
111 1.1 hikaru "gpio 11",
112 1.1 hikaru "gpio 12",
113 1.1 hikaru "gpio 13",
114 1.1 hikaru "gpio 14",
115 1.1 hikaru "gpio 15",
116 1.1 hikaru "mbox 0-15",
117 1.1 hikaru "mbox 16-31",
118 1.1 hikaru "uart 0",
119 1.1 hikaru "uart 1",
120 1.1 hikaru "pci inta",
121 1.1 hikaru "pci intb",
122 1.1 hikaru "pci intc",
123 1.1 hikaru "pci intd",
124 1.1 hikaru "pci msi 0-15",
125 1.1 hikaru "pci msi 16-31",
126 1.1 hikaru "pci msi 32-47",
127 1.1 hikaru "pci msi 48-63",
128 1.1 hikaru "wdog summary",
129 1.1 hikaru "twsi",
130 1.1 hikaru "rml",
131 1.1 hikaru "trace",
132 1.1 hikaru "gmx drop",
133 1.1 hikaru "reserved",
134 1.1 hikaru "ipd drop",
135 1.1 hikaru "reserved",
136 1.1 hikaru "timer 0",
137 1.1 hikaru "timer 1",
138 1.1 hikaru "timer 2",
139 1.1 hikaru "timer 3",
140 1.1 hikaru "usb",
141 1.1 hikaru "pcm/tdm",
142 1.1 hikaru "mpi/spi",
143 1.1 hikaru "reserved",
144 1.1 hikaru "reserved",
145 1.1 hikaru "reserved",
146 1.1 hikaru "reserved",
147 1.1 hikaru "reserved",
148 1.1 hikaru };
149 1.1 hikaru
150 1.1 hikaru struct octeon_intrhand {
151 1.1 hikaru int (*ih_func)(void *);
152 1.1 hikaru void *ih_arg;
153 1.1 hikaru int ih_irq;
154 1.1 hikaru int ih_ipl;
155 1.1 hikaru };
156 1.1 hikaru
157 1.3 matt #ifdef MULTIPROCESSOR
158 1.3 matt static int octeon_send_ipi(struct cpu_info *, int);
159 1.3 matt static int octeon_ipi_intr(void *);
160 1.3 matt
161 1.3 matt struct octeon_intrhand ipi_intrhands[2] = {
162 1.3 matt [0] = {
163 1.3 matt .ih_func = octeon_ipi_intr,
164 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(15,0),
165 1.12 simonb .ih_irq = CIU_INT_MBOX_15_0,
166 1.3 matt .ih_ipl = IPL_SCHED,
167 1.3 matt },
168 1.3 matt [1] = {
169 1.3 matt .ih_func = octeon_ipi_intr,
170 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(31,16),
171 1.12 simonb .ih_irq = CIU_INT_MBOX_31_16,
172 1.3 matt .ih_ipl = IPL_HIGH,
173 1.3 matt },
174 1.1 hikaru };
175 1.17 jmcneill
176 1.17 jmcneill #define OCTEON_IPI_SCHED(n) __BIT((n) + 0)
177 1.17 jmcneill #define OCTEON_IPI_HIGH(n) __BIT((n) + 16)
178 1.17 jmcneill
179 1.19 jmcneill static uint32_t octeon_ipi_mbox_mask[NIPIS] = {
180 1.17 jmcneill [IPI_NOP] = OCTEON_IPI_SCHED(IPI_NOP),
181 1.17 jmcneill [IPI_AST] = OCTEON_IPI_SCHED(IPI_AST),
182 1.17 jmcneill [IPI_SHOOTDOWN] = OCTEON_IPI_SCHED(IPI_SHOOTDOWN),
183 1.17 jmcneill [IPI_SYNCICACHE] = OCTEON_IPI_SCHED(IPI_SYNCICACHE),
184 1.17 jmcneill [IPI_KPREEMPT] = OCTEON_IPI_SCHED(IPI_KPREEMPT),
185 1.17 jmcneill [IPI_SUSPEND] = OCTEON_IPI_HIGH(IPI_SUSPEND),
186 1.17 jmcneill [IPI_HALT] = OCTEON_IPI_HIGH(IPI_HALT),
187 1.17 jmcneill [IPI_XCALL] = OCTEON_IPI_HIGH(IPI_XCALL),
188 1.17 jmcneill [IPI_GENERIC] = OCTEON_IPI_HIGH(IPI_GENERIC),
189 1.17 jmcneill [IPI_WDOG] = OCTEON_IPI_HIGH(IPI_WDOG),
190 1.17 jmcneill };
191 1.3 matt #endif
192 1.1 hikaru
193 1.11 simonb struct octeon_intrhand *octciu_intrs[NIRQS] = {
194 1.3 matt #ifdef MULTIPROCESSOR
195 1.12 simonb [CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
196 1.12 simonb [CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
197 1.3 matt #endif
198 1.1 hikaru };
199 1.1 hikaru
200 1.3 matt kmutex_t octeon_intr_lock;
201 1.1 hikaru
202 1.18 jmcneill #if defined(MULTIPROCESSOR)
203 1.18 jmcneill #define OCTEON_NCPU MAXCPUS
204 1.18 jmcneill #else
205 1.18 jmcneill #define OCTEON_NCPU 1
206 1.3 matt #endif
207 1.1 hikaru
208 1.18 jmcneill struct cpu_softc octeon_cpu_softc[OCTEON_NCPU];
209 1.1 hikaru
210 1.4 matt static void
211 1.18 jmcneill octeon_intr_setup(void)
212 1.4 matt {
213 1.18 jmcneill struct cpu_softc *cpu;
214 1.18 jmcneill int cpunum;
215 1.4 matt
216 1.18 jmcneill #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
217 1.4 matt
218 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
219 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
220 1.4 matt
221 1.18 jmcneill cpu->cpu_ip2_sum0 = X(CIU_IP2_SUM0(cpunum));
222 1.18 jmcneill cpu->cpu_ip3_sum0 = X(CIU_IP3_SUM0(cpunum));
223 1.18 jmcneill cpu->cpu_ip4_sum0 = X(CIU_IP4_SUM0(cpunum));
224 1.4 matt
225 1.18 jmcneill cpu->cpu_int_sum1 = X(CIU_INT_SUM1);
226 1.4 matt
227 1.18 jmcneill cpu->cpu_ip2_en[0] = X(CIU_IP2_EN0(cpunum));
228 1.18 jmcneill cpu->cpu_ip3_en[0] = X(CIU_IP3_EN0(cpunum));
229 1.18 jmcneill cpu->cpu_ip4_en[0] = X(CIU_IP4_EN0(cpunum));
230 1.4 matt
231 1.18 jmcneill cpu->cpu_ip2_en[1] = X(CIU_IP2_EN1(cpunum));
232 1.18 jmcneill cpu->cpu_ip3_en[1] = X(CIU_IP3_EN1(cpunum));
233 1.18 jmcneill cpu->cpu_ip4_en[1] = X(CIU_IP4_EN1(cpunum));
234 1.4 matt
235 1.18 jmcneill cpu->cpu_wdog = X(CIU_WDOG(cpunum));
236 1.18 jmcneill cpu->cpu_pp_poke = X(CIU_PP_POKE(cpunum));
237 1.4 matt
238 1.18 jmcneill #ifdef MULTIPROCESSOR
239 1.18 jmcneill cpu->cpu_mbox_set = X(CIU_MBOX_SET(cpunum));
240 1.18 jmcneill cpu->cpu_mbox_clr = X(CIU_MBOX_CLR(cpunum));
241 1.18 jmcneill #endif
242 1.18 jmcneill }
243 1.4 matt
244 1.18 jmcneill #undef X
245 1.4 matt
246 1.4 matt }
247 1.1 hikaru
248 1.3 matt void
249 1.3 matt octeon_intr_init(struct cpu_info *ci)
250 1.3 matt {
251 1.3 matt const int cpunum = cpu_index(ci);
252 1.18 jmcneill struct cpu_softc *cpu = &octeon_cpu_softc[cpunum];
253 1.3 matt const char * const xname = cpu_name(ci);
254 1.16 jmcneill int bank;
255 1.1 hikaru
256 1.18 jmcneill cpu->cpu_ci = ci;
257 1.18 jmcneill ci->ci_softc = cpu;
258 1.18 jmcneill
259 1.18 jmcneill KASSERT(cpunum == ci->ci_cpuid);
260 1.1 hikaru
261 1.3 matt if (ci->ci_cpuid == 0) {
262 1.4 matt ipl_sr_map = octeon_ipl_sr_map;
263 1.3 matt mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
264 1.3 matt #ifdef MULTIPROCESSOR
265 1.3 matt mips_locoresw.lsw_send_ipi = octeon_send_ipi;
266 1.3 matt #endif
267 1.18 jmcneill
268 1.18 jmcneill octeon_intr_setup();
269 1.1 hikaru }
270 1.1 hikaru
271 1.3 matt #ifdef MULTIPROCESSOR
272 1.3 matt // Enable the IPIs
273 1.18 jmcneill cpu->cpu_ip3_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
274 1.18 jmcneill cpu->cpu_ip4_enable[0] |= __BIT(CIU_INT_MBOX_31_16);
275 1.1 hikaru #endif
276 1.1 hikaru
277 1.16 jmcneill if (ci->ci_dev) {
278 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
279 1.16 jmcneill aprint_verbose_dev(ci->ci_dev,
280 1.16 jmcneill "enabling intr masks %u "
281 1.16 jmcneill " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
282 1.16 jmcneill bank,
283 1.18 jmcneill cpu->cpu_ip2_enable[bank],
284 1.18 jmcneill cpu->cpu_ip3_enable[bank],
285 1.18 jmcneill cpu->cpu_ip4_enable[bank]);
286 1.16 jmcneill }
287 1.16 jmcneill }
288 1.16 jmcneill
289 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
290 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
291 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
292 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
293 1.16 jmcneill }
294 1.3 matt
295 1.3 matt #ifdef MULTIPROCESSOR
296 1.5 matt mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
297 1.3 matt #endif
298 1.1 hikaru
299 1.15 jmcneill for (int i = 0; i < NIRQS; i++) {
300 1.15 jmcneill if (octeon_intrnames[i] == NULL)
301 1.15 jmcneill octeon_intrnames[i] = kmem_asprintf("irq %d", i);
302 1.3 matt evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
303 1.3 matt EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
304 1.1 hikaru }
305 1.1 hikaru }
306 1.1 hikaru
307 1.1 hikaru void
308 1.1 hikaru octeon_cal_timer(int corefreq)
309 1.1 hikaru {
310 1.1 hikaru /* Compute the number of cycles per second. */
311 1.1 hikaru curcpu()->ci_cpu_freq = corefreq;
312 1.1 hikaru
313 1.1 hikaru /* Compute the number of ticks for hz. */
314 1.1 hikaru curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
315 1.1 hikaru
316 1.1 hikaru /* Compute the delay divisor and reciprical. */
317 1.1 hikaru curcpu()->ci_divisor_delay =
318 1.1 hikaru ((curcpu()->ci_cpu_freq + 500000) / 1000000);
319 1.1 hikaru #if 0
320 1.1 hikaru MIPS_SET_CI_RECIPRICAL(curcpu());
321 1.1 hikaru #endif
322 1.1 hikaru
323 1.1 hikaru mips3_cp0_count_write(0);
324 1.1 hikaru mips3_cp0_compare_write(0);
325 1.1 hikaru }
326 1.1 hikaru
327 1.1 hikaru void *
328 1.3 matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
329 1.1 hikaru {
330 1.1 hikaru struct octeon_intrhand *ih;
331 1.18 jmcneill struct cpu_softc *cpu;
332 1.18 jmcneill int cpunum;
333 1.1 hikaru
334 1.1 hikaru if (irq >= NIRQS)
335 1.1 hikaru panic("octeon_intr_establish: bogus IRQ %d", irq);
336 1.3 matt if (ipl < IPL_VM)
337 1.3 matt panic("octeon_intr_establish: bogus IPL %d", ipl);
338 1.1 hikaru
339 1.3 matt ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
340 1.1 hikaru if (ih == NULL)
341 1.1 hikaru return (NULL);
342 1.1 hikaru
343 1.1 hikaru ih->ih_func = func;
344 1.1 hikaru ih->ih_arg = arg;
345 1.1 hikaru ih->ih_irq = irq;
346 1.3 matt ih->ih_ipl = ipl;
347 1.1 hikaru
348 1.3 matt mutex_enter(&octeon_intr_lock);
349 1.1 hikaru
350 1.1 hikaru /*
351 1.3 matt * First, make it known.
352 1.1 hikaru */
353 1.11 simonb KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
354 1.11 simonb irq, octciu_intrs[irq]);
355 1.3 matt
356 1.11 simonb octciu_intrs[irq] = ih;
357 1.3 matt membar_producer();
358 1.1 hikaru
359 1.1 hikaru /*
360 1.1 hikaru * Now enable it.
361 1.1 hikaru */
362 1.15 jmcneill const int bank = irq / 64;
363 1.15 jmcneill const uint64_t irq_mask = __BIT(irq % 64);
364 1.3 matt
365 1.3 matt switch (ipl) {
366 1.3 matt case IPL_VM:
367 1.18 jmcneill cpu = &octeon_cpu_softc[0];
368 1.18 jmcneill cpu->cpu_ip2_enable[bank] |= irq_mask;
369 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
370 1.3 matt break;
371 1.1 hikaru
372 1.3 matt case IPL_SCHED:
373 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
374 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
375 1.18 jmcneill if (cpu->cpu_ci == NULL)
376 1.18 jmcneill break;
377 1.18 jmcneill cpu->cpu_ip3_enable[bank] |= irq_mask;
378 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
379 1.18 jmcneill }
380 1.3 matt break;
381 1.3 matt
382 1.3 matt case IPL_DDB:
383 1.3 matt case IPL_HIGH:
384 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
385 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
386 1.18 jmcneill if (cpu->cpu_ci == NULL)
387 1.18 jmcneill break;
388 1.18 jmcneill cpu->cpu_ip4_enable[bank] |= irq_mask;
389 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
390 1.18 jmcneill }
391 1.3 matt break;
392 1.1 hikaru }
393 1.1 hikaru
394 1.3 matt mutex_exit(&octeon_intr_lock);
395 1.3 matt
396 1.3 matt return ih;
397 1.1 hikaru }
398 1.1 hikaru
399 1.1 hikaru void
400 1.1 hikaru octeon_intr_disestablish(void *cookie)
401 1.1 hikaru {
402 1.3 matt struct octeon_intrhand * const ih = cookie;
403 1.18 jmcneill struct cpu_softc *cpu;
404 1.3 matt const int irq = ih->ih_irq & (NIRQS-1);
405 1.3 matt const int ipl = ih->ih_ipl;
406 1.18 jmcneill int cpunum;
407 1.1 hikaru
408 1.3 matt mutex_enter(&octeon_intr_lock);
409 1.1 hikaru
410 1.1 hikaru /*
411 1.3 matt * First disable it.
412 1.1 hikaru */
413 1.15 jmcneill const int bank = irq / 64;
414 1.15 jmcneill const uint64_t irq_mask = ~__BIT(irq % 64);
415 1.3 matt
416 1.3 matt switch (ipl) {
417 1.3 matt case IPL_VM:
418 1.18 jmcneill cpu = &octeon_cpu_softc[0];
419 1.18 jmcneill cpu->cpu_ip2_enable[bank] &= ~irq_mask;
420 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
421 1.3 matt break;
422 1.3 matt
423 1.3 matt case IPL_SCHED:
424 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
425 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
426 1.18 jmcneill if (cpu->cpu_ci == NULL)
427 1.18 jmcneill break;
428 1.18 jmcneill cpu->cpu_ip3_enable[bank] &= ~irq_mask;
429 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
430 1.18 jmcneill }
431 1.3 matt break;
432 1.3 matt
433 1.3 matt case IPL_DDB:
434 1.3 matt case IPL_HIGH:
435 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
436 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
437 1.18 jmcneill if (cpu->cpu_ci == NULL)
438 1.18 jmcneill break;
439 1.18 jmcneill cpu->cpu_ip4_enable[bank] &= ~irq_mask;
440 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
441 1.18 jmcneill }
442 1.3 matt break;
443 1.3 matt }
444 1.1 hikaru
445 1.1 hikaru /*
446 1.3 matt * Now remove it since we shouldn't get interrupts for it.
447 1.1 hikaru */
448 1.11 simonb octciu_intrs[irq] = NULL;
449 1.3 matt
450 1.3 matt mutex_exit(&octeon_intr_lock);
451 1.1 hikaru
452 1.3 matt kmem_free(ih, sizeof(*ih));
453 1.1 hikaru }
454 1.1 hikaru
455 1.1 hikaru void
456 1.1 hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
457 1.1 hikaru {
458 1.3 matt struct cpu_info * const ci = curcpu();
459 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
460 1.15 jmcneill int bank;
461 1.3 matt
462 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
463 1.3 matt KASSERT((ipending & ~MIPS_INT_MASK) == 0);
464 1.3 matt KASSERT(ipending & MIPS_HARD_INT_MASK);
465 1.15 jmcneill uint64_t hwpend[2] = { 0, 0 };
466 1.15 jmcneill
467 1.15 jmcneill const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
468 1.1 hikaru
469 1.3 matt if (ipending & MIPS_INT_MASK_2) {
470 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip4_sum0)
471 1.18 jmcneill & cpu->cpu_ip4_enable[0];
472 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip4_enable[1];
473 1.3 matt } else if (ipending & MIPS_INT_MASK_1) {
474 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip3_sum0)
475 1.18 jmcneill & cpu->cpu_ip3_enable[0];
476 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip3_enable[1];
477 1.3 matt } else if (ipending & MIPS_INT_MASK_0) {
478 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip2_sum0)
479 1.18 jmcneill & cpu->cpu_ip2_enable[0];
480 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip2_enable[1];
481 1.3 matt } else {
482 1.3 matt panic("octeon_iointr: unexpected ipending %#x", ipending);
483 1.3 matt }
484 1.15 jmcneill for (bank = 0; bank <= 1; bank++) {
485 1.15 jmcneill while (hwpend[bank] != 0) {
486 1.15 jmcneill const int bit = ffs64(hwpend[bank]) - 1;
487 1.15 jmcneill const int irq = (bank * 64) + bit;
488 1.15 jmcneill hwpend[bank] &= ~__BIT(bit);
489 1.15 jmcneill
490 1.15 jmcneill struct octeon_intrhand * const ih = octciu_intrs[irq];
491 1.15 jmcneill cpu->cpu_intr_evs[irq].ev_count++;
492 1.15 jmcneill if (__predict_true(ih != NULL)) {
493 1.15 jmcneill #ifdef MULTIPROCESSOR
494 1.15 jmcneill if (ipl == IPL_VM) {
495 1.15 jmcneill KERNEL_LOCK(1, NULL);
496 1.15 jmcneill #endif
497 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
498 1.15 jmcneill #ifdef MULTIPROCESSOR
499 1.15 jmcneill KERNEL_UNLOCK_ONE(NULL);
500 1.15 jmcneill } else {
501 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
502 1.15 jmcneill }
503 1.15 jmcneill #endif
504 1.15 jmcneill KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
505 1.3 matt }
506 1.3 matt }
507 1.3 matt }
508 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
509 1.3 matt }
510 1.3 matt
511 1.3 matt #ifdef MULTIPROCESSOR
512 1.3 matt __CTASSERT(NIPIS < 16);
513 1.3 matt
514 1.3 matt int
515 1.3 matt octeon_ipi_intr(void *arg)
516 1.3 matt {
517 1.3 matt struct cpu_info * const ci = curcpu();
518 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
519 1.19 jmcneill uint32_t mbox_mask = (uintptr_t) arg;
520 1.19 jmcneill uint32_t ipi_mask;
521 1.4 matt
522 1.19 jmcneill KASSERTMSG((mbox_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
523 1.19 jmcneill "mbox_mask %#"PRIx32" cpl %d", mbox_mask, ci->ci_cpl);
524 1.3 matt
525 1.19 jmcneill mbox_mask &= mips3_ld(cpu->cpu_mbox_set);
526 1.19 jmcneill if (mbox_mask == 0)
527 1.4 matt return 0;
528 1.4 matt
529 1.19 jmcneill mips3_sd(cpu->cpu_mbox_clr, mbox_mask);
530 1.19 jmcneill
531 1.19 jmcneill ipi_mask = mbox_mask;
532 1.19 jmcneill if (ci->ci_cpl >= IPL_SCHED)
533 1.19 jmcneill ipi_mask >>= 16;
534 1.3 matt
535 1.3 matt KASSERT(ipi_mask < __BIT(NIPIS));
536 1.3 matt
537 1.4 matt #if NWDOG > 0
538 1.4 matt // Handle WDOG requests ourselves.
539 1.4 matt if (ipi_mask & __BIT(IPI_WDOG)) {
540 1.4 matt softint_schedule(cpu->cpu_wdog_sih);
541 1.4 matt atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
542 1.4 matt ipi_mask &= ~__BIT(IPI_WDOG);
543 1.4 matt ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
544 1.4 matt if (__predict_true(ipi_mask == 0))
545 1.4 matt return 1;
546 1.4 matt }
547 1.4 matt #endif
548 1.4 matt
549 1.3 matt /* if the request is clear, it was previously processed */
550 1.3 matt if ((ci->ci_request_ipis & ipi_mask) == 0)
551 1.3 matt return 0;
552 1.3 matt
553 1.3 matt atomic_or_64(&ci->ci_active_ipis, ipi_mask);
554 1.3 matt atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
555 1.3 matt
556 1.3 matt ipi_process(ci, ipi_mask);
557 1.3 matt
558 1.3 matt atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
559 1.3 matt
560 1.3 matt return 1;
561 1.3 matt }
562 1.1 hikaru
563 1.3 matt int
564 1.3 matt octeon_send_ipi(struct cpu_info *ci, int req)
565 1.3 matt {
566 1.3 matt KASSERT(req < NIPIS);
567 1.3 matt if (ci == NULL) {
568 1.4 matt CPU_INFO_ITERATOR cii;
569 1.4 matt for (CPU_INFO_FOREACH(cii, ci)) {
570 1.4 matt if (ci != curcpu()) {
571 1.4 matt octeon_send_ipi(ci, req);
572 1.4 matt }
573 1.4 matt }
574 1.4 matt return 0;
575 1.1 hikaru }
576 1.4 matt KASSERT(cold || ci->ci_softc != NULL);
577 1.4 matt if (ci->ci_softc == NULL)
578 1.4 matt return -1;
579 1.3 matt
580 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
581 1.19 jmcneill const uint32_t mbox_mask = octeon_ipi_mbox_mask[req];
582 1.19 jmcneill const uint32_t ipi_mask = __BIT(req);
583 1.3 matt
584 1.7 skrll atomic_or_64(&ci->ci_request_ipis, ipi_mask);
585 1.3 matt
586 1.19 jmcneill mips3_sd(cpu->cpu_mbox_set, mbox_mask);
587 1.17 jmcneill
588 1.3 matt return 0;
589 1.1 hikaru }
590 1.3 matt #endif /* MULTIPROCESSOR */
591