octeon_intr.c revision 1.20 1 1.20 jmcneill /* $NetBSD: octeon_intr.c,v 1.20 2020/07/20 14:05:51 jmcneill Exp $ */
2 1.1 hikaru /*
3 1.1 hikaru * Copyright 2001, 2002 Wasabi Systems, Inc.
4 1.1 hikaru * All rights reserved.
5 1.1 hikaru *
6 1.1 hikaru * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 1.1 hikaru *
8 1.1 hikaru * Redistribution and use in source and binary forms, with or without
9 1.1 hikaru * modification, are permitted provided that the following conditions
10 1.1 hikaru * are met:
11 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
12 1.1 hikaru * notice, this list of conditions and the following disclaimer.
13 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
15 1.1 hikaru * documentation and/or other materials provided with the distribution.
16 1.1 hikaru * 3. All advertising materials mentioning features or use of this software
17 1.1 hikaru * must display the following acknowledgement:
18 1.1 hikaru * This product includes software developed for the NetBSD Project by
19 1.1 hikaru * Wasabi Systems, Inc.
20 1.1 hikaru * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 1.1 hikaru * or promote products derived from this software without specific prior
22 1.1 hikaru * written permission.
23 1.1 hikaru *
24 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hikaru * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hikaru * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 hikaru * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hikaru * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hikaru * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hikaru * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hikaru * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hikaru * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hikaru * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hikaru */
36 1.1 hikaru
37 1.1 hikaru /*
38 1.1 hikaru * Platform-specific interrupt support for the MIPS Malta.
39 1.1 hikaru */
40 1.1 hikaru
41 1.6 skrll #include "opt_multiprocessor.h"
42 1.6 skrll
43 1.4 matt #include "cpunode.h"
44 1.1 hikaru #define __INTR_PRIVATE
45 1.1 hikaru
46 1.1 hikaru #include <sys/cdefs.h>
47 1.20 jmcneill __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.20 2020/07/20 14:05:51 jmcneill Exp $");
48 1.1 hikaru
49 1.1 hikaru #include <sys/param.h>
50 1.1 hikaru #include <sys/cpu.h>
51 1.1 hikaru #include <sys/systm.h>
52 1.1 hikaru #include <sys/device.h>
53 1.1 hikaru #include <sys/intr.h>
54 1.1 hikaru #include <sys/kernel.h>
55 1.3 matt #include <sys/kmem.h>
56 1.3 matt #include <sys/atomic.h>
57 1.1 hikaru
58 1.1 hikaru #include <lib/libkern/libkern.h>
59 1.1 hikaru
60 1.1 hikaru #include <mips/locore.h>
61 1.1 hikaru
62 1.1 hikaru #include <mips/cavium/dev/octeon_ciureg.h>
63 1.1 hikaru #include <mips/cavium/octeonvar.h>
64 1.1 hikaru
65 1.1 hikaru /*
66 1.1 hikaru * This is a mask of bits to clear in the SR when we go to a
67 1.1 hikaru * given hardware interrupt priority level.
68 1.1 hikaru */
69 1.1 hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
70 1.1 hikaru .sr_bits = {
71 1.1 hikaru [IPL_NONE] = 0,
72 1.1 hikaru [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
73 1.1 hikaru [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
74 1.1 hikaru [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
75 1.1 hikaru [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
76 1.8 skrll | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
77 1.3 matt [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
78 1.3 matt | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
79 1.1 hikaru [IPL_HIGH] = MIPS_INT_MASK,
80 1.1 hikaru },
81 1.1 hikaru };
82 1.1 hikaru
83 1.15 jmcneill const char * octeon_intrnames[NIRQS] = {
84 1.1 hikaru "workq 0",
85 1.1 hikaru "workq 1",
86 1.1 hikaru "workq 2",
87 1.1 hikaru "workq 3",
88 1.1 hikaru "workq 4",
89 1.1 hikaru "workq 5",
90 1.1 hikaru "workq 6",
91 1.1 hikaru "workq 7",
92 1.1 hikaru "workq 8",
93 1.1 hikaru "workq 9",
94 1.1 hikaru "workq 10",
95 1.1 hikaru "workq 11",
96 1.1 hikaru "workq 12",
97 1.1 hikaru "workq 13",
98 1.1 hikaru "workq 14",
99 1.1 hikaru "workq 15",
100 1.1 hikaru "gpio 0",
101 1.1 hikaru "gpio 1",
102 1.1 hikaru "gpio 2",
103 1.1 hikaru "gpio 3",
104 1.1 hikaru "gpio 4",
105 1.1 hikaru "gpio 5",
106 1.1 hikaru "gpio 6",
107 1.1 hikaru "gpio 7",
108 1.1 hikaru "gpio 8",
109 1.1 hikaru "gpio 9",
110 1.1 hikaru "gpio 10",
111 1.1 hikaru "gpio 11",
112 1.1 hikaru "gpio 12",
113 1.1 hikaru "gpio 13",
114 1.1 hikaru "gpio 14",
115 1.1 hikaru "gpio 15",
116 1.1 hikaru "mbox 0-15",
117 1.1 hikaru "mbox 16-31",
118 1.1 hikaru "uart 0",
119 1.1 hikaru "uart 1",
120 1.1 hikaru "pci inta",
121 1.1 hikaru "pci intb",
122 1.1 hikaru "pci intc",
123 1.1 hikaru "pci intd",
124 1.1 hikaru "pci msi 0-15",
125 1.1 hikaru "pci msi 16-31",
126 1.1 hikaru "pci msi 32-47",
127 1.1 hikaru "pci msi 48-63",
128 1.1 hikaru "wdog summary",
129 1.1 hikaru "twsi",
130 1.1 hikaru "rml",
131 1.1 hikaru "trace",
132 1.1 hikaru "gmx drop",
133 1.1 hikaru "reserved",
134 1.1 hikaru "ipd drop",
135 1.1 hikaru "reserved",
136 1.1 hikaru "timer 0",
137 1.1 hikaru "timer 1",
138 1.1 hikaru "timer 2",
139 1.1 hikaru "timer 3",
140 1.1 hikaru "usb",
141 1.1 hikaru "pcm/tdm",
142 1.1 hikaru "mpi/spi",
143 1.1 hikaru "reserved",
144 1.1 hikaru "reserved",
145 1.1 hikaru "reserved",
146 1.1 hikaru "reserved",
147 1.1 hikaru "reserved",
148 1.1 hikaru };
149 1.1 hikaru
150 1.1 hikaru struct octeon_intrhand {
151 1.1 hikaru int (*ih_func)(void *);
152 1.1 hikaru void *ih_arg;
153 1.1 hikaru int ih_irq;
154 1.1 hikaru int ih_ipl;
155 1.1 hikaru };
156 1.1 hikaru
157 1.3 matt #ifdef MULTIPROCESSOR
158 1.3 matt static int octeon_send_ipi(struct cpu_info *, int);
159 1.3 matt static int octeon_ipi_intr(void *);
160 1.3 matt
161 1.20 jmcneill struct octeon_intrhand ipi_intrhands[1] = {
162 1.3 matt [0] = {
163 1.3 matt .ih_func = octeon_ipi_intr,
164 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(15,0),
165 1.12 simonb .ih_irq = CIU_INT_MBOX_15_0,
166 1.3 matt .ih_ipl = IPL_HIGH,
167 1.3 matt },
168 1.1 hikaru };
169 1.3 matt #endif
170 1.1 hikaru
171 1.11 simonb struct octeon_intrhand *octciu_intrs[NIRQS] = {
172 1.3 matt #ifdef MULTIPROCESSOR
173 1.12 simonb [CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
174 1.3 matt #endif
175 1.1 hikaru };
176 1.1 hikaru
177 1.3 matt kmutex_t octeon_intr_lock;
178 1.1 hikaru
179 1.18 jmcneill #if defined(MULTIPROCESSOR)
180 1.18 jmcneill #define OCTEON_NCPU MAXCPUS
181 1.18 jmcneill #else
182 1.18 jmcneill #define OCTEON_NCPU 1
183 1.3 matt #endif
184 1.1 hikaru
185 1.18 jmcneill struct cpu_softc octeon_cpu_softc[OCTEON_NCPU];
186 1.1 hikaru
187 1.4 matt static void
188 1.18 jmcneill octeon_intr_setup(void)
189 1.4 matt {
190 1.18 jmcneill struct cpu_softc *cpu;
191 1.18 jmcneill int cpunum;
192 1.4 matt
193 1.18 jmcneill #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
194 1.4 matt
195 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
196 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
197 1.4 matt
198 1.18 jmcneill cpu->cpu_ip2_sum0 = X(CIU_IP2_SUM0(cpunum));
199 1.18 jmcneill cpu->cpu_ip3_sum0 = X(CIU_IP3_SUM0(cpunum));
200 1.18 jmcneill cpu->cpu_ip4_sum0 = X(CIU_IP4_SUM0(cpunum));
201 1.4 matt
202 1.18 jmcneill cpu->cpu_int_sum1 = X(CIU_INT_SUM1);
203 1.4 matt
204 1.18 jmcneill cpu->cpu_ip2_en[0] = X(CIU_IP2_EN0(cpunum));
205 1.18 jmcneill cpu->cpu_ip3_en[0] = X(CIU_IP3_EN0(cpunum));
206 1.18 jmcneill cpu->cpu_ip4_en[0] = X(CIU_IP4_EN0(cpunum));
207 1.4 matt
208 1.18 jmcneill cpu->cpu_ip2_en[1] = X(CIU_IP2_EN1(cpunum));
209 1.18 jmcneill cpu->cpu_ip3_en[1] = X(CIU_IP3_EN1(cpunum));
210 1.18 jmcneill cpu->cpu_ip4_en[1] = X(CIU_IP4_EN1(cpunum));
211 1.4 matt
212 1.18 jmcneill cpu->cpu_wdog = X(CIU_WDOG(cpunum));
213 1.18 jmcneill cpu->cpu_pp_poke = X(CIU_PP_POKE(cpunum));
214 1.4 matt
215 1.18 jmcneill #ifdef MULTIPROCESSOR
216 1.18 jmcneill cpu->cpu_mbox_set = X(CIU_MBOX_SET(cpunum));
217 1.18 jmcneill cpu->cpu_mbox_clr = X(CIU_MBOX_CLR(cpunum));
218 1.18 jmcneill #endif
219 1.18 jmcneill }
220 1.4 matt
221 1.18 jmcneill #undef X
222 1.4 matt
223 1.4 matt }
224 1.1 hikaru
225 1.3 matt void
226 1.3 matt octeon_intr_init(struct cpu_info *ci)
227 1.3 matt {
228 1.3 matt const int cpunum = cpu_index(ci);
229 1.18 jmcneill struct cpu_softc *cpu = &octeon_cpu_softc[cpunum];
230 1.3 matt const char * const xname = cpu_name(ci);
231 1.16 jmcneill int bank;
232 1.1 hikaru
233 1.18 jmcneill cpu->cpu_ci = ci;
234 1.18 jmcneill ci->ci_softc = cpu;
235 1.18 jmcneill
236 1.18 jmcneill KASSERT(cpunum == ci->ci_cpuid);
237 1.1 hikaru
238 1.3 matt if (ci->ci_cpuid == 0) {
239 1.4 matt ipl_sr_map = octeon_ipl_sr_map;
240 1.3 matt mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
241 1.3 matt #ifdef MULTIPROCESSOR
242 1.3 matt mips_locoresw.lsw_send_ipi = octeon_send_ipi;
243 1.3 matt #endif
244 1.18 jmcneill
245 1.18 jmcneill octeon_intr_setup();
246 1.1 hikaru }
247 1.1 hikaru
248 1.3 matt #ifdef MULTIPROCESSOR
249 1.3 matt // Enable the IPIs
250 1.20 jmcneill cpu->cpu_ip4_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
251 1.1 hikaru #endif
252 1.1 hikaru
253 1.16 jmcneill if (ci->ci_dev) {
254 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
255 1.16 jmcneill aprint_verbose_dev(ci->ci_dev,
256 1.16 jmcneill "enabling intr masks %u "
257 1.16 jmcneill " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
258 1.16 jmcneill bank,
259 1.18 jmcneill cpu->cpu_ip2_enable[bank],
260 1.18 jmcneill cpu->cpu_ip3_enable[bank],
261 1.18 jmcneill cpu->cpu_ip4_enable[bank]);
262 1.16 jmcneill }
263 1.16 jmcneill }
264 1.16 jmcneill
265 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
266 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
267 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
268 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
269 1.16 jmcneill }
270 1.3 matt
271 1.3 matt #ifdef MULTIPROCESSOR
272 1.5 matt mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
273 1.3 matt #endif
274 1.1 hikaru
275 1.15 jmcneill for (int i = 0; i < NIRQS; i++) {
276 1.15 jmcneill if (octeon_intrnames[i] == NULL)
277 1.15 jmcneill octeon_intrnames[i] = kmem_asprintf("irq %d", i);
278 1.3 matt evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
279 1.3 matt EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
280 1.1 hikaru }
281 1.1 hikaru }
282 1.1 hikaru
283 1.1 hikaru void
284 1.1 hikaru octeon_cal_timer(int corefreq)
285 1.1 hikaru {
286 1.1 hikaru /* Compute the number of cycles per second. */
287 1.1 hikaru curcpu()->ci_cpu_freq = corefreq;
288 1.1 hikaru
289 1.1 hikaru /* Compute the number of ticks for hz. */
290 1.1 hikaru curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
291 1.1 hikaru
292 1.1 hikaru /* Compute the delay divisor and reciprical. */
293 1.1 hikaru curcpu()->ci_divisor_delay =
294 1.1 hikaru ((curcpu()->ci_cpu_freq + 500000) / 1000000);
295 1.1 hikaru #if 0
296 1.1 hikaru MIPS_SET_CI_RECIPRICAL(curcpu());
297 1.1 hikaru #endif
298 1.1 hikaru
299 1.1 hikaru mips3_cp0_count_write(0);
300 1.1 hikaru mips3_cp0_compare_write(0);
301 1.1 hikaru }
302 1.1 hikaru
303 1.1 hikaru void *
304 1.3 matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
305 1.1 hikaru {
306 1.1 hikaru struct octeon_intrhand *ih;
307 1.18 jmcneill struct cpu_softc *cpu;
308 1.18 jmcneill int cpunum;
309 1.1 hikaru
310 1.1 hikaru if (irq >= NIRQS)
311 1.1 hikaru panic("octeon_intr_establish: bogus IRQ %d", irq);
312 1.3 matt if (ipl < IPL_VM)
313 1.3 matt panic("octeon_intr_establish: bogus IPL %d", ipl);
314 1.1 hikaru
315 1.3 matt ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
316 1.1 hikaru if (ih == NULL)
317 1.1 hikaru return (NULL);
318 1.1 hikaru
319 1.1 hikaru ih->ih_func = func;
320 1.1 hikaru ih->ih_arg = arg;
321 1.1 hikaru ih->ih_irq = irq;
322 1.3 matt ih->ih_ipl = ipl;
323 1.1 hikaru
324 1.3 matt mutex_enter(&octeon_intr_lock);
325 1.1 hikaru
326 1.1 hikaru /*
327 1.3 matt * First, make it known.
328 1.1 hikaru */
329 1.11 simonb KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
330 1.11 simonb irq, octciu_intrs[irq]);
331 1.3 matt
332 1.11 simonb octciu_intrs[irq] = ih;
333 1.3 matt membar_producer();
334 1.1 hikaru
335 1.1 hikaru /*
336 1.1 hikaru * Now enable it.
337 1.1 hikaru */
338 1.15 jmcneill const int bank = irq / 64;
339 1.15 jmcneill const uint64_t irq_mask = __BIT(irq % 64);
340 1.3 matt
341 1.3 matt switch (ipl) {
342 1.3 matt case IPL_VM:
343 1.18 jmcneill cpu = &octeon_cpu_softc[0];
344 1.18 jmcneill cpu->cpu_ip2_enable[bank] |= irq_mask;
345 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
346 1.3 matt break;
347 1.1 hikaru
348 1.3 matt case IPL_SCHED:
349 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
350 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
351 1.18 jmcneill if (cpu->cpu_ci == NULL)
352 1.18 jmcneill break;
353 1.18 jmcneill cpu->cpu_ip3_enable[bank] |= irq_mask;
354 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
355 1.18 jmcneill }
356 1.3 matt break;
357 1.3 matt
358 1.3 matt case IPL_DDB:
359 1.3 matt case IPL_HIGH:
360 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
361 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
362 1.18 jmcneill if (cpu->cpu_ci == NULL)
363 1.18 jmcneill break;
364 1.18 jmcneill cpu->cpu_ip4_enable[bank] |= irq_mask;
365 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
366 1.18 jmcneill }
367 1.3 matt break;
368 1.1 hikaru }
369 1.1 hikaru
370 1.3 matt mutex_exit(&octeon_intr_lock);
371 1.3 matt
372 1.3 matt return ih;
373 1.1 hikaru }
374 1.1 hikaru
375 1.1 hikaru void
376 1.1 hikaru octeon_intr_disestablish(void *cookie)
377 1.1 hikaru {
378 1.3 matt struct octeon_intrhand * const ih = cookie;
379 1.18 jmcneill struct cpu_softc *cpu;
380 1.3 matt const int irq = ih->ih_irq & (NIRQS-1);
381 1.3 matt const int ipl = ih->ih_ipl;
382 1.18 jmcneill int cpunum;
383 1.1 hikaru
384 1.3 matt mutex_enter(&octeon_intr_lock);
385 1.1 hikaru
386 1.1 hikaru /*
387 1.3 matt * First disable it.
388 1.1 hikaru */
389 1.15 jmcneill const int bank = irq / 64;
390 1.15 jmcneill const uint64_t irq_mask = ~__BIT(irq % 64);
391 1.3 matt
392 1.3 matt switch (ipl) {
393 1.3 matt case IPL_VM:
394 1.18 jmcneill cpu = &octeon_cpu_softc[0];
395 1.18 jmcneill cpu->cpu_ip2_enable[bank] &= ~irq_mask;
396 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
397 1.3 matt break;
398 1.3 matt
399 1.3 matt case IPL_SCHED:
400 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
401 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
402 1.18 jmcneill if (cpu->cpu_ci == NULL)
403 1.18 jmcneill break;
404 1.18 jmcneill cpu->cpu_ip3_enable[bank] &= ~irq_mask;
405 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
406 1.18 jmcneill }
407 1.3 matt break;
408 1.3 matt
409 1.3 matt case IPL_DDB:
410 1.3 matt case IPL_HIGH:
411 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
412 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
413 1.18 jmcneill if (cpu->cpu_ci == NULL)
414 1.18 jmcneill break;
415 1.18 jmcneill cpu->cpu_ip4_enable[bank] &= ~irq_mask;
416 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
417 1.18 jmcneill }
418 1.3 matt break;
419 1.3 matt }
420 1.1 hikaru
421 1.1 hikaru /*
422 1.3 matt * Now remove it since we shouldn't get interrupts for it.
423 1.1 hikaru */
424 1.11 simonb octciu_intrs[irq] = NULL;
425 1.3 matt
426 1.3 matt mutex_exit(&octeon_intr_lock);
427 1.1 hikaru
428 1.3 matt kmem_free(ih, sizeof(*ih));
429 1.1 hikaru }
430 1.1 hikaru
431 1.1 hikaru void
432 1.1 hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
433 1.1 hikaru {
434 1.3 matt struct cpu_info * const ci = curcpu();
435 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
436 1.15 jmcneill int bank;
437 1.3 matt
438 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
439 1.3 matt KASSERT((ipending & ~MIPS_INT_MASK) == 0);
440 1.3 matt KASSERT(ipending & MIPS_HARD_INT_MASK);
441 1.15 jmcneill uint64_t hwpend[2] = { 0, 0 };
442 1.15 jmcneill
443 1.15 jmcneill const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
444 1.1 hikaru
445 1.3 matt if (ipending & MIPS_INT_MASK_2) {
446 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip4_sum0)
447 1.18 jmcneill & cpu->cpu_ip4_enable[0];
448 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip4_enable[1];
449 1.3 matt } else if (ipending & MIPS_INT_MASK_1) {
450 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip3_sum0)
451 1.18 jmcneill & cpu->cpu_ip3_enable[0];
452 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip3_enable[1];
453 1.3 matt } else if (ipending & MIPS_INT_MASK_0) {
454 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip2_sum0)
455 1.18 jmcneill & cpu->cpu_ip2_enable[0];
456 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip2_enable[1];
457 1.3 matt } else {
458 1.3 matt panic("octeon_iointr: unexpected ipending %#x", ipending);
459 1.3 matt }
460 1.15 jmcneill for (bank = 0; bank <= 1; bank++) {
461 1.15 jmcneill while (hwpend[bank] != 0) {
462 1.15 jmcneill const int bit = ffs64(hwpend[bank]) - 1;
463 1.15 jmcneill const int irq = (bank * 64) + bit;
464 1.15 jmcneill hwpend[bank] &= ~__BIT(bit);
465 1.15 jmcneill
466 1.15 jmcneill struct octeon_intrhand * const ih = octciu_intrs[irq];
467 1.15 jmcneill cpu->cpu_intr_evs[irq].ev_count++;
468 1.15 jmcneill if (__predict_true(ih != NULL)) {
469 1.15 jmcneill #ifdef MULTIPROCESSOR
470 1.15 jmcneill if (ipl == IPL_VM) {
471 1.15 jmcneill KERNEL_LOCK(1, NULL);
472 1.15 jmcneill #endif
473 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
474 1.15 jmcneill #ifdef MULTIPROCESSOR
475 1.15 jmcneill KERNEL_UNLOCK_ONE(NULL);
476 1.15 jmcneill } else {
477 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
478 1.15 jmcneill }
479 1.15 jmcneill #endif
480 1.15 jmcneill KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
481 1.3 matt }
482 1.3 matt }
483 1.3 matt }
484 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
485 1.3 matt }
486 1.3 matt
487 1.3 matt #ifdef MULTIPROCESSOR
488 1.3 matt __CTASSERT(NIPIS < 16);
489 1.3 matt
490 1.3 matt int
491 1.3 matt octeon_ipi_intr(void *arg)
492 1.3 matt {
493 1.3 matt struct cpu_info * const ci = curcpu();
494 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
495 1.20 jmcneill uint32_t ipi_mask = (uintptr_t) arg;
496 1.4 matt
497 1.20 jmcneill KASSERTMSG(ci->ci_cpl == IPL_HIGH,
498 1.20 jmcneill "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
499 1.3 matt
500 1.20 jmcneill ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
501 1.20 jmcneill if (ipi_mask == 0)
502 1.4 matt return 0;
503 1.4 matt
504 1.20 jmcneill mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
505 1.3 matt
506 1.3 matt KASSERT(ipi_mask < __BIT(NIPIS));
507 1.3 matt
508 1.4 matt #if NWDOG > 0
509 1.4 matt // Handle WDOG requests ourselves.
510 1.4 matt if (ipi_mask & __BIT(IPI_WDOG)) {
511 1.4 matt softint_schedule(cpu->cpu_wdog_sih);
512 1.4 matt atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
513 1.4 matt ipi_mask &= ~__BIT(IPI_WDOG);
514 1.4 matt ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
515 1.4 matt if (__predict_true(ipi_mask == 0))
516 1.4 matt return 1;
517 1.4 matt }
518 1.4 matt #endif
519 1.4 matt
520 1.3 matt /* if the request is clear, it was previously processed */
521 1.3 matt if ((ci->ci_request_ipis & ipi_mask) == 0)
522 1.3 matt return 0;
523 1.3 matt
524 1.3 matt atomic_or_64(&ci->ci_active_ipis, ipi_mask);
525 1.3 matt atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
526 1.3 matt
527 1.3 matt ipi_process(ci, ipi_mask);
528 1.3 matt
529 1.3 matt atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
530 1.3 matt
531 1.3 matt return 1;
532 1.3 matt }
533 1.1 hikaru
534 1.3 matt int
535 1.3 matt octeon_send_ipi(struct cpu_info *ci, int req)
536 1.3 matt {
537 1.3 matt KASSERT(req < NIPIS);
538 1.3 matt if (ci == NULL) {
539 1.4 matt CPU_INFO_ITERATOR cii;
540 1.4 matt for (CPU_INFO_FOREACH(cii, ci)) {
541 1.4 matt if (ci != curcpu()) {
542 1.4 matt octeon_send_ipi(ci, req);
543 1.4 matt }
544 1.4 matt }
545 1.4 matt return 0;
546 1.1 hikaru }
547 1.4 matt KASSERT(cold || ci->ci_softc != NULL);
548 1.4 matt if (ci->ci_softc == NULL)
549 1.4 matt return -1;
550 1.3 matt
551 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
552 1.19 jmcneill const uint32_t ipi_mask = __BIT(req);
553 1.3 matt
554 1.7 skrll atomic_or_64(&ci->ci_request_ipis, ipi_mask);
555 1.3 matt
556 1.20 jmcneill mips3_sd(cpu->cpu_mbox_set, ipi_mask);
557 1.17 jmcneill
558 1.3 matt return 0;
559 1.1 hikaru }
560 1.3 matt #endif /* MULTIPROCESSOR */
561