octeon_intr.c revision 1.24 1 1.24 skrll /* $NetBSD: octeon_intr.c,v 1.24 2020/08/18 07:41:41 skrll Exp $ */
2 1.1 hikaru /*
3 1.1 hikaru * Copyright 2001, 2002 Wasabi Systems, Inc.
4 1.1 hikaru * All rights reserved.
5 1.1 hikaru *
6 1.1 hikaru * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 1.1 hikaru *
8 1.1 hikaru * Redistribution and use in source and binary forms, with or without
9 1.1 hikaru * modification, are permitted provided that the following conditions
10 1.1 hikaru * are met:
11 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
12 1.1 hikaru * notice, this list of conditions and the following disclaimer.
13 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
15 1.1 hikaru * documentation and/or other materials provided with the distribution.
16 1.1 hikaru * 3. All advertising materials mentioning features or use of this software
17 1.1 hikaru * must display the following acknowledgement:
18 1.1 hikaru * This product includes software developed for the NetBSD Project by
19 1.1 hikaru * Wasabi Systems, Inc.
20 1.1 hikaru * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 1.1 hikaru * or promote products derived from this software without specific prior
22 1.1 hikaru * written permission.
23 1.1 hikaru *
24 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hikaru * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hikaru * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 hikaru * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hikaru * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hikaru * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hikaru * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hikaru * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hikaru * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hikaru * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hikaru */
36 1.1 hikaru
37 1.1 hikaru /*
38 1.1 hikaru * Platform-specific interrupt support for the MIPS Malta.
39 1.1 hikaru */
40 1.1 hikaru
41 1.6 skrll #include "opt_multiprocessor.h"
42 1.6 skrll
43 1.4 matt #include "cpunode.h"
44 1.1 hikaru #define __INTR_PRIVATE
45 1.1 hikaru
46 1.1 hikaru #include <sys/cdefs.h>
47 1.24 skrll __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.24 2020/08/18 07:41:41 skrll Exp $");
48 1.1 hikaru
49 1.1 hikaru #include <sys/param.h>
50 1.1 hikaru #include <sys/cpu.h>
51 1.1 hikaru #include <sys/systm.h>
52 1.1 hikaru #include <sys/device.h>
53 1.1 hikaru #include <sys/intr.h>
54 1.1 hikaru #include <sys/kernel.h>
55 1.3 matt #include <sys/kmem.h>
56 1.3 matt #include <sys/atomic.h>
57 1.1 hikaru
58 1.1 hikaru #include <lib/libkern/libkern.h>
59 1.1 hikaru
60 1.1 hikaru #include <mips/locore.h>
61 1.1 hikaru
62 1.1 hikaru #include <mips/cavium/dev/octeon_ciureg.h>
63 1.1 hikaru #include <mips/cavium/octeonvar.h>
64 1.1 hikaru
65 1.1 hikaru /*
66 1.21 simonb * XXX:
67 1.21 simonb * Force all interrupts (except clock intrs and IPIs) to be routed
68 1.21 simonb * through cpu0 until MP on MIPS is more stable.
69 1.21 simonb */
70 1.21 simonb #define OCTEON_CPU0_INTERRUPTS
71 1.21 simonb
72 1.21 simonb
73 1.21 simonb /*
74 1.1 hikaru * This is a mask of bits to clear in the SR when we go to a
75 1.1 hikaru * given hardware interrupt priority level.
76 1.1 hikaru */
77 1.1 hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
78 1.1 hikaru .sr_bits = {
79 1.1 hikaru [IPL_NONE] = 0,
80 1.1 hikaru [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
81 1.1 hikaru [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
82 1.1 hikaru [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
83 1.1 hikaru [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
84 1.8 skrll | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
85 1.3 matt [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
86 1.3 matt | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
87 1.1 hikaru [IPL_HIGH] = MIPS_INT_MASK,
88 1.1 hikaru },
89 1.1 hikaru };
90 1.1 hikaru
91 1.22 simonb static const char * octeon_intrnames[NIRQS] = {
92 1.1 hikaru "workq 0",
93 1.1 hikaru "workq 1",
94 1.1 hikaru "workq 2",
95 1.1 hikaru "workq 3",
96 1.1 hikaru "workq 4",
97 1.1 hikaru "workq 5",
98 1.1 hikaru "workq 6",
99 1.1 hikaru "workq 7",
100 1.1 hikaru "workq 8",
101 1.1 hikaru "workq 9",
102 1.1 hikaru "workq 10",
103 1.1 hikaru "workq 11",
104 1.1 hikaru "workq 12",
105 1.1 hikaru "workq 13",
106 1.1 hikaru "workq 14",
107 1.1 hikaru "workq 15",
108 1.1 hikaru "gpio 0",
109 1.1 hikaru "gpio 1",
110 1.1 hikaru "gpio 2",
111 1.1 hikaru "gpio 3",
112 1.1 hikaru "gpio 4",
113 1.1 hikaru "gpio 5",
114 1.1 hikaru "gpio 6",
115 1.1 hikaru "gpio 7",
116 1.1 hikaru "gpio 8",
117 1.1 hikaru "gpio 9",
118 1.1 hikaru "gpio 10",
119 1.1 hikaru "gpio 11",
120 1.1 hikaru "gpio 12",
121 1.1 hikaru "gpio 13",
122 1.1 hikaru "gpio 14",
123 1.1 hikaru "gpio 15",
124 1.1 hikaru "mbox 0-15",
125 1.1 hikaru "mbox 16-31",
126 1.1 hikaru "uart 0",
127 1.1 hikaru "uart 1",
128 1.1 hikaru "pci inta",
129 1.1 hikaru "pci intb",
130 1.1 hikaru "pci intc",
131 1.1 hikaru "pci intd",
132 1.1 hikaru "pci msi 0-15",
133 1.1 hikaru "pci msi 16-31",
134 1.1 hikaru "pci msi 32-47",
135 1.1 hikaru "pci msi 48-63",
136 1.1 hikaru "wdog summary",
137 1.1 hikaru "twsi",
138 1.1 hikaru "rml",
139 1.1 hikaru "trace",
140 1.1 hikaru "gmx drop",
141 1.1 hikaru "reserved",
142 1.1 hikaru "ipd drop",
143 1.1 hikaru "reserved",
144 1.1 hikaru "timer 0",
145 1.1 hikaru "timer 1",
146 1.1 hikaru "timer 2",
147 1.1 hikaru "timer 3",
148 1.1 hikaru "usb",
149 1.1 hikaru "pcm/tdm",
150 1.1 hikaru "mpi/spi",
151 1.1 hikaru "reserved",
152 1.1 hikaru "reserved",
153 1.1 hikaru "reserved",
154 1.1 hikaru "reserved",
155 1.1 hikaru "reserved",
156 1.1 hikaru };
157 1.1 hikaru
158 1.1 hikaru struct octeon_intrhand {
159 1.1 hikaru int (*ih_func)(void *);
160 1.1 hikaru void *ih_arg;
161 1.1 hikaru int ih_irq;
162 1.1 hikaru int ih_ipl;
163 1.1 hikaru };
164 1.1 hikaru
165 1.3 matt #ifdef MULTIPROCESSOR
166 1.3 matt static int octeon_send_ipi(struct cpu_info *, int);
167 1.3 matt static int octeon_ipi_intr(void *);
168 1.3 matt
169 1.24 skrll static struct octeon_intrhand ipi_intrhands[2] = {
170 1.3 matt [0] = {
171 1.3 matt .ih_func = octeon_ipi_intr,
172 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(15,0),
173 1.12 simonb .ih_irq = CIU_INT_MBOX_15_0,
174 1.3 matt .ih_ipl = IPL_HIGH,
175 1.3 matt },
176 1.23 jmcneill [1] = {
177 1.23 jmcneill .ih_func = octeon_ipi_intr,
178 1.23 jmcneill .ih_arg = (void *)(uintptr_t)__BITS(31,16),
179 1.23 jmcneill .ih_irq = CIU_INT_MBOX_31_16,
180 1.23 jmcneill .ih_ipl = IPL_SCHED,
181 1.23 jmcneill },
182 1.1 hikaru };
183 1.23 jmcneill
184 1.23 jmcneill static int ipi_prio[NIPIS] = {
185 1.23 jmcneill [IPI_NOP] = IPL_HIGH,
186 1.23 jmcneill [IPI_AST] = IPL_HIGH,
187 1.23 jmcneill [IPI_SHOOTDOWN] = IPL_SCHED,
188 1.23 jmcneill [IPI_SYNCICACHE] = IPL_HIGH,
189 1.23 jmcneill [IPI_KPREEMPT] = IPL_HIGH,
190 1.23 jmcneill [IPI_SUSPEND] = IPL_HIGH,
191 1.23 jmcneill [IPI_HALT] = IPL_HIGH,
192 1.23 jmcneill [IPI_XCALL] = IPL_HIGH,
193 1.23 jmcneill [IPI_GENERIC] = IPL_HIGH,
194 1.23 jmcneill [IPI_WDOG] = IPL_HIGH,
195 1.23 jmcneill };
196 1.23 jmcneill
197 1.3 matt #endif
198 1.1 hikaru
199 1.22 simonb static struct octeon_intrhand *octciu_intrs[NIRQS] = {
200 1.3 matt #ifdef MULTIPROCESSOR
201 1.12 simonb [CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
202 1.23 jmcneill [CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
203 1.3 matt #endif
204 1.1 hikaru };
205 1.1 hikaru
206 1.22 simonb static kmutex_t octeon_intr_lock;
207 1.1 hikaru
208 1.18 jmcneill #if defined(MULTIPROCESSOR)
209 1.18 jmcneill #define OCTEON_NCPU MAXCPUS
210 1.18 jmcneill #else
211 1.18 jmcneill #define OCTEON_NCPU 1
212 1.3 matt #endif
213 1.1 hikaru
214 1.18 jmcneill struct cpu_softc octeon_cpu_softc[OCTEON_NCPU];
215 1.1 hikaru
216 1.4 matt static void
217 1.18 jmcneill octeon_intr_setup(void)
218 1.4 matt {
219 1.18 jmcneill struct cpu_softc *cpu;
220 1.18 jmcneill int cpunum;
221 1.4 matt
222 1.18 jmcneill #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
223 1.4 matt
224 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
225 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
226 1.4 matt
227 1.18 jmcneill cpu->cpu_ip2_sum0 = X(CIU_IP2_SUM0(cpunum));
228 1.18 jmcneill cpu->cpu_ip3_sum0 = X(CIU_IP3_SUM0(cpunum));
229 1.18 jmcneill cpu->cpu_ip4_sum0 = X(CIU_IP4_SUM0(cpunum));
230 1.4 matt
231 1.18 jmcneill cpu->cpu_int_sum1 = X(CIU_INT_SUM1);
232 1.4 matt
233 1.18 jmcneill cpu->cpu_ip2_en[0] = X(CIU_IP2_EN0(cpunum));
234 1.18 jmcneill cpu->cpu_ip3_en[0] = X(CIU_IP3_EN0(cpunum));
235 1.18 jmcneill cpu->cpu_ip4_en[0] = X(CIU_IP4_EN0(cpunum));
236 1.4 matt
237 1.18 jmcneill cpu->cpu_ip2_en[1] = X(CIU_IP2_EN1(cpunum));
238 1.18 jmcneill cpu->cpu_ip3_en[1] = X(CIU_IP3_EN1(cpunum));
239 1.18 jmcneill cpu->cpu_ip4_en[1] = X(CIU_IP4_EN1(cpunum));
240 1.4 matt
241 1.18 jmcneill cpu->cpu_wdog = X(CIU_WDOG(cpunum));
242 1.18 jmcneill cpu->cpu_pp_poke = X(CIU_PP_POKE(cpunum));
243 1.4 matt
244 1.18 jmcneill #ifdef MULTIPROCESSOR
245 1.18 jmcneill cpu->cpu_mbox_set = X(CIU_MBOX_SET(cpunum));
246 1.18 jmcneill cpu->cpu_mbox_clr = X(CIU_MBOX_CLR(cpunum));
247 1.18 jmcneill #endif
248 1.18 jmcneill }
249 1.4 matt
250 1.18 jmcneill #undef X
251 1.4 matt
252 1.4 matt }
253 1.1 hikaru
254 1.3 matt void
255 1.3 matt octeon_intr_init(struct cpu_info *ci)
256 1.3 matt {
257 1.3 matt const int cpunum = cpu_index(ci);
258 1.18 jmcneill struct cpu_softc *cpu = &octeon_cpu_softc[cpunum];
259 1.3 matt const char * const xname = cpu_name(ci);
260 1.16 jmcneill int bank;
261 1.1 hikaru
262 1.18 jmcneill cpu->cpu_ci = ci;
263 1.18 jmcneill ci->ci_softc = cpu;
264 1.18 jmcneill
265 1.18 jmcneill KASSERT(cpunum == ci->ci_cpuid);
266 1.1 hikaru
267 1.3 matt if (ci->ci_cpuid == 0) {
268 1.4 matt ipl_sr_map = octeon_ipl_sr_map;
269 1.3 matt mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
270 1.3 matt #ifdef MULTIPROCESSOR
271 1.3 matt mips_locoresw.lsw_send_ipi = octeon_send_ipi;
272 1.3 matt #endif
273 1.18 jmcneill
274 1.18 jmcneill octeon_intr_setup();
275 1.1 hikaru }
276 1.1 hikaru
277 1.3 matt #ifdef MULTIPROCESSOR
278 1.3 matt // Enable the IPIs
279 1.20 jmcneill cpu->cpu_ip4_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
280 1.23 jmcneill cpu->cpu_ip3_enable[0] |= __BIT(CIU_INT_MBOX_31_16);
281 1.1 hikaru #endif
282 1.1 hikaru
283 1.16 jmcneill if (ci->ci_dev) {
284 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
285 1.16 jmcneill aprint_verbose_dev(ci->ci_dev,
286 1.16 jmcneill "enabling intr masks %u "
287 1.16 jmcneill " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
288 1.16 jmcneill bank,
289 1.18 jmcneill cpu->cpu_ip2_enable[bank],
290 1.18 jmcneill cpu->cpu_ip3_enable[bank],
291 1.18 jmcneill cpu->cpu_ip4_enable[bank]);
292 1.16 jmcneill }
293 1.16 jmcneill }
294 1.16 jmcneill
295 1.16 jmcneill for (bank = 0; bank < NBANKS; bank++) {
296 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
297 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
298 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
299 1.16 jmcneill }
300 1.3 matt
301 1.3 matt #ifdef MULTIPROCESSOR
302 1.5 matt mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
303 1.3 matt #endif
304 1.1 hikaru
305 1.15 jmcneill for (int i = 0; i < NIRQS; i++) {
306 1.15 jmcneill if (octeon_intrnames[i] == NULL)
307 1.15 jmcneill octeon_intrnames[i] = kmem_asprintf("irq %d", i);
308 1.3 matt evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
309 1.3 matt EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
310 1.1 hikaru }
311 1.1 hikaru }
312 1.1 hikaru
313 1.1 hikaru void
314 1.1 hikaru octeon_cal_timer(int corefreq)
315 1.1 hikaru {
316 1.1 hikaru /* Compute the number of cycles per second. */
317 1.1 hikaru curcpu()->ci_cpu_freq = corefreq;
318 1.1 hikaru
319 1.1 hikaru /* Compute the number of ticks for hz. */
320 1.1 hikaru curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
321 1.1 hikaru
322 1.1 hikaru /* Compute the delay divisor and reciprical. */
323 1.1 hikaru curcpu()->ci_divisor_delay =
324 1.1 hikaru ((curcpu()->ci_cpu_freq + 500000) / 1000000);
325 1.1 hikaru #if 0
326 1.1 hikaru MIPS_SET_CI_RECIPRICAL(curcpu());
327 1.1 hikaru #endif
328 1.1 hikaru
329 1.1 hikaru mips3_cp0_count_write(0);
330 1.1 hikaru mips3_cp0_compare_write(0);
331 1.1 hikaru }
332 1.1 hikaru
333 1.1 hikaru void *
334 1.3 matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
335 1.1 hikaru {
336 1.1 hikaru struct octeon_intrhand *ih;
337 1.18 jmcneill struct cpu_softc *cpu;
338 1.21 simonb #ifndef OCTEON_CPU0_INTERRUPTS
339 1.18 jmcneill int cpunum;
340 1.21 simonb #endif
341 1.1 hikaru
342 1.1 hikaru if (irq >= NIRQS)
343 1.1 hikaru panic("octeon_intr_establish: bogus IRQ %d", irq);
344 1.3 matt if (ipl < IPL_VM)
345 1.3 matt panic("octeon_intr_establish: bogus IPL %d", ipl);
346 1.1 hikaru
347 1.3 matt ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
348 1.1 hikaru if (ih == NULL)
349 1.1 hikaru return (NULL);
350 1.1 hikaru
351 1.1 hikaru ih->ih_func = func;
352 1.1 hikaru ih->ih_arg = arg;
353 1.1 hikaru ih->ih_irq = irq;
354 1.3 matt ih->ih_ipl = ipl;
355 1.1 hikaru
356 1.3 matt mutex_enter(&octeon_intr_lock);
357 1.1 hikaru
358 1.1 hikaru /*
359 1.3 matt * First, make it known.
360 1.1 hikaru */
361 1.11 simonb KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
362 1.11 simonb irq, octciu_intrs[irq]);
363 1.3 matt
364 1.11 simonb octciu_intrs[irq] = ih;
365 1.3 matt membar_producer();
366 1.1 hikaru
367 1.1 hikaru /*
368 1.1 hikaru * Now enable it.
369 1.1 hikaru */
370 1.15 jmcneill const int bank = irq / 64;
371 1.15 jmcneill const uint64_t irq_mask = __BIT(irq % 64);
372 1.3 matt
373 1.3 matt switch (ipl) {
374 1.3 matt case IPL_VM:
375 1.18 jmcneill cpu = &octeon_cpu_softc[0];
376 1.18 jmcneill cpu->cpu_ip2_enable[bank] |= irq_mask;
377 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
378 1.3 matt break;
379 1.1 hikaru
380 1.3 matt case IPL_SCHED:
381 1.21 simonb #ifdef OCTEON_CPU0_INTERRUPTS
382 1.21 simonb cpu = &octeon_cpu_softc[0];
383 1.21 simonb cpu->cpu_ip3_enable[bank] |= irq_mask;
384 1.21 simonb mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
385 1.21 simonb #else /* OCTEON_CPU0_INTERRUPTS */
386 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
387 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
388 1.18 jmcneill if (cpu->cpu_ci == NULL)
389 1.18 jmcneill break;
390 1.18 jmcneill cpu->cpu_ip3_enable[bank] |= irq_mask;
391 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
392 1.18 jmcneill }
393 1.21 simonb #endif /* OCTEON_CPU0_INTERRUPTS */
394 1.3 matt break;
395 1.3 matt
396 1.3 matt case IPL_DDB:
397 1.3 matt case IPL_HIGH:
398 1.21 simonb #ifdef OCTEON_CPU0_INTERRUPTS
399 1.21 simonb cpu = &octeon_cpu_softc[0];
400 1.21 simonb cpu->cpu_ip4_enable[bank] |= irq_mask;
401 1.21 simonb mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
402 1.21 simonb #else /* OCTEON_CPU0_INTERRUPTS */
403 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
404 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
405 1.18 jmcneill if (cpu->cpu_ci == NULL)
406 1.18 jmcneill break;
407 1.18 jmcneill cpu->cpu_ip4_enable[bank] |= irq_mask;
408 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
409 1.18 jmcneill }
410 1.21 simonb #endif /* OCTEON_CPU0_INTERRUPTS */
411 1.3 matt break;
412 1.1 hikaru }
413 1.1 hikaru
414 1.3 matt mutex_exit(&octeon_intr_lock);
415 1.3 matt
416 1.3 matt return ih;
417 1.1 hikaru }
418 1.1 hikaru
419 1.1 hikaru void
420 1.1 hikaru octeon_intr_disestablish(void *cookie)
421 1.1 hikaru {
422 1.3 matt struct octeon_intrhand * const ih = cookie;
423 1.18 jmcneill struct cpu_softc *cpu;
424 1.3 matt const int irq = ih->ih_irq & (NIRQS-1);
425 1.3 matt const int ipl = ih->ih_ipl;
426 1.18 jmcneill int cpunum;
427 1.1 hikaru
428 1.3 matt mutex_enter(&octeon_intr_lock);
429 1.1 hikaru
430 1.1 hikaru /*
431 1.3 matt * First disable it.
432 1.1 hikaru */
433 1.15 jmcneill const int bank = irq / 64;
434 1.15 jmcneill const uint64_t irq_mask = ~__BIT(irq % 64);
435 1.3 matt
436 1.3 matt switch (ipl) {
437 1.3 matt case IPL_VM:
438 1.18 jmcneill cpu = &octeon_cpu_softc[0];
439 1.18 jmcneill cpu->cpu_ip2_enable[bank] &= ~irq_mask;
440 1.18 jmcneill mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
441 1.3 matt break;
442 1.3 matt
443 1.3 matt case IPL_SCHED:
444 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
445 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
446 1.18 jmcneill if (cpu->cpu_ci == NULL)
447 1.18 jmcneill break;
448 1.18 jmcneill cpu->cpu_ip3_enable[bank] &= ~irq_mask;
449 1.18 jmcneill mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
450 1.18 jmcneill }
451 1.3 matt break;
452 1.3 matt
453 1.3 matt case IPL_DDB:
454 1.3 matt case IPL_HIGH:
455 1.18 jmcneill for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
456 1.18 jmcneill cpu = &octeon_cpu_softc[cpunum];
457 1.18 jmcneill if (cpu->cpu_ci == NULL)
458 1.18 jmcneill break;
459 1.18 jmcneill cpu->cpu_ip4_enable[bank] &= ~irq_mask;
460 1.18 jmcneill mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
461 1.18 jmcneill }
462 1.3 matt break;
463 1.3 matt }
464 1.1 hikaru
465 1.1 hikaru /*
466 1.3 matt * Now remove it since we shouldn't get interrupts for it.
467 1.1 hikaru */
468 1.11 simonb octciu_intrs[irq] = NULL;
469 1.3 matt
470 1.3 matt mutex_exit(&octeon_intr_lock);
471 1.1 hikaru
472 1.3 matt kmem_free(ih, sizeof(*ih));
473 1.1 hikaru }
474 1.1 hikaru
475 1.1 hikaru void
476 1.1 hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
477 1.1 hikaru {
478 1.3 matt struct cpu_info * const ci = curcpu();
479 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
480 1.15 jmcneill int bank;
481 1.3 matt
482 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
483 1.3 matt KASSERT((ipending & ~MIPS_INT_MASK) == 0);
484 1.3 matt KASSERT(ipending & MIPS_HARD_INT_MASK);
485 1.15 jmcneill uint64_t hwpend[2] = { 0, 0 };
486 1.15 jmcneill
487 1.15 jmcneill const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
488 1.1 hikaru
489 1.3 matt if (ipending & MIPS_INT_MASK_2) {
490 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip4_sum0)
491 1.18 jmcneill & cpu->cpu_ip4_enable[0];
492 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip4_enable[1];
493 1.3 matt } else if (ipending & MIPS_INT_MASK_1) {
494 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip3_sum0)
495 1.18 jmcneill & cpu->cpu_ip3_enable[0];
496 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip3_enable[1];
497 1.3 matt } else if (ipending & MIPS_INT_MASK_0) {
498 1.18 jmcneill hwpend[0] = mips3_ld(cpu->cpu_ip2_sum0)
499 1.18 jmcneill & cpu->cpu_ip2_enable[0];
500 1.18 jmcneill hwpend[1] = sum1 & cpu->cpu_ip2_enable[1];
501 1.3 matt } else {
502 1.3 matt panic("octeon_iointr: unexpected ipending %#x", ipending);
503 1.3 matt }
504 1.15 jmcneill for (bank = 0; bank <= 1; bank++) {
505 1.15 jmcneill while (hwpend[bank] != 0) {
506 1.15 jmcneill const int bit = ffs64(hwpend[bank]) - 1;
507 1.15 jmcneill const int irq = (bank * 64) + bit;
508 1.15 jmcneill hwpend[bank] &= ~__BIT(bit);
509 1.15 jmcneill
510 1.15 jmcneill struct octeon_intrhand * const ih = octciu_intrs[irq];
511 1.15 jmcneill cpu->cpu_intr_evs[irq].ev_count++;
512 1.15 jmcneill if (__predict_true(ih != NULL)) {
513 1.15 jmcneill #ifdef MULTIPROCESSOR
514 1.15 jmcneill if (ipl == IPL_VM) {
515 1.15 jmcneill KERNEL_LOCK(1, NULL);
516 1.15 jmcneill #endif
517 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
518 1.15 jmcneill #ifdef MULTIPROCESSOR
519 1.15 jmcneill KERNEL_UNLOCK_ONE(NULL);
520 1.15 jmcneill } else {
521 1.15 jmcneill (*ih->ih_func)(ih->ih_arg);
522 1.15 jmcneill }
523 1.15 jmcneill #endif
524 1.15 jmcneill KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
525 1.3 matt }
526 1.3 matt }
527 1.3 matt }
528 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
529 1.3 matt }
530 1.3 matt
531 1.3 matt #ifdef MULTIPROCESSOR
532 1.3 matt __CTASSERT(NIPIS < 16);
533 1.3 matt
534 1.3 matt int
535 1.3 matt octeon_ipi_intr(void *arg)
536 1.3 matt {
537 1.3 matt struct cpu_info * const ci = curcpu();
538 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
539 1.23 jmcneill const uint32_t mbox_mask = (uintptr_t) arg;
540 1.23 jmcneill uint32_t ipi_mask = mbox_mask;
541 1.4 matt
542 1.23 jmcneill KASSERTMSG((mbox_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
543 1.23 jmcneill "mbox_mask %#"PRIx32" cpl %d", mbox_mask, ci->ci_cpl);
544 1.3 matt
545 1.20 jmcneill ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
546 1.20 jmcneill if (ipi_mask == 0)
547 1.4 matt return 0;
548 1.4 matt
549 1.20 jmcneill mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
550 1.3 matt
551 1.23 jmcneill KASSERT(__SHIFTOUT(ipi_mask, mbox_mask) < __BIT(NIPIS));
552 1.3 matt
553 1.4 matt #if NWDOG > 0
554 1.4 matt // Handle WDOG requests ourselves.
555 1.4 matt if (ipi_mask & __BIT(IPI_WDOG)) {
556 1.4 matt softint_schedule(cpu->cpu_wdog_sih);
557 1.4 matt atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
558 1.4 matt ipi_mask &= ~__BIT(IPI_WDOG);
559 1.4 matt ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
560 1.4 matt if (__predict_true(ipi_mask == 0))
561 1.4 matt return 1;
562 1.4 matt }
563 1.4 matt #endif
564 1.4 matt
565 1.3 matt /* if the request is clear, it was previously processed */
566 1.3 matt if ((ci->ci_request_ipis & ipi_mask) == 0)
567 1.3 matt return 0;
568 1.3 matt
569 1.3 matt atomic_or_64(&ci->ci_active_ipis, ipi_mask);
570 1.3 matt atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
571 1.3 matt
572 1.23 jmcneill ipi_process(ci, __SHIFTOUT(ipi_mask, mbox_mask));
573 1.3 matt
574 1.3 matt atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
575 1.3 matt
576 1.3 matt return 1;
577 1.3 matt }
578 1.1 hikaru
579 1.3 matt int
580 1.3 matt octeon_send_ipi(struct cpu_info *ci, int req)
581 1.3 matt {
582 1.3 matt KASSERT(req < NIPIS);
583 1.3 matt if (ci == NULL) {
584 1.4 matt CPU_INFO_ITERATOR cii;
585 1.4 matt for (CPU_INFO_FOREACH(cii, ci)) {
586 1.4 matt if (ci != curcpu()) {
587 1.4 matt octeon_send_ipi(ci, req);
588 1.4 matt }
589 1.4 matt }
590 1.4 matt return 0;
591 1.1 hikaru }
592 1.4 matt KASSERT(cold || ci->ci_softc != NULL);
593 1.4 matt if (ci->ci_softc == NULL)
594 1.4 matt return -1;
595 1.3 matt
596 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
597 1.23 jmcneill const u_int ipi_shift = ipi_prio[req] == IPL_SCHED ? 16 : 0;
598 1.23 jmcneill const uint32_t ipi_mask = __BIT(req + ipi_shift);
599 1.3 matt
600 1.7 skrll atomic_or_64(&ci->ci_request_ipis, ipi_mask);
601 1.3 matt
602 1.20 jmcneill mips3_sd(cpu->cpu_mbox_set, ipi_mask);
603 1.17 jmcneill
604 1.3 matt return 0;
605 1.1 hikaru }
606 1.3 matt #endif /* MULTIPROCESSOR */
607